/arch/m68k/fpsp040/ |
D | stanh.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value tanh(X) returned in floating-point register Fp0. 23 | 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. 25 | 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by 26 | sgn := sign(X), y := 2|X|, z := expm1(Y), and 27 | tanh(X) = sgn*( z/(2+z) ). 30 | 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, 33 | 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. 35 | 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by 36 | sgn := sign(X), y := 2|X|, z := exp(Y), [all …]
|
D | sasin.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value arcsin(X) returned in floating-point register Fp0. 23 | 1. If |X| >= 1, go to 3. 25 | 2. (|X| < 1) Calculate asin(X) by 26 | z := sqrt( [1-X][1+X] ) 27 | asin(X) = atan( x / z ). 30 | 3. If |X| > 1, go to 5. 32 | 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit. 34 | 5. (|X| > 1) Generate an invalid operation by 0 * infinity. 57 |--ASIN(X) = X FOR DENORMALIZED X [all …]
|
D | satan.S | 11 | Output: Arctan(X) returned in floating-point register Fp0. 19 | argument X such that 1/16 < |X| < 16. For the other arguments, 23 | Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. 25 | Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3. 27 | of X with a bit-1 attached at the 6-th bit position. Define u 28 | to be u = (X-F) / (1 + X*F). 35 | Step 5. If |X| >= 16, go to Step 7. 37 | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. 39 | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'. 217 .set X,FP_SCR1 define [all …]
|
D | scosh.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value cosh(X) returned in floating-point register Fp0. 23 | 1. If |X| > 16380 log2, go to 3. 25 | 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae 26 | y = |X|, z = exp(Y), and 27 | cosh(X) = (1/2)*( z + 1/z ). 30 | 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. 32 | 4. (16380 log2 < |X| <= 16480 log2) 33 | cosh(X) = sign(X) * exp(|X|)/2. 34 | However, invoking exp(|X|) may cause premature overflow. [all …]
|
D | slog2.S | 5 | logarithm of an input argument X. 13 | OUTPUT: log_10(X) or log_2(X) returned in floating-point 32 | Step 0. If X < 0, create a NaN and raise the invalid operation 37 | Step 1. Call slognd to obtain Y = log(X), the natural log of X. 38 | Notes: Even if X is denormalized, log(X) is always normalized. 40 | Step 2. Compute log_10(X) = log(X) * (1/log(10)). 47 | Step 0. If X < 0, create a NaN and raise the invalid operation 52 | Step 1. Call sLogN to obtain Y = log(X), the natural log of X. 54 | Step 2. Compute log_10(X) = log(X) * (1/log(10)). 61 | Step 0. If X < 0, create a NaN and raise the invalid operation [all …]
|
D | satanh.S | 9 | Input: Double-extended number X in location pointed to 12 | Output: The value arctanh(X) returned in floating-point register Fp0. 24 | 1. If |X| >= 1, go to 3. 26 | 2. (|X| < 1) Calculate atanh(X) by 27 | sgn := sign(X) 28 | y := |X| 30 | atanh(X) := sgn * (1/2) * logp1(z) 33 | 3. If |X| > 1, go to 5. 35 | 4. (|X| = 1) Generate infinity with an appropriate sign and 37 | sgn := sign(X) [all …]
|
D | ssinh.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value sinh(X) returned in floating-point register Fp0. 23 | 1. If |X| > 16380 log2, go to 3. 25 | 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae 26 | y = |X|, sgn = sign(X), and z = expm1(Y), 27 | sinh(X) = sgn*(1/2)*( z + z/(1+z) ). 30 | 3. If |X| > 16480 log2, go to 5. 32 | 4. (16380 log2 < |X| <= 16480 log2) 33 | sinh(X) = sign(X) * exp(|X|)/2. 34 | However, invoking exp(|X|) may cause premature overflow. [all …]
|
D | stwotox.S | 4 | stwotox --- 2**X 5 | stwotoxd --- 2**X for denormalized X 6 | stentox --- 10**X 7 | stentoxd --- 10**X for denormalized X 9 | Input: Double-extended number X in location pointed to 25 | 1. If |X| > 16480, go to ExpBig. 27 | 2. If |X| < 2**(-70), go to ExpSm. 29 | 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore 38 | 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. 40 | 2. If |X| < 2**(-70), go to ExpSm. [all …]
|
D | sacos.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value arccos(X) returned in floating-point register Fp0. 23 | 1. If |X| >= 1, go to 3. 25 | 2. (|X| < 1) Calculate acos(X) by 26 | z := (1-X) / (1+X) 27 | acos(X) = 2 * atan( sqrt(z) ). 30 | 3. If |X| > 1, go to 5. 32 | 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. 34 | 5. (|X| > 1) Generate an invalid operation by 0 * infinity. 57 |--ACOS(X) = PI/2 FOR DENORMALIZED X
