1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kdebug.h>
22
23 #include <asm/bitext.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
30 #include <asm/smp.h>
31 #include <asm/mbus.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
34 #include <asm/asi.h>
35 #include <asm/msi.h>
36 #include <asm/mmu_context.h>
37 #include <asm/io-unit.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlbflush.h>
40
41 /* Now the cpu specific definitions. */
42 #include <asm/viking.h>
43 #include <asm/mxcc.h>
44 #include <asm/ross.h>
45 #include <asm/tsunami.h>
46 #include <asm/swift.h>
47 #include <asm/turbosparc.h>
48
49 #include <asm/btfixup.h>
50
51 enum mbus_module srmmu_modtype;
52 static unsigned int hwbug_bitmask;
53 int vac_cache_size;
54 int vac_line_size;
55
56 extern struct resource sparc_iomap;
57
58 extern unsigned long last_valid_pfn;
59
60 extern unsigned long page_kernel;
61
62 static pgd_t *srmmu_swapper_pg_dir;
63
64 #ifdef CONFIG_SMP
65 #define FLUSH_BEGIN(mm)
66 #define FLUSH_END
67 #else
68 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
69 #define FLUSH_END }
70 #endif
71
72 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
73 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
74
75 int flush_page_for_dma_global = 1;
76
77 #ifdef CONFIG_SMP
78 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
79 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
80 #endif
81
82 char *srmmu_name;
83
84 ctxd_t *srmmu_ctx_table_phys;
85 static ctxd_t *srmmu_context_table;
86
87 int viking_mxcc_present;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
90 static int is_hypersparc;
91
92 /*
93 * In general all page table modifications should use the V8 atomic
94 * swap instruction. This insures the mmu and the cpu are in sync
95 * with respect to ref/mod bits in the page tables.
96 */
srmmu_swap(unsigned long * addr,unsigned long value)97 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
98 {
99 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
100 return value;
101 }
102
srmmu_set_pte(pte_t * ptep,pte_t pteval)103 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
104 {
105 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
106 }
107
108 /* The very generic SRMMU page table operations. */
srmmu_device_memory(unsigned long x)109 static inline int srmmu_device_memory(unsigned long x)
110 {
111 return ((x & 0xF0000000) != 0);
112 }
113
114 static int srmmu_cache_pagetables;
115
116 /* these will be initialized in srmmu_nocache_calcsize() */
117 static unsigned long srmmu_nocache_size;
118 static unsigned long srmmu_nocache_end;
119
120 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
121 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
122
123 /* The context table is a nocache user with the biggest alignment needs. */
124 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
125
126 void *srmmu_nocache_pool;
127 void *srmmu_nocache_bitmap;
128 static struct bit_map srmmu_nocache_map;
129
srmmu_pte_pfn(pte_t pte)130 static unsigned long srmmu_pte_pfn(pte_t pte)
131 {
132 if (srmmu_device_memory(pte_val(pte))) {
133 /* Just return something that will cause
134 * pfn_valid() to return false. This makes
135 * copy_one_pte() to just directly copy to
136 * PTE over.
137 */
138 return ~0UL;
139 }
140 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
141 }
142
srmmu_pmd_page(pmd_t pmd)143 static struct page *srmmu_pmd_page(pmd_t pmd)
144 {
145
146 if (srmmu_device_memory(pmd_val(pmd)))
147 BUG();
148 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
149 }
150
srmmu_pgd_page(pgd_t pgd)151 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
152 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
153
154
srmmu_pte_none(pte_t pte)155 static inline int srmmu_pte_none(pte_t pte)
156 { return !(pte_val(pte) & 0xFFFFFFF); }
157
srmmu_pte_present(pte_t pte)158 static inline int srmmu_pte_present(pte_t pte)
159 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
160
srmmu_pte_clear(pte_t * ptep)161 static inline void srmmu_pte_clear(pte_t *ptep)
162 { srmmu_set_pte(ptep, __pte(0)); }
163
srmmu_pmd_none(pmd_t pmd)164 static inline int srmmu_pmd_none(pmd_t pmd)
165 { return !(pmd_val(pmd) & 0xFFFFFFF); }
166
srmmu_pmd_bad(pmd_t pmd)167 static inline int srmmu_pmd_bad(pmd_t pmd)
168 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
169
srmmu_pmd_present(pmd_t pmd)170 static inline int srmmu_pmd_present(pmd_t pmd)
171 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
172
srmmu_pmd_clear(pmd_t * pmdp)173 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
174 int i;
175 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
176 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
177 }
178
srmmu_pgd_none(pgd_t pgd)179 static inline int srmmu_pgd_none(pgd_t pgd)
180 { return !(pgd_val(pgd) & 0xFFFFFFF); }
181
srmmu_pgd_bad(pgd_t pgd)182 static inline int srmmu_pgd_bad(pgd_t pgd)
183 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
184
srmmu_pgd_present(pgd_t pgd)185 static inline int srmmu_pgd_present(pgd_t pgd)
186 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
187
srmmu_pgd_clear(pgd_t * pgdp)188 static inline void srmmu_pgd_clear(pgd_t * pgdp)
189 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
190
srmmu_pte_wrprotect(pte_t pte)191 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
192 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
193
srmmu_pte_mkclean(pte_t pte)194 static inline pte_t srmmu_pte_mkclean(pte_t pte)
195 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
196
srmmu_pte_mkold(pte_t pte)197 static inline pte_t srmmu_pte_mkold(pte_t pte)
198 { return __pte(pte_val(pte) & ~SRMMU_REF);}
199
srmmu_pte_mkwrite(pte_t pte)200 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
201 { return __pte(pte_val(pte) | SRMMU_WRITE);}
202
srmmu_pte_mkdirty(pte_t pte)203 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
204 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
205
srmmu_pte_mkyoung(pte_t pte)206 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
207 { return __pte(pte_val(pte) | SRMMU_REF);}
208
209 /*
210 * Conversion functions: convert a page and protection to a page entry,
211 * and a page entry and page directory to the page they refer to.
212 */
srmmu_mk_pte(struct page * page,pgprot_t pgprot)213 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
214 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
215
srmmu_mk_pte_phys(unsigned long page,pgprot_t pgprot)216 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
217 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
218
srmmu_mk_pte_io(unsigned long page,pgprot_t pgprot,int space)219 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
220 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
221
222 /* XXX should we hyper_flush_whole_icache here - Anton */
srmmu_ctxd_set(ctxd_t * ctxp,pgd_t * pgdp)223 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
224 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
225
srmmu_pgd_set(pgd_t * pgdp,pmd_t * pmdp)226 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
227 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
228
srmmu_pmd_set(pmd_t * pmdp,pte_t * ptep)229 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
230 {
231 unsigned long ptp; /* Physical address, shifted right by 4 */
232 int i;
233
234 ptp = __nocache_pa((unsigned long) ptep) >> 4;
235 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
236 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
237 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
238 }
239 }
240
srmmu_pmd_populate(pmd_t * pmdp,struct page * ptep)241 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
242 {
243 unsigned long ptp; /* Physical address, shifted right by 4 */
244 int i;
245
246 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
247 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
248 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
249 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
250 }
251 }
252
srmmu_pte_modify(pte_t pte,pgprot_t newprot)253 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
254 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
255
256 /* to find an entry in a top-level page table... */
srmmu_pgd_offset(struct mm_struct * mm,unsigned long address)257 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
258 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
259
260 /* Find an entry in the second-level page table.. */
srmmu_pmd_offset(pgd_t * dir,unsigned long address)261 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
262 {
263 return (pmd_t *) srmmu_pgd_page(*dir) +
264 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
265 }
266
267 /* Find an entry in the third-level page table.. */
srmmu_pte_offset(pmd_t * dir,unsigned long address)268 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
269 {
270 void *pte;
271
272 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
273 return (pte_t *) pte +
274 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
275 }
276
srmmu_swp_type(swp_entry_t entry)277 static unsigned long srmmu_swp_type(swp_entry_t entry)
278 {
279 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
280 }
281
srmmu_swp_offset(swp_entry_t entry)282 static unsigned long srmmu_swp_offset(swp_entry_t entry)
283 {
284 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
285 }
286
srmmu_swp_entry(unsigned long type,unsigned long offset)287 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
288 {
289 return (swp_entry_t) {
290 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
291 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
292 }
293
294 /*
295 * size: bytes to allocate in the nocache area.
