• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
39 
40 #include <asm/irq.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/pgtable.h>
44 #include <asm/cacheflush.h>
45 
46 #include <asm/coldfire.h>
47 #include <asm/mcfsim.h>
48 #include "fec.h"
49 
50 #if defined(CONFIG_FEC2)
51 #define	FEC_MAX_PORTS	2
52 #else
53 #define	FEC_MAX_PORTS	1
54 #endif
55 
56 #if defined(CONFIG_M5272)
57 #define HAVE_mii_link_interrupt
58 #endif
59 
60 /*
61  * Define the fixed address of the FEC hardware.
62  */
63 static unsigned int fec_hw[] = {
64 #if defined(CONFIG_M5272)
65 	(MCF_MBAR + 0x840),
66 #elif defined(CONFIG_M527x)
67 	(MCF_MBAR + 0x1000),
68 	(MCF_MBAR + 0x1800),
69 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
70 	(MCF_MBAR + 0x1000),
71 #elif defined(CONFIG_M520x)
72 	(MCF_MBAR+0x30000),
73 #elif defined(CONFIG_M532x)
74 	(MCF_MBAR+0xfc030000),
75 #else
76 	&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
77 #endif
78 };
79 
80 static unsigned char	fec_mac_default[] = {
81 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
82 };
83 
84 /*
85  * Some hardware gets it MAC address out of local flash memory.
86  * if this is non-zero then assume it is the address to get MAC from.
87  */
88 #if defined(CONFIG_NETtel)
89 #define	FEC_FLASHMAC	0xf0006006
90 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
91 #define	FEC_FLASHMAC	0xf0006000
92 #elif defined(CONFIG_CANCam)
93 #define	FEC_FLASHMAC	0xf0020000
94 #elif defined (CONFIG_M5272C3)
95 #define	FEC_FLASHMAC	(0xffe04000 + 4)
96 #elif defined(CONFIG_MOD5272)
97 #define FEC_FLASHMAC 	0xffc0406b
98 #else
99 #define	FEC_FLASHMAC	0
100 #endif
101 
102 /* Forward declarations of some structures to support different PHYs
103 */
104 
105 typedef struct {
106 	uint mii_data;
107 	void (*funct)(uint mii_reg, struct net_device *dev);
108 } phy_cmd_t;
109 
110 typedef struct {
111 	uint id;
112 	char *name;
113 
114 	const phy_cmd_t *config;
115 	const phy_cmd_t *startup;
116 	const phy_cmd_t *ack_int;
117 	const phy_cmd_t *shutdown;
118 } phy_info_t;
119 
120 /* The number of Tx and Rx buffers.  These are allocated from the page
121  * pool.  The code may assume these are power of two, so it it best
122  * to keep them that size.
123  * We don't need to allocate pages for the transmitter.  We just use
124  * the skbuffer directly.
125  */
126 #define FEC_ENET_RX_PAGES	8
127 #define FEC_ENET_RX_FRSIZE	2048
128 #define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
129 #define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
130 #define FEC_ENET_TX_FRSIZE	2048
131 #define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
132 #define TX_RING_SIZE		16	/* Must be power of two */
133 #define TX_RING_MOD_MASK	15	/*   for this to work */
134 
135 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
136 #error "FEC: descriptor ring size constants too large"
137 #endif
138 
139 /* Interrupt events/masks.
140 */
141 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
142 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
143 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
144 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
145 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
146 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
147 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
148 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
149 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
150 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
151 
152 /* The FEC stores dest/src/type, data, and checksum for receive packets.
153  */
154 #define PKT_MAXBUF_SIZE		1518
155 #define PKT_MINBUF_SIZE		64
156 #define PKT_MAXBLR_SIZE		1520
157 
158 
159 /*
160  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
161  * size bits. Other FEC hardware does not, so we need to take that into
162  * account when setting it.
163  */
164 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
165     defined(CONFIG_M520x) || defined(CONFIG_M532x)
166 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
167 #else
168 #define	OPT_FRAME_SIZE	0
169 #endif
170 
171 /* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
172  * tx_bd_base always point to the base of the buffer descriptors.  The
173  * cur_rx and cur_tx point to the currently available buffer.
174  * The dirty_tx tracks the current buffer that is being sent by the
175  * controller.  The cur_tx and dirty_tx are equal under both completely
176  * empty and completely full conditions.  The empty/ready indicator in
177  * the buffer descriptor determines the actual condition.
