• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *  	Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *	Populate cpu cache entries in sysfs for cpu cache info
14  */
15 
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
25 #include <asm/numa.h>
26 #include <asm/cpu.h>
27 
28 static struct ia64_cpu *sysfs_cpus;
29 
arch_fix_phys_package_id(int num,u32 slot)30 void arch_fix_phys_package_id(int num, u32 slot)
31 {
32 #ifdef CONFIG_SMP
33 	if (cpu_data(num)->socket_id == -1)
34 		cpu_data(num)->socket_id = slot;
35 #endif
36 }
37 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
38 
39 
40 #ifdef CONFIG_HOTPLUG_CPU
arch_register_cpu(int num)41 int __ref arch_register_cpu(int num)
42 {
43 #ifdef CONFIG_ACPI
44 	/*
45 	 * If CPEI can be re-targetted or if this is not
46 	 * CPEI target, then it is hotpluggable
47 	 */
48 	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49 		sysfs_cpus[num].cpu.hotpluggable = 1;
50 	map_cpu_to_node(num, node_cpuid[num].nid);
51 #endif
52 	return register_cpu(&sysfs_cpus[num].cpu, num);
53 }
54 EXPORT_SYMBOL(arch_register_cpu);
55 
arch_unregister_cpu(int num)56 void __ref arch_unregister_cpu(int num)
57 {
58 	unregister_cpu(&sysfs_cpus[num].cpu);
59 #ifdef CONFIG_ACPI
60 	unmap_cpu_from_node(num, cpu_to_node(num));
61 #endif
62 }
63 EXPORT_SYMBOL(arch_unregister_cpu);
64 #else
arch_register_cpu(int num)65 static int __init arch_register_cpu(int num)
66 {
67 	return register_cpu(&sysfs_cpus[num].cpu, num);
68 }
69 #endif /*CONFIG_HOTPLUG_CPU*/
70 
71 
topology_init(void)72 static int __init topology_init(void)
73 {
74 	int i, err = 0;
75 
76 #ifdef CONFIG_NUMA
77 	/*
78 	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
79 	 */
80 	for_each_online_node(i) {
81 		if ((err = register_one_node(i)))
82 			goto out;
83 	}
84 #endif
85 
86 	sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
87 	if (!sysfs_cpus)
88 		panic("kzalloc in topology_init failed - NR_CPUS too big?");
89 
90 	for_each_present_cpu(i) {
91 		if((err = arch_register_cpu(i)))
92 			goto out;
93 	}
94 out:
95 	return err;
96 }
97 
98 subsys_initcall(topology_init);
99 
100 
101 /*
102  * Export cpu cache information through sysfs
103  */
104 
105 /*
106  *  A bunch of string array to get pretty printing
107  */
108 static const char *cache_types[] = {
109 	"",			/* not used */
110 	"Instruction",
111 	"Data",
112 	"Unified"	/* unified */
113 };
114 
115 static const char *cache_mattrib[]={
116 	"WriteThrough",
117 	"WriteBack",
118 	"",		/* reserved */
119 	""		/* reserved */
120 };
121 
122 struct cache_info {
123 	pal_cache_config_info_t	cci;
124 	cpumask_t shared_cpu_map;
125 	int level;
126 	int type;
127 	struct kobject kobj;
128 };
129 
130 struct cpu_cache_info {
131 	struct cache_info *cache_leaves;
132 	int	num_cache_leaves;
133 	struct kobject kobj;
134 };
135 
136 static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS] __cpuinitdata;
137 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
138 
139 #ifdef CONFIG_SMP
cache_shared_cpu_map_setup(unsigned int cpu,struct cache_info * this_leaf)140 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
141 		struct cache_info * this_leaf)
142 {
143 	pal_cache_shared_info_t	csi;
144 	int num_shared, i = 0;
145 	unsigned int j;
146 
147 	if (cpu_data(cpu)->threads_per_core <= 1 &&
148 		cpu_data(cpu)->cores_per_socket <= 1) {
149 		cpu_set(cpu, this_leaf->shared_cpu_map);
150 		return;
151 	}
152 
153 	if (ia64_pal_cache_shared_info(this_leaf->level,
154 					this_leaf->type,
155 					0,
156 					&csi) != PAL_STATUS_SUCCESS)
157 		return;
158 
159 	num_shared = (int) csi.num_shared;
160 	do {
161 		for_each_possible_cpu(j)
162 			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
163 				&& cpu_data(j)->core_id == csi.log1_cid
164 				&& cpu_data(j)->thread_id == csi.log1_tid)
165 				cpu_set(j, this_leaf->shared_cpu_map);
166 
167 		i++;
168 	} while (i < num_shared &&
169 		ia64_pal_cache_shared_info(this_leaf->level,
170 				this_leaf->type,
171 				i,
172 				&csi) == PAL_STATUS_SUCCESS);
173 }
174 #else
cache_shared_cpu_map_setup(unsigned int cpu,struct cache_info * this_leaf)175 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
176 		struct cache_info * this_leaf)
177 {
178 	cpu_set(cpu, this_leaf->shared_cpu_map);