296 * align: bytes, number to align at.
297 * Returns the virtual address of the allocated area.
298 */
__srmmu_get_nocache(int size,int align)299 static unsigned long __srmmu_get_nocache(int size, int align)
300 {
301 int offset;
302
303 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
304 printk("Size 0x%x too small for nocache request\n", size);
305 size = SRMMU_NOCACHE_BITMAP_SHIFT;
306 }
307 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
308 printk("Size 0x%x unaligned int nocache request\n", size);
309 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
310 }
311 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
312
313 offset = bit_map_string_get(&srmmu_nocache_map,
314 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
315 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
316 if (offset == -1) {
317 printk("srmmu: out of nocache %d: %d/%d\n",
318 size, (int) srmmu_nocache_size,
319 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
320 return 0;
321 }
322
323 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
324 }
325
srmmu_get_nocache(int size,int align)326 static unsigned long srmmu_get_nocache(int size, int align)
327 {
328 unsigned long tmp;
329
330 tmp = __srmmu_get_nocache(size, align);
331
332 if (tmp)
333 memset((void *)tmp, 0, size);
334
335 return tmp;
336 }
337
srmmu_free_nocache(unsigned long vaddr,int size)338 static void srmmu_free_nocache(unsigned long vaddr, int size)
339 {
340 int offset;
341
342 if (vaddr < SRMMU_NOCACHE_VADDR) {
343 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
344 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
345 BUG();
346 }
347 if (vaddr+size > srmmu_nocache_end) {
348 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
349 vaddr, srmmu_nocache_end);
350 BUG();
351 }
352 if (size & (size-1)) {
353 printk("Size 0x%x is not a power of 2\n", size);
354 BUG();
355 }
356 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
357 printk("Size 0x%x is too small\n", size);
358 BUG();
359 }
360 if (vaddr & (size-1)) {
361 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
362 BUG();
363 }
364
365 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
366 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
367
368 bit_map_clear(&srmmu_nocache_map, offset, size);
369 }
370
371 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
372 unsigned long end);
373
374 extern unsigned long probe_memory(void); /* in fault.c */
375
376 /*
377 * Reserve nocache dynamically proportionally to the amount of
378 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
379 */
srmmu_nocache_calcsize(void)380 static void srmmu_nocache_calcsize(void)
381 {
382 unsigned long sysmemavail = probe_memory() / 1024;
383 int srmmu_nocache_npages;
384
385 srmmu_nocache_npages =
386 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
387
388 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
389 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
390 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
391 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
392
393 /* anything above 1280 blows up */
394 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
395 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
396
397 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
398 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
399 }
400
srmmu_nocache_init(void)401 static void __init srmmu_nocache_init(void)
402 {
403 unsigned int bitmap_bits;
404 pgd_t *pgd;
405 pmd_t *pmd;
406 pte_t *pte;
407 unsigned long paddr, vaddr;
408 unsigned long pteval;
409
410 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
411
412 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
413 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
414 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
415
416 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
417 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
418
419 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
420 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
421 init_mm.pgd = srmmu_swapper_pg_dir;
422
423 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
424
425 paddr = __pa((unsigned long)srmmu_nocache_pool);
426 vaddr = SRMMU_NOCACHE_VADDR;
427
428 while (vaddr < srmmu_nocache_end) {
429 pgd = pgd_offset_k(vaddr);
430 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
431 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
432
433 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
434
435 if (srmmu_cache_pagetables)
436 pteval |= SRMMU_CACHE;
437
438 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
439
440 vaddr += PAGE_SIZE;
441 paddr += PAGE_SIZE;
442 }
443
444 flush_cache_all();
445 flush_tlb_all();
446 }
447
srmmu_get_pgd_fast(void)448 static inline pgd_t *srmmu_get_pgd_fast(void)
449 {
450 pgd_t *pgd = NULL;
451
452 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
453 if (pgd) {
454 pgd_t *init = pgd_offset_k(0);
455 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
456 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
457 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
458 }
459
460 return pgd;
461 }
462
srmmu_free_pgd_fast(pgd_t * pgd)463 static void srmmu_free_pgd_fast(pgd_t *pgd)
464 {
465 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
466 }
467
srmmu_pmd_alloc_one(struct mm_struct * mm,unsigned long address)468 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
469 {
470 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
471 }
472
srmmu_pmd_free(pmd_t * pmd)473 static void srmmu_pmd_free(pmd_t * pmd)
474 {
475 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
476 }
477
478 /*
479 * Hardware needs alignment to 256 only, but we align to whole page size
480 * to reduce fragmentation problems due to the buddy principle.
481 * XXX Provide actual fragmentation statistics in /proc.
482 *
483 * Alignments up to the page size are the same for physical and virtual
484 * addresses of the nocache area.
485 */
486 static pte_t *
srmmu_pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)487 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
488 {
489 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
490 }
491
492 static pgtable_t
srmmu_pte_alloc_one(struct mm_struct * mm,unsigned long address)493 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
494 {
495 unsigned long pte;
496 struct page *page;
497
498 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
499 return NULL;
500 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
501 pgtable_page_ctor(page);
502 return page;
503 }
504
srmmu_free_pte_fast(pte_t * pte)505 static void srmmu_free_pte_fast(pte_t *pte)
506 {
507 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
508 }
509
srmmu_pte_free(pgtable_t pte)510 static void srmmu_pte_free(pgtable_t pte)
511 {
512 unsigned long p;
513
514 pgtable_page_dtor(pte);
515 p = (unsigned long)page_address(pte); /* Cached address (for test) */
516 if (p == 0)
517 BUG();
518 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
519 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
520 srmmu_free_nocache(p, PTE_SIZE);
521 }
522
523 /*
524 */
alloc_context(struct mm_struct * old_mm,struct mm_struct * mm)525 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
526 {
527 struct ctx_list *ctxp;
528
529 ctxp = ctx_free.next;
530 if(ctxp != &ctx_free) {
531 remove_from_ctx_list(ctxp);
532 add_to_used_ctxlist(ctxp);
533 mm->context = ctxp->ctx_number;
534 ctxp->ctx_mm = mm;
535 return;
536 }
537 ctxp = ctx_used.next;
538 if(ctxp->ctx_mm == old_mm)
539 ctxp = ctxp->next;
540 if(ctxp == &ctx_used)
541 panic("out of mmu contexts");
542 flush_cache_mm(ctxp->ctx_mm);
543 flush_tlb_mm(ctxp->ctx_mm);
544 remove_from_ctx_list(ctxp);
545 add_to_used_ctxlist(ctxp);
546 ctxp->ctx_mm->context = NO_CONTEXT;
547 ctxp->ctx_mm = mm;
548 mm->context = ctxp->ctx_number;
549 }
550
free_context(int context)551 static inline void free_context(int context)
552 {
553 struct ctx_list *ctx_old;
554
555 ctx_old = ctx_list_pool + context;
556 remove_from_ctx_list(ctx_old);
557 add_to_free_ctxlist(ctx_old);
558 }
559
560
srmmu_switch_mm(struct mm_struct * old_mm,struct mm_struct * mm,struct task_struct * tsk,int cpu)561 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
562 struct task_struct *tsk, int cpu)
563 {
564 if(mm->context == NO_CONTEXT) {
565 spin_lock(&srmmu_context_spinlock);
566 alloc_context(old_mm, mm);
567 spin_unlock(&srmmu_context_spinlock);
568 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
569 }
570
571 if (is_hypersparc)
572 hyper_flush_whole_icache();
573
574 srmmu_set_context(mm->context);
575 }
576
577 /* Low level IO area allocation on the SRMMU. */
srmmu_mapioaddr(unsigned long physaddr,unsigned long virt_addr,int bus_type)578 static inline void srmmu_mapioaddr(unsigned long physaddr,
579 unsigned long virt_addr, int bus_type)
580 {
581 pgd_t *pgdp;
582 pmd_t *pmdp;
583 pte_t *ptep;
584 unsigned long tmp;
585
586 physaddr &= PAGE_MASK;
587 pgdp = pgd_offset_k(virt_addr);
588 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
589 ptep = srmmu_pte_offset(pmdp, virt_addr);
590 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
591
592 /*
593 * I need to test whether this is consistent over all
594 * sun4m's. The bus_type represents the upper 4 bits of
595 * 36-bit physical address on the I/O space lines...
