• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
58 
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
64 
65 #include "internal.h"
66 
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71 
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75 
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85 
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88 
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 					1;
98 #else
99 					2;
100 #endif
101 
disable_randmaps(char * s)102 static int __init disable_randmaps(char *s)
103 {
104 	randomize_va_space = 0;
105 	return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108 
109 
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115 
pgd_clear_bad(pgd_t * pgd)116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 	pgd_ERROR(*pgd);
119 	pgd_clear(pgd);
120 }
121 
pud_clear_bad(pud_t * pud)122 void pud_clear_bad(pud_t *pud)
123 {
124 	pud_ERROR(*pud);
125 	pud_clear(pud);
126 }
127 
pmd_clear_bad(pmd_t * pmd)128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 	pmd_ERROR(*pmd);
131 	pmd_clear(pmd);
132 }
133 
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd)138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 	pgtable_t token = pmd_pgtable(*pmd);
141 	pmd_clear(pmd);
142 	pte_free_tlb(tlb, token);
143 	tlb->mm->nr_ptes--;
144 }
145 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 				unsigned long addr, unsigned long end,
148 				unsigned long floor, unsigned long ceiling)
149 {
150 	pmd_t *pmd;
151 	unsigned long next;
152 	unsigned long start;
153 
154 	start = addr;
155 	pmd = pmd_offset(pud, addr);
156 	do {
157 		next = pmd_addr_end(addr, end);
158 		if (pmd_none_or_clear_bad(pmd))
159 			continue;
160 		free_pte_range(tlb, pmd);
161 	} while (pmd++, addr = next, addr != end);
162 
163 	start &= PUD_MASK;
164 	if (start < floor)
165 		return;
166 	if (ceiling) {
167 		ceiling &= PUD_MASK;
168 		if (!ceiling)
169 			return;
170 	}
171 	if (end - 1 > ceiling - 1)
172 		return;
173 
174 	pmd = pmd_offset(pud, start);
175 	pud_clear(pud);
176 	pmd_free_tlb(tlb, pmd);
177 }
178 
free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 				unsigned long addr, unsigned long end,
181 				unsigned long floor, unsigned long ceiling)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 	unsigned long start;
186 
187 	start = addr;
188 	pud = pud_offset(pgd, addr);
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (pud_none_or_clear_bad(pud))
192 			continue;
193 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 	} while (pud++, addr = next, addr != end);
195 
196 	start &= PGDIR_MASK;
197 	if (start < floor)
198 		return;
199 	if (ceiling) {
200 		ceiling &= PGDIR_MASK;
201 		if (!ceiling)
202 			return;
203 	}
204 	if (end - 1 > ceiling - 1)
205 		return;
206 
207 	pud = pud_offset(pgd, start);
208 	pgd_clear(pgd);
209 	pud_free_tlb(tlb, pud);
210 }
211 
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)217 void free_pgd_range(struct mmu_gather *tlb,
218 			unsigned long addr, unsigned long end,
219 			unsigned long floor, unsigned long ceiling)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	/*
226 	 * The next few lines have given us lots of grief...
227 	 *
228 	 * Why are we testing PMD* at this top level?  Because often
229 	 * there will be no work to do at all, and we'd prefer not to
230 	 * go all the way down to the bottom just to discover that.
231 	 *
232 	 * Why all these "- 1"s?  Because 0 represents both the bottom
233 	 * of the address space and the top of it (using -1 for the
234 	 * top wouldn't help much: the masks would do the wrong thing).
235 	 * The rule is that addr 0 and floor 0 refer to the bottom of
236 	 * the address space, but end 0 and ceiling 0 refer to the top
237 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 	 * that end 0 case should be mythical).
239 	 *
240 	 * Wherever addr is brought up or ceiling brought down, we must
241 	 * be careful to reject "the opposite 0" before it confuses the
242 	 * subsequent tests.  But what about where end is brought down
243 	 * by PMD_SIZE below? no, end can't go down to 0 there.
244 	 *
245 	 * Whereas we round start (addr) and ceiling down, by different
246 	 * masks at different levels, in order to test whether a table
247 	 * now has no other vmas using it, so can be freed, we don't
248 	 * bother to round floor or end up - the tests don't need that.
249 	 */
250 
251 	addr &= PMD_MASK;
252 	if (addr < floor) {
253 		addr += PMD_SIZE;
254 		if (!addr)
255 			return;
256 	}
257 	if (ceiling) {
258 		ceiling &= PMD_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		end -= PMD_SIZE;
264 	if (addr > end - 1)
265 		return;
266 
267 	start = addr;
268 	pgd = pgd_offset(tlb->mm, addr);
269 	do {
270 		next = pgd_addr_end(addr, end);
271 		if (pgd_none_or_clear_bad(pgd))
272 			continue;
273 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 	} while (pgd++, addr = next, addr != end);
275 }
276 
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 		unsigned long floor, unsigned long ceiling)
279 {
280 	while (vma) {
281 		struct vm_area_struct *next = vma->vm_next;
282 		unsigned long addr = vma->vm_start;
283 
284 		/*
285 		 * Hide vma from rmap and vmtruncate before freeing pgtables
286 		 */
287 		anon_vma_unlink(vma);
288 		unlink_file_vma(vma);
289 
290 		if (is_vm_hugetlb_page(vma)) {
291 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		} else {
294 			/*
295 			 * Optimization: gather nearby vmas into one call down
296 			 */
297 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 			       && !is_vm_hugetlb_page(next)) {
299 				vma = next;
300 				next = vma->vm_next;
301 				anon_vma_unlink(vma);
302 				unlink_file_vma(vma);
303 			}
304 			free_pgd_range(tlb, addr, vma->vm_end,
305 				floor, next? next->vm_start: ceiling);
306 		}
307 		vma = next;
308 	}
309 }
310 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd,unsigned long address)311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 	pgtable_t new = pte_alloc_one(mm, address);
314 	if (!new)
315 		return -ENOMEM;
316 
317 	/*
318 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 	 * visible before the pte is made visible to other CPUs by being
320 	 * put into page tables.
321 	 *
322 	 * The other side of the story is the pointer chasing in the page
323 	 * table walking code (when walking the page table without locking;
324 	 * ie. most of the time). Fortunately, these data accesses consist
325 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 	 * being the notable exception) will already guarantee loads are
327 	 * seen in-order. See the alpha page table accessors for the
328 	 * smp_read_barrier_depends() barriers in page table walking code.
329 	 */
330 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 
332 	spin_lock(&mm->page_table_lock);
333 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334 		mm->nr_ptes++;
335 		pmd_populate(mm, pmd, new);
336 		new = NULL;
337 	}
338 	spin_unlock(&mm->page_table_lock);
339 	if (new)
340 		pte_free(mm, new);
341 	return 0;
342 }
343 
__pte_alloc_kernel(pmd_t * pmd,unsigned long address)344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 	if (!new)
348 		return -ENOMEM;
349 
350 	smp_wmb(); /* See comment in __pte_alloc */
351 
352 	spin_lock(&init_mm.page_table_lock);
353 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354 		pmd_populate_kernel(&init_mm, pmd, new);
355 		new = NULL;
356 	}
357 	spin_unlock(&init_mm.page_table_lock);
358 	if (new)
359 		pte_free_kernel(&init_mm, new);
360 	return 0;
361 }
362 
add_mm_rss(struct mm_struct * mm,int file_rss,int anon_rss)363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 	if (file_rss)
366 		add_mm_counter(mm, file_rss, file_rss);
367 	if (anon_rss)
368 		add_mm_counter(mm, anon_rss, anon_rss);
369 }
370 
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379 			  pte_t pte, struct page *page)
380 {
381 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382 	pud_t *pud = pud_offset(pgd, addr);
383 	pmd_t *pmd = pmd_offset(pud, addr);
384 	struct address_space *mapping;
385 	pgoff_t index;
386 	static unsigned long resume;
387 	static unsigned long nr_shown;
388 	static unsigned long nr_unshown;
389 
390 	/*
391 	 * Allow a burst of 60 reports, then keep quiet for that minute;
392 	 * or allow a steady drip of one report per second.
393 	 */
394 	if (nr_shown == 60) {
395 		if (time_before(jiffies, resume)) {
396 			nr_unshown++;
397 			return;
398 		}
399 		if (nr_unshown) {
400 			printk(KERN_ALERT
401 				"BUG: Bad page map: %lu messages suppressed\n",
402 				nr_unshown);
403 			nr_unshown = 0;
404 		}
405 		nr_shown = 0;
406 	}
407 	if (nr_shown++ == 0)
408 		resume = jiffies + 60 * HZ;
409 
410 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
411 	index = linear_page_index(vma, addr);
412 
413 	printk(KERN_ALERT
414 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
415 		current->comm,
416 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
417 	if (page) {
418 		printk(KERN_ALERT
419 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
420 		page, (void *)page->flags, page_count(page),
421 		page_mapcount(page), page->mapping, page->index);
422 	}
423 	printk(KERN_ALERT
424 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
425 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
426 	/*
427 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
428 	 */
429 	if (vma->vm_ops)
430 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
431 				(unsigned long)vma->vm_ops->fault);
432 	if (vma->vm_file && vma->vm_file->f_op)
433 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
434 				(unsigned long)vma->vm_file->f_op->mmap);
435 	dump_stack();
436 	add_taint(TAINT_BAD_PAGE);
437 }
438 
is_cow_mapping(unsigned int flags)439 static inline int is_cow_mapping(unsigned int flags)
440 {
441 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
442 }
443 
444 /*
445  * vm_normal_page -- This function gets the "struct page" associated with a pte.
446  *
447  * "Special" mappings do not wish to be associated with a "struct page" (either
448  * it doesn't exist, or it exists but they don't want to touch it). In this
449  * case, NULL is returned here. "Normal" mappings do have a struct page.
450  *
451  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
452  * pte bit, in which case this function is trivial. Secondly, an architecture
453  * may not have a spare pte bit, which requires a more complicated scheme,
454  * described below.
455  *
456  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
457  * special mapping (even if there are underlying and valid "struct pages").
458  * COWed pages of a VM_PFNMAP are always normal.
459  *
460  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
461  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
462  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
463  * mapping will always honor the rule
464  *
465  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
466  *
467  * And for normal mappings this is false.
468  *
469  * This restricts such mappings to be a linear translation from virtual address
470  * to pfn. To get around this restriction, we allow arbitrary mappings so long
471  * as the vma is not a COW mapping; in that case, we know that all ptes are
472  * special (because none can have been COWed).
473  *
474  *
475  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
476  *
477  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
478  * page" backing, however the difference is that _all_ pages with a struct
479  * page (that is, those where pfn_valid is true) are refcounted and considered
480  * normal pages by the VM. The disadvantage is that pages are refcounted
481  * (which can be slower and simply not an option for some PFNMAP users). The
482  * advantage is that we don't have to follow the strict linearity rule of
483  * PFNMAP mappings in order to support COWable mappings.
484  *
485  */
486 #ifdef __HAVE_ARCH_PTE_SPECIAL
487 # define HAVE_PTE_SPECIAL 1
488 #else
489 # define HAVE_PTE_SPECIAL 0
490 #endif
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)491 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
492 				pte_t pte)
493 {
494 	unsigned long pfn = pte_pfn(pte);
495 
496 	if (HAVE_PTE_SPECIAL) {
497 		if (likely(!pte_special(pte)))
498 			goto check_pfn;
499 		if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
500 			print_bad_pte(vma, addr, pte, NULL);
501 		return NULL;
502 	}
503 
504 	/* !HAVE_PTE_SPECIAL case follows: */
505 
506 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
507 		if (vma->vm_flags & VM_MIXEDMAP) {
508 			if (!pfn_valid(pfn))
509 				return NULL;
510 			goto out;
511 		} else {
512 			unsigned long off;
513 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
514 			if (pfn == vma->vm_pgoff + off)
515 				return NULL;
516 			if (!is_cow_mapping(vma->vm_flags))
517 				return NULL;
518 		}
519 	}
520 
521 check_pfn:
522 	if (unlikely(pfn > highest_memmap_pfn)) {
523 		print_bad_pte(vma, addr, pte, NULL);
524 		return NULL;
525 	}
526 
527 	/*
528 	 * NOTE! We still have PageReserved() pages in the page tables.
529 	 * eg. VDSO mappings can cause them to exist.
530 	 */
531 out:
532 	return pfn_to_page(pfn);
533 }
534 
535 /*
536  * copy one vm_area from one task to the other. Assumes the page tables
537  * already present in the new task to be cleared in the whole range
538  * covered by this vma.