179 	return;
180 }
181 #endif
182 
show_coherency_line_size(struct cache_info * this_leaf,char * buf)183 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
184 					char *buf)
185 {
186 	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
187 }
188 
show_ways_of_associativity(struct cache_info * this_leaf,char * buf)189 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
190 					char *buf)
191 {
192 	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
193 }
194 
show_attributes(struct cache_info * this_leaf,char * buf)195 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
196 {
197 	return sprintf(buf,
198 			"%s\n",
199 			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
200 }
201 
show_size(struct cache_info * this_leaf,char * buf)202 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
203 {
204 	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
205 }
206 
show_number_of_sets(struct cache_info * this_leaf,char * buf)207 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
208 {
209 	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
210 	number_of_sets /= this_leaf->cci.pcci_assoc;
211 	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
212 
213 	return sprintf(buf, "%u\n", number_of_sets);
214 }
215 
show_shared_cpu_map(struct cache_info * this_leaf,char * buf)216 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
217 {
218 	ssize_t	len;
219 	cpumask_t shared_cpu_map;
220 
221 	cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
222 	len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
223 	len += sprintf(buf+len, "\n");
224 	return len;
225 }
226 
show_type(struct cache_info * this_leaf,char * buf)227 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
228 {
229 	int type = this_leaf->type + this_leaf->cci.pcci_unified;
230 	return sprintf(buf, "%s\n", cache_types[type]);
231 }
232 
show_level(struct cache_info * this_leaf,char * buf)233 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
234 {
235 	return sprintf(buf, "%u\n", this_leaf->level);
236 }
237 
238 struct cache_attr {
239 	struct attribute attr;
240 	ssize_t (*show)(struct cache_info *, char *);
241 	ssize_t (*store)(struct cache_info *, const char *, size_t count);
242 };
243 
244 #ifdef define_one_ro
245 	#undef define_one_ro
246 #endif
247 #define define_one_ro(_name) \
248 	static struct cache_attr _name = \
249 __ATTR(_name, 0444, show_##_name, NULL)
250 
251 define_one_ro(level);
252 define_one_ro(type);
253 define_one_ro(coherency_line_size);
254 define_one_ro(ways_of_associativity);
255 define_one_ro(size);
256 define_one_ro(number_of_sets);
257 define_one_ro(shared_cpu_map);
258 define_one_ro(attributes);
259 
260 static struct attribute * cache_default_attrs[] = {
261 	&type.attr,
262 	&level.attr,
263 	&coherency_line_size.attr,
264 	&ways_of_associativity.attr,
265 	&attributes.attr,
266 	&size.attr,
267 	&number_of_sets.attr,
268 	&shared_cpu_map.attr,
269 	NULL
270 };
271 
272 #define to_object(k) container_of(k, struct cache_info, kobj)
273 #define to_attr(a) container_of(a, struct cache_attr, attr)
274 
cache_show(struct kobject * kobj,struct attribute * attr,char * buf)275 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
276 {
277 	struct cache_attr *fattr = to_attr(attr);
278 	struct cache_info *this_leaf = to_object(kobj);
279 	ssize_t ret;
280 
281 	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
282 	return ret;
283 }
284 
285 static struct sysfs_ops cache_sysfs_ops = {
286 	.show   = cache_show
287 };
288 
289 static struct kobj_type cache_ktype = {
290 	.sysfs_ops	= &cache_sysfs_ops,
291 	.default_attrs	= cache_default_attrs,
292 };
293 
294 static struct kobj_type cache_ktype_percpu_entry = {
295 	.sysfs_ops	= &cache_sysfs_ops,
296 };
297 
cpu_cache_sysfs_exit(unsigned int cpu)298 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
299 {
300 	kfree(all_cpu_cache_info[cpu].cache_leaves);
301 	all_cpu_cache_info[cpu].cache_leaves = NULL;
302 	all_cpu_cache_info[cpu].num_cache_leaves = 0;
303 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
304 	return;
305 }
306 
cpu_cache_sysfs_init(unsigned int cpu)307 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
308 {
309 	u64 i, levels, unique_caches;
310 	pal_cache_config_info_t cci;