596 */
597 tmp |= (bus_type << 28);
598 tmp |= SRMMU_PRIV;
599 __flush_page_to_ram(virt_addr);
600 srmmu_set_pte(ptep, __pte(tmp));
601 }
602
srmmu_mapiorange(unsigned int bus,unsigned long xpa,unsigned long xva,unsigned int len)603 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
604 unsigned long xva, unsigned int len)
605 {
606 while (len != 0) {
607 len -= PAGE_SIZE;
608 srmmu_mapioaddr(xpa, xva, bus);
609 xva += PAGE_SIZE;
610 xpa += PAGE_SIZE;
611 }
612 flush_tlb_all();
613 }
614
srmmu_unmapioaddr(unsigned long virt_addr)615 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
616 {
617 pgd_t *pgdp;
618 pmd_t *pmdp;
619 pte_t *ptep;
620
621 pgdp = pgd_offset_k(virt_addr);
622 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
623 ptep = srmmu_pte_offset(pmdp, virt_addr);
624
625 /* No need to flush uncacheable page. */
626 srmmu_pte_clear(ptep);
627 }
628
srmmu_unmapiorange(unsigned long virt_addr,unsigned int len)629 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
630 {
631 while (len != 0) {
632 len -= PAGE_SIZE;
633 srmmu_unmapioaddr(virt_addr);
634 virt_addr += PAGE_SIZE;
635 }
636 flush_tlb_all();
637 }
638
639 /*
640 * On the SRMMU we do not have the problems with limited tlb entries
641 * for mapping kernel pages, so we just take things from the free page
642 * pool. As a side effect we are putting a little too much pressure
643 * on the gfp() subsystem. This setup also makes the logic of the
644 * iommu mapping code a lot easier as we can transparently handle
645 * mappings on the kernel stack without any special code as we did
646 * need on the sun4c.
647 */
srmmu_alloc_thread_info(void)648 static struct thread_info *srmmu_alloc_thread_info(void)
649 {
650 struct thread_info *ret;
651
652 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
653 THREAD_INFO_ORDER);
654 #ifdef CONFIG_DEBUG_STACK_USAGE
655 if (ret)
656 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
657 #endif /* DEBUG_STACK_USAGE */
658
659 return ret;
660 }
661
srmmu_free_thread_info(struct thread_info * ti)662 static void srmmu_free_thread_info(struct thread_info *ti)
663 {
664 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
665 }
666
667 /* tsunami.S */
668 extern void tsunami_flush_cache_all(void);
669 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
670 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
671 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
672 extern void tsunami_flush_page_to_ram(unsigned long page);
673 extern void tsunami_flush_page_for_dma(unsigned long page);
674 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
675 extern void tsunami_flush_tlb_all(void);
676 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
677 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
678 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
679 extern void tsunami_setup_blockops(void);
680
681 /*
682 * Workaround, until we find what's going on with Swift. When low on memory,
683 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
684 * out it is already in page tables/ fault again on the same instruction.
685 * I really don't understand it, have checked it and contexts
686 * are right, flush_tlb_all is done as well, and it faults again...
687 * Strange. -jj
688 *
689 * The following code is a deadwood that may be necessary when
690 * we start to make precise page flushes again. --zaitcev
691 */
swift_update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t pte)692 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
693 {
694 #if 0
695 static unsigned long last;
696 unsigned int val;
697 /* unsigned int n; */
698
699 if (address == last) {
700 val = srmmu_hwprobe(address);
701 if (val != 0 && pte_val(pte) != val) {
702 printk("swift_update_mmu_cache: "
703 "addr %lx put %08x probed %08x from %p\n",
704 address, pte_val(pte), val,
705 __builtin_return_address(0));
706 srmmu_flush_whole_tlb();
707 }
708 }
709 last = address;
710 #endif
711 }
712
713 /* swift.S */
714 extern void swift_flush_cache_all(void);
715 extern void swift_flush_cache_mm(struct mm_struct *mm);
716 extern void swift_flush_cache_range(struct vm_area_struct *vma,
717 unsigned long start, unsigned long end);
718 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
719 extern void swift_flush_page_to_ram(unsigned long page);
720 extern void swift_flush_page_for_dma(unsigned long page);
721 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
722 extern void swift_flush_tlb_all(void);
723 extern void swift_flush_tlb_mm(struct mm_struct *mm);
724 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
725 unsigned long start, unsigned long end);
726 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
727
728 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
729 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
730 {
731 int cctx, ctx1;
732
733 page &= PAGE_MASK;
734 if ((ctx1 = vma->vm_mm->context) != -1) {
735 cctx = srmmu_get_context();
736 /* Is context # ever different from current context? P3 */
737 if (cctx != ctx1) {
738 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
739 srmmu_set_context(ctx1);
740 swift_flush_page(page);
741 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
742 "r" (page), "i" (ASI_M_FLUSH_PROBE));
743 srmmu_set_context(cctx);
744 } else {
745 /* Rm. prot. bits from virt. c. */
746 /* swift_flush_cache_all(); */
747 /* swift_flush_cache_page(vma, page); */
748 swift_flush_page(page);
749
750 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
751 "r" (page), "i" (ASI_M_FLUSH_PROBE));
752 /* same as above: srmmu_flush_tlb_page() */
753 }
754 }
755 }
756 #endif
757
758 /*
759 * The following are all MBUS based SRMMU modules, and therefore could
760 * be found in a multiprocessor configuration. On the whole, these
761 * chips seems to be much more touchy about DVMA and page tables
762 * with respect to cache coherency.