539  */
540 
541 static inline void
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)542 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
544 		unsigned long addr, int *rss)
545 {
546 	unsigned long vm_flags = vma->vm_flags;
547 	pte_t pte = *src_pte;
548 	struct page *page;
549 
550 	/* pte contains position in swap or file, so copy. */
551 	if (unlikely(!pte_present(pte))) {
552 		if (!pte_file(pte)) {
553 			swp_entry_t entry = pte_to_swp_entry(pte);
554 
555 			swap_duplicate(entry);
556 			/* make sure dst_mm is on swapoff's mmlist. */
557 			if (unlikely(list_empty(&dst_mm->mmlist))) {
558 				spin_lock(&mmlist_lock);
559 				if (list_empty(&dst_mm->mmlist))
560 					list_add(&dst_mm->mmlist,
561 						 &src_mm->mmlist);
562 				spin_unlock(&mmlist_lock);
563 			}
564 			if (is_write_migration_entry(entry) &&
565 					is_cow_mapping(vm_flags)) {
566 				/*
567 				 * COW mappings require pages in both parent
568 				 * and child to be set to read.
569 				 */
570 				make_migration_entry_read(&entry);
571 				pte = swp_entry_to_pte(entry);
572 				set_pte_at(src_mm, addr, src_pte, pte);
573 			}
574 		}
575 		goto out_set_pte;
576 	}
577 
578 	/*
579 	 * If it's a COW mapping, write protect it both
580 	 * in the parent and the child
581 	 */
582 	if (is_cow_mapping(vm_flags)) {
583 		ptep_set_wrprotect(src_mm, addr, src_pte);
584 		pte = pte_wrprotect(pte);
585 	}
586 
587 	/*
588 	 * If it's a shared mapping, mark it clean in
589 	 * the child
590 	 */
591 	if (vm_flags & VM_SHARED)
592 		pte = pte_mkclean(pte);
593 	pte = pte_mkold(pte);
594 
595 	page = vm_normal_page(vma, addr, pte);
596 	if (page) {
597 		get_page(page);
598 		page_dup_rmap(page, vma, addr);
599 		rss[!!PageAnon(page)]++;
600 	}
601 
602 out_set_pte:
603 	set_pte_at(dst_mm, addr, dst_pte, pte);
604 }
605 
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)606 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
607 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
608 		unsigned long addr, unsigned long end)
609 {
610 	pte_t *src_pte, *dst_pte;
611 	spinlock_t *src_ptl, *dst_ptl;
612 	int progress = 0;
613 	int rss[2];
614 
615 again:
616 	rss[1] = rss[0] = 0;
617 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
618 	if (!dst_pte)
619 		return -ENOMEM;
620 	src_pte = pte_offset_map_nested(src_pmd, addr);
621 	src_ptl = pte_lockptr(src_mm, src_pmd);
622 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
623 	arch_enter_lazy_mmu_mode();
624 
625 	do {
626 		/*
627 		 * We are holding two locks at this point - either of them
628 		 * could generate latencies in another task on another CPU.
629 		 */
630 		if (progress >= 32) {
631 			progress = 0;
632 			if (need_resched() ||
633 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
634 				break;
635 		}
636 		if (pte_none(*src_pte)) {
637 			progress++;
638 			continue;
639 		}
640 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
641 		progress += 8;
642 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
643 
644 	arch_leave_lazy_mmu_mode();
645 	spin_unlock(src_ptl);
646 	pte_unmap_nested(src_pte - 1);
647 	add_mm_rss(dst_mm, rss[0], rss[1]);
648 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
649 	cond_resched();
650 	if (addr != end)
651 		goto again;
652 	return 0;
653 }
654 
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)655 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
656 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
657 		unsigned long addr, unsigned long end)
658 {
659 	pmd_t *src_pmd, *dst_pmd;
660 	unsigned long next;
661 
662 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
663 	if (!dst_pmd)
664 		return -ENOMEM;
665 	src_pmd = pmd_offset(src_pud, addr);
666 	do {
667 		next = pmd_addr_end(addr, end);
668 		if (pmd_none_or_clear_bad(src_pmd))
669 			continue;
670 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
671 						vma, addr, next))
672 			return -ENOMEM;
673 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
674 	return 0;
675 }
676 
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)677 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
678 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
679 		unsigned long addr, unsigned long end)
680 {
681 	pud_t *src_pud, *dst_pud;
682 	unsigned long next;
683 
684 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
685 	if (!dst_pud)
686 		return -ENOMEM;
687 	src_pud = pud_offset(src_pgd, addr);
688 	do {
689 		next = pud_addr_end(addr, end);
690 		if (pud_none_or_clear_bad(src_pud))
691 			continue;
692 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
693 						vma, addr, next))
694 			return -ENOMEM;
695 	} while (dst_pud++, src_pud++, addr = next, addr != end);
696 	return 0;
697 }
698 
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)699 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 		struct vm_area_struct *vma)
701 {
702 	pgd_t *src_pgd, *dst_pgd;
703 	unsigned long next;
704 	unsigned long addr = vma->vm_start;
705 	unsigned long end = vma->vm_end;
706 	int ret;
707 
708 	/*
709 	 * Don't copy ptes where a page fault will fill them correctly.
710 	 * Fork becomes much lighter when there are big shared or private
711 	 * readonly mappings. The tradeoff is that copy_page_range is more
712 	 * efficient than faulting.
713 	 */
714 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
715 		if (!vma->anon_vma)
716 			return 0;
717 	}
718 
719 	if (is_vm_hugetlb_page(vma))
720 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
721 
722 	if (unlikely(is_pfn_mapping(vma))) {
723 		/*
724 		 * We do not free on error cases below as remove_vma
725 		 * gets called on error from higher level routine
726 		 */
727 		ret = track_pfn_vma_copy(vma);
728 		if (ret)
729 			return ret;
730 	}
731 
732 	/*
733 	 * We need to invalidate the secondary MMU mappings only when
734 	 * there could be a permission downgrade on the ptes of the
735 	 * parent mm. And a permission downgrade will only happen if
736 	 * is_cow_mapping() returns true.
737 	 */
738 	if (is_cow_mapping(vma->vm_flags))
739 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
740 
741 	ret = 0;
742 	dst_pgd = pgd_offset(dst_mm, addr);
743 	src_pgd = pgd_offset(src_mm, addr);
744 	do {
745 		next = pgd_addr_end(addr, end);
746 		if (pgd_none_or_clear_bad(src_pgd))
747 			continue;
748 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
749 					    vma, addr, next))) {
750 			ret = -ENOMEM;
751 			break;
752 		}
753 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
754 
755 	if (is_cow_mapping(vma->vm_flags))
756 		mmu_notifier_invalidate_range_end(src_mm,
757 						  vma->vm_start, end);
758 	return ret;
759 }
760 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,long * zap_work,struct zap_details * details)761 static unsigned long zap_pte_range(struct mmu_gather *tlb,
762 				struct vm_area_struct *vma, pmd_t *pmd,
763 				unsigned long addr, unsigned long end,
764 				long *zap_work, struct zap_details *details)
765 {
766 	struct mm_struct *mm = tlb->mm;
767 	pte_t *pte;
768 	spinlock_t *ptl;
769 	int file_rss = 0;
770 	int anon_rss = 0;
771 
772 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
773 	arch_enter_lazy_mmu_mode();
774 	do {
775 		pte_t ptent = *pte;
776 		if (pte_none(ptent)) {
777 			(*zap_work)--;
778 			continue;
779 		}
780 
781 		(*zap_work) -= PAGE_SIZE;
782 
783 		if (pte_present(ptent)) {
784 			struct page *page;
785 
786 			page = vm_normal_page(vma, addr, ptent);
787 			if (unlikely(details) && page) {
788 				/*
789 				 * unmap_shared_mapping_pages() wants to
790 				 * invalidate cache without truncating:
791 				 * unmap shared but keep private pages.
792 				 */
793 				if (details->check_mapping &&
794 				    details->check_mapping != page->mapping)
795 					continue;
796 				/*
797 				 * Each page->index must be checked when
798 				 * invalidating or truncating nonlinear.
799 				 */
800 				if (details->nonlinear_vma &&
801 				    (page->index < details->first_index ||
802 				     page->index > details->last_index))
803 					continue;
804 			}
805 			ptent = ptep_get_and_clear_full(mm, addr, pte,
806 							tlb->fullmm);
807 			tlb_remove_tlb_entry(tlb, pte, addr);
808 			if (unlikely(!page))
809 				continue;
810 			if (unlikely(details) && details->nonlinear_vma
811 			    && linear_page_index(details->nonlinear_vma,
812 						addr) != page->index)
813 				set_pte_at(mm, addr, pte,
814 					   pgoff_to_pte(page->index));
815 			if (PageAnon(page))
816 				anon_rss--;
817 			else {
818 				if (pte_dirty(ptent))
819 					set_page_dirty(page);
820 				if (pte_young(ptent) &&
821 				    likely(!VM_SequentialReadHint(vma)))
822 					mark_page_accessed(page);
823 				file_rss--;
824 			}
825 			page_remove_rmap(page);
826 			if (unlikely(page_mapcount(page) < 0))
827 				print_bad_pte(vma, addr, ptent, page);
828 			tlb_remove_page(tlb, page);
829 			continue;
830 		}
831 		/*
832 		 * If details->check_mapping, we leave swap entries;
833 		 * if details->nonlinear_vma, we leave file entries.
834 		 */
835 		if (unlikely(details))
836 			continue;
837 		if (pte_file(ptent)) {
838 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
839 				print_bad_pte(vma, addr, ptent, NULL);
840 		} else if
841 		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
842 			print_bad_pte(vma, addr, ptent, NULL);
843 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
844 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
845 
846 	add_mm_rss(mm, file_rss, anon_rss);
847 	arch_leave_lazy_mmu_mode();
848 	pte_unmap_unlock(pte - 1, ptl);
849 
850 	return addr;
851 }
852 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,long * zap_work,struct zap_details * details)853 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
854 				struct vm_area_struct *vma, pud_t *pud,
855 				unsigned long addr, unsigned long end,
856 				long *zap_work, struct zap_details *details)
857 {
858 	pmd_t *pmd;
859 	unsigned long next;
860 
861 	pmd = pmd_offset(pud, addr);
862 	do {
863 		next = pmd_addr_end(addr, end);
864 		if (pmd_none_or_clear_bad(pmd)) {
865 			(*zap_work)--;
866 			continue;
867 		}
868 		next = zap_pte_range(tlb, vma, pmd, addr, next,
869 						zap_work, details);
870 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
871 
872 	return addr;
873 }
874 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,long * zap_work,struct zap_details * details)875 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
876 				struct vm_area_struct *vma, pgd_t *pgd,
877 				unsigned long addr, unsigned long end,
878 				long *zap_work, struct zap_details *details)
879 {
880 	pud_t *pud;
881 	unsigned long next;
882 
883 	pud = pud_offset(pgd, addr);
884 	do {
885 		next = pud_addr_end(addr, end);
886 		if (pud_none_or_clear_bad(pud)) {
887 			(*zap_work)--;
888 			continue;
889 		}
890 		next = zap_pmd_range(tlb, vma, pud, addr, next,
891 						zap_work, details);
892 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
893 
894 	return addr;
895 }
896 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,long * zap_work,struct zap_details * details)897 static unsigned long unmap_page_range(struct mmu_gather *tlb,
898 				struct vm_area_struct *vma,
899 				unsigned long addr, unsigned long end,
900 				long *zap_work, struct zap_details *details)
901 {
902 	pgd_t *pgd;
903 	unsigned long next;
904 
905 	if (details && !details->check_mapping && !details->nonlinear_vma)
906 		details = NULL;
907 
908 	BUG_ON(addr >= end);
909 	tlb_start_vma(tlb, vma);
910 	pgd = pgd_offset(vma->vm_mm, addr);
911 	do {
912 		next = pgd_addr_end(addr, end);
913 		if (pgd_none_or_clear_bad(pgd)) {
914 			(*zap_work)--;
915 			continue;
916 		}
917 		next = zap_pud_range(tlb, vma, pgd, addr, next,
918 						zap_work, details);
919 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
920 	tlb_end_vma(tlb, vma);
921 
922 	return addr;
923 }
924 
925 #ifdef CONFIG_PREEMPT
926 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
927 #else
928 /* No preempt: go for improved straight-line efficiency */
929 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
930 #endif
931 
932 /**
933  * unmap_vmas - unmap a range of memory covered by a list of vma's
934  * @tlbp: address of the caller's struct mmu_gather
935  * @vma: the starting vma
936  * @start_addr: virtual address at which to start unmapping
937  * @end_addr: virtual address at which to end unmapping
938  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
939  * @details: details of nonlinear truncation or shared cache invalidation
940  *
941  * Returns the end address of the unmapping (restart addr if interrupted).
942  *
943  * Unmap all pages in the vma list.
944  *
945  * We aim to not hold locks for too long (for scheduling latency reasons).
946  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
947  * return the ending mmu_gather to the caller.
948  *
949  * Only addresses between `start' and `end' will be unmapped.