311 	int j;
312 	s64 status;
313 	struct cache_info *this_cache;
314 	int num_cache_leaves = 0;
315 
316 	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
317 		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
318 		return -1;
319 	}
320 
321 	this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
322 			GFP_KERNEL);
323 	if (this_cache == NULL)
324 		return -ENOMEM;
325 
326 	for (i=0; i < levels; i++) {
327 		for (j=2; j >0 ; j--) {
328 			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
329 					PAL_STATUS_SUCCESS)
330 				continue;
331 
332 			this_cache[num_cache_leaves].cci = cci;
333 			this_cache[num_cache_leaves].level = i + 1;
334 			this_cache[num_cache_leaves].type = j;
335 
336 			cache_shared_cpu_map_setup(cpu,
337 					&this_cache[num_cache_leaves]);
338 			num_cache_leaves ++;
339 		}
340 	}
341 
342 	all_cpu_cache_info[cpu].cache_leaves = this_cache;
343 	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
344 
345 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
346 
347 	return 0;
348 }
349 
350 /* Add cache interface for CPU device */
cache_add_dev(struct sys_device * sys_dev)351 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
352 {
353 	unsigned int cpu = sys_dev->id;
354 	unsigned long i, j;
355 	struct cache_info *this_object;
356 	int retval = 0;
357 	cpumask_t oldmask;
358 
359 	if (all_cpu_cache_info[cpu].kobj.parent)
360 		return 0;
361 
362 	oldmask = current->cpus_allowed;
363 	retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
364 	if (unlikely(retval))
365 		return retval;
366 
367 	retval = cpu_cache_sysfs_init(cpu);
368 	set_cpus_allowed(current, oldmask);
369 	if (unlikely(retval < 0))
370 		return retval;
371 
372 	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
373 				      &cache_ktype_percpu_entry, &sys_dev->kobj,
374 				      "%s", "cache");
375 
376 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
377 		this_object = LEAF_KOBJECT_PTR(cpu,i);
378 		retval = kobject_init_and_add(&(this_object->kobj),
379 					      &cache_ktype,
380 					      &all_cpu_cache_info[cpu].kobj,
381 					      "index%1lu", i);
382 		if (unlikely(retval)) {
383 			for (j = 0; j < i; j++) {
384 				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
385 			}
386 			kobject_put(&all_cpu_cache_info[cpu].kobj);
387 			cpu_cache_sysfs_exit(cpu);
388 			break;
389 		}
390 		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
391 	}
392 	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
393 	return retval;
394 }
395 
396 /* Remove cache interface for CPU device */
cache_remove_dev(struct sys_device * sys_dev)397 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
398 {
399 	unsigned int cpu = sys_dev->id;
400 	unsigned long i;
401 
402 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
403 		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
404 
405 	if (all_cpu_cache_info[cpu].kobj.parent) {
406 		kobject_put(&all_cpu_cache_info[cpu].kobj);
407 		memset(&all_cpu_cache_info[cpu].kobj,
408 			0,
409 			sizeof(struct kobject));
410 	}
411 
412 	cpu_cache_sysfs_exit(cpu);
413 
414 	return 0;
415 }
416 
417 /*
418  * When a cpu is hot-plugged, do a check and initiate
419  * cache kobject if necessary
420  */
cache_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)421 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
422 		unsigned long action, void *hcpu)
423 {
424 	unsigned int cpu = (unsigned long)hcpu;
425 	struct sys_device *sys_dev;
426 
427 	sys_dev = get_cpu_sysdev(cpu);
428 	switch (action) {
429 	case CPU_ONLINE:
430 	case CPU_ONLINE_FROZEN:
431 		cache_add_dev(sys_dev);
432 		break;
433 	case CPU_DEAD:
434 	case CPU_DEAD_FROZEN:
435 		cache_remove_dev(sys_dev);
436 		break;
437 	}
438 	return NOTIFY_OK;
439 }
440 
441 static struct notifier_block __cpuinitdata cache_cpu_notifier =
442 {
443 	.notifier_call = cache_cpu_callback
444 };
445 
cache_sysfs_init(void)446 static int __init cache_sysfs_init(void)
447 {
448 	int i;
449 
450 	for_each_online_cpu(i) {
451 		struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
452 		cache_add_dev(sys_dev);
453 	}
454 
455 	register_hotcpu_notifier(&cache_cpu_notifier);
456 
457 	return 0;
458 }
459 
460 device_initcall(cache_sysfs_init);
461 
462