• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:100 This is the Launcher code, a simple program which lays out the
2  * "physical" memory for the new Guest by mapping the kernel image and
3  * the virtual devices, then opens /dev/lguest to tell the kernel
4  * about the Guest and control it. :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include <signal.h>
40 #include "linux/lguest_launcher.h"
41 #include "linux/virtio_config.h"
42 #include "linux/virtio_net.h"
43 #include "linux/virtio_blk.h"
44 #include "linux/virtio_console.h"
45 #include "linux/virtio_rng.h"
46 #include "linux/virtio_ring.h"
47 #include "asm/bootparam.h"
48 /*L:110 We can ignore the 39 include files we need for this program, but I do
49  * want to draw attention to the use of kernel-style types.
50  *
51  * As Linus said, "C is a Spartan language, and so should your naming be."  I
52  * like these abbreviations, so we define them here.  Note that u64 is always
53  * unsigned long long, which works on all Linux systems: this means that we can
54  * use %llu in printf for any u64. */
55 typedef unsigned long long u64;
56 typedef uint32_t u32;
57 typedef uint16_t u16;
58 typedef uint8_t u8;
59 /*:*/
60 
61 #define PAGE_PRESENT 0x7 	/* Present, RW, Execute */
62 #define NET_PEERNUM 1
63 #define BRIDGE_PFX "bridge:"
64 #ifndef SIOCBRADDIF
65 #define SIOCBRADDIF	0x89a2		/* add interface to bridge      */
66 #endif
67 /* We can have up to 256 pages for devices. */
68 #define DEVICE_PAGES 256
69 /* This will occupy 3 pages: it must be a power of 2. */
70 #define VIRTQUEUE_NUM 256
71 
72 /*L:120 verbose is both a global flag and a macro.  The C preprocessor allows
73  * this, and although I wouldn't recommend it, it works quite nicely here. */
74 static bool verbose;
75 #define verbose(args...) \
76 	do { if (verbose) printf(args); } while(0)
77 /*:*/
78 
79 /* File descriptors for the Waker. */
80 struct {
81 	int pipe[2];
82 	int lguest_fd;
83 } waker_fds;
84 
85 /* The pointer to the start of guest memory. */
86 static void *guest_base;
87 /* The maximum guest physical address allowed, and maximum possible. */
88 static unsigned long guest_limit, guest_max;
89 /* The pipe for signal hander to write to. */
90 static int timeoutpipe[2];
91 static unsigned int timeout_usec = 500;
92 
93 /* a per-cpu variable indicating whose vcpu is currently running */
94 static unsigned int __thread cpu_id;
95 
96 /* This is our list of devices. */
97 struct device_list
98 {
99 	/* Summary information about the devices in our list: ready to pass to
100 	 * select() to ask which need servicing.*/
101 	fd_set infds;
102 	int max_infd;
103 
104 	/* Counter to assign interrupt numbers. */
105 	unsigned int next_irq;
106 
107 	/* Counter to print out convenient device numbers. */
108 	unsigned int device_num;
109 
110 	/* The descriptor page for the devices. */
111 	u8 *descpage;
112 
113 	/* A single linked list of devices. */
114 	struct device *dev;
115 	/* And a pointer to the last device for easy append and also for
116 	 * configuration appending. */
117 	struct device *lastdev;
118 };
119 
120 /* The list of Guest devices, based on command line arguments. */
121 static struct device_list devices;
122 
123 /* The device structure describes a single device. */
124 struct device
125 {
126 	/* The linked-list pointer. */
127 	struct device *next;
128 
129 	/* The this device's descriptor, as mapped into the Guest. */
130 	struct lguest_device_desc *desc;
131 
132 	/* The name of this device, for --verbose. */
133 	const char *name;
134 
135 	/* If handle_input is set, it wants to be called when this file
136 	 * descriptor is ready. */
137 	int fd;
138 	bool (*handle_input)(int fd, struct device *me);
139 
140 	/* Any queues attached to this device */
141 	struct virtqueue *vq;
142 
143 	/* Handle status being finalized (ie. feature bits stable). */
144 	void (*ready)(struct device *me);
145 
146 	/* Device-specific data. */
147 	void *priv;
148 };
149 
150 /* The virtqueue structure describes a queue attached to a device. */
151 struct virtqueue
152 {
153 	struct virtqueue *next;
154 
155 	/* Which device owns me. */
156 	struct device *dev;
157 
158 	/* The configuration for this queue. */
159 	struct lguest_vqconfig config;
160 
161 	/* The actual ring of buffers. */
162 	struct vring vring;
163 
164 	/* Last available index we saw. */
165 	u16 last_avail_idx;
166 
167 	/* The routine to call when the Guest pings us, or timeout. */
168 	void (*handle_output)(int fd, struct virtqueue *me, bool timeout);
169 
170 	/* Outstanding buffers */
171 	unsigned int inflight;
172 
173 	/* Is this blocked awaiting a timer? */
174 	bool blocked;
175 };
176 
177 /* Remember the arguments to the program so we can "reboot" */
178 static char **main_args;
179 
180 /* Since guest is UP and we don't run at the same time, we don't need barriers.
181  * But I include them in the code in case others copy it. */
182 #define wmb()
183 
184 /* Convert an iovec element to the given type.
185  *
186  * This is a fairly ugly trick: we need to know the size of the type and
187  * alignment requirement to check the pointer is kosher.  It's also nice to
188  * have the name of the type in case we report failure.
189  *
190  * Typing those three things all the time is cumbersome and error prone, so we
191  * have a macro which sets them all up and passes to the real function. */
192 #define convert(iov, type) \
193 	((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
194 
_convert(struct iovec * iov,size_t size,size_t align,const char * name)195 static void *_convert(struct iovec *iov, size_t size, size_t align,
196 		      const char *name)
197 {
198 	if (iov->iov_len != size)
199 		errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
200 	if ((unsigned long)iov->iov_base % align != 0)
201 		errx(1, "Bad alignment %p for %s", iov->iov_base, name);
202 	return iov->iov_base;
203 }
204 
205 /* Wrapper for the last available index.  Makes it easier to change. */
206 #define lg_last_avail(vq)	((vq)->last_avail_idx)
207 
208 /* The virtio configuration space is defined to be little-endian.  x86 is
209  * little-endian too, but it's nice to be explicit so we have these helpers. */
210 #define cpu_to_le16(v16) (v16)
211 #define cpu_to_le32(v32) (v32)
212 #define cpu_to_le64(v64) (v64)
213 #define le16_to_cpu(v16) (v16)
214 #define le32_to_cpu(v32) (v32)
215 #define le64_to_cpu(v64) (v64)
216 
217 /* Is this iovec empty? */
iov_empty(const struct iovec iov[],unsigned int num_iov)218 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
219 {
220 	unsigned int i;
221 
222 	for (i = 0; i < num_iov; i++)
223 		if (iov[i].iov_len)
224 			return false;
225 	return true;
226 }
227 
228 /* Take len bytes from the front of this iovec. */
iov_consume(struct iovec iov[],unsigned num_iov,unsigned len)229 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
230 {
231 	unsigned int i;
232 
233 	for (i = 0; i < num_iov; i++) {
234 		unsigned int used;
235 
236 		used = iov[i].iov_len < len ? iov[i].iov_len : len;
237 		iov[i].iov_base += used;
238 		iov[i].iov_len -= used;
239 		len -= used;
240 	}
241 	assert(len == 0);
242 }
243 
244 /* The device virtqueue descriptors are followed by feature bitmasks. */
get_feature_bits(struct device * dev)245 static u8 *get_feature_bits(struct device *dev)
246 {
247 	return (u8 *)(dev->desc + 1)
248 		+ dev->desc->num_vq * sizeof(struct lguest_vqconfig);
249 }
250 
251 /*L:100 The Launcher code itself takes us out into userspace, that scary place
252  * where pointers run wild and free!  Unfortunately, like most userspace
253  * programs, it's quite boring (which is why everyone likes to hack on the
254  * kernel!).  Perhaps if you make up an Lguest Drinking Game at this point, it
255  * will get you through this section.  Or, maybe not.
256  *
257  * The Launcher sets up a big chunk of memory to be the Guest's "physical"
258  * memory and stores it in "guest_base".  In other words, Guest physical ==
259  * Launcher virtual with an offset.
260  *
261  * This can be tough to get your head around, but usually it just means that we
262  * use these trivial conversion functions when the Guest gives us it's
263  * "physical" addresses: */
from_guest_phys(unsigned long addr)264 static void *from_guest_phys(unsigned long addr)
265 {
266 	return guest_base + addr;
267 }
268 
to_guest_phys(const void * addr)269 static unsigned long to_guest_phys(const void *addr)
270 {
271 	return (addr - guest_base);
272 }
273 
274 /*L:130
275  * Loading the Kernel.