950  *
951  * The VMA list must be sorted in ascending virtual address order.
952  *
953  * unmap_vmas() assumes that the caller will flush the whole unmapped address
954  * range after unmap_vmas() returns.  So the only responsibility here is to
955  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
956  * drops the lock and schedules.
957  */
unmap_vmas(struct mmu_gather ** tlbp,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long * nr_accounted,struct zap_details * details)958 unsigned long unmap_vmas(struct mmu_gather **tlbp,
959 		struct vm_area_struct *vma, unsigned long start_addr,
960 		unsigned long end_addr, unsigned long *nr_accounted,
961 		struct zap_details *details)
962 {
963 	long zap_work = ZAP_BLOCK_SIZE;
964 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
965 	int tlb_start_valid = 0;
966 	unsigned long start = start_addr;
967 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
968 	int fullmm = (*tlbp)->fullmm;
969 	struct mm_struct *mm = vma->vm_mm;
970 
971 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
972 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
973 		unsigned long end;
974 
975 		start = max(vma->vm_start, start_addr);
976 		if (start >= vma->vm_end)
977 			continue;
978 		end = min(vma->vm_end, end_addr);
979 		if (end <= vma->vm_start)
980 			continue;
981 
982 		if (vma->vm_flags & VM_ACCOUNT)
983 			*nr_accounted += (end - start) >> PAGE_SHIFT;
984 
985 		if (unlikely(is_pfn_mapping(vma)))
986 			untrack_pfn_vma(vma, 0, 0);
987 
988 		while (start != end) {
989 			if (!tlb_start_valid) {
990 				tlb_start = start;
991 				tlb_start_valid = 1;
992 			}
993 
994 			if (unlikely(is_vm_hugetlb_page(vma))) {
995 				/*
996 				 * It is undesirable to test vma->vm_file as it
997 				 * should be non-null for valid hugetlb area.
998 				 * However, vm_file will be NULL in the error
999 				 * cleanup path of do_mmap_pgoff. When
1000 				 * hugetlbfs ->mmap method fails,
1001 				 * do_mmap_pgoff() nullifies vma->vm_file
1002 				 * before calling this function to clean up.
1003 				 * Since no pte has actually been setup, it is
1004 				 * safe to do nothing in this case.
1005 				 */
1006 				if (vma->vm_file) {
1007 					unmap_hugepage_range(vma, start, end, NULL);
1008 					zap_work -= (end - start) /
1009 					pages_per_huge_page(hstate_vma(vma));
1010 				}
1011 
1012 				start = end;
1013 			} else
1014 				start = unmap_page_range(*tlbp, vma,
1015 						start, end, &zap_work, details);
1016 
1017 			if (zap_work > 0) {
1018 				BUG_ON(start != end);
1019 				break;
1020 			}
1021 
1022 			tlb_finish_mmu(*tlbp, tlb_start, start);
1023 
1024 			if (need_resched() ||
1025 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1026 				if (i_mmap_lock) {
1027 					*tlbp = NULL;
1028 					goto out;
1029 				}
1030 				cond_resched();
1031 			}
1032 
1033 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1034 			tlb_start_valid = 0;
1035 			zap_work = ZAP_BLOCK_SIZE;
1036 		}
1037 	}
1038 out:
1039 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1040 	return start;	/* which is now the end (or restart) address */
1041 }
1042 
1043 /**
1044  * zap_page_range - remove user pages in a given range
1045  * @vma: vm_area_struct holding the applicable pages
1046  * @address: starting address of pages to zap
1047  * @size: number of bytes to zap
1048  * @details: details of nonlinear truncation or shared cache invalidation
1049  */
zap_page_range(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1050 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1051 		unsigned long size, struct zap_details *details)
1052 {
1053 	struct mm_struct *mm = vma->vm_mm;
1054 	struct mmu_gather *tlb;
1055 	unsigned long end = address + size;
1056 	unsigned long nr_accounted = 0;
1057 
1058 	lru_add_drain();
1059 	tlb = tlb_gather_mmu(mm, 0);
1060 	update_hiwater_rss(mm);
1061 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1062 	if (tlb)
1063 		tlb_finish_mmu(tlb, address, end);
1064 	return end;
1065 }
1066 
1067 /**
1068  * zap_vma_ptes - remove ptes mapping the vma
1069  * @vma: vm_area_struct holding ptes to be zapped
1070  * @address: starting address of pages to zap
1071  * @size: number of bytes to zap
1072  *
1073  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1074  *
1075  * The entire address range must be fully contained within the vma.
1076  *
1077  * Returns 0 if successful.
1078  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1079 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1080 		unsigned long size)
1081 {
1082 	if (address < vma->vm_start || address + size > vma->vm_end ||
1083 	    		!(vma->vm_flags & VM_PFNMAP))
1084 		return -1;
1085 	zap_page_range(vma, address, size, NULL);
1086 	return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1089 
1090 /*
1091  * Do a quick page-table lookup for a single page.
1092  */
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1093 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1094 			unsigned int flags)
1095 {
1096 	pgd_t *pgd;
1097 	pud_t *pud;
1098 	pmd_t *pmd;
1099 	pte_t *ptep, pte;
1100 	spinlock_t *ptl;
1101 	struct page *page;
1102 	struct mm_struct *mm = vma->vm_mm;
1103 
1104 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1105 	if (!IS_ERR(page)) {
1106 		BUG_ON(flags & FOLL_GET);
1107 		goto out;
1108 	}
1109 
1110 	page = NULL;
1111 	pgd = pgd_offset(mm, address);
1112 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1113 		goto no_page_table;
1114 
1115 	pud = pud_offset(pgd, address);
1116 	if (pud_none(*pud))
1117 		goto no_page_table;
1118 	if (pud_huge(*pud)) {
1119 		BUG_ON(flags & FOLL_GET);
1120 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1121 		goto out;
1122 	}
1123 	if (unlikely(pud_bad(*pud)))
1124 		goto no_page_table;
1125 
1126 	pmd = pmd_offset(pud, address);
1127 	if (pmd_none(*pmd))
1128 		goto no_page_table;
1129 	if (pmd_huge(*pmd)) {
1130 		BUG_ON(flags & FOLL_GET);
1131 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1132 		goto out;
1133 	}
1134 	if (unlikely(pmd_bad(*pmd)))
1135 		goto no_page_table;
1136 
1137 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1138 
1139 	pte = *ptep;
1140 	if (!pte_present(pte))
1141 		goto no_page;
1142 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1143 		goto unlock;
1144 	page = vm_normal_page(vma, address, pte);
1145 	if (unlikely(!page))
1146 		goto bad_page;
1147 
1148 	if (flags & FOLL_GET)
1149 		get_page(page);
1150 	if (flags & FOLL_TOUCH) {
1151 		if ((flags & FOLL_WRITE) &&
1152 		    !pte_dirty(pte) && !PageDirty(page))
1153 			set_page_dirty(page);
1154 		mark_page_accessed(page);
1155 	}
1156 unlock:
1157 	pte_unmap_unlock(ptep, ptl);
1158 out:
1159 	return page;
1160 
1161 bad_page:
1162 	pte_unmap_unlock(ptep, ptl);
1163 	return ERR_PTR(-EFAULT);
1164 
1165 no_page:
1166 	pte_unmap_unlock(ptep, ptl);
1167 	if (!pte_none(pte))
1168 		return page;
1169 	/* Fall through to ZERO_PAGE handling */
1170 no_page_table:
1171 	/*
1172 	 * When core dumping an enormous anonymous area that nobody
1173 	 * has touched so far, we don't want to allocate page tables.
1174 	 */
1175 	if (flags & FOLL_ANON) {
1176 		page = ZERO_PAGE(0);
1177 		if (flags & FOLL_GET)
1178 			get_page(page);
1179 		BUG_ON(flags & FOLL_WRITE);
1180 	}
1181 	return page;
1182 }
1183 
1184 /* Can we do the FOLL_ANON optimization? */
use_zero_page(struct vm_area_struct * vma)1185 static inline int use_zero_page(struct vm_area_struct *vma)
1186 {
1187 	/*
1188 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1189 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1190 	 * we want to get the page from the page tables to make sure
1191 	 * that we serialize and update with any other user of that
1192 	 * mapping.
1193 	 */
1194 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1195 		return 0;
1196 	/*
1197 	 * And if we have a fault routine, it's not an anonymous region.
1198 	 */
1199 	return !vma->vm_ops || !vma->vm_ops->fault;
1200 }
1201 
1202 
1203 
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int len,int flags,struct page ** pages,struct vm_area_struct ** vmas)1204 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1205 		     unsigned long start, int len, int flags,
1206 		struct page **pages, struct vm_area_struct **vmas)
1207 {
1208 	int i;
1209 	unsigned int vm_flags = 0;
1210 	int write = !!(flags & GUP_FLAGS_WRITE);
1211 	int force = !!(flags & GUP_FLAGS_FORCE);
1212 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1213 	int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1214 
1215 	if (len <= 0)
1216 		return 0;
1217 	/*
1218 	 * Require read or write permissions.
1219 	 * If 'force' is set, we only require the "MAY" flags.
1220 	 */
1221 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1222 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1223 	i = 0;
1224 
1225 	do {
1226 		struct vm_area_struct *vma;
1227 		unsigned int foll_flags;
1228 
1229 		vma = find_extend_vma(mm, start);
1230 		if (!vma && in_gate_area(tsk, start)) {
1231 			unsigned long pg = start & PAGE_MASK;
1232 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1233 			pgd_t *pgd;
1234 			pud_t *pud;
1235 			pmd_t *pmd;
1236 			pte_t *pte;
1237 
1238 			/* user gate pages are read-only */
1239 			if (!ignore && write)
1240 				return i ? : -EFAULT;
1241 			if (pg > TASK_SIZE)
1242 				pgd = pgd_offset_k(pg);
1243 			else
1244 				pgd = pgd_offset_gate(mm, pg);
1245 			BUG_ON(pgd_none(*pgd));
1246 			pud = pud_offset(pgd, pg);
1247 			BUG_ON(pud_none(*pud));
1248 			pmd = pmd_offset(pud, pg);
1249 			if (pmd_none(*pmd))
1250 				return i ? : -EFAULT;
1251 			pte = pte_offset_map(pmd, pg);
1252 			if (pte_none(*pte)) {
1253 				pte_unmap(pte);
1254 				return i ? : -EFAULT;
1255 			}
1256 			if (pages) {
1257 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1258 				pages[i] = page;
1259 				if (page)
1260 					get_page(page);
1261 			}
1262 			pte_unmap(pte);
1263 			if (vmas)
1264 				vmas[i] = gate_vma;
1265 			i++;
1266 			start += PAGE_SIZE;
1267 			len--;
1268 			continue;
1269 		}
1270 
1271 		if (!vma ||
1272 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1273 		    (!ignore && !(vm_flags & vma->vm_flags)))
1274 			return i ? : -EFAULT;
1275 
1276 		if (is_vm_hugetlb_page(vma)) {
1277 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1278 						&start, &len, i, write);
1279 			continue;
1280 		}
1281 
1282 		foll_flags = FOLL_TOUCH;
1283 		if (pages)
1284 			foll_flags |= FOLL_GET;
1285 		if (!write && use_zero_page(vma))
1286 			foll_flags |= FOLL_ANON;
1287 
1288 		do {
1289 			struct page *page;
1290 
1291 			/*
1292 			 * If we have a pending SIGKILL, don't keep faulting
1293 			 * pages and potentially allocating memory, unless
1294 			 * current is handling munlock--e.g., on exit. In
1295 			 * that case, we are not allocating memory.  Rather,
1296 			 * we're only unlocking already resident/mapped pages.
1297 			 */
1298 			if (unlikely(!ignore_sigkill &&
1299 					fatal_signal_pending(current)))
1300 				return i ? i : -ERESTARTSYS;
1301 
1302 			if (write)
1303 				foll_flags |= FOLL_WRITE;
1304 
1305 			cond_resched();
1306 			while (!(page = follow_page(vma, start, foll_flags))) {
1307 				int ret;
1308 				ret = handle_mm_fault(mm, vma, start,
1309 						foll_flags & FOLL_WRITE);
1310 				if (ret & VM_FAULT_ERROR) {
1311 					if (ret & VM_FAULT_OOM)
1312 						return i ? i : -ENOMEM;
1313 					else if (ret & VM_FAULT_SIGBUS)
1314 						return i ? i : -EFAULT;
1315 					BUG();
1316 				}
1317 				if (ret & VM_FAULT_MAJOR)
1318 					tsk->maj_flt++;
1319 				else
1320 					tsk->min_flt++;
1321 
1322 				/*
1323 				 * The VM_FAULT_WRITE bit tells us that
1324 				 * do_wp_page has broken COW when necessary,
1325 				 * even if maybe_mkwrite decided not to set
1326 				 * pte_write. We can thus safely do subsequent
1327 				 * page lookups as if they were reads. But only
1328 				 * do so when looping for pte_write is futile:
1329 				 * in some cases userspace may also be wanting
1330 				 * to write to the gotten user page, which a
1331 				 * read fault here might prevent (a readonly
1332 				 * page might get reCOWed by userspace write).