178  */
179 struct fec_enet_private {
180 	/* Hardware registers of the FEC device */
181 	volatile fec_t	*hwp;
182 
183 	struct net_device *netdev;
184 
185 	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
186 	unsigned char *tx_bounce[TX_RING_SIZE];
187 	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
188 	ushort	skb_cur;
189 	ushort	skb_dirty;
190 
191 	/* CPM dual port RAM relative addresses.
192 	*/
193 	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
194 	cbd_t	*tx_bd_base;
195 	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
196 	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
197 	uint	tx_full;
198 	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
199 	spinlock_t hw_lock;
200 	/* hold while accessing the mii_list_t() elements */
201 	spinlock_t mii_lock;
202 
203 	uint	phy_id;
204 	uint	phy_id_done;
205 	uint	phy_status;
206 	uint	phy_speed;
207 	phy_info_t const	*phy;
208 	struct work_struct phy_task;
209 
210 	uint	sequence_done;
211 	uint	mii_phy_task_queued;
212 
213 	uint	phy_addr;
214 
215 	int	index;
216 	int	opened;
217 	int	link;
218 	int	old_link;
219 	int	full_duplex;
220 };
221 
222 static int fec_enet_open(struct net_device *dev);
223 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
224 static void fec_enet_mii(struct net_device *dev);
225 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
226 static void fec_enet_tx(struct net_device *dev);
227 static void fec_enet_rx(struct net_device *dev);
228 static int fec_enet_close(struct net_device *dev);
229 static void set_multicast_list(struct net_device *dev);
230 static void fec_restart(struct net_device *dev, int duplex);
231 static void fec_stop(struct net_device *dev);
232 static void fec_set_mac_address(struct net_device *dev);
233 
234 
235 /* MII processing.  We keep this as simple as possible.  Requests are
236  * placed on the list (if there is room).  When the request is finished
237  * by the MII, an optional function may be called.
238  */
239 typedef struct mii_list {
240 	uint	mii_regval;
241 	void	(*mii_func)(uint val, struct net_device *dev);
242 	struct	mii_list *mii_next;
243 } mii_list_t;
244 
245 #define		NMII	20
246 static mii_list_t	mii_cmds[NMII];
247 static mii_list_t	*mii_free;
248 static mii_list_t	*mii_head;
249 static mii_list_t	*mii_tail;
250 
251 static int	mii_queue(struct net_device *dev, int request,
252 				void (*func)(uint, struct net_device *));
253 
254 /* Make MII read/write commands for the FEC.
255 */
256 #define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
257 #define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
258 						(VAL & 0xffff))
259 #define mk_mii_end	0
260 
261 /* Transmitter timeout.
262 */
263 #define TX_TIMEOUT (2*HZ)
264 
265 /* Register definitions for the PHY.
266 */
267 
268 #define MII_REG_CR          0  /* Control Register                         */
269 #define MII_REG_SR          1  /* Status Register                          */
270 #define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
271 #define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
272 #define MII_REG_ANAR        4  /* A-N Advertisement Register               */
273 #define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
274 #define MII_REG_ANER        6  /* A-N Expansion Register                   */
275 #define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
276 #define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */
277 
278 /* values for phy_status */
279 
280 #define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
281 #define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
282 #define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
283 #define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
284 #define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
285 #define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
286 #define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
287 
288 #define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
289 #define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
290 #define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
291 #define PHY_STAT_SPMASK	0xf000  /* mask for speed */
292 #define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
293 #define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
294 #define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
295 #define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
296 
297 
298 static int
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * dev)299 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
300 {
301 	struct fec_enet_private *fep;
302 	volatile fec_t	*fecp;
303 	volatile cbd_t	*bdp;
304 	unsigned short	status;
305 	unsigned long flags;
306 
307 	fep = netdev_priv(dev);
308 	fecp = (volatile fec_t*)dev->base_addr;
309 
310 	if (!fep->link) {
311 		/* Link is down or autonegotiation is in progress. */
312 		return 1;
313 	}
314 
315 	spin_lock_irqsave(&fep->hw_lock, flags);
316 	/* Fill in a Tx ring entry */
317 	bdp = fep->cur_tx;
318 
319 	status = bdp->cbd_sc;
320 #ifndef final_version
321 	if (status & BD_ENET_TX_READY) {
322 		/* Ooops.  All transmit buffers are full.  Bail out.