276  *
277  * We start with couple of simple helper routines.  open_or_die() avoids
278  * error-checking code cluttering the callers: */
open_or_die(const char * name,int flags)279 static int open_or_die(const char *name, int flags)
280 {
281 	int fd = open(name, flags);
282 	if (fd < 0)
283 		err(1, "Failed to open %s", name);
284 	return fd;
285 }
286 
287 /* map_zeroed_pages() takes a number of pages. */
map_zeroed_pages(unsigned int num)288 static void *map_zeroed_pages(unsigned int num)
289 {
290 	int fd = open_or_die("/dev/zero", O_RDONLY);
291 	void *addr;
292 
293 	/* We use a private mapping (ie. if we write to the page, it will be
294 	 * copied). */
295 	addr = mmap(NULL, getpagesize() * num,
296 		    PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
297 	if (addr == MAP_FAILED)
298 		err(1, "Mmaping %u pages of /dev/zero", num);
299 	close(fd);
300 
301 	return addr;
302 }
303 
304 /* Get some more pages for a device. */
get_pages(unsigned int num)305 static void *get_pages(unsigned int num)
306 {
307 	void *addr = from_guest_phys(guest_limit);
308 
309 	guest_limit += num * getpagesize();
310 	if (guest_limit > guest_max)
311 		errx(1, "Not enough memory for devices");
312 	return addr;
313 }
314 
315 /* This routine is used to load the kernel or initrd.  It tries mmap, but if
316  * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
317  * it falls back to reading the memory in. */
map_at(int fd,void * addr,unsigned long offset,unsigned long len)318 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
319 {
320 	ssize_t r;
321 
322 	/* We map writable even though for some segments are marked read-only.
323 	 * The kernel really wants to be writable: it patches its own
324 	 * instructions.
325 	 *
326 	 * MAP_PRIVATE means that the page won't be copied until a write is
327 	 * done to it.  This allows us to share untouched memory between
328 	 * Guests. */
329 	if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
330 		 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
331 		return;
332 
333 	/* pread does a seek and a read in one shot: saves a few lines. */
334 	r = pread(fd, addr, len, offset);
335 	if (r != len)
336 		err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
337 }
338 
339 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
340  * the Guest memory.  ELF = Embedded Linking Format, which is the format used
341  * by all modern binaries on Linux including the kernel.
342  *
343  * The ELF headers give *two* addresses: a physical address, and a virtual
344  * address.  We use the physical address; the Guest will map itself to the
345  * virtual address.
346  *
347  * We return the starting address. */
map_elf(int elf_fd,const Elf32_Ehdr * ehdr)348 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
349 {
350 	Elf32_Phdr phdr[ehdr->e_phnum];
351 	unsigned int i;
352 
353 	/* Sanity checks on the main ELF header: an x86 executable with a
354 	 * reasonable number of correctly-sized program headers. */
355 	if (ehdr->e_type != ET_EXEC
356 	    || ehdr->e_machine != EM_386
357 	    || ehdr->e_phentsize != sizeof(Elf32_Phdr)
358 	    || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
359 		errx(1, "Malformed elf header");
360 
361 	/* An ELF executable contains an ELF header and a number of "program"
362 	 * headers which indicate which parts ("segments") of the program to
363 	 * load where. */
364 
365 	/* We read in all the program headers at once: */
366 	if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
367 		err(1, "Seeking to program headers");
368 	if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
369 		err(1, "Reading program headers");
370 
371 	/* Try all the headers: there are usually only three.  A read-only one,
372 	 * a read-write one, and a "note" section which we don't load. */
373 	for (i = 0; i < ehdr->e_phnum; i++) {
374 		/* If this isn't a loadable segment, we ignore it */
375 		if (phdr[i].p_type != PT_LOAD)
376 			continue;
377 
378 		verbose("Section %i: size %i addr %p\n",
379 			i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
380 
381 		/* We map this section of the file at its physical address. */
382 		map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
383 		       phdr[i].p_offset, phdr[i].p_filesz);
384 	}
385 
386 	/* The entry point is given in the ELF header. */
387 	return ehdr->e_entry;
388 }
389 
390 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded.  You're
391  * supposed to jump into it and it will unpack itself.  We used to have to
392  * perform some hairy magic because the unpacking code scared me.
393  *
394  * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
395  * a small patch to jump over the tricky bits in the Guest, so now we just read
396  * the funky header so we know where in the file to load, and away we go! */
load_bzimage(int fd)397 static unsigned long load_bzimage(int fd)
398 {
399 	struct boot_params boot;
400 	int r;
401 	/* Modern bzImages get loaded at 1M. */
402 	void *p = from_guest_phys(0x100000);
403 
404 	/* Go back to the start of the file and read the header.  It should be
405 	 * a Linux boot header (see Documentation/x86/i386/boot.txt) */
406 	lseek(fd, 0, SEEK_SET);
407 	read(fd, &boot, sizeof(boot));
408 
409 	/* Inside the setup_hdr, we expect the magic "HdrS" */
410 	if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
411 		errx(1, "This doesn't look like a bzImage to me");
412 
413 	/* Skip over the extra sectors of the header. */
414 	lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
415 
416 	/* Now read everything into memory. in nice big chunks. */
417 	while ((r = read(fd, p, 65536)) > 0)
418 		p += r;
419 
420 	/* Finally, code32_start tells us where to enter the kernel. */
421 	return boot.hdr.code32_start;
422 }
423 
424 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
425  * come wrapped up in the self-decompressing "bzImage" format.  With a little
426  * work, we can load those, too. */
load_kernel(int fd)427 static unsigned long load_kernel(int fd)
428 {
429 	Elf32_Ehdr hdr;
430 
431 	/* Read in the first few bytes. */
432 	if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
433 		err(1, "Reading kernel");
434 
435 	/* If it's an ELF file, it starts with "\177ELF" */
436 	if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
437 		return map_elf(fd, &hdr);
438 
439 	/* Otherwise we assume it's a bzImage, and try to load it. */
440 	return load_bzimage(fd);
441 }
442 
443 /* This is a trivial little helper to align pages.  Andi Kleen hated it because
444  * it calls getpagesize() twice: "it's dumb code."
445  *
446  * Kernel guys get really het up about optimization, even when it's not
447  * necessary.  I leave this code as a reaction against that. */
page_align(unsigned long addr)448 static inline unsigned long page_align(unsigned long addr)
449 {
450 	/* Add upwards and truncate downwards. */
451 	return ((addr + getpagesize()-1) & ~(getpagesize()-1));
452 }
453 
454 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
455  * the kernel which the kernel can use to boot from without needing any
456  * drivers.  Most distributions now use this as standard: the initrd contains
457  * the code to load the appropriate driver modules for the current machine.
458  *
459  * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
460  * kernels.  He sent me this (and tells me when I break it). */
load_initrd(const char * name,unsigned long mem)461 static unsigned long load_initrd(const char *name, unsigned long mem)
462 {
463 	int ifd;
464 	struct stat st;
465 	unsigned long len;
466 
467 	ifd = open_or_die(name, O_RDONLY);
468 	/* fstat() is needed to get the file size. */
469 	if (fstat(ifd, &st) < 0)
470 		err(1, "fstat() on initrd '%s'", name);
471 
472 	/* We map the initrd at the top of memory, but mmap wants it to be
473 	 * page-aligned, so we round the size up for that. */
474 	len = page_align(st.st_size);
475 	map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
476 	/* Once a file is mapped, you can close the file descriptor.  It's a
477 	 * little odd, but quite useful. */
478 	close(ifd);
479 	verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
480 
481 	/* We return the initrd size. */
482 	return len;
483 }
484 /*:*/
485 
486 /* Simple routine to roll all the commandline arguments together with spaces
487  * between them. */
concat(char * dst,char * args[])488 static void concat(char *dst, char *args[])
489 {
490 	unsigned int i, len = 0;
491 
492 	for (i = 0; args[i]; i++) {
493 		if (i) {
494 			strcat(dst+len, " ");
495 			len++;
496 		}
497 		strcpy(dst+len, args[i]);
498 		len += strlen(args[i]);
499 	}
500 	/* In case it's empty. */
501 	dst[len] = '\0';
502 }
503 
504 /*L:185 This is where we actually tell the kernel to initialize the Guest.  We
505  * saw the arguments it expects when we looked at initialize() in lguest_user.c:
506  * the base of Guest "physical" memory, the top physical page to allow and the
507  * entry point for the Guest. */
tell_kernel(unsigned long start)508 static int tell_kernel(unsigned long start)
509 {
510 	unsigned long args[] = { LHREQ_INITIALIZE,
511 				 (unsigned long)guest_base,
512 				 guest_limit / getpagesize(), start };
513 	int fd;
514 
515 	verbose("Guest: %p - %p (%#lx)\n",
516 		guest_base, guest_base + guest_limit, guest_limit);
517 	fd = open_or_die("/dev/lguest", O_RDWR);
518 	if (write(fd, args, sizeof(args)) < 0)
519 		err(1, "Writing to /dev/lguest");
520 
521 	/* We return the /dev/lguest file descriptor to control this Guest */
522 	return fd;
523 }
524 /*:*/
525 
add_device_fd(int fd)526 static void add_device_fd(int fd)
527 {
528 	FD_SET(fd, &devices.infds);
529 	if (fd > devices.max_infd)
530 		devices.max_infd = fd;
531 }
532 
533 /*L:200
534  * The Waker.
535  *
536  * With console, block and network devices, we can have lots of input which we
537  * need to process.  We could try to tell the kernel what file descriptors to
538  * watch, but handing a file descriptor mask through to the kernel is fairly
539  * icky.
540  *
541  * Instead, we clone off a thread which watches the file descriptors and writes
542  * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
543  * stop running the Guest.  This causes the Launcher to return from the
544  * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
545  * the LHREQ_BREAK and wake us up again.
546  *
547  * This, of course, is merely a different *kind* of icky.
548  *
549  * Given my well-known antipathy to threads, I'd prefer to use processes.  But
550  * it's easier to share Guest memory with threads, and trivial to share the
551  * devices.infds as the Launcher changes it.