1333 				 */
1334 				if ((ret & VM_FAULT_WRITE) &&
1335 				    !(vma->vm_flags & VM_WRITE))
1336 					foll_flags &= ~FOLL_WRITE;
1337 
1338 				cond_resched();
1339 			}
1340 			if (IS_ERR(page))
1341 				return i ? i : PTR_ERR(page);
1342 			if (pages) {
1343 				pages[i] = page;
1344 
1345 				flush_anon_page(vma, page, start);
1346 				flush_dcache_page(page);
1347 			}
1348 			if (vmas)
1349 				vmas[i] = vma;
1350 			i++;
1351 			start += PAGE_SIZE;
1352 			len--;
1353 		} while (len && start < vma->vm_end);
1354 	} while (len);
1355 	return i;
1356 }
1357 
get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int len,int write,int force,struct page ** pages,struct vm_area_struct ** vmas)1358 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1359 		unsigned long start, int len, int write, int force,
1360 		struct page **pages, struct vm_area_struct **vmas)
1361 {
1362 	int flags = 0;
1363 
1364 	if (write)
1365 		flags |= GUP_FLAGS_WRITE;
1366 	if (force)
1367 		flags |= GUP_FLAGS_FORCE;
1368 
1369 	return __get_user_pages(tsk, mm,
1370 				start, len, flags,
1371 				pages, vmas);
1372 }
1373 
1374 EXPORT_SYMBOL(get_user_pages);
1375 
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1376 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1377 			spinlock_t **ptl)
1378 {
1379 	pgd_t * pgd = pgd_offset(mm, addr);
1380 	pud_t * pud = pud_alloc(mm, pgd, addr);
1381 	if (pud) {
1382 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1383 		if (pmd)
1384 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1385 	}
1386 	return NULL;
1387 }
1388 
1389 /*
1390  * This is the old fallback for page remapping.
1391  *
1392  * For historical reasons, it only allows reserved pages. Only
1393  * old drivers should use this, and they needed to mark their
1394  * pages reserved for the old functions anyway.
1395  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1396 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1397 			struct page *page, pgprot_t prot)
1398 {
1399 	struct mm_struct *mm = vma->vm_mm;
1400 	int retval;
1401 	pte_t *pte;
1402 	spinlock_t *ptl;
1403 
1404 	retval = -EINVAL;
1405 	if (PageAnon(page))
1406 		goto out;
1407 	retval = -ENOMEM;
1408 	flush_dcache_page(page);
1409 	pte = get_locked_pte(mm, addr, &ptl);
1410 	if (!pte)
1411 		goto out;
1412 	retval = -EBUSY;
1413 	if (!pte_none(*pte))
1414 		goto out_unlock;
1415 
1416 	/* Ok, finally just insert the thing.. */
1417 	get_page(page);
1418 	inc_mm_counter(mm, file_rss);
1419 	page_add_file_rmap(page);
1420 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1421 
1422 	retval = 0;
1423 	pte_unmap_unlock(pte, ptl);
1424 	return retval;
1425 out_unlock:
1426 	pte_unmap_unlock(pte, ptl);
1427 out:
1428 	return retval;
1429 }
1430 
1431 /**
1432  * vm_insert_page - insert single page into user vma
1433  * @vma: user vma to map to
1434  * @addr: target user address of this page
1435  * @page: source kernel page
1436  *
1437  * This allows drivers to insert individual pages they've allocated
1438  * into a user vma.
1439  *
1440  * The page has to be a nice clean _individual_ kernel allocation.
1441  * If you allocate a compound page, you need to have marked it as
1442  * such (__GFP_COMP), or manually just split the page up yourself
1443  * (see split_page()).
1444  *
1445  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1446  * took an arbitrary page protection parameter. This doesn't allow
1447  * that. Your vma protection will have to be set up correctly, which
1448  * means that if you want a shared writable mapping, you'd better
1449  * ask for a shared writable mapping!
1450  *
1451  * The page does not need to be reserved.
1452  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1453 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1454 			struct page *page)
1455 {
1456 	if (addr < vma->vm_start || addr >= vma->vm_end)
1457 		return -EFAULT;
1458 	if (!page_count(page))
1459 		return -EINVAL;
1460 	vma->vm_flags |= VM_INSERTPAGE;
1461 	return insert_page(vma, addr, page, vma->vm_page_prot);
1462 }
1463 EXPORT_SYMBOL(vm_insert_page);
1464 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot)1465 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1466 			unsigned long pfn, pgprot_t prot)
1467 {
1468 	struct mm_struct *mm = vma->vm_mm;
1469 	int retval;
1470 	pte_t *pte, entry;
1471 	spinlock_t *ptl;
1472 
1473 	retval = -ENOMEM;
1474 	pte = get_locked_pte(mm, addr, &ptl);
1475 	if (!pte)
1476 		goto out;
1477 	retval = -EBUSY;
1478 	if (!pte_none(*pte))
1479 		goto out_unlock;
1480 
1481 	/* Ok, finally just insert the thing.. */
1482 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1483 	set_pte_at(mm, addr, pte, entry);
1484 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1485 
1486 	retval = 0;
1487 out_unlock:
1488 	pte_unmap_unlock(pte, ptl);
1489 out:
1490 	return retval;
1491 }
1492 
1493 /**
1494  * vm_insert_pfn - insert single pfn into user vma
1495  * @vma: user vma to map to
1496  * @addr: target user address of this page
1497  * @pfn: source kernel pfn
1498  *
1499  * Similar to vm_inert_page, this allows drivers to insert individual pages
1500  * they've allocated into a user vma. Same comments apply.
1501  *
1502  * This function should only be called from a vm_ops->fault handler, and
1503  * in that case the handler should return NULL.
1504  *
1505  * vma cannot be a COW mapping.
1506  *
1507  * As this is called only for pages that do not currently exist, we
1508  * do not need to flush old virtual caches or the TLB.
1509  */
vm_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)1510 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1511 			unsigned long pfn)
1512 {
1513 	int ret;
1514 	pgprot_t pgprot = vma->vm_page_prot;
1515 	/*
1516 	 * Technically, architectures with pte_special can avoid all these
1517 	 * restrictions (same for remap_pfn_range).  However we would like
1518 	 * consistency in testing and feature parity among all, so we should
1519 	 * try to keep these invariants in place for everybody.
1520 	 */
1521 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1522 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1523 						(VM_PFNMAP|VM_MIXEDMAP));
1524 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1525 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1526 
1527 	if (addr < vma->vm_start || addr >= vma->vm_end)
1528 		return -EFAULT;
1529 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1530 		return -EINVAL;
1531 
1532 	ret = insert_pfn(vma, addr, pfn, pgprot);
1533 
1534 	if (ret)
1535 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1536 
1537 	return ret;
1538 }
1539 EXPORT_SYMBOL(vm_insert_pfn);
1540 
vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)1541 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1542 			unsigned long pfn)
1543 {
1544 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1545 
1546 	if (addr < vma->vm_start || addr >= vma->vm_end)
1547 		return -EFAULT;
1548 
1549 	/*
1550 	 * If we don't have pte special, then we have to use the pfn_valid()
1551 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1552 	 * refcount the page if pfn_valid is true (hence insert_page rather
1553 	 * than insert_pfn).
1554 	 */
1555 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1556 		struct page *page;
1557 
1558 		page = pfn_to_page(pfn);
1559 		return insert_page(vma, addr, page, vma->vm_page_prot);
1560 	}
1561 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1562 }
1563 EXPORT_SYMBOL(vm_insert_mixed);
1564 
1565 /*
1566  * maps a range of physical memory into the requested pages. the old
1567  * mappings are removed. any references to nonexistent pages results
1568  * in null mappings (currently treated as "copy-on-access")
1569  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1570 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1571 			unsigned long addr, unsigned long end,
1572 			unsigned long pfn, pgprot_t prot)
1573 {
1574 	pte_t *pte;
1575 	spinlock_t *ptl;
1576 
1577 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1578 	if (!pte)
1579 		return -ENOMEM;
1580 	arch_enter_lazy_mmu_mode();
1581 	do {
1582 		BUG_ON(!pte_none(*pte));
1583 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1584 		pfn++;
1585 	} while (pte++, addr += PAGE_SIZE, addr != end);
1586 	arch_leave_lazy_mmu_mode();
1587 	pte_unmap_unlock(pte - 1, ptl);
1588 	return 0;
1589 }
1590 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1591 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1592 			unsigned long addr, unsigned long end,
1593 			unsigned long pfn, pgprot_t prot)
1594 {
1595 	pmd_t *pmd;
1596 	unsigned long next;
1597 
1598 	pfn -= addr >> PAGE_SHIFT;
1599 	pmd = pmd_alloc(mm, pud, addr);
1600 	if (!pmd)
1601 		return -ENOMEM;
1602 	do {
1603 		next = pmd_addr_end(addr, end);
1604 		if (remap_pte_range(mm, pmd, addr, next,
1605 				pfn + (addr >> PAGE_SHIFT), prot))
1606 			return -ENOMEM;
1607 	} while (pmd++, addr = next, addr != end);
1608 	return 0;
1609 }
1610 
remap_pud_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1611 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1612 			unsigned long addr, unsigned long end,
1613 			unsigned long pfn, pgprot_t prot)
1614 {
1615 	pud_t *pud;
1616 	unsigned long next;
1617 
1618 	pfn -= addr >> PAGE_SHIFT;
1619 	pud = pud_alloc(mm, pgd, addr);
1620 	if (!pud)
1621 		return -ENOMEM;
1622 	do {
1623 		next = pud_addr_end(addr, end);
1624 		if (remap_pmd_range(mm, pud, addr, next,
1625 				pfn + (addr >> PAGE_SHIFT), prot))
1626 			return -ENOMEM;
1627 	} while (pud++, addr = next, addr != end);
1628 	return 0;
1629 }
1630 
1631 /**
1632  * remap_pfn_range - remap kernel memory to userspace
1633  * @vma: user vma to map to
1634  * @addr: target user address to start at
1635  * @pfn: physical address of kernel memory
1636  * @size: size of map area
1637  * @prot: page protection flags for this mapping
1638  *
1639  *  Note: this is only safe if the mm semaphore is held when called.
1640  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1641 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1642 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1643 {
1644 	pgd_t *pgd;
1645 	unsigned long next;
1646 	unsigned long end = addr + PAGE_ALIGN(size);
1647 	struct mm_struct *mm = vma->vm_mm;
1648 	int err;
1649 
1650 	/*
1651 	 * Physically remapped pages are special. Tell the
1652 	 * rest of the world about it:
1653 	 *   VM_IO tells people not to look at these pages
1654 	 *	(accesses can have side effects).
1655 	 *   VM_RESERVED is specified all over the place, because
1656 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1657 	 *	in 2.6 the LRU scan won't even find its pages, so this
1658 	 *	flag means no more than count its pages in reserved_vm,
1659 	 * 	and omit it from core dump, even when VM_IO turned off.
1660 	 *   VM_PFNMAP tells the core MM that the base pages are just
1661 	 *	raw PFN mappings, and do not have a "struct page" associated
1662 	 *	with them.
1663 	 *
1664 	 * There's a horrible special case to handle copy-on-write
1665 	 * behaviour that some programs depend on. We mark the "original"
1666 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1667 	 */
1668 	if (addr == vma->vm_start && end == vma->vm_end)
1669 		vma->vm_pgoff = pfn;
1670 	else if (is_cow_mapping(vma->vm_flags))
1671 		return -EINVAL;
1672 
1673 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1674 
1675 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1676 	if (err) {
1677 		/*
1678 		 * To indicate that track_pfn related cleanup is not
1679 		 * needed from higher level routine calling unmap_vmas
1680 		 */
1681 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1682 		return -EINVAL;
1683 	}
1684 
1685 	BUG_ON(addr >= end);
1686 	pfn -= addr >> PAGE_SHIFT;
1687 	pgd = pgd_offset(mm, addr);
1688 	flush_cache_range(vma, addr, end);
1689 	do {
1690 		next = pgd_addr_end(addr, end);
1691 		err = remap_pud_range(mm, pgd, addr, next,
1692 				pfn + (addr >> PAGE_SHIFT), prot);
1693 		if (err)
1694 			break;
1695 	} while (pgd++, addr = next, addr != end);
1696 
1697 	if (err)
1698 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1699 
1700 	return err;
1701 }
1702 EXPORT_SYMBOL(remap_pfn_range);
1703 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)1704 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1705 				     unsigned long addr, unsigned long end,
1706 				     pte_fn_t fn, void *data)
1707 {
1708 	pte_t *pte;
1709 	int err;
1710 	pgtable_t token;
1711 	spinlock_t *uninitialized_var(ptl);
1712 
1713 	pte = (mm == &init_mm) ?