763 */
764
765 /* Cypress flushes. */
cypress_flush_cache_all(void)766 static void cypress_flush_cache_all(void)
767 {
768 volatile unsigned long cypress_sucks;
769 unsigned long faddr, tagval;
770
771 flush_user_windows();
772 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
773 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
774 "=r" (tagval) :
775 "r" (faddr), "r" (0x40000),
776 "i" (ASI_M_DATAC_TAG));
777
778 /* If modified and valid, kick it. */
779 if((tagval & 0x60) == 0x60)
780 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
781 }
782 }
783
cypress_flush_cache_mm(struct mm_struct * mm)784 static void cypress_flush_cache_mm(struct mm_struct *mm)
785 {
786 register unsigned long a, b, c, d, e, f, g;
787 unsigned long flags, faddr;
788 int octx;
789
790 FLUSH_BEGIN(mm)
791 flush_user_windows();
792 local_irq_save(flags);
793 octx = srmmu_get_context();
794 srmmu_set_context(mm->context);
795 a = 0x20; b = 0x40; c = 0x60;
796 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
797
798 faddr = (0x10000 - 0x100);
799 goto inside;
800 do {
801 faddr -= 0x100;
802 inside:
803 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
804 "sta %%g0, [%0 + %2] %1\n\t"
805 "sta %%g0, [%0 + %3] %1\n\t"
806 "sta %%g0, [%0 + %4] %1\n\t"
807 "sta %%g0, [%0 + %5] %1\n\t"
808 "sta %%g0, [%0 + %6] %1\n\t"
809 "sta %%g0, [%0 + %7] %1\n\t"
810 "sta %%g0, [%0 + %8] %1\n\t" : :
811 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
812 "r" (a), "r" (b), "r" (c), "r" (d),
813 "r" (e), "r" (f), "r" (g));
814 } while(faddr);
815 srmmu_set_context(octx);
816 local_irq_restore(flags);
817 FLUSH_END
818 }
819
cypress_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)820 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
821 {
822 struct mm_struct *mm = vma->vm_mm;
823 register unsigned long a, b, c, d, e, f, g;
824 unsigned long flags, faddr;
825 int octx;
826
827 FLUSH_BEGIN(mm)
828 flush_user_windows();
829 local_irq_save(flags);
830 octx = srmmu_get_context();
831 srmmu_set_context(mm->context);
832 a = 0x20; b = 0x40; c = 0x60;
833 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
834
835 start &= SRMMU_REAL_PMD_MASK;
836 while(start < end) {
837 faddr = (start + (0x10000 - 0x100));
838 goto inside;
839 do {
840 faddr -= 0x100;
841 inside:
842 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
843 "sta %%g0, [%0 + %2] %1\n\t"
844 "sta %%g0, [%0 + %3] %1\n\t"
845 "sta %%g0, [%0 + %4] %1\n\t"
846 "sta %%g0, [%0 + %5] %1\n\t"
847 "sta %%g0, [%0 + %6] %1\n\t"
848 "sta %%g0, [%0 + %7] %1\n\t"
849 "sta %%g0, [%0 + %8] %1\n\t" : :
850 "r" (faddr),
851 "i" (ASI_M_FLUSH_SEG),
852 "r" (a), "r" (b), "r" (c), "r" (d),
853 "r" (e), "r" (f), "r" (g));
854 } while (faddr != start);
855 start += SRMMU_REAL_PMD_SIZE;
856 }
857 srmmu_set_context(octx);
858 local_irq_restore(flags);
859 FLUSH_END
860 }
861
cypress_flush_cache_page(struct vm_area_struct * vma,unsigned long page)862 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
863 {
864 register unsigned long a, b, c, d, e, f, g;
865 struct mm_struct *mm = vma->vm_mm;
866 unsigned long flags, line;
867 int octx;
868
869 FLUSH_BEGIN(mm)
870 flush_user_windows();
871 local_irq_save(flags);
872 octx = srmmu_get_context();
873 srmmu_set_context(mm->context);
874 a = 0x20; b = 0x40; c = 0x60;
875 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
876
877 page &= PAGE_MASK;
878 line = (page + PAGE_SIZE) - 0x100;
879 goto inside;
880 do {
881 line -= 0x100;
882 inside:
883 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
884 "sta %%g0, [%0 + %2] %1\n\t"
885 "sta %%g0, [%0 + %3] %1\n\t"
886 "sta %%g0, [%0 + %4] %1\n\t"
887 "sta %%g0, [%0 + %5] %1\n\t"
888 "sta %%g0, [%0 + %6] %1\n\t"
889 "sta %%g0, [%0 + %7] %1\n\t"
890 "sta %%g0, [%0 + %8] %1\n\t" : :
891 "r" (line),
892 "i" (ASI_M_FLUSH_PAGE),
893 "r" (a), "r" (b), "r" (c), "r" (d),
894 "r" (e), "r" (f), "r" (g));
895 } while(line != page);
896 srmmu_set_context(octx);
897 local_irq_restore(flags);
898 FLUSH_END
899 }
900
901 /* Cypress is copy-back, at least that is how we configure it. */
cypress_flush_page_to_ram(unsigned long page)902 static void cypress_flush_page_to_ram(unsigned long page)
903 {
904 register unsigned long a, b, c, d, e, f, g;
905 unsigned long line;
906
907 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
908 page &= PAGE_MASK;
909 line = (page + PAGE_SIZE) - 0x100;
910 goto inside;
911 do {
912 line -= 0x100;
913 inside:
914 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
915 "sta %%g0, [%0 + %2] %1\n\t"
916 "sta %%g0, [%0 + %3] %1\n\t"
917 "sta %%g0, [%0 + %4] %1\n\t"
918 "sta %%g0, [%0 + %5] %1\n\t"
919 "sta %%g0, [%0 + %6] %1\n\t"
920 "sta %%g0, [%0 + %7] %1\n\t"
921 "sta %%g0, [%0 + %8] %1\n\t" : :
922 "r" (line),
923 "i" (ASI_M_FLUSH_PAGE),
924 "r" (a), "r" (b), "r" (c), "r" (d),
925 "r" (e), "r" (f), "r" (g));
926 } while(line != page);
927 }
928
929 /* Cypress is also IO cache coherent. */
cypress_flush_page_for_dma(unsigned long page)930 static void cypress_flush_page_for_dma(unsigned long page)
931 {
932 }
933
934 /* Cypress has unified L2 VIPT, from which both instructions and data
935 * are stored. It does not have an onboard icache of any sort, therefore
936 * no flush is necessary.
937 */
cypress_flush_sig_insns(struct mm_struct * mm,unsigned long insn_addr)938 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
939 {
940 }
941
cypress_flush_tlb_all(void)942 static void cypress_flush_tlb_all(void)
943 {
944 srmmu_flush_whole_tlb();
945 }
946
cypress_flush_tlb_mm(struct mm_struct * mm)947 static void cypress_flush_tlb_mm(struct mm_struct *mm)
948 {
949 FLUSH_BEGIN(mm)
950 __asm__ __volatile__(
951 "lda [%0] %3, %%g5\n\t"
952 "sta %2, [%0] %3\n\t"
953 "sta %%g0, [%1] %4\n\t"
954 "sta %%g5, [%0] %3\n"
955 : /* no outputs */
956 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
957 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
958 : "g5");
959 FLUSH_END
960 }
961
cypress_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)962 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
963 {
964 struct mm_struct *mm = vma->vm_mm;
965 unsigned long size;
966
967 FLUSH_BEGIN(mm)
968 start &= SRMMU_PGDIR_MASK;
969 size = SRMMU_PGDIR_ALIGN(end) - start;
970 __asm__ __volatile__(
971 "lda [%0] %5, %%g5\n\t"
972 "sta %1, [%0] %5\n"
973 "1:\n\t"
974 "subcc %3, %4, %3\n\t"
975 "bne 1b\n\t"
976 " sta %%g0, [%2 + %3] %6\n\t"
977 "sta %%g5, [%0] %5\n"
978 : /* no outputs */
979 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
980 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
981 "i" (ASI_M_FLUSH_PROBE)
982 : "g5", "cc");
983 FLUSH_END
984 }
985
cypress_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)986 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
987 {
988 struct mm_struct *mm = vma->vm_mm;
989
990 FLUSH_BEGIN(mm)
991 __asm__ __volatile__(
992 "lda [%0] %3, %%g5\n\t"
993 "sta %1, [%0] %3\n\t"
994 "sta %%g0, [%2] %4\n\t"
995 "sta %%g5, [%0] %3\n"
996 : /* no outputs */
997 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
998 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
999 : "g5");
1000 FLUSH_END
1001 }
1002
1003 /* viking.S */
1004 extern void viking_flush_cache_all(void);
1005 extern void viking_flush_cache_mm(struct mm_struct *mm);
1006 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1007 unsigned long end);
1008 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1009 extern void viking_flush_page_to_ram(unsigned long page);
1010 extern void viking_flush_page_for_dma(unsigned long page);
1011 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1012 extern void viking_flush_page(unsigned long page);
1013 extern void viking_mxcc_flush_page(unsigned long page);
1014 extern void viking_flush_tlb_all(void);
1015 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1016 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1017 unsigned long end);
1018 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1019 unsigned long page);
1020 extern void sun4dsmp_flush_tlb_all(void);
1021 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1022 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1023 unsigned long end);
1024 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1025 unsigned long page);
1026
1027 /* hypersparc.S */
1028 extern void hypersparc_flush_cache_all(void);
1029 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1030 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1031 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1032 extern void hypersparc_flush_page_to_ram(unsigned long page);
1033 extern void hypersparc_flush_page_for_dma(unsigned long page);
1034 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1035 extern void hypersparc_flush_tlb_all(void);
1036 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1037 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1038 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1039 extern void hypersparc_setup_blockops(void);
1040
1041 /*
1042 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1043 * kernel mappings are done with one single contiguous chunk of
1044 * ram. On small ram machines (classics mainly) we only get
1045 * around 8mb mapped for us.
