1 /*
2 Written 1998-2000 by Donald Becker.
3
4 This software may be used and distributed according to the terms of
5 the GNU General Public License (GPL), incorporated herein by reference.
6 Drivers based on or derived from this code fall under the GPL and must
7 retain the authorship, copyright and license notice. This file is not
8 a complete program and may only be used when the entire operating
9 system is licensed under the GPL.
10
11 The author may be reached as becker@scyld.com, or C/O
12 Scyld Computing Corporation
13 410 Severn Ave., Suite 210
14 Annapolis MD 21403
15
16 Support information and updates available at
17 http://www.scyld.com/network/pci-skeleton.html
18
19 Linux kernel updates:
20
21 Version 2.51, Nov 17, 2001 (jgarzik):
22 - Add ethtool support
23 - Replace some MII-related magic numbers with constants
24
25 */
26
27 #define DRV_NAME "fealnx"
28 #define DRV_VERSION "2.52"
29 #define DRV_RELDATE "Sep-11-2006"
30
31 static int debug; /* 1-> print debug message */
32 static int max_interrupt_work = 20;
33
34 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
35 static int multicast_filter_limit = 32;
36
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
38 /* Setting to > 1518 effectively disables this feature. */
39 static int rx_copybreak;
40
41 /* Used to pass the media type, etc. */
42 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
43 /* interoperability. */
44 /* The media type is usually passed in 'options[]'. */
45 #define MAX_UNITS 8 /* More are supported, limit only on options */
46 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
47 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
48
49 /* Operational parameters that are set at compile time. */
50 /* Keep the ring sizes a power of two for compile efficiency. */
51 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask. */
52 /* Making the Tx ring too large decreases the effectiveness of channel */
53 /* bonding and packet priority. */
54 /* There are no ill effects from too-large receive rings. */
55 // 88-12-9 modify,
56 // #define TX_RING_SIZE 16
57 // #define RX_RING_SIZE 32
58 #define TX_RING_SIZE 6
59 #define RX_RING_SIZE 12
60 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct fealnx_desc)
61 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct fealnx_desc)
62
63 /* Operational parameters that usually are not changed. */
64 /* Time in jiffies before concluding the transmitter is hung. */
65 #define TX_TIMEOUT (2*HZ)
66
67 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */
68
69
70 /* Include files, designed to support most kernel versions 2.0.0 and later. */
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/string.h>
74 #include <linux/timer.h>
75 #include <linux/errno.h>
76 #include <linux/ioport.h>
77 #include <linux/slab.h>
78 #include <linux/interrupt.h>
79 #include <linux/pci.h>
80 #include <linux/netdevice.h>
81 #include <linux/etherdevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/init.h>
84 #include <linux/mii.h>
85 #include <linux/ethtool.h>
86 #include <linux/crc32.h>
87 #include <linux/delay.h>
88 #include <linux/bitops.h>
89
90 #include <asm/processor.h> /* Processor type for cache alignment. */
91 #include <asm/io.h>
92 #include <asm/uaccess.h>
93 #include <asm/byteorder.h>
94
95 /* These identify the driver base version and may not be removed. */
96 static char version[] =
97 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "\n";
98
99
100 /* This driver was written to use PCI memory space, however some x86 systems
101 work only with I/O space accesses. */
102 #ifndef __alpha__
103 #define USE_IO_OPS
104 #endif
105
106 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
107 /* This is only in the support-all-kernels source code. */
108
109 #define RUN_AT(x) (jiffies + (x))
110
111 MODULE_AUTHOR("Myson or whoever");
112 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
113 MODULE_LICENSE("GPL");
114 module_param(max_interrupt_work, int, 0);
115 module_param(debug, int, 0);
116 module_param(rx_copybreak, int, 0);
117 module_param(multicast_filter_limit, int, 0);
118 module_param_array(options, int, NULL, 0);
119 module_param_array(full_duplex, int, NULL, 0);
120 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
121 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
122 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
123 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
124 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
125 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
126
127 enum {
128 MIN_REGION_SIZE = 136,
129 };
130
131 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
132 enum chip_capability_flags {
133 HAS_MII_XCVR,
134 HAS_CHIP_XCVR,
135 };
136
137 /* 89/6/13 add, */
138 /* for different PHY */
139 enum phy_type_flags {
140 MysonPHY = 1,
141 AhdocPHY = 2,
142 SeeqPHY = 3,
143 MarvellPHY = 4,
144 Myson981 = 5,
145 LevelOnePHY = 6,
146 OtherPHY = 10,
147 };
148
149 struct chip_info {
150 char *chip_name;
151 int flags;
152 };
153
154 static const struct chip_info skel_netdrv_tbl[] __devinitdata = {
155 { "100/10M Ethernet PCI Adapter", HAS_MII_XCVR },
156 { "100/10M Ethernet PCI Adapter", HAS_CHIP_XCVR },
157 { "1000/100/10M Ethernet PCI Adapter", HAS_MII_XCVR },
158 };
159
160 /* Offsets to the Command and Status Registers. */
161 enum fealnx_offsets {
162 PAR0 = 0x0, /* physical address 0-3 */
163 PAR1 = 0x04, /* physical address 4-5 */
164 MAR0 = 0x08, /* multicast address 0-3 */
165 MAR1 = 0x0C, /* multicast address 4-7 */
166 FAR0 = 0x10, /* flow-control address 0-3 */
167 FAR1 = 0x14, /* flow-control address 4-5 */
168 TCRRCR = 0x18, /* receive & transmit configuration */
169 BCR = 0x1C, /* bus command */
170 TXPDR = 0x20, /* transmit polling demand */
171 RXPDR = 0x24, /* receive polling demand */
172 RXCWP = 0x28, /* receive current word pointer */
173 TXLBA = 0x2C, /* transmit list base address */
174 RXLBA = 0x30, /* receive list base address */
175 ISR = 0x34, /* interrupt status */
176 IMR = 0x38, /* interrupt mask */
177 FTH = 0x3C, /* flow control high/low threshold */
178 MANAGEMENT = 0x40, /* bootrom/eeprom and mii management */
179 TALLY = 0x44, /* tally counters for crc and mpa */
180 TSR = 0x48, /* tally counter for transmit status */
181 BMCRSR = 0x4c, /* basic mode control and status */
182 PHYIDENTIFIER = 0x50, /* phy identifier */
183 ANARANLPAR = 0x54, /* auto-negotiation advertisement and link
184 partner ability */
185 ANEROCR = 0x58, /* auto-negotiation expansion and pci conf. */
186 BPREMRPSR = 0x5c, /* bypass & receive error mask and phy status */
187 };
188
189 /* Bits in the interrupt status/enable registers. */
190 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
191 enum intr_status_bits {
192 RFCON = 0x00020000, /* receive flow control xon packet */
193 RFCOFF = 0x00010000, /* receive flow control xoff packet */
194 LSCStatus = 0x00008000, /* link status change */
195 ANCStatus = 0x00004000, /* autonegotiation completed */
196 FBE = 0x00002000, /* fatal bus error */
197 FBEMask = 0x00001800, /* mask bit12-11 */
198 ParityErr = 0x00000000, /* parity error */
199 TargetErr = 0x00001000, /* target abort */
200 MasterErr = 0x00000800, /* master error */
201 TUNF = 0x00000400, /* transmit underflow */
202 ROVF = 0x00000200, /* receive overflow */
203 ETI = 0x00000100, /* transmit early int */
204 ERI = 0x00000080, /* receive early int */
205 CNTOVF = 0x00000040, /* counter overflow */
206 RBU = 0x00000020, /* receive buffer unavailable */
207 TBU = 0x00000010, /* transmit buffer unavilable */
208 TI = 0x00000008, /* transmit interrupt */