|
D | slogn.S | 6 | denormalized number. slognp1 computes log(1+X), and slognp1d 7 | computes log(1+X) for denormalized X. 12 | Output: log(X) or log(1+X) returned in floating-point register Fp0. 20 | argument X such that |X-1| >= 1/16, which is the usual 27 | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in 28 | u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2. 30 | Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven 37 | Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) 42 | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in 43 | u where u = 2X/(2+X). Otherwise, move on to Step 2. [all …]
|
D | setox.S | 6 | number. setoxm1 computes exp(X)-1, and setoxm1d computes 7 | exp(X)-1 for denormalized X. 16 | exp(X) or exp(X)-1 returned in floating-point register fp0. 34 | argument X whose magnitude is less than 16380 log2, which 40 | argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes 52 | Step 2. Return ans := ans + sign(X)*2^(-126). Exit. 60 | 1.1 If |X| >= 2^(-65), go to Step 1.3. 62 | 1.3 If |X| < 16380 log(2), go to Step 2. 66 | compact representation of |X| is used. This format is a 68 | the sign and biased exponent field of |X|; the lower 16 [all …]
|
D | ssin.S | 9 | Input: Double-extended number X in location pointed to 12 | Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or 13 | COS is requested. Otherwise, for SINCOS, sin(X) is returned 14 | in Fp0, and cos(X) is returned in Fp1. 24 | input argument X such that |X| < 15Pi, which is the usual 32 | 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. 34 | 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let 50 | 7. If |X| > 1, go to 9. 52 | 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1. 54 | 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3. [all …]
|
D | stan.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value tan(X) returned in floating-point register Fp0. 19 | input argument X such that |X| < 15Pi, which is the usual 24 | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. 26 | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let 31 | 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a 37 | 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a 43 | 6. If |X| > 1, go to 8. 45 | 7. (|X|<2**(-40)) Tan(X) = X. Exit. 47 | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2. [all …]
|
D | srem_mod.S | 5 | input values X and Y. The entry point sREM computes the floating 6 | point (IEEE) REM of the input values X and Y. 11 | A0. Double-extended value X is located in -12(A0). The values 12 | of X and Y are both nonzero and finite; although either or both 18 | FREM(X,Y) or FMOD(X,Y), depending on entry point. 23 | Step 1. Save and strip signs of X and Y: signX := sign(X), 24 | signY := sign(Y), X := |X|, Y := |Y|, 28 | Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. 30 | R := X, go to Step 4. 32 | R := 2^(-L)X, j := L. [all …]
|
/arch/mips/include/asm/mach-pnx8550/ |
D | pci.h | 66 #define PCI_SETUP_BASE18_SIZE(X) (X<<18) argument 69 #define PCI_SETUP_BASE14_SIZE(X) (X<<12) argument 72 #define PCI_SETUP_BASE10_SIZE(X) (X<<7) argument 104 #define GPPM_CMD(X) (((X)&0xf)<<4) argument 105 #define GPPM_BYTEEN(X) ((X)&0xf) argument 107 #define UNLOCK_SSID(X) (((X)&0xff)<<8) argument 108 #define UNLOCK_SETUP(X) (((X)&0xff)<<0) argument 111 #define DEVICE_ID(X) (((X)>>16)&0xffff) argument 112 #define VENDOR_ID(X) (((X)&0xffff)) argument 114 #define PCI_CFG_STATUS(X) (((X)>>16)&0xffff) argument [all …]
|
/arch/sh/include/asm/ |
D | sfp-machine.h | 33 #define _FP_MUL_MEAT_S(R,X,Y) \ argument 34 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) 35 #define _FP_MUL_MEAT_D(R,X,Y) \ argument 36 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 37 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument 38 _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) 40 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) argument 41 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument 42 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y) argument 57 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument [all …]
|