552  */
waker(void * unused)553 static int waker(void *unused)
554 {
555 	/* Close the write end of the pipe: only the Launcher has it open. */
556 	close(waker_fds.pipe[1]);
557 
558 	for (;;) {
559 		fd_set rfds = devices.infds;
560 		unsigned long args[] = { LHREQ_BREAK, 1 };
561 		unsigned int maxfd = devices.max_infd;
562 
563 		/* We also listen to the pipe from the Launcher. */
564 		FD_SET(waker_fds.pipe[0], &rfds);
565 		if (waker_fds.pipe[0] > maxfd)
566 			maxfd = waker_fds.pipe[0];
567 
568 		/* Wait until input is ready from one of the devices. */
569 		select(maxfd+1, &rfds, NULL, NULL, NULL);
570 
571 		/* Message from Launcher? */
572 		if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
573 			char c;
574 			/* If this fails, then assume Launcher has exited.
575 			 * Don't do anything on exit: we're just a thread! */
576 			if (read(waker_fds.pipe[0], &c, 1) != 1)
577 				_exit(0);
578 			continue;
579 		}
580 
581 		/* Send LHREQ_BREAK command to snap the Launcher out of it. */
582 		pwrite(waker_fds.lguest_fd, args, sizeof(args), cpu_id);
583 	}
584 	return 0;
585 }
586 
587 /* This routine just sets up a pipe to the Waker process. */
setup_waker(int lguest_fd)588 static void setup_waker(int lguest_fd)
589 {
590 	/* This pipe is closed when Launcher dies, telling Waker. */
591 	if (pipe(waker_fds.pipe) != 0)
592 		err(1, "Creating pipe for Waker");
593 
594 	/* Waker also needs to know the lguest fd */
595 	waker_fds.lguest_fd = lguest_fd;
596 
597 	if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
598 		err(1, "Creating Waker");
599 }
600 
601 /*
602  * Device Handling.
603  *
604  * When the Guest gives us a buffer, it sends an array of addresses and sizes.
605  * We need to make sure it's not trying to reach into the Launcher itself, so
606  * we have a convenient routine which checks it and exits with an error message
607  * if something funny is going on:
608  */
_check_pointer(unsigned long addr,unsigned int size,unsigned int line)609 static void *_check_pointer(unsigned long addr, unsigned int size,
610 			    unsigned int line)
611 {
612 	/* We have to separately check addr and addr+size, because size could
613 	 * be huge and addr + size might wrap around. */
614 	if (addr >= guest_limit || addr + size >= guest_limit)
615 		errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
616 	/* We return a pointer for the caller's convenience, now we know it's
617 	 * safe to use. */
618 	return from_guest_phys(addr);
619 }
620 /* A macro which transparently hands the line number to the real function. */
621 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
622 
623 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
624  * function returns the next descriptor in the chain, or vq->vring.num if we're
625  * at the end. */
next_desc(struct virtqueue * vq,unsigned int i)626 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
627 {
628 	unsigned int next;
629 
630 	/* If this descriptor says it doesn't chain, we're done. */
631 	if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
632 		return vq->vring.num;
633 
634 	/* Check they're not leading us off end of descriptors. */
635 	next = vq->vring.desc[i].next;
636 	/* Make sure compiler knows to grab that: we don't want it changing! */
637 	wmb();
638 
639 	if (next >= vq->vring.num)
640 		errx(1, "Desc next is %u", next);
641 
642 	return next;
643 }
644 
645 /* This looks in the virtqueue and for the first available buffer, and converts
646  * it to an iovec for convenient access.  Since descriptors consist of some
647  * number of output then some number of input descriptors, it's actually two
648  * iovecs, but we pack them into one and note how many of each there were.
649  *
650  * This function returns the descriptor number found, or vq->vring.num (which
651  * is never a valid descriptor number) if none was found. */
get_vq_desc(struct virtqueue * vq,struct iovec iov[],unsigned int * out_num,unsigned int * in_num)652 static unsigned get_vq_desc(struct virtqueue *vq,
653 			    struct iovec iov[],
654 			    unsigned int *out_num, unsigned int *in_num)
655 {
656 	unsigned int i, head;
657 	u16 last_avail;
658 
659 	/* Check it isn't doing very strange things with descriptor numbers. */
660 	last_avail = lg_last_avail(vq);
661 	if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
662 		errx(1, "Guest moved used index from %u to %u",
663 		     last_avail, vq->vring.avail->idx);
664 
665 	/* If there's nothing new since last we looked, return invalid. */
666 	if (vq->vring.avail->idx == last_avail)
667 		return vq->vring.num;
668 
669 	/* Grab the next descriptor number they're advertising, and increment
670 	 * the index we've seen. */
671 	head = vq->vring.avail->ring[last_avail % vq->vring.num];
672 	lg_last_avail(vq)++;
673 
674 	/* If their number is silly, that's a fatal mistake. */
675 	if (head >= vq->vring.num)
676 		errx(1, "Guest says index %u is available", head);
677 
678 	/* When we start there are none of either input nor output. */
679 	*out_num = *in_num = 0;
680 
681 	i = head;
682 	do {
683 		/* Grab the first descriptor, and check it's OK. */
684 		iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
685 		iov[*out_num + *in_num].iov_base
686 			= check_pointer(vq->vring.desc[i].addr,
687 					vq->vring.desc[i].len);
688 		/* If this is an input descriptor, increment that count. */
689 		if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
690 			(*in_num)++;
691 		else {
692 			/* If it's an output descriptor, they're all supposed
693 			 * to come before any input descriptors. */
694 			if (*in_num)
695 				errx(1, "Descriptor has out after in");
696 			(*out_num)++;
697 		}
698 
699 		/* If we've got too many, that implies a descriptor loop. */
700 		if (*out_num + *in_num > vq->vring.num)
701 			errx(1, "Looped descriptor");
702 	} while ((i = next_desc(vq, i)) != vq->vring.num);
703 
704 	vq->inflight++;
705 	return head;
706 }
707 
708 /* After we've used one of their buffers, we tell them about it.  We'll then
709  * want to send them an interrupt, using trigger_irq(). */
add_used(struct virtqueue * vq,unsigned int head,int len)710 static void add_used(struct virtqueue *vq, unsigned int head, int len)
711 {
712 	struct vring_used_elem *used;
713 
714 	/* The virtqueue contains a ring of used buffers.  Get a pointer to the
715 	 * next entry in that used ring. */
716 	used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
717 	used->id = head;
718 	used->len = len;
719 	/* Make sure buffer is written before we update index. */
720 	wmb();
721 	vq->vring.used->idx++;
722 	vq->inflight--;
723 }
724 
725 /* This actually sends the interrupt for this virtqueue */
trigger_irq(int fd,struct virtqueue * vq)726 static void trigger_irq(int fd, struct virtqueue *vq)
727 {
728 	unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
729 
730 	/* If they don't want an interrupt, don't send one, unless empty. */
731 	if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
732 	    && vq->inflight)
733 		return;
734 
735 	/* Send the Guest an interrupt tell them we used something up. */
736 	if (write(fd, buf, sizeof(buf)) != 0)
737 		err(1, "Triggering irq %i", vq->config.irq);
738 }
739 
740 /* And here's the combo meal deal.  Supersize me! */
add_used_and_trigger(int fd,struct virtqueue * vq,unsigned int head,int len)741 static void add_used_and_trigger(int fd, struct virtqueue *vq,
742 				 unsigned int head, int len)
743 {
744 	add_used(vq, head, len);
745 	trigger_irq(fd, vq);
746 }
747 
748 /*
749  * The Console
750  *
751  * Here is the input terminal setting we save, and the routine to restore them
752  * on exit so the user gets their terminal back. */
753 static struct termios orig_term;
restore_term(void)754 static void restore_term(void)
755 {
756 	tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
757 }
758 
759 /* We associate some data with the console for our exit hack. */
760 struct console_abort
761 {
762 	/* How many times have they hit ^C? */
763 	int count;
764 	/* When did they start? */
765 	struct timeval start;
766 };
767 
768 /* This is the routine which handles console input (ie. stdin). */
handle_console_input(int fd,struct device * dev)769 static bool handle_console_input(int fd, struct device *dev)
770 {
771 	int len;
772 	unsigned int head, in_num, out_num;
773 	struct iovec iov[dev->vq->vring.num];
774 	struct console_abort *abort = dev->priv;
775 
776 	/* First we need a console buffer from the Guests's input virtqueue. */
777 	head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
778 
779 	/* If they're not ready for input, stop listening to this file
780 	 * descriptor.  We'll start again once they add an input buffer. */
781 	if (head == dev->vq->vring.num)
782 		return false;
783 
784 	if (out_num)
785 		errx(1, "Output buffers in console in queue?");
786 
787 	/* This is why we convert to iovecs: the readv() call uses them, and so
788 	 * it reads straight into the Guest's buffer. */
789 	len = readv(dev->fd, iov, in_num);
790 	if (len <= 0) {
791 		/* This implies that the console is closed, is /dev/null, or
792 		 * something went terribly wrong. */
793 		warnx("Failed to get console input, ignoring console.");
794 		/* Put the input terminal back. */
795 		restore_term();
796 		/* Remove callback from input vq, so it doesn't restart us. */
797 		dev->vq->handle_output = NULL;
798 		/* Stop listening to this fd: don't call us again. */
799 		return false;
800 	}
801 
802 	/* Tell the Guest about the new input. */
803 	add_used_and_trigger(fd, dev->vq, head, len);
804 
805 	/* Three ^C within one second?  Exit.