209 RI = 0x00000004, /* receive interrupt */
210 RxErr = 0x00000002, /* receive error */
211 };
212
213 /* Bits in the NetworkConfig register, W for writing, R for reading */
214 /* FIXME: some names are invented by me. Marked with (name?) */
215 /* If you have docs and know bit names, please fix 'em */
216 enum rx_mode_bits {
217 CR_W_ENH = 0x02000000, /* enhanced mode (name?) */
218 CR_W_FD = 0x00100000, /* full duplex */
219 CR_W_PS10 = 0x00080000, /* 10 mbit */
220 CR_W_TXEN = 0x00040000, /* tx enable (name?) */
221 CR_W_PS1000 = 0x00010000, /* 1000 mbit */
222 /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
223 CR_W_RXMODEMASK = 0x000000e0,
224 CR_W_PROM = 0x00000080, /* promiscuous mode */
225 CR_W_AB = 0x00000040, /* accept broadcast */
226 CR_W_AM = 0x00000020, /* accept mutlicast */
227 CR_W_ARP = 0x00000008, /* receive runt pkt */
228 CR_W_ALP = 0x00000004, /* receive long pkt */
229 CR_W_SEP = 0x00000002, /* receive error pkt */
230 CR_W_RXEN = 0x00000001, /* rx enable (unicast?) (name?) */
231
232 CR_R_TXSTOP = 0x04000000, /* tx stopped (name?) */
233 CR_R_FD = 0x00100000, /* full duplex detected */
234 CR_R_PS10 = 0x00080000, /* 10 mbit detected */
235 CR_R_RXSTOP = 0x00008000, /* rx stopped (name?) */
236 };
237
238 /* The Tulip Rx and Tx buffer descriptors. */
239 struct fealnx_desc {
240 s32 status;
241 s32 control;
242 u32 buffer;
243 u32 next_desc;
244 struct fealnx_desc *next_desc_logical;
245 struct sk_buff *skbuff;
246 u32 reserved1;
247 u32 reserved2;
248 };
249
250 /* Bits in network_desc.status */
251 enum rx_desc_status_bits {
252 RXOWN = 0x80000000, /* own bit */
253 FLNGMASK = 0x0fff0000, /* frame length */
254 FLNGShift = 16,
255 MARSTATUS = 0x00004000, /* multicast address received */
256 BARSTATUS = 0x00002000, /* broadcast address received */
257 PHYSTATUS = 0x00001000, /* physical address received */
258 RXFSD = 0x00000800, /* first descriptor */
259 RXLSD = 0x00000400, /* last descriptor */
260 ErrorSummary = 0x80, /* error summary */
261 RUNT = 0x40, /* runt packet received */
262 LONG = 0x20, /* long packet received */
263 FAE = 0x10, /* frame align error */
264 CRC = 0x08, /* crc error */
265 RXER = 0x04, /* receive error */
266 };
267
268 enum rx_desc_control_bits {
269 RXIC = 0x00800000, /* interrupt control */
270 RBSShift = 0,
271 };
272
273 enum tx_desc_status_bits {
274 TXOWN = 0x80000000, /* own bit */
275 JABTO = 0x00004000, /* jabber timeout */
276 CSL = 0x00002000, /* carrier sense lost */
277 LC = 0x00001000, /* late collision */
278 EC = 0x00000800, /* excessive collision */
279 UDF = 0x00000400, /* fifo underflow */
280 DFR = 0x00000200, /* deferred */
281 HF = 0x00000100, /* heartbeat fail */
282 NCRMask = 0x000000ff, /* collision retry count */
283 NCRShift = 0,
284 };
285
286 enum tx_desc_control_bits {
287 TXIC = 0x80000000, /* interrupt control */
288 ETIControl = 0x40000000, /* early transmit interrupt */
289 TXLD = 0x20000000, /* last descriptor */
290 TXFD = 0x10000000, /* first descriptor */
291 CRCEnable = 0x08000000, /* crc control */
292 PADEnable = 0x04000000, /* padding control */
293 RetryTxLC = 0x02000000, /* retry late collision */
294 PKTSMask = 0x3ff800, /* packet size bit21-11 */
295 PKTSShift = 11,
296 TBSMask = 0x000007ff, /* transmit buffer bit 10-0 */
297 TBSShift = 0,
298 };
299
300 /* BootROM/EEPROM/MII Management Register */
301 #define MASK_MIIR_MII_READ 0x00000000
302 #define MASK_MIIR_MII_WRITE 0x00000008
303 #define MASK_MIIR_MII_MDO 0x00000004
304 #define MASK_MIIR_MII_MDI 0x00000002
305 #define MASK_MIIR_MII_MDC 0x00000001
306
307 /* ST+OP+PHYAD+REGAD+TA */
308 #define OP_READ 0x6000 /* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
309 #define OP_WRITE 0x5002 /* ST:01+OP:01+PHYAD+REGAD+TA:10 */
310
311 /* ------------------------------------------------------------------------- */
312 /* Constants for Myson PHY */
313 /* ------------------------------------------------------------------------- */
314 #define MysonPHYID 0xd0000302
315 /* 89-7-27 add, (begin) */
316 #define MysonPHYID0 0x0302
317 #define StatusRegister 18
318 #define SPEED100 0x0400 // bit10
319 #define FULLMODE 0x0800 // bit11
320 /* 89-7-27 add, (end) */
321
322 /* ------------------------------------------------------------------------- */
323 /* Constants for Seeq 80225 PHY */
324 /* ------------------------------------------------------------------------- */
325 #define SeeqPHYID0 0x0016
326
327 #define MIIRegister18 18
328 #define SPD_DET_100 0x80
329 #define DPLX_DET_FULL 0x40
330
331 /* ------------------------------------------------------------------------- */
332 /* Constants for Ahdoc 101 PHY */
333 /* ------------------------------------------------------------------------- */
334 #define AhdocPHYID0 0x0022
335
336 #define DiagnosticReg 18
337 #define DPLX_FULL 0x0800
338 #define Speed_100 0x0400
339
340 /* 89/6/13 add, */
341 /* -------------------------------------------------------------------------- */
342 /* Constants */
343 /* -------------------------------------------------------------------------- */
344 #define MarvellPHYID0 0x0141
345 #define LevelOnePHYID0 0x0013
346
347 #define MII1000BaseTControlReg 9
348 #define MII1000BaseTStatusReg 10
349 #define SpecificReg 17
350
351 /* for 1000BaseT Control Register */
352 #define PHYAbletoPerform1000FullDuplex 0x0200
353 #define PHYAbletoPerform1000HalfDuplex 0x0100
354 #define PHY1000AbilityMask 0x300
355
356 // for phy specific status register, marvell phy.
357 #define SpeedMask 0x0c000
358 #define Speed_1000M 0x08000
359 #define Speed_100M 0x4000
360 #define Speed_10M 0
361 #define Full_Duplex 0x2000
362
363 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
364 #define LXT1000_100M 0x08000
365 #define LXT1000_1000M 0x0c000
366 #define LXT1000_Full 0x200
367 // 89/12/29 add, for phy specific status register, levelone phy, (end)
368
369 /* for 3-in-1 case, BMCRSR register */
370 #define LinkIsUp2 0x00040000
371
372 /* for PHY */
373 #define LinkIsUp 0x0004
374
375
376 struct netdev_private {
377 /* Descriptor rings first for alignment. */
378 struct fealnx_desc *rx_ring;
379 struct fealnx_desc *tx_ring;
380
381 dma_addr_t rx_ring_dma;
382 dma_addr_t tx_ring_dma;
383
384 spinlock_t lock;
385
386 struct net_device_stats stats;
387
388 /* Media monitoring timer. */
389 struct timer_list timer;
390
391 /* Reset timer */
392 struct timer_list reset_timer;
393 int reset_timer_armed;
394 unsigned long crvalue_sv;
395 unsigned long imrvalue_sv;
396
397 /* Frequently used values: keep some adjacent for cache effect. */
398 int flags;
399 struct pci_dev *pci_dev;
400 unsigned long crvalue;
401 unsigned long bcrvalue;
402 unsigned long imrvalue;
403 struct fealnx_desc *cur_rx;
404 struct fealnx_desc *lack_rxbuf;
405 int really_rx_count;
406 struct fealnx_desc *cur_tx;
407 struct fealnx_desc *cur_tx_copy;
408 int really_tx_count;
409 int free_tx_count;
410 unsigned int rx_buf_sz; /* Based on MTU+slack. */
411
412 /* These values are keep track of the transceiver/media in use. */
413 unsigned int linkok;
414 unsigned int line_speed;
415 unsigned int duplexmode;
416 unsigned int default_port:4; /* Last dev->if_port value. */
417 unsigned int PHYType;
418
419 /* MII transceiver section. */
420 int mii_cnt; /* MII device addresses. */
421 unsigned char phys[2]; /* MII device addresses. */
422 struct mii_if_info mii;
423 void __iomem *mem;
424 };
425
426
427 static int mdio_read(struct net_device *dev, int phy_id, int location);
428 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
429 static int netdev_open(struct net_device *dev);