1714 		pte_alloc_kernel(pmd, addr) :
1715 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1716 	if (!pte)
1717 		return -ENOMEM;
1718 
1719 	BUG_ON(pmd_huge(*pmd));
1720 
1721 	arch_enter_lazy_mmu_mode();
1722 
1723 	token = pmd_pgtable(*pmd);
1724 
1725 	do {
1726 		err = fn(pte, token, addr, data);
1727 		if (err)
1728 			break;
1729 	} while (pte++, addr += PAGE_SIZE, addr != end);
1730 
1731 	arch_leave_lazy_mmu_mode();
1732 
1733 	if (mm != &init_mm)
1734 		pte_unmap_unlock(pte-1, ptl);
1735 	return err;
1736 }
1737 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)1738 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1739 				     unsigned long addr, unsigned long end,
1740 				     pte_fn_t fn, void *data)
1741 {
1742 	pmd_t *pmd;
1743 	unsigned long next;
1744 	int err;
1745 
1746 	BUG_ON(pud_huge(*pud));
1747 
1748 	pmd = pmd_alloc(mm, pud, addr);
1749 	if (!pmd)
1750 		return -ENOMEM;
1751 	do {
1752 		next = pmd_addr_end(addr, end);
1753 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1754 		if (err)
1755 			break;
1756 	} while (pmd++, addr = next, addr != end);
1757 	return err;
1758 }
1759 
apply_to_pud_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)1760 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1761 				     unsigned long addr, unsigned long end,
1762 				     pte_fn_t fn, void *data)
1763 {
1764 	pud_t *pud;
1765 	unsigned long next;
1766 	int err;
1767 
1768 	pud = pud_alloc(mm, pgd, addr);
1769 	if (!pud)
1770 		return -ENOMEM;
1771 	do {
1772 		next = pud_addr_end(addr, end);
1773 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1774 		if (err)
1775 			break;
1776 	} while (pud++, addr = next, addr != end);
1777 	return err;
1778 }
1779 
1780 /*
1781  * Scan a region of virtual memory, filling in page tables as necessary
1782  * and calling a provided function on each leaf page table.
1783  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)1784 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1785 			unsigned long size, pte_fn_t fn, void *data)
1786 {
1787 	pgd_t *pgd;
1788 	unsigned long next;
1789 	unsigned long start = addr, end = addr + size;
1790 	int err;
1791 
1792 	BUG_ON(addr >= end);
1793 	mmu_notifier_invalidate_range_start(mm, start, end);
1794 	pgd = pgd_offset(mm, addr);
1795 	do {
1796 		next = pgd_addr_end(addr, end);
1797 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1798 		if (err)
1799 			break;
1800 	} while (pgd++, addr = next, addr != end);
1801 	mmu_notifier_invalidate_range_end(mm, start, end);
1802 	return err;
1803 }
1804 EXPORT_SYMBOL_GPL(apply_to_page_range);
1805 
1806 /*
1807  * handle_pte_fault chooses page fault handler according to an entry
1808  * which was read non-atomically.  Before making any commitment, on
1809  * those architectures or configurations (e.g. i386 with PAE) which
1810  * might give a mix of unmatched parts, do_swap_page and do_file_page
1811  * must check under lock before unmapping the pte and proceeding
1812  * (but do_wp_page is only called after already making such a check;
1813  * and do_anonymous_page and do_no_page can safely check later on).
1814  */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)1815 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1816 				pte_t *page_table, pte_t orig_pte)
1817 {
1818 	int same = 1;
1819 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1820 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1821 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1822 		spin_lock(ptl);
1823 		same = pte_same(*page_table, orig_pte);
1824 		spin_unlock(ptl);
1825 	}
1826 #endif
1827 	pte_unmap(page_table);
1828 	return same;
1829 }
1830 
1831 /*
1832  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1833  * servicing faults for write access.  In the normal case, do always want
1834  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1835  * that do not have writing enabled, when used by access_process_vm.
1836  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1837 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1838 {
1839 	if (likely(vma->vm_flags & VM_WRITE))
1840 		pte = pte_mkwrite(pte);
1841 	return pte;
1842 }
1843 
cow_user_page(struct page * dst,struct page * src,unsigned long va,struct vm_area_struct * vma)1844 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1845 {
1846 	/*
1847 	 * If the source page was a PFN mapping, we don't have
1848 	 * a "struct page" for it. We do a best-effort copy by
1849 	 * just copying from the original user address. If that
1850 	 * fails, we just zero-fill it. Live with it.
1851 	 */
1852 	if (unlikely(!src)) {
1853 		void *kaddr = kmap_atomic(dst, KM_USER0);
1854 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1855 
1856 		/*
1857 		 * This really shouldn't fail, because the page is there
1858 		 * in the page tables. But it might just be unreadable,
1859 		 * in which case we just give up and fill the result with
1860 		 * zeroes.
1861 		 */
1862 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1863 			memset(kaddr, 0, PAGE_SIZE);
1864 		kunmap_atomic(kaddr, KM_USER0);
1865 		flush_dcache_page(dst);
1866 	} else
1867 		copy_user_highpage(dst, src, va, vma);
1868 }
1869 
1870 /*
1871  * This routine handles present pages, when users try to write
1872  * to a shared page. It is done by copying the page to a new address
1873  * and decrementing the shared-page counter for the old page.
1874  *
1875  * Note that this routine assumes that the protection checks have been
1876  * done by the caller (the low-level page fault routine in most cases).
1877  * Thus we can safely just mark it writable once we've done any necessary
1878  * COW.
1879  *
1880  * We also mark the page dirty at this point even though the page will
1881  * change only once the write actually happens. This avoids a few races,
1882  * and potentially makes it more efficient.
1883  *
1884  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1885  * but allow concurrent faults), with pte both mapped and locked.
1886  * We return with mmap_sem still held, but pte unmapped and unlocked.
1887  */
do_wp_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,spinlock_t * ptl,pte_t orig_pte)1888 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1889 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1890 		spinlock_t *ptl, pte_t orig_pte)
1891 {
1892 	struct page *old_page, *new_page;
1893 	pte_t entry;
1894 	int reuse = 0, ret = 0;
1895 	int page_mkwrite = 0;
1896 	struct page *dirty_page = NULL;
1897 
1898 	old_page = vm_normal_page(vma, address, orig_pte);
1899 	if (!old_page) {
1900 		/*
1901 		 * VM_MIXEDMAP !pfn_valid() case
1902 		 *
1903 		 * We should not cow pages in a shared writeable mapping.
1904 		 * Just mark the pages writable as we can't do any dirty
1905 		 * accounting on raw pfn maps.
1906 		 */
1907 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1908 				     (VM_WRITE|VM_SHARED))
1909 			goto reuse;
1910 		goto gotten;
1911 	}
1912 
1913 	/*
1914 	 * Take out anonymous pages first, anonymous shared vmas are
1915 	 * not dirty accountable.
1916 	 */
1917 	if (PageAnon(old_page)) {
1918 		if (!trylock_page(old_page)) {
1919 			page_cache_get(old_page);
1920 			pte_unmap_unlock(page_table, ptl);
1921 			lock_page(old_page);
1922 			page_table = pte_offset_map_lock(mm, pmd, address,
1923 							 &ptl);
1924 			if (!pte_same(*page_table, orig_pte)) {
1925 				unlock_page(old_page);
1926 				page_cache_release(old_page);
1927 				goto unlock;
1928 			}
1929 			page_cache_release(old_page);
1930 		}
1931 		reuse = reuse_swap_page(old_page);
1932 		unlock_page(old_page);
1933 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1934 					(VM_WRITE|VM_SHARED))) {
1935 		/*
1936 		 * Only catch write-faults on shared writable pages,
1937 		 * read-only shared pages can get COWed by
1938 		 * get_user_pages(.write=1, .force=1).
1939 		 */
1940 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1941 			/*
1942 			 * Notify the address space that the page is about to
1943 			 * become writable so that it can prohibit this or wait
1944 			 * for the page to get into an appropriate state.
1945 			 *
1946 			 * We do this without the lock held, so that it can
1947 			 * sleep if it needs to.
1948 			 */
1949 			page_cache_get(old_page);
1950 			pte_unmap_unlock(page_table, ptl);
1951 
1952 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1953 				goto unwritable_page;
1954 
1955 			/*
1956 			 * Since we dropped the lock we need to revalidate
1957 			 * the PTE as someone else may have changed it.  If
1958 			 * they did, we just return, as we can count on the
1959 			 * MMU to tell us if they didn't also make it writable.
1960 			 */
1961 			page_table = pte_offset_map_lock(mm, pmd, address,
1962 							 &ptl);
1963 			page_cache_release(old_page);
1964 			if (!pte_same(*page_table, orig_pte))
1965 				goto unlock;
1966 
1967 			page_mkwrite = 1;
1968 		}
1969 		dirty_page = old_page;
1970 		get_page(dirty_page);
1971 		reuse = 1;
1972 	}
1973 
1974 	if (reuse) {
1975 reuse:
1976 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1977 		entry = pte_mkyoung(orig_pte);
1978 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1979 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1980 			update_mmu_cache(vma, address, entry);
1981 		ret |= VM_FAULT_WRITE;
1982 		goto unlock;
1983 	}
1984 
1985 	/*
1986 	 * Ok, we need to copy. Oh, well..
1987 	 */
1988 	page_cache_get(old_page);
1989 gotten:
1990 	pte_unmap_unlock(page_table, ptl);
1991 
1992 	if (unlikely(anon_vma_prepare(vma)))
1993 		goto oom;
1994 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1995 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1996 	if (!new_page)
1997 		goto oom;
1998 	/*
1999 	 * Don't let another task, with possibly unlocked vma,
2000 	 * keep the mlocked page.
2001 	 */
2002 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2003 		lock_page(old_page);	/* for LRU manipulation */
2004 		clear_page_mlock(old_page);
2005 		unlock_page(old_page);
2006 	}
2007 	cow_user_page(new_page, old_page, address, vma);
2008 	__SetPageUptodate(new_page);
2009 
2010 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2011 		goto oom_free_new;
2012 
2013 	/*
2014 	 * Re-check the pte - we dropped the lock
2015 	 */
2016 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2017 	if (likely(pte_same(*page_table, orig_pte))) {
2018 		if (old_page) {
2019 			if (!PageAnon(old_page)) {
2020 				dec_mm_counter(mm, file_rss);
2021 				inc_mm_counter(mm, anon_rss);
2022 			}
2023 		} else
2024 			inc_mm_counter(mm, anon_rss);
2025 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2026 		entry = mk_pte(new_page, vma->vm_page_prot);
2027 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2028 		/*
2029 		 * Clear the pte entry and flush it first, before updating the
2030 		 * pte with the new entry. This will avoid a race condition
2031 		 * seen in the presence of one thread doing SMC and another
2032 		 * thread doing COW.
2033 		 */
2034 		ptep_clear_flush_notify(vma, address, page_table);
2035 		page_add_new_anon_rmap(new_page, vma, address);
2036 		set_pte_at(mm, address, page_table, entry);
2037 		update_mmu_cache(vma, address, entry);
2038 		if (old_page) {
2039 			/*
2040 			 * Only after switching the pte to the new page may
2041 			 * we remove the mapcount here. Otherwise another
2042 			 * process may come and find the rmap count decremented
2043 			 * before the pte is switched to the new page, and
2044 			 * "reuse" the old page writing into it while our pte
2045 			 * here still points into it and can be read by other
2046 			 * threads.
2047 			 *
2048 			 * The critical issue is to order this
2049 			 * page_remove_rmap with the ptp_clear_flush above.
2050 			 * Those stores are ordered by (if nothing else,)
2051 			 * the barrier present in the atomic_add_negative
2052 			 * in page_remove_rmap.
2053 			 *
2054 			 * Then the TLB flush in ptep_clear_flush ensures that
2055 			 * no process can access the old page before the
2056 			 * decremented mapcount is visible. And the old page
2057 			 * cannot be reused until after the decremented
2058 			 * mapcount is visible. So transitively, TLBs to
2059 			 * old page will be flushed before it can be reused.