1046 */
1047
early_pgtable_allocfail(char * type)1048 static void __init early_pgtable_allocfail(char *type)
1049 {
1050 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1051 prom_halt();
1052 }
1053
srmmu_early_allocate_ptable_skeleton(unsigned long start,unsigned long end)1054 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1055 unsigned long end)
1056 {
1057 pgd_t *pgdp;
1058 pmd_t *pmdp;
1059 pte_t *ptep;
1060
1061 while(start < end) {
1062 pgdp = pgd_offset_k(start);
1063 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1064 pmdp = (pmd_t *) __srmmu_get_nocache(
1065 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1066 if (pmdp == NULL)
1067 early_pgtable_allocfail("pmd");
1068 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1069 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1070 }
1071 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1072 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1073 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1074 if (ptep == NULL)
1075 early_pgtable_allocfail("pte");
1076 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1077 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1078 }
1079 if (start > (0xffffffffUL - PMD_SIZE))
1080 break;
1081 start = (start + PMD_SIZE) & PMD_MASK;
1082 }
1083 }
1084
srmmu_allocate_ptable_skeleton(unsigned long start,unsigned long end)1085 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1086 unsigned long end)
1087 {
1088 pgd_t *pgdp;
1089 pmd_t *pmdp;
1090 pte_t *ptep;
1091
1092 while(start < end) {
1093 pgdp = pgd_offset_k(start);
1094 if(srmmu_pgd_none(*pgdp)) {
1095 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1096 if (pmdp == NULL)
1097 early_pgtable_allocfail("pmd");
1098 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1099 srmmu_pgd_set(pgdp, pmdp);
1100 }
1101 pmdp = srmmu_pmd_offset(pgdp, start);
1102 if(srmmu_pmd_none(*pmdp)) {
1103 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1104 PTE_SIZE);
1105 if (ptep == NULL)
1106 early_pgtable_allocfail("pte");
1107 memset(ptep, 0, PTE_SIZE);
1108 srmmu_pmd_set(pmdp, ptep);
1109 }
1110 if (start > (0xffffffffUL - PMD_SIZE))
1111 break;
1112 start = (start + PMD_SIZE) & PMD_MASK;
1113 }
1114 }
1115
1116 /*
1117 * This is much cleaner than poking around physical address space
1118 * looking at the prom's page table directly which is what most
1119 * other OS's do. Yuck... this is much better.
1120 */
srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)1121 static void __init srmmu_inherit_prom_mappings(unsigned long start,
1122 unsigned long end)
1123 {
1124 pgd_t *pgdp;
1125 pmd_t *pmdp;
1126 pte_t *ptep;
1127 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1128 unsigned long prompte;
1129
1130 while(start <= end) {
1131 if (start == 0)
1132 break; /* probably wrap around */
1133 if(start == 0xfef00000)
1134 start = KADB_DEBUGGER_BEGVM;
1135 if(!(prompte = srmmu_hwprobe(start))) {
1136 start += PAGE_SIZE;
1137 continue;
1138 }
1139
1140 /* A red snapper, see what it really is. */
1141 what = 0;
1142
1143 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1144 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1145 what = 1;
1146 }
1147
1148 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1149 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1150 prompte)
1151 what = 2;
1152 }
1153
1154 pgdp = pgd_offset_k(start);
1155 if(what == 2) {
1156 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1157 start += SRMMU_PGDIR_SIZE;
1158 continue;
1159 }
1160 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1161 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1162 if (pmdp == NULL)
1163 early_pgtable_allocfail("pmd");
1164 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1165 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1166 }
1167 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1168 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1169 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1170 PTE_SIZE);
1171 if (ptep == NULL)
1172 early_pgtable_allocfail("pte");
1173 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1174 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1175 }
1176 if(what == 1) {
1177 /*
1178 * We bend the rule where all 16 PTPs in a pmd_t point
1179 * inside the same PTE page, and we leak a perfectly
1180 * good hardware PTE piece. Alternatives seem worse.
1181 */
1182 unsigned int x; /* Index of HW PMD in soft cluster */
1183 x = (start >> PMD_SHIFT) & 15;
1184 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1185 start += SRMMU_REAL_PMD_SIZE;
1186 continue;
1187 }
1188 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1189 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1190 start += PAGE_SIZE;
1191 }
1192 }
1193
1194 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1195
1196 /* Create a third-level SRMMU 16MB page mapping. */
do_large_mapping(unsigned long vaddr,unsigned long phys_base)1197 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1198 {
1199 pgd_t *pgdp = pgd_offset_k(vaddr);
1200 unsigned long big_pte;
1201
1202 big_pte = KERNEL_PTE(phys_base >> 4);
1203 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1204 }
1205
1206 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
map_spbank(unsigned long vbase,int sp_entry)1207 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1208 {
1209 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1210 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1211 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1212 /* Map "low" memory only */
1213 const unsigned long min_vaddr = PAGE_OFFSET;
1214 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1215
1216 if (vstart < min_vaddr || vstart >= max_vaddr)
1217 return vstart;
1218
1219 if (vend > max_vaddr || vend < min_vaddr)
1220 vend = max_vaddr;
1221
1222 while(vstart < vend) {
1223 do_large_mapping(vstart, pstart);
1224 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1225 }
1226 return vstart;
1227 }
1228
memprobe_error(char * msg)1229 static inline void memprobe_error(char *msg)
1230 {
1231 prom_printf(msg);
1232 prom_printf("Halting now...\n");
1233 prom_halt();
1234 }
1235
map_kernel(void)1236 static inline void map_kernel(void)
1237 {
1238 int i;
1239
1240 if (phys_base > 0) {
1241 do_large_mapping(PAGE_OFFSET, phys_base);
1242 }
1243
1244 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1245 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1246 }
1247
1248 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1249 }
1250
1251 /* Paging initialization on the Sparc Reference MMU. */
1252 extern void sparc_context_init(int);
1253
1254 void (*poke_srmmu)(void) __cpuinitdata = NULL;
1255
1256 extern unsigned long bootmem_init(unsigned long *pages_avail);
1257
srmmu_paging_init(void)1258 void __init srmmu_paging_init(void)
1259 {
1260 int i, cpunode;
1261 char node_str[128];
1262 pgd_t *pgd;
1263 pmd_t *pmd;
1264 pte_t *pte;
1265 unsigned long pages_avail;
1266
1267 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1268
1269 if (sparc_cpu_model == sun4d)
1270 num_contexts = 65536; /* We know it is Viking */
1271 else {
1272 /* Find the number of contexts on the srmmu. */
1273 cpunode = prom_getchild(prom_root_node);
1274 num_contexts = 0;
1275 while(cpunode != 0) {
1276 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1277 if(!strcmp(node_str, "cpu")) {
1278 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1279 break;
1280 }
1281 cpunode = prom_getsibling(cpunode);
1282 }
1283 }
1284
1285 if(!num_contexts) {
1286 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1287 prom_halt();
1288 }
1289
1290 pages_avail = 0;
1291 last_valid_pfn = bootmem_init(&pages_avail);
1292
1293 srmmu_nocache_calcsize();
1294 srmmu_nocache_init();
1295 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1296 map_kernel();
1297
1298 /* ctx table has to be physically aligned to its size */
1299 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1300 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1301
1302 for(i = 0; i < num_contexts; i++)
1303 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1304
1305 flush_cache_all();
1306 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1307 #ifdef CONFIG_SMP
1308 /* Stop from hanging here... */
1309 local_flush_tlb_all();
1310 #else
1311 flush_tlb_all();
1312 #endif
1313 poke_srmmu();
1314
1315 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1316 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1317
1318 srmmu_allocate_ptable_skeleton(
1319 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1320 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1321
1322 pgd = pgd_offset_k(PKMAP_BASE);
1323 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1324 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1325 pkmap_page_table = pte;
1326
1327 flush_cache_all();
1328 flush_tlb_all();
1329
1330 sparc_context_init(num_contexts);
1331
1332 kmap_init();
1333
1334 {
1335 unsigned long zones_size[MAX_NR_ZONES];
1336 unsigned long zholes_size[MAX_NR_ZONES];
1337 unsigned long npages;
1338 int znum;
1339
1340 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1341 zones_size[znum] = zholes_size[znum] = 0;
1342
1343 npages = max_low_pfn - pfn_base;
1344
1345 zones_size[ZONE_DMA] = npages;
1346 zholes_size[ZONE_DMA] = npages - pages_avail;
1347
1348 npages = highend_pfn - max_low_pfn;
1349 zones_size[ZONE_HIGHMEM] = npages;
1350 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1351
1352 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1353 }
1354 }
1355
srmmu_mmu_info(struct seq_file * m)1356 static void srmmu_mmu_info(struct seq_file *m)
1357 {
1358 seq_printf(m,
1359 "MMU type\t: %s\n"
1360 "contexts\t: %d\n"
1361 "nocache total\t: %ld\n"
1362 "nocache used\t: %d\n",
1363 srmmu_name,
1364 num_contexts,
1365 srmmu_nocache_size,
1366 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1367 }
1368
srmmu_update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t pte)1369 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1370 {
1371 }
1372
srmmu_destroy_context(struct mm_struct * mm)1373 static void srmmu_destroy_context(struct mm_struct *mm)
1374 {
1375
1376 if(mm->context != NO_CONTEXT) {
1377 flush_cache_mm(mm);
1378 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1379 flush_tlb_mm(mm);
1380 spin_lock(&srmmu_context_spinlock);
1381 free_context(mm->context);
1382 spin_unlock(&srmmu_context_spinlock);
1383 mm->context = NO_CONTEXT;
1384 }
1385 }
1386
1387 /* Init various srmmu chip types. */
srmmu_is_bad(void)1388 static void __init srmmu_is_bad(void)
1389 {
1390 prom_printf("Could not determine SRMMU chip type.\n");
1391 prom_halt();
1392 }
1393
init_vac_layout(void)1394 static void __init init_vac_layout(void)
1395 {
1396 int nd, cache_lines;
1397 char node_str[128];
1398 #ifdef CONFIG_SMP
1399 int cpu = 0;
1400 unsigned long max_size = 0;
1401 unsigned long min_line_size = 0x10000000;
1402 #endif
1403
1404 nd = prom_getchild(prom_root_node);
1405 while((nd = prom_getsibling(nd)) != 0) {
1406 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1407 if(!strcmp(node_str, "cpu")) {
1408 vac_line_size = prom_getint(nd, "cache-line-size");
1409 if (vac_line_size == -1) {
1410 prom_printf("can't determine cache-line-size, "
1411 "halting.\n");
1412 prom_halt();
1413 }
1414 cache_lines = prom_getint(nd, "cache-nlines");
1415 if (cache_lines == -1) {
1416 prom_printf("can't determine cache-nlines, halting.\n");
1417 prom_halt();
1418 }
1419
1420 vac_cache_size = cache_lines * vac_line_size;
1421 #ifdef CONFIG_SMP
1422 if(vac_cache_size > max_size)
1423 max_size = vac_cache_size;
1424 if(vac_line_size < min_line_size)
1425 min_line_size = vac_line_size;
1426 //FIXME: cpus not contiguous!!