430 static void getlinktype(struct net_device *dev);
431 static void getlinkstatus(struct net_device *dev);
432 static void netdev_timer(unsigned long data);
433 static void reset_timer(unsigned long data);
434 static void fealnx_tx_timeout(struct net_device *dev);
435 static void init_ring(struct net_device *dev);
436 static int start_tx(struct sk_buff *skb, struct net_device *dev);
437 static irqreturn_t intr_handler(int irq, void *dev_instance);
438 static int netdev_rx(struct net_device *dev);
439 static void set_rx_mode(struct net_device *dev);
440 static void __set_rx_mode(struct net_device *dev);
441 static struct net_device_stats *get_stats(struct net_device *dev);
442 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
443 static const struct ethtool_ops netdev_ethtool_ops;
444 static int netdev_close(struct net_device *dev);
445 static void reset_rx_descriptors(struct net_device *dev);
446 static void reset_tx_descriptors(struct net_device *dev);
447
stop_nic_rx(void __iomem * ioaddr,long crvalue)448 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
449 {
450 int delay = 0x1000;
451 iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
452 while (--delay) {
453 if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
454 break;
455 }
456 }
457
458
stop_nic_rxtx(void __iomem * ioaddr,long crvalue)459 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
460 {
461 int delay = 0x1000;
462 iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
463 while (--delay) {
464 if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
465 == (CR_R_RXSTOP+CR_R_TXSTOP) )
466 break;
467 }
468 }
469
470 static const struct net_device_ops netdev_ops = {
471 .ndo_open = netdev_open,
472 .ndo_stop = netdev_close,
473 .ndo_start_xmit = start_tx,
474 .ndo_get_stats = get_stats,
475 .ndo_set_multicast_list = set_rx_mode,
476 .ndo_do_ioctl = mii_ioctl,
477 .ndo_tx_timeout = fealnx_tx_timeout,
478 .ndo_change_mtu = eth_change_mtu,
479 .ndo_set_mac_address = eth_mac_addr,
480 .ndo_validate_addr = eth_validate_addr,
481 };
482
fealnx_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)483 static int __devinit fealnx_init_one(struct pci_dev *pdev,
484 const struct pci_device_id *ent)
485 {
486 struct netdev_private *np;
487 int i, option, err, irq;
488 static int card_idx = -1;
489 char boardname[12];
490 void __iomem *ioaddr;
491 unsigned long len;
492 unsigned int chip_id = ent->driver_data;
493 struct net_device *dev;
494 void *ring_space;
495 dma_addr_t ring_dma;
496 #ifdef USE_IO_OPS
497 int bar = 0;
498 #else
499 int bar = 1;
500 #endif
501
502 /* when built into the kernel, we only print version if device is found */
503 #ifndef MODULE
504 static int printed_version;
505 if (!printed_version++)
506 printk(version);
507 #endif
508
509 card_idx++;
510 sprintf(boardname, "fealnx%d", card_idx);
511
512 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
513
514 i = pci_enable_device(pdev);
515 if (i) return i;
516 pci_set_master(pdev);
517
518 len = pci_resource_len(pdev, bar);
519 if (len < MIN_REGION_SIZE) {
520 dev_err(&pdev->dev,
521 "region size %ld too small, aborting\n", len);
522 return -ENODEV;
523 }
524
525 i = pci_request_regions(pdev, boardname);
526 if (i)
527 return i;
528
529 irq = pdev->irq;
530
531 ioaddr = pci_iomap(pdev, bar, len);
532 if (!ioaddr) {
533 err = -ENOMEM;
534 goto err_out_res;
535 }
536
537 dev = alloc_etherdev(sizeof(struct netdev_private));
538 if (!dev) {
539 err = -ENOMEM;
540 goto err_out_unmap;
541 }
542 SET_NETDEV_DEV(dev, &pdev->dev);
543
544 /* read ethernet id */
545 for (i = 0; i < 6; ++i)
546 dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
547
548 /* Reset the chip to erase previous misconfiguration. */
549 iowrite32(0x00000001, ioaddr + BCR);
550
551 dev->base_addr = (unsigned long)ioaddr;
552 dev->irq = irq;
553
554 /* Make certain the descriptor lists are aligned. */
555 np = netdev_priv(dev);
556 np->mem = ioaddr;
557 spin_lock_init(&np->lock);
558 np->pci_dev = pdev;
559 np->flags = skel_netdrv_tbl[chip_id].flags;
560 pci_set_drvdata(pdev, dev);
561 np->mii.dev = dev;
562 np->mii.mdio_read = mdio_read;
563 np->mii.mdio_write = mdio_write;
564 np->mii.phy_id_mask = 0x1f;
565 np->mii.reg_num_mask = 0x1f;
566
567 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
568 if (!ring_space) {
569 err = -ENOMEM;
570 goto err_out_free_dev;
571 }
572 np->rx_ring = (struct fealnx_desc *)ring_space;
573 np->rx_ring_dma = ring_dma;
574
575 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
576 if (!ring_space) {
577 err = -ENOMEM;
578 goto err_out_free_rx;
579 }
580 np->tx_ring = (struct fealnx_desc *)ring_space;
581 np->tx_ring_dma = ring_dma;
582
583 /* find the connected MII xcvrs */
584 if (np->flags == HAS_MII_XCVR) {
585 int phy, phy_idx = 0;
586
587 for (phy = 1; phy < 32 && phy_idx < 4; phy++) {
588 int mii_status = mdio_read(dev, phy, 1);
589
590 if (mii_status != 0xffff && mii_status != 0x0000) {
591 np->phys[phy_idx++] = phy;
592 dev_info(&pdev->dev,
593 "MII PHY found at address %d, status "
594 "0x%4.4x.\n", phy, mii_status);
595 /* get phy type */
596 {
597 unsigned int data;
598
599 data = mdio_read(dev, np->phys[0], 2);
600 if (data == SeeqPHYID0)
601 np->PHYType = SeeqPHY;
602 else if (data == AhdocPHYID0)
603 np->PHYType = AhdocPHY;
604 else if (data == MarvellPHYID0)
605 np->PHYType = MarvellPHY;
606 else if (data == MysonPHYID0)
607 np->PHYType = Myson981;
608 else if (data == LevelOnePHYID0)
609 np->PHYType = LevelOnePHY;
610 else
611 np->PHYType = OtherPHY;
612 }
613 }
614 }
615
616 np->mii_cnt = phy_idx;
617 if (phy_idx == 0)
618 dev_warn(&pdev->dev,
619 "MII PHY not found -- this device may "
620 "not operate correctly.\n");
621 } else {
622 np->phys[0] = 32;
623 /* 89/6/23 add, (begin) */
624 /* get phy type */
625 if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
626 np->PHYType = MysonPHY;
627 else
628 np->PHYType = OtherPHY;
629 }
630 np->mii.phy_id = np->phys[0];
631
632 if (dev->mem_start)
633 option = dev->mem_start;
634
635 /* The lower four bits are the media type. */
636 if (option > 0) {
637 if (option & 0x200)
638 np->mii.full_duplex = 1;
639 np->default_port = option & 15;
640 }
641
642 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
643 np->mii.full_duplex = full_duplex[card_idx];
644
645 if (np->mii.full_duplex) {
646 dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
647 /* 89/6/13 add, (begin) */
648 // if (np->PHYType==MarvellPHY)
649 if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
650 unsigned int data;
651
652 data = mdio_read(dev, np->phys[0], 9);
653 data = (data & 0xfcff) | 0x0200;
654 mdio_write(dev, np->phys[0], 9, data);
655 }
656 /* 89/6/13 add, (end) */
657 if (np->flags == HAS_MII_XCVR)
658 mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
659 else
660 iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
661 np->mii.force_media = 1;
662 }
663
664 dev->netdev_ops = &netdev_ops;
665 dev->ethtool_ops = &netdev_ethtool_ops;
666 dev->watchdog_timeo = TX_TIMEOUT;
667
668 err = register_netdev(dev);
669 if (err)
670 goto err_out_free_tx;
671
672 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
673 dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
674 dev->dev_addr, irq);
675
676 return 0;
677
678 err_out_free_tx:
679 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
680 err_out_free_rx:
681 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
682 err_out_free_dev:
683 free_netdev(dev);
684 err_out_unmap:
685 pci_iounmap(pdev, ioaddr);
686 err_out_res:
687 pci_release_regions(pdev);
688 return err;
689 }
690
691