/arch/sparc/include/asm/ |
D | sfp-machine_64.h | 32 #define _FP_MUL_MEAT_S(R,X,Y) \ argument 33 _FP_MUL_MEAT_1_imm(_FP_WFRACBITS_S,R,X,Y) 34 #define _FP_MUL_MEAT_D(R,X,Y) \ argument 35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 36 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument 37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) 39 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) argument 40 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv_norm(D,R,X,Y) argument 41 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv(Q,R,X,Y) argument 59 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument [all …]
|
D | sfp-machine_32.h | 34 #define _FP_MUL_MEAT_S(R,X,Y) \ argument 35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) 36 #define _FP_MUL_MEAT_D(R,X,Y) \ argument 37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 38 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument 39 _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) 41 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) argument 42 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument 43 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y) argument 61 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument [all …]
|
D | io_32.h | 246 #define ioremap_nocache(X,Y) ioremap((X),(Y)) argument 247 #define ioremap_wc(X,Y) ioremap((X),(Y)) argument 250 #define ioread8(X) readb(X) argument 251 #define ioread16(X) readw(X) argument 252 #define ioread32(X) readl(X) argument 253 #define iowrite8(val,X) writeb(val,X) argument 254 #define iowrite16(val,X) writew(val,X) argument 255 #define iowrite32(val,X) writel(val,X) argument
|
/arch/alpha/include/asm/ |
D | sfp-machine.h | 32 #define _FP_MUL_MEAT_S(R,X,Y) \ argument 33 _FP_MUL_MEAT_1_imm(_FP_WFRACBITS_S,R,X,Y) 34 #define _FP_MUL_MEAT_D(R,X,Y) \ argument 35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 36 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument 37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) 39 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) argument 40 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv(D,R,X,Y) argument 41 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv(Q,R,X,Y) argument 55 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument [all …]
|
/arch/s390/include/asm/ |
D | sfp-machine.h | 34 #define _FP_MUL_MEAT_S(R,X,Y) \ argument 35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) 36 #define _FP_MUL_MEAT_D(R,X,Y) \ argument 37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 38 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument 39 _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) 41 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) argument 42 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument 43 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y) argument 58 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument [all …]
|
/arch/powerpc/include/asm/ |
D | sfp-machine.h | 82 #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) argument 83 #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) argument 85 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv_norm(S,R,X,Y) argument 86 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument 144 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument 147 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ 149 R##_s = X##_s; \ 150 _FP_FRAC_COPY_##wc(R,X); \ 167 #define __FP_PACK_S(val,X) \ argument 168 ({ int __exc = _FP_PACK_CANONICAL(S,1,X); \ [all …]
|
/arch/um/include/shared/ |
D | as-layout.h | 25 #define _UML_AC(X, Y) (Y) 27 #define __UML_AC(X, Y) (X(Y)) argument 28 #define _UML_AC(X, Y) __UML_AC(X, Y) argument
|
/arch/mips/mti-malta/ |
D | malta-int.c | 373 { GIC_EXT_INTR(0), X, X, X, X, 0 }, 374 { GIC_EXT_INTR(1), X, X, X, X, 0 }, 375 { GIC_EXT_INTR(2), X, X, X, X, 0 }, 383 { GIC_EXT_INTR(10), X, X, X, X, 0 }, 384 { GIC_EXT_INTR(11), X, X, X, X, 0 }, 388 { GIC_EXT_INTR(15), X, X, X, X, 0 }, 423 if (gic_intr_map[i].ipiflag && (gic_intr_map[i].cpunum != X)) in fill_ipi_map()
|
/arch/arm/mach-davinci/include/mach/ |
D | gpio.h | 43 #define GPIO(X) (X) /* 0 <= X <= 70 */ argument 44 #define GPIOV18(X) (X) /* 1.8V i/o; 0 <= X <= 53 */ argument 45 #define GPIOV33(X) ((X)+54) /* 3.3V i/o; 0 <= X <= 17 */ argument
|