806 	 *
807 	 * This is such a hack, but works surprisingly well.  Each ^C has to be
808 	 * in a buffer by itself, so they can't be too fast.  But we check that
809 	 * we get three within about a second, so they can't be too slow. */
810 	if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
811 		if (!abort->count++)
812 			gettimeofday(&abort->start, NULL);
813 		else if (abort->count == 3) {
814 			struct timeval now;
815 			gettimeofday(&now, NULL);
816 			if (now.tv_sec <= abort->start.tv_sec+1) {
817 				unsigned long args[] = { LHREQ_BREAK, 0 };
818 				/* Close the fd so Waker will know it has to
819 				 * exit. */
820 				close(waker_fds.pipe[1]);
821 				/* Just in case Waker is blocked in BREAK, send
822 				 * unbreak now. */
823 				write(fd, args, sizeof(args));
824 				exit(2);
825 			}
826 			abort->count = 0;
827 		}
828 	} else
829 		/* Any other key resets the abort counter. */
830 		abort->count = 0;
831 
832 	/* Everything went OK! */
833 	return true;
834 }
835 
836 /* Handling output for console is simple: we just get all the output buffers
837  * and write them to stdout. */
handle_console_output(int fd,struct virtqueue * vq,bool timeout)838 static void handle_console_output(int fd, struct virtqueue *vq, bool timeout)
839 {
840 	unsigned int head, out, in;
841 	int len;
842 	struct iovec iov[vq->vring.num];
843 
844 	/* Keep getting output buffers from the Guest until we run out. */
845 	while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
846 		if (in)
847 			errx(1, "Input buffers in output queue?");
848 		len = writev(STDOUT_FILENO, iov, out);
849 		add_used_and_trigger(fd, vq, head, len);
850 	}
851 }
852 
853 /* This is called when we no longer want to hear about Guest changes to a
854  * virtqueue.  This is more efficient in high-traffic cases, but it means we
855  * have to set a timer to check if any more changes have occurred. */
block_vq(struct virtqueue * vq)856 static void block_vq(struct virtqueue *vq)
857 {
858 	struct itimerval itm;
859 
860 	vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
861 	vq->blocked = true;
862 
863 	itm.it_interval.tv_sec = 0;
864 	itm.it_interval.tv_usec = 0;
865 	itm.it_value.tv_sec = 0;
866 	itm.it_value.tv_usec = timeout_usec;
867 
868 	setitimer(ITIMER_REAL, &itm, NULL);
869 }
870 
871 /*
872  * The Network
873  *
874  * Handling output for network is also simple: we get all the output buffers
875  * and write them (ignoring the first element) to this device's file descriptor
876  * (/dev/net/tun).
877  */
handle_net_output(int fd,struct virtqueue * vq,bool timeout)878 static void handle_net_output(int fd, struct virtqueue *vq, bool timeout)
879 {
880 	unsigned int head, out, in, num = 0;
881 	int len;
882 	struct iovec iov[vq->vring.num];
883 	static int last_timeout_num;
884 
885 	/* Keep getting output buffers from the Guest until we run out. */
886 	while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
887 		if (in)
888 			errx(1, "Input buffers in output queue?");
889 		len = writev(vq->dev->fd, iov, out);
890 		if (len < 0)
891 			err(1, "Writing network packet to tun");
892 		add_used_and_trigger(fd, vq, head, len);
893 		num++;
894 	}
895 
896 	/* Block further kicks and set up a timer if we saw anything. */
897 	if (!timeout && num)
898 		block_vq(vq);
899 
900 	/* We never quite know how long should we wait before we check the
901 	 * queue again for more packets.  We start at 500 microseconds, and if
902 	 * we get fewer packets than last time, we assume we made the timeout
903 	 * too small and increase it by 10 microseconds.  Otherwise, we drop it
904 	 * by one microsecond every time.  It seems to work well enough. */
905 	if (timeout) {
906 		if (num < last_timeout_num)
907 			timeout_usec += 10;
908 		else if (timeout_usec > 1)
909 			timeout_usec--;
910 		last_timeout_num = num;
911 	}
912 }
913 
914 /* This is where we handle a packet coming in from the tun device to our
915  * Guest. */
handle_tun_input(int fd,struct device * dev)916 static bool handle_tun_input(int fd, struct device *dev)
917 {
918 	unsigned int head, in_num, out_num;
919 	int len;
920 	struct iovec iov[dev->vq->vring.num];
921 
922 	/* First we need a network buffer from the Guests's recv virtqueue. */
923 	head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
924 	if (head == dev->vq->vring.num) {
925 		/* Now, it's expected that if we try to send a packet too
926 		 * early, the Guest won't be ready yet.  Wait until the device
927 		 * status says it's ready. */
928 		/* FIXME: Actually want DRIVER_ACTIVE here. */
929 
930 		/* Now tell it we want to know if new things appear. */
931 		dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
932 		wmb();
933 
934 		/* We'll turn this back on if input buffers are registered. */
935 		return false;
936 	} else if (out_num)
937 		errx(1, "Output buffers in network recv queue?");
938 
939 	/* Read the packet from the device directly into the Guest's buffer. */
940 	len = readv(dev->fd, iov, in_num);
941 	if (len <= 0)
942 		err(1, "reading network");
943 
944 	/* Tell the Guest about the new packet. */
945 	add_used_and_trigger(fd, dev->vq, head, len);
946 
947 	verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
948 		((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
949 		head != dev->vq->vring.num ? "sent" : "discarded");
950 
951 	/* All good. */
952 	return true;
953 }
954 
955 /*L:215 This is the callback attached to the network and console input
956  * virtqueues: it ensures we try again, in case we stopped console or net
957  * delivery because Guest didn't have any buffers. */
enable_fd(int fd,struct virtqueue * vq,bool timeout)958 static void enable_fd(int fd, struct virtqueue *vq, bool timeout)
959 {
960 	add_device_fd(vq->dev->fd);
961 	/* Snap the Waker out of its select loop. */
962 	write(waker_fds.pipe[1], "", 1);
963 }
964 
net_enable_fd(int fd,struct virtqueue * vq,bool timeout)965 static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout)
966 {
967 	/* We don't need to know again when Guest refills receive buffer. */
968 	vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
969 	enable_fd(fd, vq, timeout);
970 }
971 
972 /* When the Guest tells us they updated the status field, we handle it. */
update_device_status(struct device * dev)973 static void update_device_status(struct device *dev)
974 {
975 	struct virtqueue *vq;
976 
977 	/* This is a reset. */
978 	if (dev->desc->status == 0) {
979 		verbose("Resetting device %s\n", dev->name);
980 
981 		/* Clear any features they've acked. */
982 		memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
983 		       dev->desc->feature_len);
984 
985 		/* Zero out the virtqueues. */
986 		for (vq = dev->vq; vq; vq = vq->next) {
987 			memset(vq->vring.desc, 0,
988 			       vring_size(vq->config.num, LGUEST_VRING_ALIGN));
989 			lg_last_avail(vq) = 0;
990 		}
991 	} else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
992 		warnx("Device %s configuration FAILED", dev->name);
993 	} else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
994 		unsigned int i;
995 
996 		verbose("Device %s OK: offered", dev->name);
997 		for (i = 0; i < dev->desc->feature_len; i++)
998 			verbose(" %02x", get_feature_bits(dev)[i]);
999 		verbose(", accepted");
1000 		for (i = 0; i < dev->desc->feature_len; i++)
1001 			verbose(" %02x", get_feature_bits(dev)
1002 				[dev->desc->feature_len+i]);
1003 
1004 		if (dev->ready)
1005 			dev->ready(dev);
1006 	}
1007 }
1008 
1009 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
handle_output(int fd,unsigned long addr)1010 static void handle_output(int fd, unsigned long addr)
1011 {
1012 	struct device *i;
1013 	struct virtqueue *vq;
1014 
1015 	/* Check each device and virtqueue. */
1016 	for (i = devices.dev; i; i = i->next) {
1017 		/* Notifications to device descriptors update device status. */
1018 		if (from_guest_phys(addr) == i->desc) {
1019 			update_device_status(i);
1020 			return;
1021 		}
1022 
1023 		/* Notifications to virtqueues mean output has occurred. */
1024 		for (vq = i->vq; vq; vq = vq->next) {
1025 			if (vq->config.pfn != addr/getpagesize())
1026 				continue;
1027 
1028 			/* Guest should acknowledge (and set features!)  before
1029 			 * using the device. */
1030 			if (i->desc->status == 0) {
1031 				warnx("%s gave early output", i->name);
1032 				return;
1033 			}
1034 
1035 			if (strcmp(vq->dev->name, "console") != 0)
1036 				verbose("Output to %s\n", vq->dev->name);
1037 			if (vq->handle_output)
1038 				vq->handle_output(fd, vq, false);
1039 			return;
1040 		}
1041 	}
1042 
1043 	/* Early console write is done using notify on a nul-terminated string
1044 	 * in Guest memory. */
1045 	if (addr >= guest_limit)
1046 		errx(1, "Bad NOTIFY %#lx", addr);
1047 
1048 	write(STDOUT_FILENO, from_guest_phys(addr),
1049 	      strnlen(from_guest_phys(addr), guest_limit - addr));
1050 }
1051 
handle_timeout(int fd)1052 static void handle_timeout(int fd)
1053 {
1054 	char buf[32];
1055 	struct device *i;
1056 	struct virtqueue *vq;
1057 
1058 	/* Clear the pipe */
1059 	read(timeoutpipe[0], buf, sizeof(buf));
1060 
1061 	/* Check each device and virtqueue: flush blocked ones. */
1062 	for (i = devices.dev; i; i = i->next) {
1063 		for (vq = i->vq; vq; vq = vq->next) {
1064 			if (!vq->blocked)
1065 				continue;
1066 
1067 			vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
1068 			vq->blocked = false;
1069 			if (vq->handle_output)
1070 				vq->handle_output(fd, vq, true);
1071 		}
1072 	}
1073 }
1074 
1075 /* This is called when the Waker wakes us up: check for incoming file
1076  * descriptors. */
handle_input(int fd)1077 static void handle_input(int fd)
1078 {
1079 	/* select() wants a zeroed timeval to mean "don't wait". */
1080 	struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1081 
1082 	for (;;) {
1083 		struct device *i;
1084 		fd_set fds = devices.infds;
1085 		int num;
1086 
1087 		num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
1088 		/* Could get interrupted */
1089 		if (num < 0)
1090 			continue;
1091 		/* If nothing is ready, we're done. */
1092 		if (num == 0)
1093 			break;
1094 
1095 		/* Otherwise, call the device(s) which have readable file
1096 		 * descriptors and a method of handling them.  */
1097 		for (i = devices.dev; i; i = i->next) {
1098 			if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1099 				if (i->handle_input(fd, i))
1100 					continue;
1101 
1102 				/* If handle_input() returns false, it means we
1103 				 * should no longer service it.  Networking and
1104 				 * console do this when there's no input
1105 				 * buffers to deliver into.  Console also uses
1106 				 * it when it discovers that stdin is closed. */
1107 				FD_CLR(i->fd, &devices.infds);
1108 			}
1109 		}
1110 
1111 		/* Is this the timeout fd? */
1112 		if (FD_ISSET(timeoutpipe[0], &fds))
1113 			handle_timeout(fd);
1114 	}
1115 }
1116 
1117 /*L:190
1118  * Device Setup
1119  *
1120  * All devices need a descriptor so the Guest knows it exists, and a "struct
1121  * device" so the Launcher can keep track of it.  We have common helper
1122  * routines to allocate and manage them.