fealnx_remove_one(struct pci_dev * pdev)692 static void __devexit fealnx_remove_one(struct pci_dev *pdev)
693 {
694 struct net_device *dev = pci_get_drvdata(pdev);
695
696 if (dev) {
697 struct netdev_private *np = netdev_priv(dev);
698
699 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
700 np->tx_ring_dma);
701 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
702 np->rx_ring_dma);
703 unregister_netdev(dev);
704 pci_iounmap(pdev, np->mem);
705 free_netdev(dev);
706 pci_release_regions(pdev);
707 pci_set_drvdata(pdev, NULL);
708 } else
709 printk(KERN_ERR "fealnx: remove for unknown device\n");
710 }
711
712
m80x_send_cmd_to_phy(void __iomem * miiport,int opcode,int phyad,int regad)713 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
714 {
715 ulong miir;
716 int i;
717 unsigned int mask, data;
718
719 /* enable MII output */
720 miir = (ulong) ioread32(miiport);
721 miir &= 0xfffffff0;
722
723 miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
724
725 /* send 32 1's preamble */
726 for (i = 0; i < 32; i++) {
727 /* low MDC; MDO is already high (miir) */
728 miir &= ~MASK_MIIR_MII_MDC;
729 iowrite32(miir, miiport);
730
731 /* high MDC */
732 miir |= MASK_MIIR_MII_MDC;
733 iowrite32(miir, miiport);
734 }
735
736 /* calculate ST+OP+PHYAD+REGAD+TA */
737 data = opcode | (phyad << 7) | (regad << 2);
738
739 /* sent out */
740 mask = 0x8000;
741 while (mask) {
742 /* low MDC, prepare MDO */
743 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
744 if (mask & data)
745 miir |= MASK_MIIR_MII_MDO;
746
747 iowrite32(miir, miiport);
748 /* high MDC */
749 miir |= MASK_MIIR_MII_MDC;
750 iowrite32(miir, miiport);
751 udelay(30);
752
753 /* next */
754 mask >>= 1;
755 if (mask == 0x2 && opcode == OP_READ)
756 miir &= ~MASK_MIIR_MII_WRITE;
757 }
758 return miir;
759 }
760
761
mdio_read(struct net_device * dev,int phyad,int regad)762 static int mdio_read(struct net_device *dev, int phyad, int regad)
763 {
764 struct netdev_private *np = netdev_priv(dev);
765 void __iomem *miiport = np->mem + MANAGEMENT;
766 ulong miir;
767 unsigned int mask, data;
768
769 miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
770
771 /* read data */
772 mask = 0x8000;
773 data = 0;
774 while (mask) {
775 /* low MDC */
776 miir &= ~MASK_MIIR_MII_MDC;
777 iowrite32(miir, miiport);
778
779 /* read MDI */
780 miir = ioread32(miiport);
781 if (miir & MASK_MIIR_MII_MDI)
782 data |= mask;
783
784 /* high MDC, and wait */
785 miir |= MASK_MIIR_MII_MDC;
786 iowrite32(miir, miiport);
787 udelay(30);
788
789 /* next */
790 mask >>= 1;
791 }
792
793 /* low MDC */
794 miir &= ~MASK_MIIR_MII_MDC;
795 iowrite32(miir, miiport);
796
797 return data & 0xffff;
798 }
799
800
mdio_write(struct net_device * dev,int phyad,int regad,int data)801 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
802 {
803 struct netdev_private *np = netdev_priv(dev);
804 void __iomem *miiport = np->mem + MANAGEMENT;
805 ulong miir;
806 unsigned int mask;
807
808 miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
809
810 /* write data */
811 mask = 0x8000;
812 while (mask) {
813 /* low MDC, prepare MDO */
814 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
815 if (mask & data)
816 miir |= MASK_MIIR_MII_MDO;
817 iowrite32(miir, miiport);
818
819 /* high MDC */
820 miir |= MASK_MIIR_MII_MDC;
821 iowrite32(miir, miiport);
822
823 /* next */
824 mask >>= 1;
825 }
826
827 /* low MDC */
828 miir &= ~MASK_MIIR_MII_MDC;
829 iowrite32(miir, miiport);
830 }
831
832
netdev_open(struct net_device * dev)833 static int netdev_open(struct net_device *dev)
834 {
835 struct netdev_private *np = netdev_priv(dev);
836 void __iomem *ioaddr = np->mem;
837 int i;
838
839 iowrite32(0x00000001, ioaddr + BCR); /* Reset */
840
841 if (request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev))
842 return -EAGAIN;
843
844 for (i = 0; i < 3; i++)
845 iowrite16(((unsigned short*)dev->dev_addr)[i],
846 ioaddr + PAR0 + i*2);
847
848 init_ring(dev);
849
850 iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
851 iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
852
853 /* Initialize other registers. */
854 /* Configure the PCI bus bursts and FIFO thresholds.
855 486: Set 8 longword burst.
856 586: no burst limit.
857 Burst length 5:3
858 0 0 0 1
859 0 0 1 4
860 0 1 0 8
861 0 1 1 16
862 1 0 0 32
863 1 0 1 64
864 1 1 0 128
865 1 1 1 256
866 Wait the specified 50 PCI cycles after a reset by initializing
867 Tx and Rx queues and the address filter list.
868 FIXME (Ueimor): optimistic for alpha + posted writes ? */
869
870 np->bcrvalue = 0x10; /* little-endian, 8 burst length */
871 #ifdef __BIG_ENDIAN
872 np->bcrvalue |= 0x04; /* big-endian */
873 #endif
874
875 #if defined(__i386__) && !defined(MODULE)
876 if (boot_cpu_data.x86 <= 4)
877 np->crvalue = 0xa00;
878 else
879 #endif
880 np->crvalue = 0xe00; /* rx 128 burst length */
881
882
883 // 89/12/29 add,
884 // 90/1/16 modify,
885 // np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
886 np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
887 if (np->pci_dev->device == 0x891) {
888 np->bcrvalue |= 0x200; /* set PROG bit */
889 np->crvalue |= CR_W_ENH; /* set enhanced bit */
890 np->imrvalue |= ETI;
891 }
892 iowrite32(np->bcrvalue, ioaddr + BCR);
893
894 if (dev->if_port == 0)
895 dev->if_port = np->default_port;
896
897 iowrite32(0, ioaddr + RXPDR);
898 // 89/9/1 modify,
899 // np->crvalue = 0x00e40001; /* tx store and forward, tx/rx enable */
900 np->crvalue |= 0x00e40001; /* tx store and forward, tx/rx enable */
901 np->mii.full_duplex = np->mii.force_media;
902 getlinkstatus(dev);
903 if (np->linkok)
904 getlinktype(dev);
905 __set_rx_mode(dev);
906
907 netif_start_queue(dev);
908
909 /* Clear and Enable interrupts by setting the interrupt mask. */
910 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
911 iowrite32(np->imrvalue, ioaddr + IMR);
912
913 if (debug)
914 printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
915
916 /* Set the timer to check for link beat. */
917 init_timer(&np->timer);
918 np->timer.expires = RUN_AT(3 * HZ);
919 np->timer.data = (unsigned long) dev;
920 np->timer.function = &netdev_timer;
921
922 /* timer handler */
923 add_timer(&np->timer);
924
925 init_timer(&np->reset_timer);
926 np->reset_timer.data = (unsigned long) dev;
927 np->reset_timer.function = &reset_timer;
928 np->reset_timer_armed = 0;
929
930 return 0;
931 }
932
933
getlinkstatus(struct net_device * dev)934 static void getlinkstatus(struct net_device *dev)
935 /* function: Routine will read MII Status Register to get link status. */
936 /* input : dev... pointer to the adapter block. */
937 /* output : none. */
938 {
939 struct netdev_private *np = netdev_priv(dev);
940 unsigned int i, DelayTime = 0x1000;
941
942 np->linkok = 0;
943
944 if (np->PHYType == MysonPHY) {
945 for (i = 0; i < DelayTime; ++i) {
946 if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
947 np->linkok = 1;
948 return;
949 }
950 udelay(100);
951 }
952 } else {
953 for (i = 0; i < DelayTime; ++i) {
954 if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
955 np->linkok = 1;
956 return;
957 }
958 udelay(100);
959 }
960 }
961 }
962
963
getlinktype(struct net_device * dev)964 static void getlinktype(struct net_device *dev)
965 {
966 struct netdev_private *np = netdev_priv(dev);
967
968 if (np->PHYType == MysonPHY) { /* 3-in-1 case */
969 if (ioread32(np->mem + TCRRCR) & CR_R_FD)
970 np->duplexmode = 2; /* full duplex */
971 else
972 np->duplexmode = 1; /* half duplex */
973 if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
974 np->line_speed = 1; /* 10M */
975 else
976 np->line_speed = 2; /* 100M */