1427 cpu++;
1428 if (cpu >= NR_CPUS || !cpu_online(cpu))
1429 break;
1430 #else
1431 break;
1432 #endif
1433 }
1434 }
1435 if(nd == 0) {
1436 prom_printf("No CPU nodes found, halting.\n");
1437 prom_halt();
1438 }
1439 #ifdef CONFIG_SMP
1440 vac_cache_size = max_size;
1441 vac_line_size = min_line_size;
1442 #endif
1443 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1444 (int)vac_cache_size, (int)vac_line_size);
1445 }
1446
poke_hypersparc(void)1447 static void __cpuinit poke_hypersparc(void)
1448 {
1449 volatile unsigned long clear;
1450 unsigned long mreg = srmmu_get_mmureg();
1451
1452 hyper_flush_unconditional_combined();
1453
1454 mreg &= ~(HYPERSPARC_CWENABLE);
1455 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1456 mreg |= (HYPERSPARC_CMODE);
1457
1458 srmmu_set_mmureg(mreg);
1459
1460 #if 0 /* XXX I think this is bad news... -DaveM */
1461 hyper_clear_all_tags();
1462 #endif
1463
1464 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1465 hyper_flush_whole_icache();
1466 clear = srmmu_get_faddr();
1467 clear = srmmu_get_fstatus();
1468 }
1469
init_hypersparc(void)1470 static void __init init_hypersparc(void)
1471 {
1472 srmmu_name = "ROSS HyperSparc";
1473 srmmu_modtype = HyperSparc;
1474
1475 init_vac_layout();
1476
1477 is_hypersparc = 1;
1478
1479 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1480 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1481 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1482 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1483 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1484 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1486
1487 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1488 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1489 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1491
1492 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1493 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1494 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1495
1496
1497 poke_srmmu = poke_hypersparc;
1498
1499 hypersparc_setup_blockops();
1500 }
1501
poke_cypress(void)1502 static void __cpuinit poke_cypress(void)
1503 {
1504 unsigned long mreg = srmmu_get_mmureg();
1505 unsigned long faddr, tagval;
1506 volatile unsigned long cypress_sucks;
1507 volatile unsigned long clear;
1508
1509 clear = srmmu_get_faddr();
1510 clear = srmmu_get_fstatus();
1511
1512 if (!(mreg & CYPRESS_CENABLE)) {
1513 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1514 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1515 "sta %%g0, [%0] %2\n\t" : :
1516 "r" (faddr), "r" (0x40000),
1517 "i" (ASI_M_DATAC_TAG));
1518 }
1519 } else {
1520 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1521 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1522 "=r" (tagval) :
1523 "r" (faddr), "r" (0x40000),
1524 "i" (ASI_M_DATAC_TAG));
1525
1526 /* If modified and valid, kick it. */
1527 if((tagval & 0x60) == 0x60)
1528 cypress_sucks = *(unsigned long *)
1529 (0xf0020000 + faddr);
1530 }
1531 }
1532
1533 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1534 clear = srmmu_get_faddr();
1535 clear = srmmu_get_fstatus();
1536
1537 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1538 srmmu_set_mmureg(mreg);
1539 }
1540
init_cypress_common(void)1541 static void __init init_cypress_common(void)
1542 {
1543 init_vac_layout();
1544
1545 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1546 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1547 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1548 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1549 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1550 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1551 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1552
1553 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1554 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1555 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1556 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1557
1558
1559 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1560 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1561 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1562
1563 poke_srmmu = poke_cypress;
1564 }
1565
init_cypress_604(void)1566 static void __init init_cypress_604(void)
1567 {
1568 srmmu_name = "ROSS Cypress-604(UP)";
1569 srmmu_modtype = Cypress;
1570 init_cypress_common();
1571 }
1572
init_cypress_605(unsigned long mrev)1573 static void __init init_cypress_605(unsigned long mrev)
1574 {
1575 srmmu_name = "ROSS Cypress-605(MP)";
1576 if(mrev == 0xe) {
1577 srmmu_modtype = Cypress_vE;
1578 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1579 } else {
1580 if(mrev == 0xd) {
1581 srmmu_modtype = Cypress_vD;
1582 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1583 } else {
1584 srmmu_modtype = Cypress;
1585 }
1586 }
1587 init_cypress_common();
1588 }
1589
poke_swift(void)1590 static void __cpuinit poke_swift(void)
1591 {
1592 unsigned long mreg;
1593
1594 /* Clear any crap from the cache or else... */
1595 swift_flush_cache_all();
1596
1597 /* Enable I & D caches */
1598 mreg = srmmu_get_mmureg();
1599 mreg |= (SWIFT_IE | SWIFT_DE);
1600 /*
1601 * The Swift branch folding logic is completely broken. At
1602 * trap time, if things are just right, if can mistakenly
1603 * think that a trap is coming from kernel mode when in fact
1604 * it is coming from user mode (it mis-executes the branch in
1605 * the trap code). So you see things like crashme completely
1606 * hosing your machine which is completely unacceptable. Turn
1607 * this shit off... nice job Fujitsu.
1608 */
1609 mreg &= ~(SWIFT_BF);
1610 srmmu_set_mmureg(mreg);
1611 }
1612
1613 #define SWIFT_MASKID_ADDR 0x10003018
init_swift(void)1614 static void __init init_swift(void)
1615 {
1616 unsigned long swift_rev;
1617
1618 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1619 "srl %0, 0x18, %0\n\t" :
1620 "=r" (swift_rev) :
1621 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1622 srmmu_name = "Fujitsu Swift";
1623 switch(swift_rev) {
1624 case 0x11:
1625 case 0x20:
1626 case 0x23:
1627 case 0x30:
1628 srmmu_modtype = Swift_lots_o_bugs;
1629 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1630 /*
1631 * Gee george, I wonder why Sun is so hush hush about
1632 * this hardware bug... really braindamage stuff going
1633 * on here. However I think we can find a way to avoid
1634 * all of the workaround overhead under Linux. Basically,
1635 * any page fault can cause kernel pages to become user
1636 * accessible (the mmu gets confused and clears some of
1637 * the ACC bits in kernel ptes). Aha, sounds pretty
1638 * horrible eh? But wait, after extensive testing it appears
1639 * that if you use pgd_t level large kernel pte's (like the
1640 * 4MB pages on the Pentium) the bug does not get tripped
1641 * at all. This avoids almost all of the major overhead.