323 		 * This should not happen, since dev->tbusy should be set.
324 		 */
325 		printk("%s: tx queue full!.\n", dev->name);
326 		spin_unlock_irqrestore(&fep->hw_lock, flags);
327 		return 1;
328 	}
329 #endif
330 
331 	/* Clear all of the status flags.
332 	 */
333 	status &= ~BD_ENET_TX_STATS;
334 
335 	/* Set buffer length and buffer pointer.
336 	*/
337 	bdp->cbd_bufaddr = __pa(skb->data);
338 	bdp->cbd_datlen = skb->len;
339 
340 	/*
341 	 *	On some FEC implementations data must be aligned on
342 	 *	4-byte boundaries. Use bounce buffers to copy data
343 	 *	and get it aligned. Ugh.
344 	 */
345 	if (bdp->cbd_bufaddr & 0x3) {
346 		unsigned int index;
347 		index = bdp - fep->tx_bd_base;
348 		memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
349 		bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
350 	}
351 
352 	/* Save skb pointer.
353 	*/
354 	fep->tx_skbuff[fep->skb_cur] = skb;
355 
356 	dev->stats.tx_bytes += skb->len;
357 	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
358 
359 	/* Push the data cache so the CPM does not get stale memory
360 	 * data.
361 	 */
362 	flush_dcache_range((unsigned long)skb->data,
363 			   (unsigned long)skb->data + skb->len);
364 
365 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
366 	 * it's the last BD of the frame, and to put the CRC on the end.
367 	 */
368 
369 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
370 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
371 	bdp->cbd_sc = status;
372 
373 	dev->trans_start = jiffies;
374 
375 	/* Trigger transmission start */
376 	fecp->fec_x_des_active = 0;
377 
378 	/* If this was the last BD in the ring, start at the beginning again.
379 	*/
380 	if (status & BD_ENET_TX_WRAP) {
381 		bdp = fep->tx_bd_base;
382 	} else {
383 		bdp++;
384 	}
385 
386 	if (bdp == fep->dirty_tx) {
387 		fep->tx_full = 1;
388 		netif_stop_queue(dev);
389 	}
390 
391 	fep->cur_tx = (cbd_t *)bdp;
392 
393 	spin_unlock_irqrestore(&fep->hw_lock, flags);
394 
395 	return 0;
396 }
397 
398 static void
fec_timeout(struct net_device * dev)399 fec_timeout(struct net_device *dev)
400 {
401 	struct fec_enet_private *fep = netdev_priv(dev);
402 
403 	printk("%s: transmit timed out.\n", dev->name);
404 	dev->stats.tx_errors++;
405 #ifndef final_version
406 	{
407 	int	i;
408 	cbd_t	*bdp;
409 
410 	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
411 	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
412 	       (unsigned long)fep->dirty_tx,
413 	       (unsigned long)fep->cur_rx);
414 
415 	bdp = fep->tx_bd_base;
416 	printk(" tx: %u buffers\n",  TX_RING_SIZE);
417 	for (i = 0 ; i < TX_RING_SIZE; i++) {
418 		printk("  %08x: %04x %04x %08x\n",
419 		       (uint) bdp,
420 		       bdp->cbd_sc,
421 		       bdp->cbd_datlen,
422 		       (int) bdp->cbd_bufaddr);
423 		bdp++;
424 	}
425 
426 	bdp = fep->rx_bd_base;
427 	printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE);
428 	for (i = 0 ; i < RX_RING_SIZE; i++) {
429 		printk("  %08x: %04x %04x %08x\n",
430 		       (uint) bdp,
431 		       bdp->cbd_sc,
432 		       bdp->cbd_datlen,
433 		       (int) bdp->cbd_bufaddr);
434 		bdp++;
435 	}
436 	}
437 #endif
438 	fec_restart(dev, fep->full_duplex);
439 	netif_wake_queue(dev);
440 }
441 
442 /* The interrupt handler.
443  * This is called from the MPC core interrupt.