977 } else {
978 if (np->PHYType == SeeqPHY) { /* this PHY is SEEQ 80225 */
979 unsigned int data;
980
981 data = mdio_read(dev, np->phys[0], MIIRegister18);
982 if (data & SPD_DET_100)
983 np->line_speed = 2; /* 100M */
984 else
985 np->line_speed = 1; /* 10M */
986 if (data & DPLX_DET_FULL)
987 np->duplexmode = 2; /* full duplex mode */
988 else
989 np->duplexmode = 1; /* half duplex mode */
990 } else if (np->PHYType == AhdocPHY) {
991 unsigned int data;
992
993 data = mdio_read(dev, np->phys[0], DiagnosticReg);
994 if (data & Speed_100)
995 np->line_speed = 2; /* 100M */
996 else
997 np->line_speed = 1; /* 10M */
998 if (data & DPLX_FULL)
999 np->duplexmode = 2; /* full duplex mode */
1000 else
1001 np->duplexmode = 1; /* half duplex mode */
1002 }
1003 /* 89/6/13 add, (begin) */
1004 else if (np->PHYType == MarvellPHY) {
1005 unsigned int data;
1006
1007 data = mdio_read(dev, np->phys[0], SpecificReg);
1008 if (data & Full_Duplex)
1009 np->duplexmode = 2; /* full duplex mode */
1010 else
1011 np->duplexmode = 1; /* half duplex mode */
1012 data &= SpeedMask;
1013 if (data == Speed_1000M)
1014 np->line_speed = 3; /* 1000M */
1015 else if (data == Speed_100M)
1016 np->line_speed = 2; /* 100M */
1017 else
1018 np->line_speed = 1; /* 10M */
1019 }
1020 /* 89/6/13 add, (end) */
1021 /* 89/7/27 add, (begin) */
1022 else if (np->PHYType == Myson981) {
1023 unsigned int data;
1024
1025 data = mdio_read(dev, np->phys[0], StatusRegister);
1026
1027 if (data & SPEED100)
1028 np->line_speed = 2;
1029 else
1030 np->line_speed = 1;
1031
1032 if (data & FULLMODE)
1033 np->duplexmode = 2;
1034 else
1035 np->duplexmode = 1;
1036 }
1037 /* 89/7/27 add, (end) */
1038 /* 89/12/29 add */
1039 else if (np->PHYType == LevelOnePHY) {
1040 unsigned int data;
1041
1042 data = mdio_read(dev, np->phys[0], SpecificReg);
1043 if (data & LXT1000_Full)
1044 np->duplexmode = 2; /* full duplex mode */
1045 else
1046 np->duplexmode = 1; /* half duplex mode */
1047 data &= SpeedMask;
1048 if (data == LXT1000_1000M)
1049 np->line_speed = 3; /* 1000M */
1050 else if (data == LXT1000_100M)
1051 np->line_speed = 2; /* 100M */
1052 else
1053 np->line_speed = 1; /* 10M */
1054 }
1055 np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1056 if (np->line_speed == 1)
1057 np->crvalue |= CR_W_PS10;
1058 else if (np->line_speed == 3)
1059 np->crvalue |= CR_W_PS1000;
1060 if (np->duplexmode == 2)
1061 np->crvalue |= CR_W_FD;
1062 }
1063 }
1064
1065
1066 /* Take lock before calling this */
allocate_rx_buffers(struct net_device * dev)1067 static void allocate_rx_buffers(struct net_device *dev)
1068 {
1069 struct netdev_private *np = netdev_priv(dev);
1070
1071 /* allocate skb for rx buffers */
1072 while (np->really_rx_count != RX_RING_SIZE) {
1073 struct sk_buff *skb;
1074
1075 skb = dev_alloc_skb(np->rx_buf_sz);
1076 if (skb == NULL)
1077 break; /* Better luck next round. */
1078
1079 while (np->lack_rxbuf->skbuff)
1080 np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1081
1082 skb->dev = dev; /* Mark as being used by this device. */
1083 np->lack_rxbuf->skbuff = skb;
1084 np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data,
1085 np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1086 np->lack_rxbuf->status = RXOWN;
1087 ++np->really_rx_count;
1088 }
1089 }
1090
1091
netdev_timer(unsigned long data)1092 static void netdev_timer(unsigned long data)
1093 {
1094 struct net_device *dev = (struct net_device *) data;
1095 struct netdev_private *np = netdev_priv(dev);
1096 void __iomem *ioaddr = np->mem;
1097 int old_crvalue = np->crvalue;
1098 unsigned int old_linkok = np->linkok;
1099 unsigned long flags;
1100
1101 if (debug)
1102 printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1103 "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1104 ioread32(ioaddr + TCRRCR));
1105
1106 spin_lock_irqsave(&np->lock, flags);
1107
1108 if (np->flags == HAS_MII_XCVR) {
1109 getlinkstatus(dev);
1110 if ((old_linkok == 0) && (np->linkok == 1)) { /* we need to detect the media type again */
1111 getlinktype(dev);
1112 if (np->crvalue != old_crvalue) {
1113 stop_nic_rxtx(ioaddr, np->crvalue);
1114 iowrite32(np->crvalue, ioaddr + TCRRCR);
1115 }
1116 }
1117 }
1118
1119 allocate_rx_buffers(dev);
1120
1121 spin_unlock_irqrestore(&np->lock, flags);
1122
1123 np->timer.expires = RUN_AT(10 * HZ);
1124 add_timer(&np->timer);
1125 }
1126
1127
1128 /* Take lock before calling */
1129 /* Reset chip and disable rx, tx and interrupts */
reset_and_disable_rxtx(struct net_device * dev)1130 static void reset_and_disable_rxtx(struct net_device *dev)
1131 {
1132 struct netdev_private *np = netdev_priv(dev);
1133 void __iomem *ioaddr = np->mem;
1134 int delay=51;
1135
1136 /* Reset the chip's Tx and Rx processes. */
1137 stop_nic_rxtx(ioaddr, 0);
1138
1139 /* Disable interrupts by clearing the interrupt mask. */
1140 iowrite32(0, ioaddr + IMR);
1141
1142 /* Reset the chip to erase previous misconfiguration. */
1143 iowrite32(0x00000001, ioaddr + BCR);
1144
1145 /* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1146 We surely wait too long (address+data phase). Who cares? */
1147 while (--delay) {
1148 ioread32(ioaddr + BCR);
1149 rmb();
1150 }
1151 }
1152
1153
1154 /* Take lock before calling */
1155 /* Restore chip after reset */
enable_rxtx(struct net_device * dev)1156 static void enable_rxtx(struct net_device *dev)
1157 {
1158 struct netdev_private *np = netdev_priv(dev);
1159 void __iomem *ioaddr = np->mem;
1160
1161 reset_rx_descriptors(dev);
1162
1163 iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1164 ioaddr + TXLBA);
1165 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1166 ioaddr + RXLBA);
1167
1168 iowrite32(np->bcrvalue, ioaddr + BCR);
1169
1170 iowrite32(0, ioaddr + RXPDR);
1171 __set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1172
1173 /* Clear and Enable interrupts by setting the interrupt mask. */
1174 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1175 iowrite32(np->imrvalue, ioaddr + IMR);
1176
1177 iowrite32(0, ioaddr + TXPDR);
1178 }
1179
1180
reset_timer(unsigned long data)1181 static void reset_timer(unsigned long data)
1182 {
1183 struct net_device *dev = (struct net_device *) data;
1184 struct netdev_private *np = netdev_priv(dev);
1185 unsigned long flags;
1186
1187 printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1188
1189 spin_lock_irqsave(&np->lock, flags);
1190 np->crvalue = np->crvalue_sv;
1191 np->imrvalue = np->imrvalue_sv;
1192
1193 reset_and_disable_rxtx(dev);
1194 /* works for me without this:
1195 reset_tx_descriptors(dev); */
1196 enable_rxtx(dev);
1197 netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1198
1199 np->reset_timer_armed = 0;
1200
1201 spin_unlock_irqrestore(&np->lock, flags);
1202 }
1203
1204
fealnx_tx_timeout(struct net_device * dev)1205 static void fealnx_tx_timeout(struct net_device *dev)
1206 {
1207 struct netdev_private *np = netdev_priv(dev);
1208 void __iomem *ioaddr = np->mem;
1209 unsigned long flags;
1210 int i;
1211
1212 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x,"
1213 " resetting...\n", dev->name, ioread32(ioaddr + ISR));
1214
1215 {
1216 printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring);
1217 for (i = 0; i < RX_RING_SIZE; i++)
1218 printk(" %8.8x", (unsigned int) np->rx_ring[i].status);
1219 printk("\n" KERN_DEBUG " Tx ring %p: ", np->tx_ring);
1220 for (i = 0; i < TX_RING_SIZE; i++)
1221 printk(" %4.4x", np->tx_ring[i].status);
1222 printk("\n");
1223 }
1224
1225 spin_lock_irqsave(&np->lock, flags);
1226
1227 reset_and_disable_rxtx(dev);
1228 reset_tx_descriptors(dev);