1123  */
1124 
1125 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1126  * number of virtqueue descriptors, then two sets of feature bits, then an
1127  * array of configuration bytes.  This routine returns the configuration
1128  * pointer. */
device_config(const struct device * dev)1129 static u8 *device_config(const struct device *dev)
1130 {
1131 	return (void *)(dev->desc + 1)
1132 		+ dev->desc->num_vq * sizeof(struct lguest_vqconfig)
1133 		+ dev->desc->feature_len * 2;
1134 }
1135 
1136 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1137  * table page just above the Guest's normal memory.  It returns a pointer to
1138  * that descriptor. */
new_dev_desc(u16 type)1139 static struct lguest_device_desc *new_dev_desc(u16 type)
1140 {
1141 	struct lguest_device_desc d = { .type = type };
1142 	void *p;
1143 
1144 	/* Figure out where the next device config is, based on the last one. */
1145 	if (devices.lastdev)
1146 		p = device_config(devices.lastdev)
1147 			+ devices.lastdev->desc->config_len;
1148 	else
1149 		p = devices.descpage;
1150 
1151 	/* We only have one page for all the descriptors. */
1152 	if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1153 		errx(1, "Too many devices");
1154 
1155 	/* p might not be aligned, so we memcpy in. */
1156 	return memcpy(p, &d, sizeof(d));
1157 }
1158 
1159 /* Each device descriptor is followed by the description of its virtqueues.  We
1160  * specify how many descriptors the virtqueue is to have. */
add_virtqueue(struct device * dev,unsigned int num_descs,void (* handle_output)(int,struct virtqueue *,bool))1161 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1162 			  void (*handle_output)(int, struct virtqueue *, bool))
1163 {
1164 	unsigned int pages;
1165 	struct virtqueue **i, *vq = malloc(sizeof(*vq));
1166 	void *p;
1167 
1168 	/* First we need some memory for this virtqueue. */
1169 	pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1170 		/ getpagesize();
1171 	p = get_pages(pages);
1172 
1173 	/* Initialize the virtqueue */
1174 	vq->next = NULL;
1175 	vq->last_avail_idx = 0;
1176 	vq->dev = dev;
1177 	vq->inflight = 0;
1178 	vq->blocked = false;
1179 
1180 	/* Initialize the configuration. */
1181 	vq->config.num = num_descs;
1182 	vq->config.irq = devices.next_irq++;
1183 	vq->config.pfn = to_guest_phys(p) / getpagesize();
1184 
1185 	/* Initialize the vring. */
1186 	vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1187 
1188 	/* Append virtqueue to this device's descriptor.  We use
1189 	 * device_config() to get the end of the device's current virtqueues;
1190 	 * we check that we haven't added any config or feature information
1191 	 * yet, otherwise we'd be overwriting them. */
1192 	assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1193 	memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1194 	dev->desc->num_vq++;
1195 
1196 	verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1197 
1198 	/* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1199 	 * second.  */
1200 	for (i = &dev->vq; *i; i = &(*i)->next);
1201 	*i = vq;
1202 
1203 	/* Set the routine to call when the Guest does something to this
1204 	 * virtqueue. */
1205 	vq->handle_output = handle_output;
1206 
1207 	/* As an optimization, set the advisory "Don't Notify Me" flag if we
1208 	 * don't have a handler */
1209 	if (!handle_output)
1210 		vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1211 }
1212 
1213 /* The first half of the feature bitmask is for us to advertise features.  The
1214  * second half is for the Guest to accept features. */
add_feature(struct device * dev,unsigned bit)1215 static void add_feature(struct device *dev, unsigned bit)
1216 {
1217 	u8 *features = get_feature_bits(dev);
1218 
1219 	/* We can't extend the feature bits once we've added config bytes */
1220 	if (dev->desc->feature_len <= bit / CHAR_BIT) {
1221 		assert(dev->desc->config_len == 0);
1222 		dev->desc->feature_len = (bit / CHAR_BIT) + 1;
1223 	}
1224 
1225 	features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1226 }
1227 
1228 /* This routine sets the configuration fields for an existing device's
1229  * descriptor.  It only works for the last device, but that's OK because that's
1230  * how we use it. */
set_config(struct device * dev,unsigned len,const void * conf)1231 static void set_config(struct device *dev, unsigned len, const void *conf)
1232 {
1233 	/* Check we haven't overflowed our single page. */
1234 	if (device_config(dev) + len > devices.descpage + getpagesize())
1235 		errx(1, "Too many devices");
1236 
1237 	/* Copy in the config information, and store the length. */
1238 	memcpy(device_config(dev), conf, len);
1239 	dev->desc->config_len = len;
1240 }
1241 
1242 /* This routine does all the creation and setup of a new device, including
1243  * calling new_dev_desc() to allocate the descriptor and device memory.
1244  *
1245  * See what I mean about userspace being boring? */
new_device(const char * name,u16 type,int fd,bool (* handle_input)(int,struct device *))1246 static struct device *new_device(const char *name, u16 type, int fd,
1247 				 bool (*handle_input)(int, struct device *))
1248 {
1249 	struct device *dev = malloc(sizeof(*dev));
1250 
1251 	/* Now we populate the fields one at a time. */
1252 	dev->fd = fd;
1253 	/* If we have an input handler for this file descriptor, then we add it
1254 	 * to the device_list's fdset and maxfd. */
1255 	if (handle_input)
1256 		add_device_fd(dev->fd);
1257 	dev->desc = new_dev_desc(type);
1258 	dev->handle_input = handle_input;
1259 	dev->name = name;
1260 	dev->vq = NULL;
1261 	dev->ready = NULL;
1262 
1263 	/* Append to device list.  Prepending to a single-linked list is
1264 	 * easier, but the user expects the devices to be arranged on the bus
1265 	 * in command-line order.  The first network device on the command line
1266 	 * is eth0, the first block device /dev/vda, etc. */
1267 	if (devices.lastdev)
1268 		devices.lastdev->next = dev;
1269 	else
1270 		devices.dev = dev;
1271 	devices.lastdev = dev;
1272 
1273 	return dev;
1274 }
1275 
1276 /* Our first setup routine is the console.  It's a fairly simple device, but
1277  * UNIX tty handling makes it uglier than it could be. */
setup_console(void)1278 static void setup_console(void)
1279 {
1280 	struct device *dev;
1281 
1282 	/* If we can save the initial standard input settings... */
1283 	if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1284 		struct termios term = orig_term;
1285 		/* Then we turn off echo, line buffering and ^C etc.  We want a
1286 		 * raw input stream to the Guest. */
1287 		term.c_lflag &= ~(ISIG|ICANON|ECHO);
1288 		tcsetattr(STDIN_FILENO, TCSANOW, &term);
1289 		/* If we exit gracefully, the original settings will be
1290 		 * restored so the user can see what they're typing. */
1291 		atexit(restore_term);
1292 	}
1293 
1294 	dev = new_device("console", VIRTIO_ID_CONSOLE,
1295 			 STDIN_FILENO, handle_console_input);
1296 	/* We store the console state in dev->priv, and initialize it. */
1297 	dev->priv = malloc(sizeof(struct console_abort));
1298 	((struct console_abort *)dev->priv)->count = 0;
1299 
1300 	/* The console needs two virtqueues: the input then the output.  When
1301 	 * they put something the input queue, we make sure we're listening to
1302 	 * stdin.  When they put something in the output queue, we write it to
1303 	 * stdout. */
1304 	add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1305 	add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1306 
1307 	verbose("device %u: console\n", devices.device_num++);
1308 }
1309 /*:*/
1310 
timeout_alarm(int sig)1311 static void timeout_alarm(int sig)
1312 {
1313 	write(timeoutpipe[1], "", 1);
1314 }
1315 
setup_timeout(void)1316 static void setup_timeout(void)
1317 {
1318 	if (pipe(timeoutpipe) != 0)
1319 		err(1, "Creating timeout pipe");
1320 
1321 	if (fcntl(timeoutpipe[1], F_SETFL,
1322 		  fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
1323 		err(1, "Making timeout pipe nonblocking");
1324 
1325 	add_device_fd(timeoutpipe[0]);
1326 	signal(SIGALRM, timeout_alarm);
1327 }
1328 
1329 /*M:010 Inter-guest networking is an interesting area.  Simplest is to have a
1330  * --sharenet=<name> option which opens or creates a named pipe.  This can be
1331  * used to send packets to another guest in a 1:1 manner.