444  */
445 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)446 fec_enet_interrupt(int irq, void * dev_id)
447 {
448 	struct	net_device *dev = dev_id;
449 	volatile fec_t	*fecp;
450 	uint	int_events;
451 	irqreturn_t ret = IRQ_NONE;
452 
453 	fecp = (volatile fec_t*)dev->base_addr;
454 
455 	/* Get the interrupt events that caused us to be here.
456 	*/
457 	do {
458 		int_events = fecp->fec_ievent;
459 		fecp->fec_ievent = int_events;
460 
461 		/* Handle receive event in its own function.
462 		 */
463 		if (int_events & FEC_ENET_RXF) {
464 			ret = IRQ_HANDLED;
465 			fec_enet_rx(dev);
466 		}
467 
468 		/* Transmit OK, or non-fatal error. Update the buffer
469 		   descriptors. FEC handles all errors, we just discover
470 		   them as part of the transmit process.
471 		*/
472 		if (int_events & FEC_ENET_TXF) {
473 			ret = IRQ_HANDLED;
474 			fec_enet_tx(dev);
475 		}
476 
477 		if (int_events & FEC_ENET_MII) {
478 			ret = IRQ_HANDLED;
479 			fec_enet_mii(dev);
480 		}
481 
482 	} while (int_events);
483 
484 	return ret;
485 }
486 
487 
488 static void
fec_enet_tx(struct net_device * dev)489 fec_enet_tx(struct net_device *dev)
490 {
491 	struct	fec_enet_private *fep;
492 	volatile cbd_t	*bdp;
493 	unsigned short status;
494 	struct	sk_buff	*skb;
495 
496 	fep = netdev_priv(dev);
497 	spin_lock_irq(&fep->hw_lock);
498 	bdp = fep->dirty_tx;
499 
500 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
501 		if (bdp == fep->cur_tx && fep->tx_full == 0) break;
502 
503 		skb = fep->tx_skbuff[fep->skb_dirty];
504 		/* Check for errors. */
505 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
506 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
507 				   BD_ENET_TX_CSL)) {
508 			dev->stats.tx_errors++;
509 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
510 				dev->stats.tx_heartbeat_errors++;
511 			if (status & BD_ENET_TX_LC)  /* Late collision */
512 				dev->stats.tx_window_errors++;
513 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
514 				dev->stats.tx_aborted_errors++;
515 			if (status & BD_ENET_TX_UN)  /* Underrun */
516 				dev->stats.tx_fifo_errors++;
517 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
518 				dev->stats.tx_carrier_errors++;
519 		} else {
520 			dev->stats.tx_packets++;
521 		}
522 
523 #ifndef final_version
524 		if (status & BD_ENET_TX_READY)
525 			printk("HEY! Enet xmit interrupt and TX_READY.\n");
526 #endif
527 		/* Deferred means some collisions occurred during transmit,
528 		 * but we eventually sent the packet OK.
529 		 */
530 		if (status & BD_ENET_TX_DEF)
531 			dev->stats.collisions++;
532 
533 		/* Free the sk buffer associated with this last transmit.
534 		 */
535 		dev_kfree_skb_any(skb);
536 		fep->tx_skbuff[fep->skb_dirty] = NULL;
537 		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
538 
539 		/* Update pointer to next buffer descriptor to be transmitted.
540 		 */
541 		if (status & BD_ENET_TX_WRAP)
542 			bdp = fep->tx_bd_base;
543 		else
544 			bdp++;
545 
546 		/* Since we have freed up a buffer, the ring is no longer
547 		 * full.
548 		 */
549 		if (fep->tx_full) {
550 			fep->tx_full = 0;
551 			if (netif_queue_stopped(dev))
552 				netif_wake_queue(dev);
553 		}
554 	}
555 	fep->dirty_tx = (cbd_t *)bdp;
556 	spin_unlock_irq(&fep->hw_lock);
557 }
558 
559 
560 /* During a receive, the cur_rx points to the current incoming buffer.
561  * When we update through the ring, if the next incoming buffer has
562  * not been given to the system, we just set the empty indicator,
563  * effectively tossing the packet.
564  */
565 static void
fec_enet_rx(struct net_device * dev)566 fec_enet_rx(struct net_device *dev)
567 {
568 	struct	fec_enet_private *fep;
569 	volatile fec_t	*fecp;
570 	volatile cbd_t *bdp;
571 	unsigned short status;
572 	struct	sk_buff	*skb;
573 	ushort	pkt_len;
574 	__u8 *data;
575 
576 #ifdef CONFIG_M532x
577 	flush_cache_all();
578 #endif
579 
580 	fep = netdev_priv(dev);
581 	fecp = (volatile fec_t*)dev->base_addr;
582 
583 	spin_lock_irq(&fep->hw_lock);
584 
585 	/* First, grab all of the stats for the incoming packet.