1229 enable_rxtx(dev);
1230
1231 spin_unlock_irqrestore(&np->lock, flags);
1232
1233 dev->trans_start = jiffies;
1234 np->stats.tx_errors++;
1235 netif_wake_queue(dev); /* or .._start_.. ?? */
1236 }
1237
1238
1239 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
init_ring(struct net_device * dev)1240 static void init_ring(struct net_device *dev)
1241 {
1242 struct netdev_private *np = netdev_priv(dev);
1243 int i;
1244
1245 /* initialize rx variables */
1246 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1247 np->cur_rx = &np->rx_ring[0];
1248 np->lack_rxbuf = np->rx_ring;
1249 np->really_rx_count = 0;
1250
1251 /* initial rx descriptors. */
1252 for (i = 0; i < RX_RING_SIZE; i++) {
1253 np->rx_ring[i].status = 0;
1254 np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1255 np->rx_ring[i].next_desc = np->rx_ring_dma +
1256 (i + 1)*sizeof(struct fealnx_desc);
1257 np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1258 np->rx_ring[i].skbuff = NULL;
1259 }
1260
1261 /* for the last rx descriptor */
1262 np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1263 np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1264
1265 /* allocate skb for rx buffers */
1266 for (i = 0; i < RX_RING_SIZE; i++) {
1267 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1268
1269 if (skb == NULL) {
1270 np->lack_rxbuf = &np->rx_ring[i];
1271 break;
1272 }
1273
1274 ++np->really_rx_count;
1275 np->rx_ring[i].skbuff = skb;
1276 skb->dev = dev; /* Mark as being used by this device. */
1277 np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data,
1278 np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1279 np->rx_ring[i].status = RXOWN;
1280 np->rx_ring[i].control |= RXIC;
1281 }
1282
1283 /* initialize tx variables */
1284 np->cur_tx = &np->tx_ring[0];
1285 np->cur_tx_copy = &np->tx_ring[0];
1286 np->really_tx_count = 0;
1287 np->free_tx_count = TX_RING_SIZE;
1288
1289 for (i = 0; i < TX_RING_SIZE; i++) {
1290 np->tx_ring[i].status = 0;
1291 /* do we need np->tx_ring[i].control = XXX; ?? */
1292 np->tx_ring[i].next_desc = np->tx_ring_dma +
1293 (i + 1)*sizeof(struct fealnx_desc);
1294 np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1295 np->tx_ring[i].skbuff = NULL;
1296 }
1297
1298 /* for the last tx descriptor */
1299 np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1300 np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1301 }
1302
1303
start_tx(struct sk_buff * skb,struct net_device * dev)1304 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1305 {
1306 struct netdev_private *np = netdev_priv(dev);
1307 unsigned long flags;
1308
1309 spin_lock_irqsave(&np->lock, flags);
1310
1311 np->cur_tx_copy->skbuff = skb;
1312
1313 #define one_buffer
1314 #define BPT 1022
1315 #if defined(one_buffer)
1316 np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1317 skb->len, PCI_DMA_TODEVICE);
1318 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1319 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */
1320 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */
1321 // 89/12/29 add,
1322 if (np->pci_dev->device == 0x891)
1323 np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1324 np->cur_tx_copy->status = TXOWN;
1325 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1326 --np->free_tx_count;
1327 #elif defined(two_buffer)
1328 if (skb->len > BPT) {
1329 struct fealnx_desc *next;
1330
1331 /* for the first descriptor */
1332 np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1333 BPT, PCI_DMA_TODEVICE);
1334 np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1335 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */
1336 np->cur_tx_copy->control |= (BPT << TBSShift); /* buffer size */
1337
1338 /* for the last descriptor */
1339 next = np->cur_tx_copy->next_desc_logical;
1340 next->skbuff = skb;
1341 next->control = TXIC | TXLD | CRCEnable | PADEnable;
1342 next->control |= (skb->len << PKTSShift); /* pkt size */
1343 next->control |= ((skb->len - BPT) << TBSShift); /* buf size */
1344 // 89/12/29 add,
1345 if (np->pci_dev->device == 0x891)
1346 np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1347 next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT,
1348 skb->len - BPT, PCI_DMA_TODEVICE);
1349
1350 next->status = TXOWN;
1351 np->cur_tx_copy->status = TXOWN;
1352
1353 np->cur_tx_copy = next->next_desc_logical;
1354 np->free_tx_count -= 2;
1355 } else {
1356 np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1357 skb->len, PCI_DMA_TODEVICE);
1358 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1359 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */
1360 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */
1361 // 89/12/29 add,
1362 if (np->pci_dev->device == 0x891)
1363 np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1364 np->cur_tx_copy->status = TXOWN;
1365 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1366 --np->free_tx_count;
1367 }
1368 #endif
1369
1370 if (np->free_tx_count < 2)
1371 netif_stop_queue(dev);
1372 ++np->really_tx_count;
1373 iowrite32(0, np->mem + TXPDR);
1374 dev->trans_start = jiffies;
1375
1376 spin_unlock_irqrestore(&np->lock, flags);
1377 return 0;
1378 }
1379
1380
1381 /* Take lock before calling */
1382 /* Chip probably hosed tx ring. Clean up. */
reset_tx_descriptors(struct net_device * dev)1383 static void reset_tx_descriptors(struct net_device *dev)
1384 {
1385 struct netdev_private *np = netdev_priv(dev);
1386 struct fealnx_desc *cur;
1387 int i;
1388
1389 /* initialize tx variables */
1390 np->cur_tx = &np->tx_ring[0];
1391 np->cur_tx_copy = &np->tx_ring[0];
1392 np->really_tx_count = 0;
1393 np->free_tx_count = TX_RING_SIZE;
1394
1395 for (i = 0; i < TX_RING_SIZE; i++) {
1396 cur = &np->tx_ring[i];
1397 if (cur->skbuff) {
1398 pci_unmap_single(np->pci_dev, cur->buffer,
1399 cur->skbuff->len, PCI_DMA_TODEVICE);
1400 dev_kfree_skb_any(cur->skbuff);
1401 cur->skbuff = NULL;
1402 }
1403 cur->status = 0;
1404 cur->control = 0; /* needed? */
1405 /* probably not needed. We do it for purely paranoid reasons */
1406 cur->next_desc = np->tx_ring_dma +
1407 (i + 1)*sizeof(struct fealnx_desc);
1408 cur->next_desc_logical = &np->tx_ring[i + 1];
1409 }
1410 /* for the last tx descriptor */
1411 np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1412 np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1413 }
1414
1415
1416 /* Take lock and stop rx before calling this */
reset_rx_descriptors(struct net_device * dev)1417 static void reset_rx_descriptors(struct net_device *dev)
1418 {
1419 struct netdev_private *np = netdev_priv(dev);
1420 struct fealnx_desc *cur = np->cur_rx;
1421 int i;
1422
1423 allocate_rx_buffers(dev);
1424
1425 for (i = 0; i < RX_RING_SIZE; i++) {
1426 if (cur->skbuff)
1427 cur->status = RXOWN;
1428 cur = cur->next_desc_logical;
1429 }
1430
1431 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1432 np->mem + RXLBA);
1433 }
1434
1435
1436 /* The interrupt handler does all of the Rx thread work and cleans up
1437 after the Tx thread. */
intr_handler(int irq,void * dev_instance)1438 static irqreturn_t intr_handler(int irq, void *dev_instance)
1439 {
1440 struct net_device *dev = (struct net_device *) dev_instance;
1441 struct netdev_private *np = netdev_priv(dev);
1442 void __iomem *ioaddr = np->mem;
1443 long boguscnt = max_interrupt_work;
1444 unsigned int num_tx = 0;
1445 int handled = 0;
1446
1447 spin_lock(&np->lock);
1448
1449 iowrite32(0, ioaddr + IMR);
1450
1451 do {
1452 u32 intr_status = ioread32(ioaddr + ISR);
1453
1454 /* Acknowledge all of the current interrupt sources ASAP. */
1455 iowrite32(intr_status, ioaddr + ISR);
1456