2060 			 */
2061 			page_remove_rmap(old_page);
2062 		}
2063 
2064 		/* Free the old page.. */
2065 		new_page = old_page;
2066 		ret |= VM_FAULT_WRITE;
2067 	} else
2068 		mem_cgroup_uncharge_page(new_page);
2069 
2070 	if (new_page)
2071 		page_cache_release(new_page);
2072 	if (old_page)
2073 		page_cache_release(old_page);
2074 unlock:
2075 	pte_unmap_unlock(page_table, ptl);
2076 	if (dirty_page) {
2077 		if (vma->vm_file)
2078 			file_update_time(vma->vm_file);
2079 
2080 		/*
2081 		 * Yes, Virginia, this is actually required to prevent a race
2082 		 * with clear_page_dirty_for_io() from clearing the page dirty
2083 		 * bit after it clear all dirty ptes, but before a racing
2084 		 * do_wp_page installs a dirty pte.
2085 		 *
2086 		 * do_no_page is protected similarly.
2087 		 */
2088 		wait_on_page_locked(dirty_page);
2089 		set_page_dirty_balance(dirty_page, page_mkwrite);
2090 		put_page(dirty_page);
2091 	}
2092 	return ret;
2093 oom_free_new:
2094 	page_cache_release(new_page);
2095 oom:
2096 	if (old_page)
2097 		page_cache_release(old_page);
2098 	return VM_FAULT_OOM;
2099 
2100 unwritable_page:
2101 	page_cache_release(old_page);
2102 	return VM_FAULT_SIGBUS;
2103 }
2104 
2105 /*
2106  * Helper functions for unmap_mapping_range().
2107  *
2108  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2109  *
2110  * We have to restart searching the prio_tree whenever we drop the lock,
2111  * since the iterator is only valid while the lock is held, and anyway
2112  * a later vma might be split and reinserted earlier while lock dropped.
2113  *
2114  * The list of nonlinear vmas could be handled more efficiently, using
2115  * a placeholder, but handle it in the same way until a need is shown.
2116  * It is important to search the prio_tree before nonlinear list: a vma
2117  * may become nonlinear and be shifted from prio_tree to nonlinear list
2118  * while the lock is dropped; but never shifted from list to prio_tree.
2119  *
2120  * In order to make forward progress despite restarting the search,
2121  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2122  * quickly skip it next time around.  Since the prio_tree search only
2123  * shows us those vmas affected by unmapping the range in question, we
2124  * can't efficiently keep all vmas in step with mapping->truncate_count:
2125  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2126  * mapping->truncate_count and vma->vm_truncate_count are protected by
2127  * i_mmap_lock.
2128  *
2129  * In order to make forward progress despite repeatedly restarting some
2130  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2131  * and restart from that address when we reach that vma again.  It might
2132  * have been split or merged, shrunk or extended, but never shifted: so
2133  * restart_addr remains valid so long as it remains in the vma's range.
2134  * unmap_mapping_range forces truncate_count to leap over page-aligned
2135  * values so we can save vma's restart_addr in its truncate_count field.
2136  */
2137 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2138 
reset_vma_truncate_counts(struct address_space * mapping)2139 static void reset_vma_truncate_counts(struct address_space *mapping)
2140 {
2141 	struct vm_area_struct *vma;
2142 	struct prio_tree_iter iter;
2143 
2144 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2145 		vma->vm_truncate_count = 0;
2146 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2147 		vma->vm_truncate_count = 0;
2148 }
2149 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2150 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2151 		unsigned long start_addr, unsigned long end_addr,
2152 		struct zap_details *details)
2153 {
2154 	unsigned long restart_addr;
2155 	int need_break;
2156 
2157 	/*
2158 	 * files that support invalidating or truncating portions of the
2159 	 * file from under mmaped areas must have their ->fault function
2160 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2161 	 * This provides synchronisation against concurrent unmapping here.
2162 	 */
2163 
2164 again:
2165 	restart_addr = vma->vm_truncate_count;
2166 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2167 		start_addr = restart_addr;
2168 		if (start_addr >= end_addr) {
2169 			/* Top of vma has been split off since last time */
2170 			vma->vm_truncate_count = details->truncate_count;
2171 			return 0;
2172 		}
2173 	}
2174 
2175 	restart_addr = zap_page_range(vma, start_addr,
2176 					end_addr - start_addr, details);
2177 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2178 
2179 	if (restart_addr >= end_addr) {
2180 		/* We have now completed this vma: mark it so */
2181 		vma->vm_truncate_count = details->truncate_count;
2182 		if (!need_break)
2183 			return 0;
2184 	} else {
2185 		/* Note restart_addr in vma's truncate_count field */
2186 		vma->vm_truncate_count = restart_addr;
2187 		if (!need_break)
2188 			goto again;
2189 	}
2190 
2191 	spin_unlock(details->i_mmap_lock);
2192 	cond_resched();
2193 	spin_lock(details->i_mmap_lock);
2194 	return -EINTR;
2195 }
2196 
unmap_mapping_range_tree(struct prio_tree_root * root,struct zap_details * details)2197 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2198 					    struct zap_details *details)
2199 {
2200 	struct vm_area_struct *vma;
2201 	struct prio_tree_iter iter;
2202 	pgoff_t vba, vea, zba, zea;
2203 
2204 restart:
2205 	vma_prio_tree_foreach(vma, &iter, root,
2206 			details->first_index, details->last_index) {
2207 		/* Skip quickly over those we have already dealt with */
2208 		if (vma->vm_truncate_count == details->truncate_count)
2209 			continue;
2210 
2211 		vba = vma->vm_pgoff;
2212 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2213 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2214 		zba = details->first_index;
2215 		if (zba < vba)
2216 			zba = vba;
2217 		zea = details->last_index;
2218 		if (zea > vea)
2219 			zea = vea;
2220 
2221 		if (unmap_mapping_range_vma(vma,
2222 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2223 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2224 				details) < 0)
2225 			goto restart;
2226 	}
2227 }
2228 
unmap_mapping_range_list(struct list_head * head,struct zap_details * details)2229 static inline void unmap_mapping_range_list(struct list_head *head,
2230 					    struct zap_details *details)
2231 {
2232 	struct vm_area_struct *vma;
2233 
2234 	/*
2235 	 * In nonlinear VMAs there is no correspondence between virtual address
2236 	 * offset and file offset.  So we must perform an exhaustive search
2237 	 * across *all* the pages in each nonlinear VMA, not just the pages
2238 	 * whose virtual address lies outside the file truncation point.
2239 	 */
2240 restart:
2241 	list_for_each_entry(vma, head, shared.vm_set.list) {
2242 		/* Skip quickly over those we have already dealt with */
2243 		if (vma->vm_truncate_count == details->truncate_count)
2244 			continue;
2245 		details->nonlinear_vma = vma;
2246 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2247 					vma->vm_end, details) < 0)
2248 			goto restart;
2249 	}
2250 }
2251 
2252 /**
2253  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2254  * @mapping: the address space containing mmaps to be unmapped.
2255  * @holebegin: byte in first page to unmap, relative to the start of
2256  * the underlying file.  This will be rounded down to a PAGE_SIZE
2257  * boundary.  Note that this is different from vmtruncate(), which
2258  * must keep the partial page.  In contrast, we must get rid of
2259  * partial pages.
2260  * @holelen: size of prospective hole in bytes.  This will be rounded
2261  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2262  * end of the file.
2263  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2264  * but 0 when invalidating pagecache, don't throw away private data.
2265  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2266 void unmap_mapping_range(struct address_space *mapping,
2267 		loff_t const holebegin, loff_t const holelen, int even_cows)
2268 {
2269 	struct zap_details details;
2270 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2271 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2272 
2273 	/* Check for overflow. */
2274 	if (sizeof(holelen) > sizeof(hlen)) {
2275 		long long holeend =
2276 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2277 		if (holeend & ~(long long)ULONG_MAX)
2278 			hlen = ULONG_MAX - hba + 1;
2279 	}
2280 
2281 	details.check_mapping = even_cows? NULL: mapping;
2282 	details.nonlinear_vma = NULL;
2283 	details.first_index = hba;
2284 	details.last_index = hba + hlen - 1;
2285 	if (details.last_index < details.first_index)
2286 		details.last_index = ULONG_MAX;
2287 	details.i_mmap_lock = &mapping->i_mmap_lock;
2288 
2289 	spin_lock(&mapping->i_mmap_lock);
2290 
2291 	/* Protect against endless unmapping loops */
2292 	mapping->truncate_count++;
2293 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2294 		if (mapping->truncate_count == 0)
2295 			reset_vma_truncate_counts(mapping);
2296 		mapping->truncate_count++;
2297 	}
2298 	details.truncate_count = mapping->truncate_count;
2299 
2300 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2301 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2302 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2303 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2304 	spin_unlock(&mapping->i_mmap_lock);
2305 }
2306 EXPORT_SYMBOL(unmap_mapping_range);
2307 
2308 /**
2309  * vmtruncate - unmap mappings "freed" by truncate() syscall
2310  * @inode: inode of the file used
2311  * @offset: file offset to start truncating
2312  *
2313  * NOTE! We have to be ready to update the memory sharing
2314  * between the file and the memory map for a potential last
2315  * incomplete page.  Ugly, but necessary.
2316  */
vmtruncate(struct inode * inode,loff_t offset)2317 int vmtruncate(struct inode * inode, loff_t offset)
2318 {
2319 	if (inode->i_size < offset) {
2320 		unsigned long limit;
2321 
2322 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2323 		if (limit != RLIM_INFINITY && offset > limit)
2324 			goto out_sig;
2325 		if (offset > inode->i_sb->s_maxbytes)
2326 			goto out_big;
2327 		i_size_write(inode, offset);
2328 	} else {
2329 		struct address_space *mapping = inode->i_mapping;
2330 
2331 		/*
2332 		 * truncation of in-use swapfiles is disallowed - it would
2333 		 * cause subsequent swapout to scribble on the now-freed
2334 		 * blocks.
2335 		 */
2336 		if (IS_SWAPFILE(inode))
2337 			return -ETXTBSY;
2338 		i_size_write(inode, offset);
2339 
2340 		/*
2341 		 * unmap_mapping_range is called twice, first simply for
2342 		 * efficiency so that truncate_inode_pages does fewer
2343 		 * single-page unmaps.  However after this first call, and
2344 		 * before truncate_inode_pages finishes, it is possible for
2345 		 * private pages to be COWed, which remain after
2346 		 * truncate_inode_pages finishes, hence the second
2347 		 * unmap_mapping_range call must be made for correctness.
2348 		 */
2349 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2350 		truncate_inode_pages(mapping, offset);
2351 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2352 	}
2353 
2354 	if (inode->i_op->truncate)
2355 		inode->i_op->truncate(inode);
2356 	return 0;
2357 
2358 out_sig:
2359 	send_sig(SIGXFSZ, current, 0);
2360 out_big:
2361 	return -EFBIG;
2362 }
2363 EXPORT_SYMBOL(vmtruncate);
2364 
vmtruncate_range(struct inode * inode,loff_t offset,loff_t end)2365 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2366 {
2367 	struct address_space *mapping = inode->i_mapping;
2368 
2369 	/*
2370 	 * If the underlying filesystem is not going to provide
2371 	 * a way to truncate a range of blocks (punch a hole) -
2372 	 * we should return failure right now.
2373 	 */
2374 	if (!inode->i_op->truncate_range)
2375 		return -ENOSYS;
2376 
2377 	mutex_lock(&inode->i_mutex);
2378 	down_write(&inode->i_alloc_sem);
2379 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2380 	truncate_inode_pages_range(mapping, offset, end);
2381 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2382 	inode->i_op->truncate_range(inode, offset, end);
2383 	up_write(&inode->i_alloc_sem);
2384 	mutex_unlock(&inode->i_mutex);
2385 
2386 	return 0;
2387 }
2388 
2389 /*
2390  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2391  * but allow concurrent faults), and pte mapped but not yet locked.
2392  * We return with mmap_sem still held, but pte unmapped and unlocked.
2393  */
do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,int write_access,pte_t orig_pte)2394 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2395 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2396 		int write_access, pte_t orig_pte)
2397 {
2398 	spinlock_t *ptl;
2399 	struct page *page;
2400 	swp_entry_t entry;
2401 	pte_t pte;
2402 	struct mem_cgroup *ptr = NULL;
2403 	int ret = 0;
2404 
2405 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2406 		goto out;
2407 
2408 	entry = pte_to_swp_entry(orig_pte);
2409 	if (is_migration_entry(entry)) {
2410 		migration_entry_wait(mm, pmd, address);
2411 		goto out;
2412 	}
2413 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2414 	page = lookup_swap_cache(entry);
2415 	if (!page) {
2416 		grab_swap_token(); /* Contend for token _before_ read-in */
2417 		page = swapin_readahead(entry,
2418 					GFP_HIGHUSER_MOVABLE, vma, address);
2419 		if (!page) {
2420 			/*
2421 			 * Back out if somebody else faulted in this pte
2422 			 * while we released the pte lock.
