Home
last modified time | relevance | path

Searched refs:X (Results 1 – 25 of 92) sorted by relevance

1234

/arch/m68k/fpsp040/
Dstanh.S8 | Input: Double-extended number X in location pointed to
11 | Output: The value tanh(X) returned in floating-point register Fp0.
23 | 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.
25 | 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by
26 | sgn := sign(X), y := 2|X|, z := expm1(Y), and
27 | tanh(X) = sgn*( z/(2+z) ).
30 | 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,
33 | 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.
35 | 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by
36 | sgn := sign(X), y := 2|X|, z := exp(Y),
[all …]
Dsasin.S8 | Input: Double-extended number X in location pointed to
11 | Output: The value arcsin(X) returned in floating-point register Fp0.
23 | 1. If |X| >= 1, go to 3.
25 | 2. (|X| < 1) Calculate asin(X) by
26 | z := sqrt( [1-X][1+X] )
27 | asin(X) = atan( x / z ).
30 | 3. If |X| > 1, go to 5.
32 | 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.
34 | 5. (|X| > 1) Generate an invalid operation by 0 * infinity.
57 |--ASIN(X) = X FOR DENORMALIZED X
[all …]
Dsatan.S11 | Output: Arctan(X) returned in floating-point register Fp0.
19 | argument X such that 1/16 < |X| < 16. For the other arguments,
23 | Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.
25 | Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3.
27 | of X with a bit-1 attached at the 6-th bit position. Define u
28 | to be u = (X-F) / (1 + X*F).
35 | Step 5. If |X| >= 16, go to Step 7.
37 | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.
39 | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
217 .set X,FP_SCR1 define
[all …]
Dscosh.S8 | Input: Double-extended number X in location pointed to
11 | Output: The value cosh(X) returned in floating-point register Fp0.
23 | 1. If |X| > 16380 log2, go to 3.
25 | 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae
26 | y = |X|, z = exp(Y), and
27 | cosh(X) = (1/2)*( z + 1/z ).
30 | 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5.
32 | 4. (16380 log2 < |X| <= 16480 log2)
33 | cosh(X) = sign(X) * exp(|X|)/2.
34 | However, invoking exp(|X|) may cause premature overflow.
[all …]
Dslog2.S5 | logarithm of an input argument X.
13 | OUTPUT: log_10(X) or log_2(X) returned in floating-point
32 | Step 0. If X < 0, create a NaN and raise the invalid operation
37 | Step 1. Call slognd to obtain Y = log(X), the natural log of X.
38 | Notes: Even if X is denormalized, log(X) is always normalized.
40 | Step 2. Compute log_10(X) = log(X) * (1/log(10)).
47 | Step 0. If X < 0, create a NaN and raise the invalid operation
52 | Step 1. Call sLogN to obtain Y = log(X), the natural log of X.
54 | Step 2. Compute log_10(X) = log(X) * (1/log(10)).
61 | Step 0. If X < 0, create a NaN and raise the invalid operation
[all …]
Dsatanh.S9 | Input: Double-extended number X in location pointed to
12 | Output: The value arctanh(X) returned in floating-point register Fp0.
24 | 1. If |X| >= 1, go to 3.
26 | 2. (|X| < 1) Calculate atanh(X) by
27 | sgn := sign(X)
28 | y := |X|
30 | atanh(X) := sgn * (1/2) * logp1(z)
33 | 3. If |X| > 1, go to 5.
35 | 4. (|X| = 1) Generate infinity with an appropriate sign and
37 | sgn := sign(X)
[all …]
Dssinh.S8 | Input: Double-extended number X in location pointed to
11 | Output: The value sinh(X) returned in floating-point register Fp0.
23 | 1. If |X| > 16380 log2, go to 3.
25 | 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae
26 | y = |X|, sgn = sign(X), and z = expm1(Y),
27 | sinh(X) = sgn*(1/2)*( z + z/(1+z) ).
30 | 3. If |X| > 16480 log2, go to 5.
32 | 4. (16380 log2 < |X| <= 16480 log2)
33 | sinh(X) = sign(X) * exp(|X|)/2.
34 | However, invoking exp(|X|) may cause premature overflow.