1457 if (debug)
1458 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1459 intr_status);
1460
1461 if (!(intr_status & np->imrvalue))
1462 break;
1463
1464 handled = 1;
1465
1466 // 90/1/16 delete,
1467 //
1468 // if (intr_status & FBE)
1469 // { /* fatal error */
1470 // stop_nic_tx(ioaddr, 0);
1471 // stop_nic_rx(ioaddr, 0);
1472 // break;
1473 // };
1474
1475 if (intr_status & TUNF)
1476 iowrite32(0, ioaddr + TXPDR);
1477
1478 if (intr_status & CNTOVF) {
1479 /* missed pkts */
1480 np->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1481
1482 /* crc error */
1483 np->stats.rx_crc_errors +=
1484 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1485 }
1486
1487 if (intr_status & (RI | RBU)) {
1488 if (intr_status & RI)
1489 netdev_rx(dev);
1490 else {
1491 stop_nic_rx(ioaddr, np->crvalue);
1492 reset_rx_descriptors(dev);
1493 iowrite32(np->crvalue, ioaddr + TCRRCR);
1494 }
1495 }
1496
1497 while (np->really_tx_count) {
1498 long tx_status = np->cur_tx->status;
1499 long tx_control = np->cur_tx->control;
1500
1501 if (!(tx_control & TXLD)) { /* this pkt is combined by two tx descriptors */
1502 struct fealnx_desc *next;
1503
1504 next = np->cur_tx->next_desc_logical;
1505 tx_status = next->status;
1506 tx_control = next->control;
1507 }
1508
1509 if (tx_status & TXOWN)
1510 break;
1511
1512 if (!(np->crvalue & CR_W_ENH)) {
1513 if (tx_status & (CSL | LC | EC | UDF | HF)) {
1514 np->stats.tx_errors++;
1515 if (tx_status & EC)
1516 np->stats.tx_aborted_errors++;
1517 if (tx_status & CSL)
1518 np->stats.tx_carrier_errors++;
1519 if (tx_status & LC)
1520 np->stats.tx_window_errors++;
1521 if (tx_status & UDF)
1522 np->stats.tx_fifo_errors++;
1523 if ((tx_status & HF) && np->mii.full_duplex == 0)
1524 np->stats.tx_heartbeat_errors++;
1525
1526 } else {
1527 np->stats.tx_bytes +=
1528 ((tx_control & PKTSMask) >> PKTSShift);
1529
1530 np->stats.collisions +=
1531 ((tx_status & NCRMask) >> NCRShift);
1532 np->stats.tx_packets++;
1533 }
1534 } else {
1535 np->stats.tx_bytes +=
1536 ((tx_control & PKTSMask) >> PKTSShift);
1537 np->stats.tx_packets++;
1538 }
1539
1540 /* Free the original skb. */
1541 pci_unmap_single(np->pci_dev, np->cur_tx->buffer,
1542 np->cur_tx->skbuff->len, PCI_DMA_TODEVICE);
1543 dev_kfree_skb_irq(np->cur_tx->skbuff);
1544 np->cur_tx->skbuff = NULL;
1545 --np->really_tx_count;
1546 if (np->cur_tx->control & TXLD) {
1547 np->cur_tx = np->cur_tx->next_desc_logical;
1548 ++np->free_tx_count;
1549 } else {
1550 np->cur_tx = np->cur_tx->next_desc_logical;
1551 np->cur_tx = np->cur_tx->next_desc_logical;
1552 np->free_tx_count += 2;
1553 }
1554 num_tx++;
1555 } /* end of for loop */
1556
1557 if (num_tx && np->free_tx_count >= 2)
1558 netif_wake_queue(dev);
1559
1560 /* read transmit status for enhanced mode only */
1561 if (np->crvalue & CR_W_ENH) {
1562 long data;
1563
1564 data = ioread32(ioaddr + TSR);
1565 np->stats.tx_errors += (data & 0xff000000) >> 24;
1566 np->stats.tx_aborted_errors += (data & 0xff000000) >> 24;
1567 np->stats.tx_window_errors += (data & 0x00ff0000) >> 16;
1568 np->stats.collisions += (data & 0x0000ffff);
1569 }
1570
1571 if (--boguscnt < 0) {
1572 printk(KERN_WARNING "%s: Too much work at interrupt, "
1573 "status=0x%4.4x.\n", dev->name, intr_status);
1574 if (!np->reset_timer_armed) {
1575 np->reset_timer_armed = 1;
1576 np->reset_timer.expires = RUN_AT(HZ/2);
1577 add_timer(&np->reset_timer);
1578 stop_nic_rxtx(ioaddr, 0);
1579 netif_stop_queue(dev);
1580 /* or netif_tx_disable(dev); ?? */
1581 /* Prevent other paths from enabling tx,rx,intrs */
1582 np->crvalue_sv = np->crvalue;
1583 np->imrvalue_sv = np->imrvalue;
1584 np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1585 np->imrvalue = 0;
1586 }
1587
1588 break;
1589 }
1590 } while (1);
1591
1592 /* read the tally counters */
1593 /* missed pkts */
1594 np->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1595
1596 /* crc error */
1597 np->stats.rx_crc_errors += (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1598
1599 if (debug)
1600 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1601 dev->name, ioread32(ioaddr + ISR));
1602
1603 iowrite32(np->imrvalue, ioaddr + IMR);
1604
1605 spin_unlock(&np->lock);
1606
1607 return IRQ_RETVAL(handled);
1608 }
1609
1610
1611 /* This routine is logically part of the interrupt handler, but separated
1612 for clarity and better register allocation. */
netdev_rx(struct net_device * dev)1613 static int netdev_rx(struct net_device *dev)
1614 {
1615 struct netdev_private *np = netdev_priv(dev);
1616 void __iomem *ioaddr = np->mem;
1617
1618 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1619 while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1620 s32 rx_status = np->cur_rx->status;
1621
1622 if (np->really_rx_count == 0)
1623 break;
1624
1625 if (debug)
1626 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", rx_status);
1627
1628 if ((!((rx_status & RXFSD) && (rx_status & RXLSD)))
1629 || (rx_status & ErrorSummary)) {
1630 if (rx_status & ErrorSummary) { /* there was a fatal error */
1631 if (debug)
1632 printk(KERN_DEBUG
1633 "%s: Receive error, Rx status %8.8x.\n",
1634 dev->name, rx_status);
1635
1636 np->stats.rx_errors++; /* end of a packet. */
1637 if (rx_status & (LONG | RUNT))
1638 np->stats.rx_length_errors++;
1639 if (rx_status & RXER)
1640 np->stats.rx_frame_errors++;
1641 if (rx_status & CRC)
1642 np->stats.rx_crc_errors++;
1643 } else {
1644 int need_to_reset = 0;
1645 int desno = 0;
1646
1647 if (rx_status & RXFSD) { /* this pkt is too long, over one rx buffer */
1648 struct fealnx_desc *cur;
1649
1650 /* check this packet is received completely? */
1651 cur = np->cur_rx;
1652 while (desno <= np->really_rx_count) {
1653 ++desno;
1654 if ((!(cur->status & RXOWN))
1655 && (cur->status & RXLSD))
1656 break;
1657 /* goto next rx descriptor */
1658 cur = cur->next_desc_logical;
1659 }
1660 if (desno > np->really_rx_count)
1661 need_to_reset = 1;
1662 } else /* RXLSD did not find, something error */
1663 need_to_reset = 1;
1664
1665 if (need_to_reset == 0) {
1666 int i;
1667
1668 np->stats.rx_length_errors++;
1669
1670 /* free all rx descriptors related this long pkt */
1671 for (i = 0; i < desno; ++i) {
1672 if (!np->cur_rx->skbuff) {
1673 printk(KERN_DEBUG
1674 "%s: I'm scared\n", dev->name);
1675 break;
1676 }
1677 np->cur_rx->status = RXOWN;
1678 np->cur_rx = np->cur_rx->next_desc_logical;
1679 }
1680 continue;
1681 } else { /* rx error, need to reset this chip */
1682 stop_nic_rx(ioaddr, np->crvalue);
1683 reset_rx_descriptors(dev);
1684 iowrite32(np->crvalue, ioaddr + TCRRCR);
1685 }
1686 break; /* exit the while loop */
1687 }
1688 } else { /* this received pkt is ok */
1689
1690 struct sk_buff *skb;
1691 /* Omit the four octet CRC from the length. */
1692 short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1693
1694 #ifndef final_version
1695 if (debug)
1696 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1697 " status %x.\n", pkt_len, rx_status);
1698 #endif
1699
1700 /* Check if the packet is long enough to accept without copying
1701 to a minimally-sized skbuff. */
1702 if (pkt_len < rx_copybreak &&
1703 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1704 skb_reserve(skb, 2); /* 16 byte align the IP header */
1705 pci_dma_sync_single_for_cpu(np->pci_dev,
1706 np->cur_rx->buffer,
1707 np->rx_buf_sz,
1708 PCI_DMA_FROMDEVICE);
1709 /* Call copy + cksum if available. */
1710
1711 #if ! defined(__alpha__)
1712 skb_copy_to_linear_data(skb,
1713 np->cur_rx->skbuff->data, pkt_len);
1714 skb_put(skb, pkt_len);
1715 #else
1716 memcpy(skb_put(skb, pkt_len),