2423 			 */
2424 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2425 			if (likely(pte_same(*page_table, orig_pte)))
2426 				ret = VM_FAULT_OOM;
2427 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2428 			goto unlock;
2429 		}
2430 
2431 		/* Had to read the page from swap area: Major fault */
2432 		ret = VM_FAULT_MAJOR;
2433 		count_vm_event(PGMAJFAULT);
2434 	}
2435 
2436 	mark_page_accessed(page);
2437 
2438 	lock_page(page);
2439 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2440 
2441 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2442 		ret = VM_FAULT_OOM;
2443 		unlock_page(page);
2444 		goto out;
2445 	}
2446 
2447 	/*
2448 	 * Back out if somebody else already faulted in this pte.
2449 	 */
2450 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2451 	if (unlikely(!pte_same(*page_table, orig_pte)))
2452 		goto out_nomap;
2453 
2454 	if (unlikely(!PageUptodate(page))) {
2455 		ret = VM_FAULT_SIGBUS;
2456 		goto out_nomap;
2457 	}
2458 
2459 	/*
2460 	 * The page isn't present yet, go ahead with the fault.
2461 	 *
2462 	 * Be careful about the sequence of operations here.
2463 	 * To get its accounting right, reuse_swap_page() must be called
2464 	 * while the page is counted on swap but not yet in mapcount i.e.
2465 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2466 	 * must be called after the swap_free(), or it will never succeed.
2467 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2468 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2469 	 * in page->private. In this case, a record in swap_cgroup  is silently
2470 	 * discarded at swap_free().
2471 	 */
2472 
2473 	inc_mm_counter(mm, anon_rss);
2474 	pte = mk_pte(page, vma->vm_page_prot);
2475 	if (write_access && reuse_swap_page(page)) {
2476 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2477 		write_access = 0;
2478 	}
2479 	flush_icache_page(vma, page);
2480 	set_pte_at(mm, address, page_table, pte);
2481 	page_add_anon_rmap(page, vma, address);
2482 	/* It's better to call commit-charge after rmap is established */
2483 	mem_cgroup_commit_charge_swapin(page, ptr);
2484 
2485 	swap_free(entry);
2486 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2487 		try_to_free_swap(page);
2488 	unlock_page(page);
2489 
2490 	if (write_access) {
2491 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2492 		if (ret & VM_FAULT_ERROR)
2493 			ret &= VM_FAULT_ERROR;
2494 		goto out;
2495 	}
2496 
2497 	/* No need to invalidate - it was non-present before */
2498 	update_mmu_cache(vma, address, pte);
2499 unlock:
2500 	pte_unmap_unlock(page_table, ptl);
2501 out:
2502 	return ret;
2503 out_nomap:
2504 	mem_cgroup_cancel_charge_swapin(ptr);
2505 	pte_unmap_unlock(page_table, ptl);
2506 	unlock_page(page);
2507 	page_cache_release(page);
2508 	return ret;
2509 }
2510 
2511 /*
2512  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2513  * but allow concurrent faults), and pte mapped but not yet locked.
2514  * We return with mmap_sem still held, but pte unmapped and unlocked.
2515  */
do_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,int write_access)2516 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2517 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2518 		int write_access)
2519 {
2520 	struct page *page;
2521 	spinlock_t *ptl;
2522 	pte_t entry;
2523 
2524 	/* Allocate our own private page. */
2525 	pte_unmap(page_table);
2526 
2527 	if (unlikely(anon_vma_prepare(vma)))
2528 		goto oom;
2529 	page = alloc_zeroed_user_highpage_movable(vma, address);
2530 	if (!page)
2531 		goto oom;
2532 	__SetPageUptodate(page);
2533 
2534 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2535 		goto oom_free_page;
2536 
2537 	entry = mk_pte(page, vma->vm_page_prot);
2538 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2539 
2540 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2541 	if (!pte_none(*page_table))
2542 		goto release;
2543 	inc_mm_counter(mm, anon_rss);
2544 	page_add_new_anon_rmap(page, vma, address);
2545 	set_pte_at(mm, address, page_table, entry);
2546 
2547 	/* No need to invalidate - it was non-present before */
2548 	update_mmu_cache(vma, address, entry);
2549 unlock:
2550 	pte_unmap_unlock(page_table, ptl);
2551 	return 0;
2552 release:
2553 	mem_cgroup_uncharge_page(page);
2554 	page_cache_release(page);
2555 	goto unlock;
2556 oom_free_page:
2557 	page_cache_release(page);
2558 oom:
2559 	return VM_FAULT_OOM;
2560 }
2561 
2562 /*
2563  * __do_fault() tries to create a new page mapping. It aggressively
2564  * tries to share with existing pages, but makes a separate copy if
2565  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2566  * the next page fault.
2567  *
2568  * As this is called only for pages that do not currently exist, we
2569  * do not need to flush old virtual caches or the TLB.
2570  *
2571  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2572  * but allow concurrent faults), and pte neither mapped nor locked.
2573  * We return with mmap_sem still held, but pte unmapped and unlocked.
2574  */
__do_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pgoff_t pgoff,unsigned int flags,pte_t orig_pte)2575 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2576 		unsigned long address, pmd_t *pmd,
2577 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2578 {
2579 	pte_t *page_table;
2580 	spinlock_t *ptl;
2581 	struct page *page;
2582 	pte_t entry;
2583 	int anon = 0;
2584 	int charged = 0;
2585 	struct page *dirty_page = NULL;
2586 	struct vm_fault vmf;
2587 	int ret;
2588 	int page_mkwrite = 0;
2589 
2590 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2591 	vmf.pgoff = pgoff;
2592 	vmf.flags = flags;
2593 	vmf.page = NULL;
2594 
2595 	ret = vma->vm_ops->fault(vma, &vmf);
2596 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2597 		return ret;
2598 
2599 	/*
2600 	 * For consistency in subsequent calls, make the faulted page always
2601 	 * locked.
2602 	 */
2603 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2604 		lock_page(vmf.page);
2605 	else
2606 		VM_BUG_ON(!PageLocked(vmf.page));
2607 
2608 	/*
2609 	 * Should we do an early C-O-W break?
2610 	 */
2611 	page = vmf.page;
2612 	if (flags & FAULT_FLAG_WRITE) {
2613 		if (!(vma->vm_flags & VM_SHARED)) {
2614 			anon = 1;
2615 			if (unlikely(anon_vma_prepare(vma))) {
2616 				ret = VM_FAULT_OOM;
2617 				goto out;
2618 			}
2619 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2620 						vma, address);
2621 			if (!page) {
2622 				ret = VM_FAULT_OOM;
2623 				goto out;
2624 			}
2625 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2626 				ret = VM_FAULT_OOM;
2627 				page_cache_release(page);
2628 				goto out;
2629 			}
2630 			charged = 1;
2631 			/*
2632 			 * Don't let another task, with possibly unlocked vma,
2633 			 * keep the mlocked page.
2634 			 */
2635 			if (vma->vm_flags & VM_LOCKED)
2636 				clear_page_mlock(vmf.page);
2637 			copy_user_highpage(page, vmf.page, address, vma);
2638 			__SetPageUptodate(page);
2639 		} else {
2640 			/*
2641 			 * If the page will be shareable, see if the backing
2642 			 * address space wants to know that the page is about
2643 			 * to become writable
2644 			 */
2645 			if (vma->vm_ops->page_mkwrite) {
2646 				unlock_page(page);
2647 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2648 					ret = VM_FAULT_SIGBUS;
2649 					anon = 1; /* no anon but release vmf.page */
2650 					goto out_unlocked;
2651 				}
2652 				lock_page(page);
2653 				/*
2654 				 * XXX: this is not quite right (racy vs
2655 				 * invalidate) to unlock and relock the page
2656 				 * like this, however a better fix requires
2657 				 * reworking page_mkwrite locking API, which
2658 				 * is better done later.
2659 				 */
2660 				if (!page->mapping) {
2661 					ret = 0;
2662 					anon = 1; /* no anon but release vmf.page */
2663 					goto out;
2664 				}
2665 				page_mkwrite = 1;
2666 			}
2667 		}
2668 
2669 	}
2670 
2671 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2672 
2673 	/*
2674 	 * This silly early PAGE_DIRTY setting removes a race
2675 	 * due to the bad i386 page protection. But it's valid
2676 	 * for other architectures too.
2677 	 *
2678 	 * Note that if write_access is true, we either now have
2679 	 * an exclusive copy of the page, or this is a shared mapping,
2680 	 * so we can make it writable and dirty to avoid having to
2681 	 * handle that later.
2682 	 */
2683 	/* Only go through if we didn't race with anybody else... */
2684 	if (likely(pte_same(*page_table, orig_pte))) {
2685 		flush_icache_page(vma, page);
2686 		entry = mk_pte(page, vma->vm_page_prot);
2687 		if (flags & FAULT_FLAG_WRITE)
2688 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2689 		if (anon) {
2690 			inc_mm_counter(mm, anon_rss);
2691 			page_add_new_anon_rmap(page, vma, address);
2692 		} else {
2693 			inc_mm_counter(mm, file_rss);
2694 			page_add_file_rmap(page);
2695 			if (flags & FAULT_FLAG_WRITE) {
2696 				dirty_page = page;
2697 				get_page(dirty_page);
2698 			}
2699 		}
2700 		set_pte_at(mm, address, page_table, entry);
2701 
2702 		/* no need to invalidate: a not-present page won't be cached */
2703 		update_mmu_cache(vma, address, entry);
2704 	} else {
2705 		if (charged)
2706 			mem_cgroup_uncharge_page(page);
2707 		if (anon)
2708 			page_cache_release(page);
2709 		else
2710 			anon = 1; /* no anon but release faulted_page */
2711 	}
2712 
2713 	pte_unmap_unlock(page_table, ptl);
2714 
2715 out:
2716 	unlock_page(vmf.page);
2717 out_unlocked:
2718 	if (anon)
2719 		page_cache_release(vmf.page);
2720 	else if (dirty_page) {
2721 		if (vma->vm_file)
2722 			file_update_time(vma->vm_file);
2723 
2724 		set_page_dirty_balance(dirty_page, page_mkwrite);
2725 		put_page(dirty_page);
2726 	}
2727 
2728 	return ret;
2729 }
2730 
do_linear_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,int write_access,pte_t orig_pte)2731 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2732 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2733 		int write_access, pte_t orig_pte)
2734 {
2735 	pgoff_t pgoff = (((address & PAGE_MASK)
2736 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2737 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2738 
2739 	pte_unmap(page_table);
2740 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2741 }
2742 
2743 /*
2744  * Fault of a previously existing named mapping. Repopulate the pte
2745  * from the encoded file_pte if possible. This enables swappable
2746  * nonlinear vmas.
2747  *
2748  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2749  * but allow concurrent faults), and pte mapped but not yet locked.
2750  * We return with mmap_sem still held, but pte unmapped and unlocked.
2751  */
do_nonlinear_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,int write_access,pte_t orig_pte)2752 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2753 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2754 		int write_access, pte_t orig_pte)
2755 {
2756 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2757 				(write_access ? FAULT_FLAG_WRITE : 0);
2758 	pgoff_t pgoff;
2759 
2760 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2761 		return 0;
2762 
2763 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2764 		/*
2765 		 * Page table corrupted: show pte and kill process.
2766 		 */
2767 		print_bad_pte(vma, address, orig_pte, NULL);
2768 		return VM_FAULT_OOM;
2769 	}
2770 
2771 	pgoff = pte_to_pgoff(orig_pte);
2772 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2773 }
2774 
2775 /*
2776  * These routines also need to handle stuff like marking pages dirty
2777  * and/or accessed for architectures that don't do it in hardware (most
2778  * RISC architectures).  The early dirtying is also good on the i386.
2779  *
2780  * There is also a hook called "update_mmu_cache()" that architectures
2781  * with external mmu caches can use to update those (ie the Sparc or
2782  * PowerPC hashed page tables that act as extended TLBs).
2783  *
2784  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2785  * but allow concurrent faults), and pte mapped but not yet locked.
2786  * We return with mmap_sem still held, but pte unmapped and unlocked.