586 	 * These get messed up if we get called due to a busy condition.
587 	 */
588 	bdp = fep->cur_rx;
589 
590 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
591 
592 #ifndef final_version
593 	/* Since we have allocated space to hold a complete frame,
594 	 * the last indicator should be set.
595 	 */
596 	if ((status & BD_ENET_RX_LAST) == 0)
597 		printk("FEC ENET: rcv is not +last\n");
598 #endif
599 
600 	if (!fep->opened)
601 		goto rx_processing_done;
602 
603 	/* Check for errors. */
604 	if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
605 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
606 		dev->stats.rx_errors++;
607 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
608 		/* Frame too long or too short. */
609 			dev->stats.rx_length_errors++;
610 		}
611 		if (status & BD_ENET_RX_NO)	/* Frame alignment */
612 			dev->stats.rx_frame_errors++;
613 		if (status & BD_ENET_RX_CR)	/* CRC Error */
614 			dev->stats.rx_crc_errors++;
615 		if (status & BD_ENET_RX_OV)	/* FIFO overrun */
616 			dev->stats.rx_fifo_errors++;
617 	}
618 
619 	/* Report late collisions as a frame error.
620 	 * On this error, the BD is closed, but we don't know what we
621 	 * have in the buffer.  So, just drop this frame on the floor.
622 	 */
623 	if (status & BD_ENET_RX_CL) {
624 		dev->stats.rx_errors++;
625 		dev->stats.rx_frame_errors++;
626 		goto rx_processing_done;
627 	}
628 
629 	/* Process the incoming frame.
630 	 */
631 	dev->stats.rx_packets++;
632 	pkt_len = bdp->cbd_datlen;
633 	dev->stats.rx_bytes += pkt_len;
634 	data = (__u8*)__va(bdp->cbd_bufaddr);
635 
636 	/* This does 16 byte alignment, exactly what we need.
637 	 * The packet length includes FCS, but we don't want to
638 	 * include that when passing upstream as it messes up
639 	 * bridging applications.
640 	 */
641 	skb = dev_alloc_skb(pkt_len-4);
642 
643 	if (skb == NULL) {
644 		printk("%s: Memory squeeze, dropping packet.\n", dev->name);
645 		dev->stats.rx_dropped++;
646 	} else {
647 		skb_put(skb,pkt_len-4);	/* Make room */
648 		skb_copy_to_linear_data(skb, data, pkt_len-4);
649 		skb->protocol=eth_type_trans(skb,dev);
650 		netif_rx(skb);
651 	}
652   rx_processing_done:
653 
654 	/* Clear the status flags for this buffer.
655 	*/
656 	status &= ~BD_ENET_RX_STATS;
657 
658 	/* Mark the buffer empty.
659 	*/
660 	status |= BD_ENET_RX_EMPTY;
661 	bdp->cbd_sc = status;
662 
663 	/* Update BD pointer to next entry.
664 	*/
665 	if (status & BD_ENET_RX_WRAP)
666 		bdp = fep->rx_bd_base;
667 	else
668 		bdp++;
669 
670 #if 1
671 	/* Doing this here will keep the FEC running while we process
672 	 * incoming frames.  On a heavily loaded network, we should be
673 	 * able to keep up at the expense of system resources.
674 	 */
675 	fecp->fec_r_des_active = 0;
676 #endif
677    } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
678 	fep->cur_rx = (cbd_t *)bdp;
679 
680 #if 0
681 	/* Doing this here will allow us to process all frames in the
682 	 * ring before the FEC is allowed to put more there.  On a heavily
683 	 * loaded network, some frames may be lost.  Unfortunately, this
684 	 * increases the interrupt overhead since we can potentially work
685 	 * our way back to the interrupt return only to come right back
686 	 * here.