1332  *
1333  * More sopisticated is to use one of the tools developed for project like UML
1334  * to do networking.
1335  *
1336  * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
1337  * completely generic ("here's my vring, attach to your vring") and would work
1338  * for any traffic.  Of course, namespace and permissions issues need to be
1339  * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
1340  * multiple inter-guest channels behind one interface, although it would
1341  * require some manner of hotplugging new virtio channels.
1342  *
1343  * Finally, we could implement a virtio network switch in the kernel. :*/
1344 
str2ip(const char * ipaddr)1345 static u32 str2ip(const char *ipaddr)
1346 {
1347 	unsigned int b[4];
1348 
1349 	if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1350 		errx(1, "Failed to parse IP address '%s'", ipaddr);
1351 	return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1352 }
1353 
str2mac(const char * macaddr,unsigned char mac[6])1354 static void str2mac(const char *macaddr, unsigned char mac[6])
1355 {
1356 	unsigned int m[6];
1357 	if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1358 		   &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1359 		errx(1, "Failed to parse mac address '%s'", macaddr);
1360 	mac[0] = m[0];
1361 	mac[1] = m[1];
1362 	mac[2] = m[2];
1363 	mac[3] = m[3];
1364 	mac[4] = m[4];
1365 	mac[5] = m[5];
1366 }
1367 
1368 /* This code is "adapted" from libbridge: it attaches the Host end of the
1369  * network device to the bridge device specified by the command line.
1370  *
1371  * This is yet another James Morris contribution (I'm an IP-level guy, so I
1372  * dislike bridging), and I just try not to break it. */
add_to_bridge(int fd,const char * if_name,const char * br_name)1373 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1374 {
1375 	int ifidx;
1376 	struct ifreq ifr;
1377 
1378 	if (!*br_name)
1379 		errx(1, "must specify bridge name");
1380 
1381 	ifidx = if_nametoindex(if_name);
1382 	if (!ifidx)
1383 		errx(1, "interface %s does not exist!", if_name);
1384 
1385 	strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1386 	ifr.ifr_name[IFNAMSIZ-1] = '\0';
1387 	ifr.ifr_ifindex = ifidx;
1388 	if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1389 		err(1, "can't add %s to bridge %s", if_name, br_name);
1390 }
1391 
1392 /* This sets up the Host end of the network device with an IP address, brings
1393  * it up so packets will flow, the copies the MAC address into the hwaddr
1394  * pointer. */
configure_device(int fd,const char * tapif,u32 ipaddr)1395 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1396 {
1397 	struct ifreq ifr;
1398 	struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1399 
1400 	memset(&ifr, 0, sizeof(ifr));
1401 	strcpy(ifr.ifr_name, tapif);
1402 
1403 	/* Don't read these incantations.  Just cut & paste them like I did! */
1404 	sin->sin_family = AF_INET;
1405 	sin->sin_addr.s_addr = htonl(ipaddr);
1406 	if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1407 		err(1, "Setting %s interface address", tapif);
1408 	ifr.ifr_flags = IFF_UP;
1409 	if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1410 		err(1, "Bringing interface %s up", tapif);
1411 }
1412 
get_tun_device(char tapif[IFNAMSIZ])1413 static int get_tun_device(char tapif[IFNAMSIZ])
1414 {
1415 	struct ifreq ifr;
1416 	int netfd;
1417 
1418 	/* Start with this zeroed.  Messy but sure. */
1419 	memset(&ifr, 0, sizeof(ifr));
1420 
1421 	/* We open the /dev/net/tun device and tell it we want a tap device.  A
1422 	 * tap device is like a tun device, only somehow different.  To tell
1423 	 * the truth, I completely blundered my way through this code, but it
1424 	 * works now! */
1425 	netfd = open_or_die("/dev/net/tun", O_RDWR);
1426 	ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1427 	strcpy(ifr.ifr_name, "tap%d");
1428 	if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1429 		err(1, "configuring /dev/net/tun");
1430 
1431 	if (ioctl(netfd, TUNSETOFFLOAD,
1432 		  TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1433 		err(1, "Could not set features for tun device");
1434 
1435 	/* We don't need checksums calculated for packets coming in this
1436 	 * device: trust us! */
1437 	ioctl(netfd, TUNSETNOCSUM, 1);
1438 
1439 	memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1440 	return netfd;
1441 }
1442 
1443 /*L:195 Our network is a Host<->Guest network.  This can either use bridging or
1444  * routing, but the principle is the same: it uses the "tun" device to inject
1445  * packets into the Host as if they came in from a normal network card.  We
1446  * just shunt packets between the Guest and the tun device. */
setup_tun_net(char * arg)1447 static void setup_tun_net(char *arg)
1448 {
1449 	struct device *dev;
1450 	int netfd, ipfd;
1451 	u32 ip = INADDR_ANY;
1452 	bool bridging = false;
1453 	char tapif[IFNAMSIZ], *p;
1454 	struct virtio_net_config conf;
1455 
1456 	netfd = get_tun_device(tapif);
1457 
1458 	/* First we create a new network device. */
1459 	dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1460 
1461 	/* Network devices need a receive and a send queue, just like
1462 	 * console. */
1463 	add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
1464 	add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1465 
1466 	/* We need a socket to perform the magic network ioctls to bring up the
1467 	 * tap interface, connect to the bridge etc.  Any socket will do! */
1468 	ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1469 	if (ipfd < 0)
1470 		err(1, "opening IP socket");
1471 
1472 	/* If the command line was --tunnet=bridge:<name> do bridging. */
1473 	if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1474 		arg += strlen(BRIDGE_PFX);
1475 		bridging = true;
1476 	}
1477 
1478 	/* A mac address may follow the bridge name or IP address */
1479 	p = strchr(arg, ':');
1480 	if (p) {
1481 		str2mac(p+1, conf.mac);
1482 		add_feature(dev, VIRTIO_NET_F_MAC);
1483 		*p = '\0';
1484 	}
1485 
1486 	/* arg is now either an IP address or a bridge name */
1487 	if (bridging)
1488 		add_to_bridge(ipfd, tapif, arg);
1489 	else
1490 		ip = str2ip(arg);
1491 
1492 	/* Set up the tun device. */
1493 	configure_device(ipfd, tapif, ip);
1494 
1495 	add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1496 	/* Expect Guest to handle everything except UFO */
1497 	add_feature(dev, VIRTIO_NET_F_CSUM);
1498 	add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1499 	add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1500 	add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1501 	add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1502 	add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1503 	add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1504 	add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1505 	set_config(dev, sizeof(conf), &conf);
1506 
1507 	/* We don't need the socket any more; setup is done. */
1508 	close(ipfd);
1509 
1510 	devices.device_num++;
1511 
1512 	if (bridging)
1513 		verbose("device %u: tun %s attached to bridge: %s\n",
1514 			devices.device_num, tapif, arg);
1515 	else
1516 		verbose("device %u: tun %s: %s\n",
1517 			devices.device_num, tapif, arg);
1518 }
1519 
1520 /* Our block (disk) device should be really simple: the Guest asks for a block
1521  * number and we read or write that position in the file.  Unfortunately, that
1522  * was amazingly slow: the Guest waits until the read is finished before
1523  * running anything else, even if it could have been doing useful work.
1524  *
1525  * We could use async I/O, except it's reputed to suck so hard that characters
1526  * actually go missing from your code when you try to use it.
1527  *
1528  * So we farm the I/O out to thread, and communicate with it via a pipe. */
1529 
1530 /* This hangs off device->priv. */
1531 struct vblk_info
1532 {
1533 	/* The size of the file. */
1534 	off64_t len;
1535 
1536 	/* The file descriptor for the file. */
1537 	int fd;
1538 
1539 	/* IO thread listens on this file descriptor [0]. */
1540 	int workpipe[2];
1541 
1542 	/* IO thread writes to this file descriptor to mark it done, then
1543 	 * Launcher triggers interrupt to Guest. */
1544 	int done_fd;
1545 };
1546 
1547 /*L:210
1548  * The Disk
1549  *
1550  * Remember that the block device is handled by a separate I/O thread.  We head
1551  * straight into the core of that thread here:
1552  */
service_io(struct device * dev)1553 static bool service_io(struct device *dev)
1554 {
1555 	struct vblk_info *vblk = dev->priv;
1556 	unsigned int head, out_num, in_num, wlen;
1557 	int ret;
1558 	u8 *in;
1559 	struct virtio_blk_outhdr *out;
1560 	struct iovec iov[dev->vq->vring.num];
1561 	off64_t off;
1562 
1563 	/* See if there's a request waiting.  If not, nothing to do. */
1564 	head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1565 	if (head == dev->vq->vring.num)
1566 		return false;
1567 
1568 	/* Every block request should contain at least one output buffer
1569 	 * (detailing the location on disk and the type of request) and one
1570 	 * input buffer (to hold the result). */
1571 	if (out_num == 0 || in_num == 0)
1572 		errx(1, "Bad virtblk cmd %u out=%u in=%u",
1573 		     head, out_num, in_num);
1574 
1575 	out = convert(&iov[0], struct virtio_blk_outhdr);
1576 	in = convert(&iov[out_num+in_num-1], u8);
1577 	off = out->sector * 512;
1578 
1579 	/* The block device implements "barriers", where the Guest indicates
1580 	 * that it wants all previous writes to occur before this write.  We
1581 	 * don't have a way of asking our kernel to do a barrier, so we just
1582 	 * synchronize all the data in the file.  Pretty poor, no? */
1583 	if (out->type & VIRTIO_BLK_T_BARRIER)
1584 		fdatasync(vblk->fd);
1585 
1586 	/* In general the virtio block driver is allowed to try SCSI commands.