2787  */
handle_pte_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * pte,pmd_t * pmd,int write_access)2788 static inline int handle_pte_fault(struct mm_struct *mm,
2789 		struct vm_area_struct *vma, unsigned long address,
2790 		pte_t *pte, pmd_t *pmd, int write_access)
2791 {
2792 	pte_t entry;
2793 	spinlock_t *ptl;
2794 
2795 	entry = *pte;
2796 	if (!pte_present(entry)) {
2797 		if (pte_none(entry)) {
2798 			if (vma->vm_ops) {
2799 				if (likely(vma->vm_ops->fault))
2800 					return do_linear_fault(mm, vma, address,
2801 						pte, pmd, write_access, entry);
2802 			}
2803 			return do_anonymous_page(mm, vma, address,
2804 						 pte, pmd, write_access);
2805 		}
2806 		if (pte_file(entry))
2807 			return do_nonlinear_fault(mm, vma, address,
2808 					pte, pmd, write_access, entry);
2809 		return do_swap_page(mm, vma, address,
2810 					pte, pmd, write_access, entry);
2811 	}
2812 
2813 	ptl = pte_lockptr(mm, pmd);
2814 	spin_lock(ptl);
2815 	if (unlikely(!pte_same(*pte, entry)))
2816 		goto unlock;
2817 	if (write_access) {
2818 		if (!pte_write(entry))
2819 			return do_wp_page(mm, vma, address,
2820 					pte, pmd, ptl, entry);
2821 		entry = pte_mkdirty(entry);
2822 	}
2823 	entry = pte_mkyoung(entry);
2824 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2825 		update_mmu_cache(vma, address, entry);
2826 	} else {
2827 		/*
2828 		 * This is needed only for protection faults but the arch code
2829 		 * is not yet telling us if this is a protection fault or not.
2830 		 * This still avoids useless tlb flushes for .text page faults
2831 		 * with threads.
2832 		 */
2833 		if (write_access)
2834 			flush_tlb_page(vma, address);
2835 	}
2836 unlock:
2837 	pte_unmap_unlock(pte, ptl);
2838 	return 0;
2839 }
2840 
2841 /*
2842  * By the time we get here, we already hold the mm semaphore
2843  */
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,int write_access)2844 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2845 		unsigned long address, int write_access)
2846 {
2847 	pgd_t *pgd;
2848 	pud_t *pud;
2849 	pmd_t *pmd;
2850 	pte_t *pte;
2851 
2852 	__set_current_state(TASK_RUNNING);
2853 
2854 	count_vm_event(PGFAULT);
2855 
2856 	if (unlikely(is_vm_hugetlb_page(vma)))
2857 		return hugetlb_fault(mm, vma, address, write_access);
2858 
2859 	pgd = pgd_offset(mm, address);
2860 	pud = pud_alloc(mm, pgd, address);
2861 	if (!pud)
2862 		return VM_FAULT_OOM;
2863 	pmd = pmd_alloc(mm, pud, address);
2864 	if (!pmd)
2865 		return VM_FAULT_OOM;
2866 	pte = pte_alloc_map(mm, pmd, address);
2867 	if (!pte)
2868 		return VM_FAULT_OOM;
2869 
2870 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2871 }
2872 
2873 #ifndef __PAGETABLE_PUD_FOLDED
2874 /*
2875  * Allocate page upper directory.
2876  * We've already handled the fast-path in-line.
2877  */
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2878 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2879 {
2880 	pud_t *new = pud_alloc_one(mm, address);
2881 	if (!new)
2882 		return -ENOMEM;
2883 
2884 	smp_wmb(); /* See comment in __pte_alloc */
2885 
2886 	spin_lock(&mm->page_table_lock);
2887 	if (pgd_present(*pgd))		/* Another has populated it */
2888 		pud_free(mm, new);
2889 	else
2890 		pgd_populate(mm, pgd, new);
2891 	spin_unlock(&mm->page_table_lock);
2892 	return 0;
2893 }
2894 #endif /* __PAGETABLE_PUD_FOLDED */
2895 
2896 #ifndef __PAGETABLE_PMD_FOLDED
2897 /*
2898  * Allocate page middle directory.
2899  * We've already handled the fast-path in-line.
2900  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2901 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2902 {
2903 	pmd_t *new = pmd_alloc_one(mm, address);
2904 	if (!new)
2905 		return -ENOMEM;
2906 
2907 	smp_wmb(); /* See comment in __pte_alloc */
2908 
2909 	spin_lock(&mm->page_table_lock);
2910 #ifndef __ARCH_HAS_4LEVEL_HACK
2911 	if (pud_present(*pud))		/* Another has populated it */
2912 		pmd_free(mm, new);
2913 	else
2914 		pud_populate(mm, pud, new);
2915 #else
2916 	if (pgd_present(*pud))		/* Another has populated it */
2917 		pmd_free(mm, new);
2918 	else
2919 		pgd_populate(mm, pud, new);
2920 #endif /* __ARCH_HAS_4LEVEL_HACK */
2921 	spin_unlock(&mm->page_table_lock);
2922 	return 0;
2923 }
2924 #endif /* __PAGETABLE_PMD_FOLDED */
2925 
make_pages_present(unsigned long addr,unsigned long end)2926 int make_pages_present(unsigned long addr, unsigned long end)
2927 {
2928 	int ret, len, write;
2929 	struct vm_area_struct * vma;
2930 
2931 	vma = find_vma(current->mm, addr);
2932 	if (!vma)
2933 		return -ENOMEM;
2934 	write = (vma->vm_flags & VM_WRITE) != 0;
2935 	BUG_ON(addr >= end);
2936 	BUG_ON(end > vma->vm_end);
2937 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2938 	ret = get_user_pages(current, current->mm, addr,
2939 			len, write, 0, NULL, NULL);
2940 	if (ret < 0)
2941 		return ret;
2942 	return ret == len ? 0 : -EFAULT;
2943 }
2944 
2945 #if !defined(__HAVE_ARCH_GATE_AREA)
2946 
2947 #if defined(AT_SYSINFO_EHDR)
2948 static struct vm_area_struct gate_vma;
2949 
gate_vma_init(void)2950 static int __init gate_vma_init(void)
2951 {
2952 	gate_vma.vm_mm = NULL;
2953 	gate_vma.vm_start = FIXADDR_USER_START;
2954 	gate_vma.vm_end = FIXADDR_USER_END;
2955 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2956 	gate_vma.vm_page_prot = __P101;
2957 	/*
2958 	 * Make sure the vDSO gets into every core dump.
2959 	 * Dumping its contents makes post-mortem fully interpretable later
2960 	 * without matching up the same kernel and hardware config to see
2961 	 * what PC values meant.
2962 	 */
2963 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2964 	return 0;
2965 }
2966 __initcall(gate_vma_init);
2967 #endif
2968 
get_gate_vma(struct task_struct * tsk)2969 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2970 {
2971 #ifdef AT_SYSINFO_EHDR
2972 	return &gate_vma;
2973 #else
2974 	return NULL;
2975 #endif
2976 }
2977 
in_gate_area_no_task(unsigned long addr)2978 int in_gate_area_no_task(unsigned long addr)
2979 {
2980 #ifdef AT_SYSINFO_EHDR
2981 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2982 		return 1;
2983 #endif
2984 	return 0;
2985 }
2986 
2987 #endif	/* __HAVE_ARCH_GATE_AREA */
2988 
2989 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)2990 int follow_phys(struct vm_area_struct *vma,
2991 		unsigned long address, unsigned int flags,
2992 		unsigned long *prot, resource_size_t *phys)
2993 {
2994 	pgd_t *pgd;
2995 	pud_t *pud;
2996 	pmd_t *pmd;
2997 	pte_t *ptep, pte;
2998 	spinlock_t *ptl;
2999 	resource_size_t phys_addr = 0;
3000 	struct mm_struct *mm = vma->vm_mm;
3001 	int ret = -EINVAL;
3002 
3003 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3004 		goto out;
3005 
3006 	pgd = pgd_offset(mm, address);
3007 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3008 		goto out;
3009 
3010 	pud = pud_offset(pgd, address);
3011 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3012 		goto out;
3013 
3014 	pmd = pmd_offset(pud, address);
3015 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3016 		goto out;
3017 
3018 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3019 	if (pmd_huge(*pmd))
3020 		goto out;
3021 
3022 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3023 	if (!ptep)
3024 		goto out;
3025 
3026 	pte = *ptep;
3027 	if (!pte_present(pte))
3028 		goto unlock;
3029 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3030 		goto unlock;
3031 	phys_addr = pte_pfn(pte);
3032 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3033 
3034 	*prot = pgprot_val(pte_pgprot(pte));
3035 	*phys = phys_addr;
3036 	ret = 0;
3037 
3038 unlock:
3039 	pte_unmap_unlock(ptep, ptl);
3040 out:
3041 	return ret;
3042 }
3043 
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)3044 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3045 			void *buf, int len, int write)
3046 {
3047 	resource_size_t phys_addr;
3048 	unsigned long prot = 0;
3049 	void __iomem *maddr;
3050 	int offset = addr & (PAGE_SIZE-1);
3051 
3052 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3053 		return -EINVAL;
3054 
3055 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3056 	if (write)
3057 		memcpy_toio(maddr + offset, buf, len);
3058 	else
3059 		memcpy_fromio(buf, maddr + offset, len);
3060 	iounmap(maddr);
3061 
3062 	return len;
3063 }
3064 #endif
3065 
3066 /*
3067  * Access another process' address space.
3068  * Source/target buffer must be kernel space,
3069  * Do not walk the page table directly, use get_user_pages
3070  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,int write)3071 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3072 {
3073 	struct mm_struct *mm;
3074 	struct vm_area_struct *vma;
3075 	void *old_buf = buf;
3076 
3077 	mm = get_task_mm(tsk);
3078 	if (!mm)
3079 		return 0;
3080 
3081 	down_read(&mm->mmap_sem);
3082 	/* ignore errors, just check how much was successfully transferred */
3083 	while (len) {
3084 		int bytes, ret, offset;
3085 		void *maddr;
3086 		struct page *page = NULL;
3087 
3088 		ret = get_user_pages(tsk, mm, addr, 1,
3089 				write, 1, &page, &vma);
3090 		if (ret <= 0) {
3091 			/*
3092 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3093 			 * we can access using slightly different code.
3094 			 */
3095 #ifdef CONFIG_HAVE_IOREMAP_PROT
3096 			vma = find_vma(mm, addr);
3097 			if (!vma)
3098 				break;
3099 			if (vma->vm_ops && vma->vm_ops->access)
3100 				ret = vma->vm_ops->access(vma, addr, buf,
3101 							  len, write);
3102 			if (ret <= 0)
3103 #endif
3104 				break;
3105 			bytes = ret;
3106 		} else {
3107 			bytes = len;
3108 			offset = addr & (PAGE_SIZE-1);
3109 			if (bytes > PAGE_SIZE-offset)
3110 				bytes = PAGE_SIZE-offset;
3111 
3112 			maddr = kmap(page);
3113 			if (write) {
3114 				copy_to_user_page(vma, page, addr,
3115 						  maddr + offset, buf, bytes);
3116 				set_page_dirty_lock(page);
3117 			} else {
3118 				copy_from_user_page(vma, page, addr,
3119 						    buf, maddr + offset, bytes);
3120 			}
3121 			kunmap(page);
3122 			page_cache_release(page);
3123 		}
3124 		len -= bytes;
3125 		buf += bytes;
3126 		addr += bytes;
3127 	}
3128 	up_read(&mm->mmap_sem);
3129 	mmput(mm);
3130 
3131 	return buf - old_buf;
3132 }
3133 
3134 /*
3135  * Print the name of a VMA.
3136  */
print_vma_addr(char * prefix,unsigned long ip)3137 void print_vma_addr(char *prefix, unsigned long ip)
3138 {
3139 	struct mm_struct *mm = current->mm;
3140 	struct vm_area_struct *vma;
3141 
3142 	/*
3143 	 * Do not print if we are in atomic
3144 	 * contexts (in exception stacks, etc.):
3145 	 */
3146 	if (preempt_count())
3147 		return;
3148 
3149 	down_read(&mm->mmap_sem);
3150 	vma = find_vma(mm, ip);
3151 	if (vma && vma->vm_file) {
3152 		struct file *f = vma->vm_file;
3153 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3154 		if (buf) {
3155 			char *p, *s;
3156 
3157 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3158 			if (IS_ERR(p))
3159 				p = "?";
3160 			s = strrchr(p, '/');
3161 			if (s)
3162 				p = s+1;
3163 			printk("%s%s[%lx+%lx]", prefix, p,
3164 					vma->vm_start,
3165 					vma->vm_end - vma->vm_start);
3166 			free_page((unsigned long)buf);
3167 		}
3168 	}
3169 	up_read(&current->mm->mmap_sem);
3170 }
3171 
3172 #ifdef CONFIG_PROVE_LOCKING
might_fault(void)3173 void might_fault(void)
3174 {
3175 	/*
3176 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3177 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3178 	 * get paged out, therefore we'll never actually fault, and the
3179 	 * below annotations will generate false positives.
3180 	 */
3181 	if (segment_eq(get_fs(), KERNEL_DS))
3182 		return;
3183 
3184 	might_sleep();
3185 	/*
3186 	 * it would be nicer only to annotate paths which are not under
3187 	 * pagefault_disable, however that requires a larger audit and
3188 	 * providing helpers like get_user_atomic.
3189 	 */
3190 	if (!in_atomic() && current->mm)
3191 		might_lock_read(&current->mm->mmap_sem);
3192 }
3193 EXPORT_SYMBOL(might_fault);
3194 #endif
3195