[all …]
Dstwotox.S4 | stwotox --- 2**X
5 | stwotoxd --- 2**X for denormalized X
6 | stentox --- 10**X
7 | stentoxd --- 10**X for denormalized X
9 | Input: Double-extended number X in location pointed to
25 | 1. If |X| > 16480, go to ExpBig.
27 | 2. If |X| < 2**(-70), go to ExpSm.
29 | 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore
38 | 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig.
40 | 2. If |X| < 2**(-70), go to ExpSm.
[all …]
Dsacos.S8 | Input: Double-extended number X in location pointed to
11 | Output: The value arccos(X) returned in floating-point register Fp0.
23 | 1. If |X| >= 1, go to 3.
25 | 2. (|X| < 1) Calculate acos(X) by
26 | z := (1-X) / (1+X)
27 | acos(X) = 2 * atan( sqrt(z) ).
30 | 3. If |X| > 1, go to 5.
32 | 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit.
34 | 5. (|X| > 1) Generate an invalid operation by 0 * infinity.
57 |--ACOS(X) = PI/2 FOR DENORMALIZED X
Dslogn.S6 | denormalized number. slognp1 computes log(1+X), and slognp1d
7 | computes log(1+X) for denormalized X.
12 | Output: log(X) or log(1+X) returned in floating-point register Fp0.
20 | argument X such that |X-1| >= 1/16, which is the usual
27 | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in
28 | u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2.
30 | Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven
37 | Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u)
42 | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
43 | u where u = 2X/(2+X). Otherwise, move on to Step 2.
[all …]
Dsetox.S6 | number. setoxm1 computes exp(X)-1, and setoxm1d computes
7 | exp(X)-1 for denormalized X.
16 | exp(X) or exp(X)-1 returned in floating-point register fp0.
34 | argument X whose magnitude is less than 16380 log2, which
40 | argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
52 | Step 2. Return ans := ans + sign(X)*2^(-126). Exit.
60 | 1.1 If |X| >= 2^(-65), go to Step 1.3.
62 | 1.3 If |X| < 16380 log(2), go to Step 2.
66 | compact representation of |X| is used. This format is a
68 | the sign and biased exponent field of |X|; the lower 16
[all …]
Dssin.S9 | Input: Double-extended number X in location pointed to
12 | Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
13 | COS is requested. Otherwise, for SINCOS, sin(X) is returned
14 | in Fp0, and cos(X) is returned in Fp1.
24 | input argument X such that |X| < 15Pi, which is the usual
32 | 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
34 | 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
50 | 7. If |X| > 1, go to 9.
52 | 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
54 | 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
[all …]
Dstan.S8 | Input: Double-extended number X in location pointed to
11 | Output: The value tan(X) returned in floating-point register Fp0.
19 | input argument X such that |X| < 15Pi, which is the usual
24 | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
26 | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
31 | 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
37 | 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
43 | 6. If |X| > 1, go to 8.
45 | 7. (|X|<2**(-40)) Tan(X) = X. Exit.
47 | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
[all …]
Dsrem_mod.S5 | input values X and Y. The entry point sREM computes the floating
6 | point (IEEE) REM of the input values X and Y.
11 | A0. Double-extended value X is located in -12(A0). The values
12 | of X and Y are both nonzero and finite; although either or both
18 | FREM(X,Y) or FMOD(X,Y), depending on entry point.
23 | Step 1. Save and strip signs of X and Y: signX := sign(X),
24 | signY := sign(Y), X := |X|, Y := |Y|,
28 | Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0.
30 | R := X, go to Step 4.
32 | R := 2^(-L)X, j := L.