1587 	 * It'd be nice if we supported eject, for example, but we don't. */
1588 	if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1589 		fprintf(stderr, "Scsi commands unsupported\n");
1590 		*in = VIRTIO_BLK_S_UNSUPP;
1591 		wlen = sizeof(*in);
1592 	} else if (out->type & VIRTIO_BLK_T_OUT) {
1593 		/* Write */
1594 
1595 		/* Move to the right location in the block file.  This can fail
1596 		 * if they try to write past end. */
1597 		if (lseek64(vblk->fd, off, SEEK_SET) != off)
1598 			err(1, "Bad seek to sector %llu", out->sector);
1599 
1600 		ret = writev(vblk->fd, iov+1, out_num-1);
1601 		verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1602 
1603 		/* Grr... Now we know how long the descriptor they sent was, we
1604 		 * make sure they didn't try to write over the end of the block
1605 		 * file (possibly extending it). */
1606 		if (ret > 0 && off + ret > vblk->len) {
1607 			/* Trim it back to the correct length */
1608 			ftruncate64(vblk->fd, vblk->len);
1609 			/* Die, bad Guest, die. */
1610 			errx(1, "Write past end %llu+%u", off, ret);
1611 		}
1612 		wlen = sizeof(*in);
1613 		*in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1614 	} else {
1615 		/* Read */
1616 
1617 		/* Move to the right location in the block file.  This can fail
1618 		 * if they try to read past end. */
1619 		if (lseek64(vblk->fd, off, SEEK_SET) != off)
1620 			err(1, "Bad seek to sector %llu", out->sector);
1621 
1622 		ret = readv(vblk->fd, iov+1, in_num-1);
1623 		verbose("READ from sector %llu: %i\n", out->sector, ret);
1624 		if (ret >= 0) {
1625 			wlen = sizeof(*in) + ret;
1626 			*in = VIRTIO_BLK_S_OK;
1627 		} else {
1628 			wlen = sizeof(*in);
1629 			*in = VIRTIO_BLK_S_IOERR;
1630 		}
1631 	}
1632 
1633 	/* We can't trigger an IRQ, because we're not the Launcher.  It does
1634 	 * that when we tell it we're done. */
1635 	add_used(dev->vq, head, wlen);
1636 	return true;
1637 }
1638 
1639 /* This is the thread which actually services the I/O. */
io_thread(void * _dev)1640 static int io_thread(void *_dev)
1641 {
1642 	struct device *dev = _dev;
1643 	struct vblk_info *vblk = dev->priv;
1644 	char c;
1645 
1646 	/* Close other side of workpipe so we get 0 read when main dies. */
1647 	close(vblk->workpipe[1]);
1648 	/* Close the other side of the done_fd pipe. */
1649 	close(dev->fd);
1650 
1651 	/* When this read fails, it means Launcher died, so we follow. */
1652 	while (read(vblk->workpipe[0], &c, 1) == 1) {
1653 		/* We acknowledge each request immediately to reduce latency,
1654 		 * rather than waiting until we've done them all.  I haven't
1655 		 * measured to see if it makes any difference.
1656 		 *
1657 		 * That would be an interesting test, wouldn't it?  You could
1658 		 * also try having more than one I/O thread. */
1659 		while (service_io(dev))
1660 			write(vblk->done_fd, &c, 1);
1661 	}
1662 	return 0;
1663 }
1664 
1665 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1666  * when that thread tells us it's completed some I/O. */
handle_io_finish(int fd,struct device * dev)1667 static bool handle_io_finish(int fd, struct device *dev)
1668 {
1669 	char c;
1670 
1671 	/* If the I/O thread died, presumably it printed the error, so we
1672 	 * simply exit. */
1673 	if (read(dev->fd, &c, 1) != 1)
1674 		exit(1);
1675 
1676 	/* It did some work, so trigger the irq. */
1677 	trigger_irq(fd, dev->vq);
1678 	return true;
1679 }
1680 
1681 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
handle_virtblk_output(int fd,struct virtqueue * vq,bool timeout)1682 static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout)
1683 {
1684 	struct vblk_info *vblk = vq->dev->priv;
1685 	char c = 0;
1686 
1687 	/* Wake up I/O thread and tell it to go to work! */
1688 	if (write(vblk->workpipe[1], &c, 1) != 1)
1689 		/* Presumably it indicated why it died. */
1690 		exit(1);
1691 }
1692 
1693 /*L:198 This actually sets up a virtual block device. */
setup_block_file(const char * filename)1694 static void setup_block_file(const char *filename)
1695 {
1696 	int p[2];
1697 	struct device *dev;
1698 	struct vblk_info *vblk;
1699 	void *stack;
1700 	struct virtio_blk_config conf;
1701 
1702 	/* This is the pipe the I/O thread will use to tell us I/O is done. */
1703 	pipe(p);
1704 
1705 	/* The device responds to return from I/O thread. */
1706 	dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1707 
1708 	/* The device has one virtqueue, where the Guest places requests. */
1709 	add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1710 
1711 	/* Allocate the room for our own bookkeeping */
1712 	vblk = dev->priv = malloc(sizeof(*vblk));
1713 
1714 	/* First we open the file and store the length. */
1715 	vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1716 	vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1717 
1718 	/* We support barriers. */
1719 	add_feature(dev, VIRTIO_BLK_F_BARRIER);
1720 
1721 	/* Tell Guest how many sectors this device has. */
1722 	conf.capacity = cpu_to_le64(vblk->len / 512);
1723 
1724 	/* Tell Guest not to put in too many descriptors at once: two are used
1725 	 * for the in and out elements. */
1726 	add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1727 	conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1728 
1729 	set_config(dev, sizeof(conf), &conf);
1730 
1731 	/* The I/O thread writes to this end of the pipe when done. */
1732 	vblk->done_fd = p[1];
1733 
1734 	/* This is the second pipe, which is how we tell the I/O thread about
1735 	 * more work. */
1736 	pipe(vblk->workpipe);
1737 
1738 	/* Create stack for thread and run it.  Since stack grows upwards, we
1739 	 * point the stack pointer to the end of this region. */
1740 	stack = malloc(32768);
1741 	/* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1742 	 * becoming a zombie. */
1743 	if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1744 		err(1, "Creating clone");
1745 
1746 	/* We don't need to keep the I/O thread's end of the pipes open. */
1747 	close(vblk->done_fd);
1748 	close(vblk->workpipe[0]);
1749 
1750 	verbose("device %u: virtblock %llu sectors\n",
1751 		devices.device_num, le64_to_cpu(conf.capacity));
1752 }
1753 
1754 /* Our random number generator device reads from /dev/random into the Guest's
1755  * input buffers.  The usual case is that the Guest doesn't want random numbers
1756  * and so has no buffers although /dev/random is still readable, whereas
1757  * console is the reverse.