1642 * Welcome to a world where your vendor tells you to,
1643 * "apply this kernel patch" instead of "sorry for the
1644 * broken hardware, send it back and we'll give you
1645 * properly functioning parts"
1646 */
1647 break;
1648 case 0x25:
1649 case 0x31:
1650 srmmu_modtype = Swift_bad_c;
1651 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1652 /*
1653 * You see Sun allude to this hardware bug but never
1654 * admit things directly, they'll say things like,
1655 * "the Swift chip cache problems" or similar.
1656 */
1657 break;
1658 default:
1659 srmmu_modtype = Swift_ok;
1660 break;
1661 };
1662
1663 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1664 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1665 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1666 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1667
1668
1669 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1670 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1671 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1673
1674 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1675 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1676 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1677
1678 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1679
1680 flush_page_for_dma_global = 0;
1681
1682 /*
1683 * Are you now convinced that the Swift is one of the
1684 * biggest VLSI abortions of all time? Bravo Fujitsu!
1685 * Fujitsu, the !#?!%$'d up processor people. I bet if
1686 * you examined the microcode of the Swift you'd find
1687 * XXX's all over the place.
1688 */
1689 poke_srmmu = poke_swift;
1690 }
1691
turbosparc_flush_cache_all(void)1692 static void turbosparc_flush_cache_all(void)
1693 {
1694 flush_user_windows();
1695 turbosparc_idflash_clear();
1696 }
1697
turbosparc_flush_cache_mm(struct mm_struct * mm)1698 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1699 {
1700 FLUSH_BEGIN(mm)
1701 flush_user_windows();
1702 turbosparc_idflash_clear();
1703 FLUSH_END
1704 }
1705
turbosparc_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1706 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1707 {
1708 FLUSH_BEGIN(vma->vm_mm)
1709 flush_user_windows();
1710 turbosparc_idflash_clear();
1711 FLUSH_END
1712 }
1713
turbosparc_flush_cache_page(struct vm_area_struct * vma,unsigned long page)1714 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1715 {
1716 FLUSH_BEGIN(vma->vm_mm)
1717 flush_user_windows();
1718 if (vma->vm_flags & VM_EXEC)
1719 turbosparc_flush_icache();
1720 turbosparc_flush_dcache();
1721 FLUSH_END
1722 }
1723
1724 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
turbosparc_flush_page_to_ram(unsigned long page)1725 static void turbosparc_flush_page_to_ram(unsigned long page)
1726 {
1727 #ifdef TURBOSPARC_WRITEBACK
1728 volatile unsigned long clear;
1729
1730 if (srmmu_hwprobe(page))
1731 turbosparc_flush_page_cache(page);
1732 clear = srmmu_get_fstatus();
1733 #endif
1734 }
1735
turbosparc_flush_sig_insns(struct mm_struct * mm,unsigned long insn_addr)1736 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1737 {
1738 }
1739
turbosparc_flush_page_for_dma(unsigned long page)1740 static void turbosparc_flush_page_for_dma(unsigned long page)
1741 {
1742 turbosparc_flush_dcache();
1743 }
1744
turbosparc_flush_tlb_all(void)1745 static void turbosparc_flush_tlb_all(void)
1746 {
1747 srmmu_flush_whole_tlb();
1748 }
1749
turbosparc_flush_tlb_mm(struct mm_struct * mm)1750 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1751 {
1752 FLUSH_BEGIN(mm)
1753 srmmu_flush_whole_tlb();
1754 FLUSH_END
1755 }
1756
turbosparc_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1757 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1758 {
1759 FLUSH_BEGIN(vma->vm_mm)
1760 srmmu_flush_whole_tlb();
1761 FLUSH_END
1762 }
1763
turbosparc_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)1764 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1765 {
1766 FLUSH_BEGIN(vma->vm_mm)
1767 srmmu_flush_whole_tlb();
1768 FLUSH_END
1769 }
1770
1771
poke_turbosparc(void)1772 static void __cpuinit poke_turbosparc(void)
1773 {
1774 unsigned long mreg = srmmu_get_mmureg();
1775 unsigned long ccreg;
1776
1777 /* Clear any crap from the cache or else... */
1778 turbosparc_flush_cache_all();
1779 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1780 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1781 srmmu_set_mmureg(mreg);
1782
1783 ccreg = turbosparc_get_ccreg();
1784
1785 #ifdef TURBOSPARC_WRITEBACK
1786 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1787 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1788 /* Write-back D-cache, emulate VLSI
1789 * abortion number three, not number one */
1790 #else
1791 /* For now let's play safe, optimize later */
1792 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1793 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1794 ccreg &= ~(TURBOSPARC_uS2);
1795 /* Emulate VLSI abortion number three, not number one */
1796 #endif
1797
1798 switch (ccreg & 7) {
1799 case 0: /* No SE cache */
1800 case 7: /* Test mode */
1801 break;
1802 default:
1803 ccreg |= (TURBOSPARC_SCENABLE);
1804 }
1805 turbosparc_set_ccreg (ccreg);
1806
1807 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1808 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1809 srmmu_set_mmureg(mreg);
1810 }
1811
init_turbosparc(void)1812 static void __init init_turbosparc(void)
1813 {
1814 srmmu_name = "Fujitsu TurboSparc";
1815 srmmu_modtype = TurboSparc;
1816
1817 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1818 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1819 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1820 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1821
1822 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1823 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1824 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1825 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1826
1827 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1828
1829 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1830 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1831
1832 poke_srmmu = poke_turbosparc;
1833 }
1834
poke_tsunami(void)1835 static void __cpuinit poke_tsunami(void)
1836 {
1837 unsigned long mreg = srmmu_get_mmureg();
1838
1839 tsunami_flush_icache();
1840 tsunami_flush_dcache();
1841 mreg &= ~TSUNAMI_ITD;
1842 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1843 srmmu_set_mmureg(mreg);
1844 }
1845
init_tsunami(void)1846 static void __init init_tsunami(void)
1847 {
1848 /*
1849 * Tsunami's pretty sane, Sun and TI actually got it
1850 * somewhat right this time. Fujitsu should have
1851 * taken some lessons from them.
1852 */
1853
1854 srmmu_name = "TI Tsunami";
1855 srmmu_modtype = Tsunami;
1856
1857 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1858 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1859 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1860 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1861
1862
1863 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1864 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1865 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1867
1868 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1869 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1870 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1871
1872 poke_srmmu = poke_tsunami;
1873
1874 tsunami_setup_blockops();
1875 }
1876
poke_viking(void)1877 static void __cpuinit poke_viking(void)
1878 {
1879 unsigned long mreg = srmmu_get_mmureg();
1880 static int smp_catch;
1881
1882 if(viking_mxcc_present) {
1883 unsigned long mxcc_control = mxcc_get_creg();
1884
1885 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1886 mxcc_control &= ~(MXCC_CTL_RRC);
1887 mxcc_set_creg(mxcc_control);
1888
1889 /*
1890 * We don't need memory parity checks.
1891 * XXX This is a mess, have to dig out later. ecd.