1717 np->cur_rx->skbuff->data, pkt_len);
1718 #endif
1719 pci_dma_sync_single_for_device(np->pci_dev,
1720 np->cur_rx->buffer,
1721 np->rx_buf_sz,
1722 PCI_DMA_FROMDEVICE);
1723 } else {
1724 pci_unmap_single(np->pci_dev,
1725 np->cur_rx->buffer,
1726 np->rx_buf_sz,
1727 PCI_DMA_FROMDEVICE);
1728 skb_put(skb = np->cur_rx->skbuff, pkt_len);
1729 np->cur_rx->skbuff = NULL;
1730 --np->really_rx_count;
1731 }
1732 skb->protocol = eth_type_trans(skb, dev);
1733 netif_rx(skb);
1734 np->stats.rx_packets++;
1735 np->stats.rx_bytes += pkt_len;
1736 }
1737
1738 np->cur_rx = np->cur_rx->next_desc_logical;
1739 } /* end of while loop */
1740
1741 /* allocate skb for rx buffers */
1742 allocate_rx_buffers(dev);
1743
1744 return 0;
1745 }
1746
1747
get_stats(struct net_device * dev)1748 static struct net_device_stats *get_stats(struct net_device *dev)
1749 {
1750 struct netdev_private *np = netdev_priv(dev);
1751 void __iomem *ioaddr = np->mem;
1752
1753 /* The chip only need report frame silently dropped. */
1754 if (netif_running(dev)) {
1755 np->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1756 np->stats.rx_crc_errors += (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1757 }
1758
1759 return &np->stats;
1760 }
1761
1762
1763 /* for dev->set_multicast_list */
set_rx_mode(struct net_device * dev)1764 static void set_rx_mode(struct net_device *dev)
1765 {
1766 spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1767 unsigned long flags;
1768 spin_lock_irqsave(lp, flags);
1769 __set_rx_mode(dev);
1770 spin_unlock_irqrestore(lp, flags);
1771 }
1772
1773
1774 /* Take lock before calling */
__set_rx_mode(struct net_device * dev)1775 static void __set_rx_mode(struct net_device *dev)
1776 {
1777 struct netdev_private *np = netdev_priv(dev);
1778 void __iomem *ioaddr = np->mem;
1779 u32 mc_filter[2]; /* Multicast hash filter */
1780 u32 rx_mode;
1781
1782 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1783 memset(mc_filter, 0xff, sizeof(mc_filter));
1784 rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1785 } else if ((dev->mc_count > multicast_filter_limit)
1786 || (dev->flags & IFF_ALLMULTI)) {
1787 /* Too many to match, or accept all multicasts. */
1788 memset(mc_filter, 0xff, sizeof(mc_filter));
1789 rx_mode = CR_W_AB | CR_W_AM;
1790 } else {
1791 struct dev_mc_list *mclist;
1792 int i;
1793
1794 memset(mc_filter, 0, sizeof(mc_filter));
1795 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1796 i++, mclist = mclist->next) {
1797 unsigned int bit;
1798 bit = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26) ^ 0x3F;
1799 mc_filter[bit >> 5] |= (1 << bit);
1800 }
1801 rx_mode = CR_W_AB | CR_W_AM;
1802 }
1803
1804 stop_nic_rxtx(ioaddr, np->crvalue);
1805
1806 iowrite32(mc_filter[0], ioaddr + MAR0);
1807 iowrite32(mc_filter[1], ioaddr + MAR1);
1808 np->crvalue &= ~CR_W_RXMODEMASK;
1809 np->crvalue |= rx_mode;
1810 iowrite32(np->crvalue, ioaddr + TCRRCR);
1811 }
1812
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1813 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1814 {
1815 struct netdev_private *np = netdev_priv(dev);
1816
1817 strcpy(info->driver, DRV_NAME);
1818 strcpy(info->version, DRV_VERSION);
1819 strcpy(info->bus_info, pci_name(np->pci_dev));
1820 }
1821
netdev_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1822 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1823 {
1824 struct netdev_private *np = netdev_priv(dev);
1825 int rc;
1826
1827 spin_lock_irq(&np->lock);
1828 rc = mii_ethtool_gset(&np->mii, cmd);
1829 spin_unlock_irq(&np->lock);
1830
1831 return rc;
1832 }
1833
netdev_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1834 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1835 {
1836 struct netdev_private *np = netdev_priv(dev);
1837 int rc;
1838
1839 spin_lock_irq(&np->lock);
1840 rc = mii_ethtool_sset(&np->mii, cmd);
1841 spin_unlock_irq(&np->lock);
1842
1843 return rc;
1844 }
1845
netdev_nway_reset(struct net_device * dev)1846 static int netdev_nway_reset(struct net_device *dev)
1847 {
1848 struct netdev_private *np = netdev_priv(dev);
1849 return mii_nway_restart(&np->mii);
1850 }
1851
netdev_get_link(struct net_device * dev)1852 static u32 netdev_get_link(struct net_device *dev)
1853 {
1854 struct netdev_private *np = netdev_priv(dev);
1855 return mii_link_ok(&np->mii);
1856 }
1857
netdev_get_msglevel(struct net_device * dev)1858 static u32 netdev_get_msglevel(struct net_device *dev)
1859 {
1860 return debug;
1861 }
1862
netdev_set_msglevel(struct net_device * dev,u32 value)1863 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1864 {
1865 debug = value;
1866 }
1867
1868 static const struct ethtool_ops netdev_ethtool_ops = {
1869 .get_drvinfo = netdev_get_drvinfo,
1870 .get_settings = netdev_get_settings,
1871 .set_settings = netdev_set_settings,
1872 .nway_reset = netdev_nway_reset,
1873 .get_link = netdev_get_link,
1874 .get_msglevel = netdev_get_msglevel,
1875 .set_msglevel = netdev_set_msglevel,
1876 };
1877
mii_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1878 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1879 {
1880 struct netdev_private *np = netdev_priv(dev);
1881 int rc;
1882
1883 if (!netif_running(dev))
1884 return -EINVAL;
1885
1886 spin_lock_irq(&np->lock);
1887 rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1888 spin_unlock_irq(&np->lock);
1889
1890 return rc;
1891 }
1892
1893
netdev_close(struct net_device * dev)1894 static int netdev_close(struct net_device *dev)
1895 {
1896 struct netdev_private *np = netdev_priv(dev);
1897 void __iomem *ioaddr = np->mem;
1898 int i;
1899
1900 netif_stop_queue(dev);
1901
1902 /* Disable interrupts by clearing the interrupt mask. */
1903 iowrite32(0x0000, ioaddr + IMR);
1904
1905 /* Stop the chip's Tx and Rx processes. */
1906 stop_nic_rxtx(ioaddr, 0);
1907
1908 del_timer_sync(&np->timer);
1909 del_timer_sync(&np->reset_timer);
1910
1911 free_irq(dev->irq, dev);
1912
1913 /* Free all the skbuffs in the Rx queue. */
1914 for (i = 0; i < RX_RING_SIZE; i++) {
1915 struct sk_buff *skb = np->rx_ring[i].skbuff;
1916
1917 np->rx_ring[i].status = 0;
1918 if (skb) {
1919 pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer,
1920 np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1921 dev_kfree_skb(skb);
1922 np->rx_ring[i].skbuff = NULL;
1923 }
1924 }
1925
1926 for (i = 0; i < TX_RING_SIZE; i++) {
1927 struct sk_buff *skb = np->tx_ring[i].skbuff;
1928
1929 if (skb) {
1930 pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer,
1931 skb->len, PCI_DMA_TODEVICE);
1932 dev_kfree_skb(skb);
1933 np->tx_ring[i].skbuff = NULL;
1934 }
1935 }
1936
1937 return 0;
1938 }
1939
1940 static struct pci_device_id fealnx_pci_tbl[] = {
1941 {0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1942 {0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1943 {0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1944 {} /* terminate list */
1945 };
1946 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1947
1948
1949 static struct pci_driver fealnx_driver = {
1950 .name = "fealnx",
1951 .id_table = fealnx_pci_tbl,
1952 .probe = fealnx_init_one,
1953 .remove = __devexit_p(fealnx_remove_one),
1954 };
1955
fealnx_init(void)1956 static int __init fealnx_init(void)
1957 {
1958 /* when a module, this is printed whether or not devices are found in probe */
1959 #ifdef MODULE
1960 printk(version);
1961 #endif
1962
1963 return pci_register_driver(&fealnx_driver);
1964 }
1965
fealnx_exit(void)1966 static void __exit fealnx_exit(void)
1967 {
1968 pci_unregister_driver(&fealnx_driver);
1969 }
1970
1971 module_init(fealnx_init);
1972 module_exit(fealnx_exit);
1973