1758  *
1759  * The same logic applies, however. */
handle_rng_input(int fd,struct device * dev)1760 static bool handle_rng_input(int fd, struct device *dev)
1761 {
1762 	int len;
1763 	unsigned int head, in_num, out_num, totlen = 0;
1764 	struct iovec iov[dev->vq->vring.num];
1765 
1766 	/* First we need a buffer from the Guests's virtqueue. */
1767 	head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1768 
1769 	/* If they're not ready for input, stop listening to this file
1770 	 * descriptor.  We'll start again once they add an input buffer. */
1771 	if (head == dev->vq->vring.num)
1772 		return false;
1773 
1774 	if (out_num)
1775 		errx(1, "Output buffers in rng?");
1776 
1777 	/* This is why we convert to iovecs: the readv() call uses them, and so
1778 	 * it reads straight into the Guest's buffer.  We loop to make sure we
1779 	 * fill it. */
1780 	while (!iov_empty(iov, in_num)) {
1781 		len = readv(dev->fd, iov, in_num);
1782 		if (len <= 0)
1783 			err(1, "Read from /dev/random gave %i", len);
1784 		iov_consume(iov, in_num, len);
1785 		totlen += len;
1786 	}
1787 
1788 	/* Tell the Guest about the new input. */
1789 	add_used_and_trigger(fd, dev->vq, head, totlen);
1790 
1791 	/* Everything went OK! */
1792 	return true;
1793 }
1794 
1795 /* And this creates a "hardware" random number device for the Guest. */
setup_rng(void)1796 static void setup_rng(void)
1797 {
1798 	struct device *dev;
1799 	int fd;
1800 
1801 	fd = open_or_die("/dev/random", O_RDONLY);
1802 
1803 	/* The device responds to return from I/O thread. */
1804 	dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1805 
1806 	/* The device has one virtqueue, where the Guest places inbufs. */
1807 	add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1808 
1809 	verbose("device %u: rng\n", devices.device_num++);
1810 }
1811 /* That's the end of device setup. */
1812 
1813 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
restart_guest(void)1814 static void __attribute__((noreturn)) restart_guest(void)
1815 {
1816 	unsigned int i;
1817 
1818 	/* Since we don't track all open fds, we simply close everything beyond
1819 	 * stderr. */
1820 	for (i = 3; i < FD_SETSIZE; i++)
1821 		close(i);
1822 
1823 	/* The exec automatically gets rid of the I/O and Waker threads. */
1824 	execv(main_args[0], main_args);
1825 	err(1, "Could not exec %s", main_args[0]);
1826 }
1827 
1828 /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
1829  * its input and output, and finally, lays it to rest. */
run_guest(int lguest_fd)1830 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1831 {
1832 	for (;;) {
1833 		unsigned long args[] = { LHREQ_BREAK, 0 };
1834 		unsigned long notify_addr;
1835 		int readval;
1836 
1837 		/* We read from the /dev/lguest device to run the Guest. */
1838 		readval = pread(lguest_fd, &notify_addr,
1839 				sizeof(notify_addr), cpu_id);
1840 
1841 		/* One unsigned long means the Guest did HCALL_NOTIFY */
1842 		if (readval == sizeof(notify_addr)) {
1843 			verbose("Notify on address %#lx\n", notify_addr);
1844 			handle_output(lguest_fd, notify_addr);
1845 			continue;
1846 		/* ENOENT means the Guest died.  Reading tells us why. */
1847 		} else if (errno == ENOENT) {
1848 			char reason[1024] = { 0 };
1849 			pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1850 			errx(1, "%s", reason);
1851 		/* ERESTART means that we need to reboot the guest */
1852 		} else if (errno == ERESTART) {
1853 			restart_guest();
1854 		/* EAGAIN means a signal (timeout).
1855 		 * Anything else means a bug or incompatible change. */
1856 		} else if (errno != EAGAIN)
1857 			err(1, "Running guest failed");
1858 
1859 		/* Only service input on thread for CPU 0. */
1860 		if (cpu_id != 0)
1861 			continue;
1862 
1863 		/* Service input, then unset the BREAK to release the Waker. */
1864 		handle_input(lguest_fd);
1865 		if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1866 			err(1, "Resetting break");
1867 	}
1868 }
1869 /*L:240
1870  * This is the end of the Launcher.  The good news: we are over halfway
1871  * through!  The bad news: the most fiendish part of the code still lies ahead
1872  * of us.
1873  *
1874  * Are you ready?  Take a deep breath and join me in the core of the Host, in
1875  * "make Host".
1876  :*/
1877 
1878 static struct option opts[] = {
1879 	{ "verbose", 0, NULL, 'v' },
1880 	{ "tunnet", 1, NULL, 't' },
1881 	{ "block", 1, NULL, 'b' },
1882 	{ "rng", 0, NULL, 'r' },
1883 	{ "initrd", 1, NULL, 'i' },
1884 	{ NULL },
1885 };
usage(void)1886 static void usage(void)
1887 {
1888 	errx(1, "Usage: lguest [--verbose] "
1889 	     "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1890 	     "|--block=<filename>|--initrd=<filename>]...\n"
1891 	     "<mem-in-mb> vmlinux [args...]");
1892 }
1893 
1894 /*L:105 The main routine is where the real work begins: */
main(int argc,char * argv[])1895 int main(int argc, char *argv[])
1896 {
1897 	/* Memory, top-level pagetable, code startpoint and size of the
1898 	 * (optional) initrd. */
1899 	unsigned long mem = 0, start, initrd_size = 0;
1900 	/* Two temporaries and the /dev/lguest file descriptor. */
1901 	int i, c, lguest_fd;
1902 	/* The boot information for the Guest. */
1903 	struct boot_params *boot;
1904 	/* If they specify an initrd file to load. */
1905 	const char *initrd_name = NULL;
1906 
1907 	/* Save the args: we "reboot" by execing ourselves again. */
1908 	main_args = argv;
1909 	/* We don't "wait" for the children, so prevent them from becoming
1910 	 * zombies. */
1911 	signal(SIGCHLD, SIG_IGN);
1912 
1913 	/* First we initialize the device list.  Since console and network
1914 	 * device receive input from a file descriptor, we keep an fdset
1915 	 * (infds) and the maximum fd number (max_infd) with the head of the
1916 	 * list.  We also keep a pointer to the last device.  Finally, we keep
1917 	 * the next interrupt number to use for devices (1: remember that 0 is
1918 	 * used by the timer). */
1919 	FD_ZERO(&devices.infds);
1920 	devices.max_infd = -1;
1921 	devices.lastdev = NULL;
1922 	devices.next_irq = 1;
1923 
1924 	cpu_id = 0;
1925 	/* We need to know how much memory so we can set up the device
1926 	 * descriptor and memory pages for the devices as we parse the command
1927 	 * line.  So we quickly look through the arguments to find the amount
1928 	 * of memory now. */
1929 	for (i = 1; i < argc; i++) {
1930 		if (argv[i][0] != '-') {
1931 			mem = atoi(argv[i]) * 1024 * 1024;
1932 			/* We start by mapping anonymous pages over all of
1933 			 * guest-physical memory range.  This fills it with 0,
1934 			 * and ensures that the Guest won't be killed when it
1935 			 * tries to access it. */
1936 			guest_base = map_zeroed_pages(mem / getpagesize()
1937 						      + DEVICE_PAGES);
1938 			guest_limit = mem;
1939 			guest_max = mem + DEVICE_PAGES*getpagesize();
1940 			devices.descpage = get_pages(1);
1941 			break;
1942 		}
1943 	}
1944 
1945 	/* The options are fairly straight-forward */
1946 	while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1947 		switch (c) {
1948 		case 'v':
1949 			verbose = true;
1950 			break;
1951 		case 't':
1952 			setup_tun_net(optarg);
1953 			break;
1954 		case 'b':
1955 			setup_block_file(optarg);
1956 			break;
1957 		case 'r':
1958 			setup_rng();
1959 			break;
1960 		case 'i':
1961 			initrd_name = optarg;
1962 			break;
1963 		default:
1964 			warnx("Unknown argument %s", argv[optind]);
1965 			usage();
1966 		}
1967 	}
1968 	/* After the other arguments we expect memory and kernel image name,
1969 	 * followed by command line arguments for the kernel. */
1970 	if (optind + 2 > argc)
1971 		usage();
1972 
1973 	verbose("Guest base is at %p\n", guest_base);
1974 
1975 	/* We always have a console device */
1976 	setup_console();
1977 
1978 	/* We can timeout waiting for Guest network transmit. */
1979 	setup_timeout();
1980 
1981 	/* Now we load the kernel */
1982 	start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1983 
1984 	/* Boot information is stashed at physical address 0 */
1985 	boot = from_guest_phys(0);
1986 
1987 	/* Map the initrd image if requested (at top of physical memory) */
1988 	if (initrd_name) {
1989 		initrd_size = load_initrd(initrd_name, mem);
1990 		/* These are the location in the Linux boot header where the
1991 		 * start and size of the initrd are expected to be found. */
1992 		boot->hdr.ramdisk_image = mem - initrd_size;
1993 		boot->hdr.ramdisk_size = initrd_size;
1994 		/* The bootloader type 0xFF means "unknown"; that's OK. */
1995 		boot->hdr.type_of_loader = 0xFF;
1996 	}
1997 
1998 	/* The Linux boot header contains an "E820" memory map: ours is a
1999 	 * simple, single region. */
2000 	boot->e820_entries = 1;
2001 	boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2002 	/* The boot header contains a command line pointer: we put the command
2003 	 * line after the boot header. */
2004 	boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2005 	/* We use a simple helper to copy the arguments separated by spaces. */
2006 	concat((char *)(boot + 1), argv+optind+2);
2007 
2008 	/* Boot protocol version: 2.07 supports the fields for lguest. */
2009 	boot->hdr.version = 0x207;
2010 
2011 	/* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2012 	boot->hdr.hardware_subarch = 1;
2013 
2014 	/* Tell the entry path not to try to reload segment registers. */
2015 	boot->hdr.loadflags |= KEEP_SEGMENTS;
2016 
2017 	/* We tell the kernel to initialize the Guest: this returns the open
2018 	 * /dev/lguest file descriptor. */
2019 	lguest_fd = tell_kernel(start);
2020 
2021 	/* We clone off a thread, which wakes the Launcher whenever one of the
2022 	 * input file descriptors needs attention.  We call this the Waker, and
2023 	 * we'll cover it in a moment. */
2024 	setup_waker(lguest_fd);
2025 
2026 	/* Finally, run the Guest.  This doesn't return. */
2027 	run_guest(lguest_fd);
2028 }
2029 /*:*/
2030 
2031 /*M:999
2032  * Mastery is done: you now know everything I do.
2033  *
2034  * But surely you have seen code, features and bugs in your wanderings which
2035  * you now yearn to attack?  That is the real game, and I look forward to you
2036  * patching and forking lguest into the Your-Name-Here-visor.
2037  *
2038  * Farewell, and good coding!
2039  * Rusty Russell.
2040  */
2041