1892 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1893 */
1894
1895 /* We do cache ptables on MXCC. */
1896 mreg |= VIKING_TCENABLE;
1897 } else {
1898 unsigned long bpreg;
1899
1900 mreg &= ~(VIKING_TCENABLE);
1901 if(smp_catch++) {
1902 /* Must disable mixed-cmd mode here for other cpu's. */
1903 bpreg = viking_get_bpreg();
1904 bpreg &= ~(VIKING_ACTION_MIX);
1905 viking_set_bpreg(bpreg);
1906
1907 /* Just in case PROM does something funny. */
1908 msi_set_sync();
1909 }
1910 }
1911
1912 mreg |= VIKING_SPENABLE;
1913 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1914 mreg |= VIKING_SBENABLE;
1915 mreg &= ~(VIKING_ACENABLE);
1916 srmmu_set_mmureg(mreg);
1917 }
1918
init_viking(void)1919 static void __init init_viking(void)
1920 {
1921 unsigned long mreg = srmmu_get_mmureg();
1922
1923 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1924 if(mreg & VIKING_MMODE) {
1925 srmmu_name = "TI Viking";
1926 viking_mxcc_present = 0;
1927 msi_set_sync();
1928
1929 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1930 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1931 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1932
1933 /*
1934 * We need this to make sure old viking takes no hits
1935 * on it's cache for dma snoops to workaround the
1936 * "load from non-cacheable memory" interrupt bug.
1937 * This is only necessary because of the new way in
1938 * which we use the IOMMU.
1939 */
1940 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1941
1942 flush_page_for_dma_global = 0;
1943 } else {
1944 srmmu_name = "TI Viking/MXCC";
1945 viking_mxcc_present = 1;
1946
1947 srmmu_cache_pagetables = 1;
1948
1949 /* MXCC vikings lack the DMA snooping bug. */
1950 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1951 }
1952
1953 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1954 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1955 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1956 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1957
1958 #ifdef CONFIG_SMP
1959 if (sparc_cpu_model == sun4d) {
1960 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1961 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1962 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1963 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1964 } else
1965 #endif
1966 {
1967 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1968 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1969 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1971 }
1972
1973 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1974 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1975
1976 poke_srmmu = poke_viking;
1977 }
1978
1979 /* Probe for the srmmu chip version. */
get_srmmu_type(void)1980 static void __init get_srmmu_type(void)
1981 {
1982 unsigned long mreg, psr;
1983 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1984
1985 srmmu_modtype = SRMMU_INVAL_MOD;
1986 hwbug_bitmask = 0;
1987
1988 mreg = srmmu_get_mmureg(); psr = get_psr();
1989 mod_typ = (mreg & 0xf0000000) >> 28;
1990 mod_rev = (mreg & 0x0f000000) >> 24;
1991 psr_typ = (psr >> 28) & 0xf;
1992 psr_vers = (psr >> 24) & 0xf;
1993
1994 /* First, check for HyperSparc or Cypress. */
1995 if(mod_typ == 1) {
1996 switch(mod_rev) {
1997 case 7:
1998 /* UP or MP Hypersparc */
1999 init_hypersparc();
2000 break;
2001 case 0:
2002 case 2:
2003 /* Uniprocessor Cypress */
2004 init_cypress_604();
2005 break;
2006 case 10:
2007 case 11:
2008 case 12:
2009 /* _REALLY OLD_ Cypress MP chips... */
2010 case 13:
2011 case 14:
2012 case 15:
2013 /* MP Cypress mmu/cache-controller */
2014 init_cypress_605(mod_rev);
2015 break;
2016 default:
2017 /* Some other Cypress revision, assume a 605. */
2018 init_cypress_605(mod_rev);
2019 break;
2020 };
2021 return;
2022 }
2023
2024 /*
2025 * Now Fujitsu TurboSparc. It might happen that it is
2026 * in Swift emulation mode, so we will check later...
2027 */
2028 if (psr_typ == 0 && psr_vers == 5) {
2029 init_turbosparc();
2030 return;
2031 }
2032
2033 /* Next check for Fujitsu Swift. */
2034 if(psr_typ == 0 && psr_vers == 4) {
2035 int cpunode;
2036 char node_str[128];
2037
2038 /* Look if it is not a TurboSparc emulating Swift... */
2039 cpunode = prom_getchild(prom_root_node);
2040 while((cpunode = prom_getsibling(cpunode)) != 0) {
2041 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2042 if(!strcmp(node_str, "cpu")) {
2043 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2044 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2045 init_turbosparc();
2046 return;
2047 }
2048 break;
2049 }
2050 }
2051
2052 init_swift();
2053 return;
2054 }
2055
2056 /* Now the Viking family of srmmu. */
2057 if(psr_typ == 4 &&
2058 ((psr_vers == 0) ||
2059 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2060 init_viking();
2061 return;
2062 }
2063
2064 /* Finally the Tsunami. */
2065 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2066 init_tsunami();
2067 return;
2068 }
2069
2070 /* Oh well */
2071 srmmu_is_bad();
2072 }
2073
2074 /* don't laugh, static pagetables */
srmmu_check_pgt_cache(int low,int high)2075 static void srmmu_check_pgt_cache(int low, int high)
2076 {
2077 }
2078
2079 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2080 tsetup_mmu_patchme, rtrap_mmu_patchme;
2081
2082 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2083 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2084
2085 extern unsigned long srmmu_fault;
2086
2087 #define PATCH_BRANCH(insn, dest) do { \
2088 iaddr = &(insn); \
2089 daddr = &(dest); \
2090 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2091 } while(0)
2092
patch_window_trap_handlers(void)2093 static void __init patch_window_trap_handlers(void)
2094 {
2095 unsigned long *iaddr, *daddr;
2096
2097 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2098 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2099 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2100 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2101 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2102 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2103 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2104 }
2105
2106 #ifdef CONFIG_SMP
2107 /* Local cross-calls. */
smp_flush_page_for_dma(unsigned long page)2108 static void smp_flush_page_for_dma(unsigned long page)
2109 {
2110 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2111 local_flush_page_for_dma(page);
2112 }
2113
2114 #endif
2115
srmmu_pgoff_to_pte(unsigned long pgoff)2116 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2117 {
2118 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2119 }
2120
srmmu_pte_to_pgoff(pte_t pte)2121 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2122 {
2123 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2124 }
2125
srmmu_pgprot_noncached(pgprot_t prot)2126 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2127 {
2128 prot &= ~__pgprot(SRMMU_CACHE);
2129
2130 return prot;
2131 }
2132
2133 /* Load up routines and constants for sun4m and sun4d mmu */
ld_mmu_srmmu(void)2134 void __init ld_mmu_srmmu(void)
2135 {
2136 extern void ld_mmu_iommu(void);
2137 extern void ld_mmu_iounit(void);
2138 extern void ___xchg32_sun4md(void);
2139
2140 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2141 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2142 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2143
2144 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2145 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2146
2147 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2148 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2149 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2150 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2151 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2152 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2153
2154 /* Functions */
2155 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2156 #ifndef CONFIG_SMP
2157 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2158 #endif
2159 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2160
2161 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2162 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2163
2164 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2165 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2166 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2167
2168 BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2169
2170 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2171 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2172
2173 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2174 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2175 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2176
2177 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2178 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2179 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2180 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2181
2182 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2183 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2184 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2185 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2186 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2187 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2188
2189 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2190 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2191 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2192
2193 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2194 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2195 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2196 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2197 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2198 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2199 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2200 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2201
2202 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2203 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2204 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2205 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2206 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2207 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2208 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2209 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2210 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2211 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2212 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2213 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2214
2215 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2216 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2217
2218 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2219 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2220 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2221
2222 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2223
2224 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2225 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2226
2227 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2228 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2229
2230 get_srmmu_type();
2231 patch_window_trap_handlers();
2232
2233 #ifdef CONFIG_SMP
2234 /* El switcheroo... */
2235
2236 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2237 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2238 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2239 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2240 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2241 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2242 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2243 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2244 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2245 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2246 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2247
2248 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2249 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2250 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2251 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2252 if (sparc_cpu_model != sun4d) {
2253 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2254 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2255 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2256 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2257 }
2258 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2259 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2260 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2261
2262 if (poke_srmmu == poke_viking) {
2263 /* Avoid unnecessary cross calls. */
2264 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2265 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2266 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2267 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2268 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2269 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2270 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
2271 }
2272 #endif
2273
2274 if (sparc_cpu_model == sun4d)
2275 ld_mmu_iounit();
2276 else
2277 ld_mmu_iommu();
2278 #ifdef CONFIG_SMP
2279 if (sparc_cpu_model == sun4d)
2280 sun4d_init_smp();
2281 else
2282 sun4m_init_smp();
2283 #endif
2284 }
2285