[all …]
/arch/mips/include/asm/mach-pnx8550/
Dpci.h66 #define PCI_SETUP_BASE18_SIZE(X) (X<<18) argument
69 #define PCI_SETUP_BASE14_SIZE(X) (X<<12) argument
72 #define PCI_SETUP_BASE10_SIZE(X) (X<<7) argument
104 #define GPPM_CMD(X) (((X)&0xf)<<4) argument
105 #define GPPM_BYTEEN(X) ((X)&0xf) argument
107 #define UNLOCK_SSID(X) (((X)&0xff)<<8) argument
108 #define UNLOCK_SETUP(X) (((X)&0xff)<<0) argument
111 #define DEVICE_ID(X) (((X)>>16)&0xffff) argument
112 #define VENDOR_ID(X) (((X)&0xffff)) argument
114 #define PCI_CFG_STATUS(X) (((X)>>16)&0xffff) argument
[all …]
/arch/sh/include/asm/
Dsfp-machine.h33 #define _FP_MUL_MEAT_S(R,X,Y) \ argument
34 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
35 #define _FP_MUL_MEAT_D(R,X,Y) \ argument
36 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
37 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument
38 _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm)
40 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) argument
41 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument
42 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y) argument
57 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument
[all …]
/arch/sparc/include/asm/
Dsfp-machine_64.h32 #define _FP_MUL_MEAT_S(R,X,Y) \ argument
33 _FP_MUL_MEAT_1_imm(_FP_WFRACBITS_S,R,X,Y)
34 #define _FP_MUL_MEAT_D(R,X,Y) \ argument
35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
36 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument
37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm)
39 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) argument
40 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv_norm(D,R,X,Y) argument
41 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv(Q,R,X,Y) argument
59 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument
[all …]
Dsfp-machine_32.h34 #define _FP_MUL_MEAT_S(R,X,Y) \ argument
35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
36 #define _FP_MUL_MEAT_D(R,X,Y) \ argument
37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
38 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument
39 _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm)
41 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) argument
42 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument
43 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y) argument
61 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument
[all …]
Dio_32.h246 #define ioremap_nocache(X,Y) ioremap((X),(Y)) argument
247 #define ioremap_wc(X,Y) ioremap((X),(Y)) argument
250 #define ioread8(X) readb(X) argument
251 #define ioread16(X) readw(X) argument
252 #define ioread32(X) readl(X) argument
253 #define iowrite8(val,X) writeb(val,X) argument
254 #define iowrite16(val,X) writew(val,X) argument
255 #define iowrite32(val,X) writel(val,X) argument
/arch/alpha/include/asm/
Dsfp-machine.h32 #define _FP_MUL_MEAT_S(R,X,Y) \ argument
33 _FP_MUL_MEAT_1_imm(_FP_WFRACBITS_S,R,X,Y)
34 #define _FP_MUL_MEAT_D(R,X,Y) \ argument
35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
36 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument
37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm)
39 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) argument
40 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv(D,R,X,Y) argument
41 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv(Q,R,X,Y) argument
55 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument
[all …]
/arch/s390/include/asm/
Dsfp-machine.h34 #define _FP_MUL_MEAT_S(R,X,Y) \ argument
35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
36 #define _FP_MUL_MEAT_D(R,X,Y) \ argument
37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
38 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument
39 _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm)
41 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) argument
42 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument
43 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y) argument
58 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument
[all …]
/arch/powerpc/include/asm/
Dsfp-machine.h82 #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) argument
83 #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) argument
85 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv_norm(S,R,X,Y) argument
86 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument
144 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument
147 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
149 R##_s = X##_s; \
150 _FP_FRAC_COPY_##wc(R,X); \
167 #define __FP_PACK_S(val,X) \ argument
168 ({ int __exc = _FP_PACK_CANONICAL(S,1,X); \
[all …]
/arch/um/include/shared/
Das-layout.h25 #define _UML_AC(X, Y) (Y)
27 #define __UML_AC(X, Y) (X(Y)) argument
28 #define _UML_AC(X, Y) __UML_AC(X, Y) argument
/arch/mips/mti-malta/
Dmalta-int.c373 { GIC_EXT_INTR(0), X, X, X, X, 0 },
374 { GIC_EXT_INTR(1), X, X, X, X, 0 },
375 { GIC_EXT_INTR(2), X, X, X, X, 0 },
383 { GIC_EXT_INTR(10), X, X, X, X, 0 },
384 { GIC_EXT_INTR(11), X, X, X, X, 0 },
388 { GIC_EXT_INTR(15), X, X, X, X, 0 },
423 if (gic_intr_map[i].ipiflag && (gic_intr_map[i].cpunum != X)) in fill_ipi_map()
/arch/arm/mach-davinci/include/mach/
Dgpio.h43 #define GPIO(X) (X) /* 0 <= X <= 70 */ argument
44 #define GPIOV18(X) (X) /* 1.8V i/o; 0 <= X <= 53 */ argument
45 #define GPIOV33(X) ((X)+54) /* 3.3V i/o; 0 <= X <= 17 */ argument

1234