687 	 */
688 	fecp->fec_r_des_active = 0;
689 #endif
690 
691 	spin_unlock_irq(&fep->hw_lock);
692 }
693 
694 
695 /* called from interrupt context */
696 static void
fec_enet_mii(struct net_device * dev)697 fec_enet_mii(struct net_device *dev)
698 {
699 	struct	fec_enet_private *fep;
700 	volatile fec_t	*ep;
701 	mii_list_t	*mip;
702 	uint		mii_reg;
703 
704 	fep = netdev_priv(dev);
705 	spin_lock_irq(&fep->mii_lock);
706 
707 	ep = fep->hwp;
708 	mii_reg = ep->fec_mii_data;
709 
710 	if ((mip = mii_head) == NULL) {
711 		printk("MII and no head!\n");
712 		goto unlock;
713 	}
714 
715 	if (mip->mii_func != NULL)
716 		(*(mip->mii_func))(mii_reg, dev);
717 
718 	mii_head = mip->mii_next;
719 	mip->mii_next = mii_free;
720 	mii_free = mip;
721 
722 	if ((mip = mii_head) != NULL)
723 		ep->fec_mii_data = mip->mii_regval;
724 
725 unlock:
726 	spin_unlock_irq(&fep->mii_lock);
727 }
728 
729 static int
mii_queue(struct net_device * dev,int regval,void (* func)(uint,struct net_device *))730 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
731 {
732 	struct fec_enet_private *fep;
733 	unsigned long	flags;
734 	mii_list_t	*mip;
735 	int		retval;
736 
737 	/* Add PHY address to register command.
738 	*/
739 	fep = netdev_priv(dev);
740 	spin_lock_irqsave(&fep->mii_lock, flags);
741 
742 	regval |= fep->phy_addr << 23;
743 	retval = 0;
744 
745 	if ((mip = mii_free) != NULL) {
746 		mii_free = mip->mii_next;
747 		mip->mii_regval = regval;
748 		mip->mii_func = func;
749 		mip->mii_next = NULL;
750 		if (mii_head) {
751 			mii_tail->mii_next = mip;
752 			mii_tail = mip;
753 		} else {
754 			mii_head = mii_tail = mip;
755 			fep->hwp->fec_mii_data = regval;
756 		}
757 	} else {
758 		retval = 1;
759 	}
760 
761 	spin_unlock_irqrestore(&fep->mii_lock, flags);
762 	return retval;
763 }
764 
mii_do_cmd(struct net_device * dev,const phy_cmd_t * c)765 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
766 {
767 	if(!c)
768 		return;
769 
770 	for (; c->mii_data != mk_mii_end; c++)
771 		mii_queue(dev, c->mii_data, c->funct);
772 }
773 
mii_parse_sr(uint mii_reg,struct net_device * dev)774 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
775 {
776 	struct fec_enet_private *fep = netdev_priv(dev);
777 	volatile uint *s = &(fep->phy_status);
778 	uint status;
779 
780 	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
781 
782 	if (mii_reg & 0x0004)
783 		status |= PHY_STAT_LINK;
784 	if (mii_reg & 0x0010)
785 		status |= PHY_STAT_FAULT;
786 	if (mii_reg & 0x0020)
787 		status |= PHY_STAT_ANC;
788 	*s = status;
789 }
790 
mii_parse_cr(uint mii_reg,struct net_device * dev)791 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
792 {
793 	struct fec_enet_private *fep = netdev_priv(dev);
794 	volatile uint *s = &(fep->phy_status);
795 	uint status;
796 
797 	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
798 
799 	if (mii_reg & 0x1000)
800 		status |= PHY_CONF_ANE;
801 	if (mii_reg & 0x4000)
802 		status |= PHY_CONF_LOOP;
803 	*s = status;
804 }
805 
mii_parse_anar(uint mii_reg,struct net_device * dev)806 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
807 {
808 	struct fec_enet_private *fep = netdev_priv(dev);
809 	volatile uint *s = &(fep->phy_status);
810 	uint status;
811 
812 	status = *s & ~(PHY_CONF_SPMASK);
813 
814 	if (mii_reg & 0x0020)
815 		status |= PHY_CONF_10HDX;
816 	if (mii_reg & 0x0040)
817 		status |= PHY_CONF_10FDX;
818 	if (mii_reg & 0x0080)
819 		status |= PHY_CONF_100HDX;
820 	if (mii_reg & 0x00100)
821 		status |= PHY_CONF_100FDX;
822 	*s = status;
823 }
824 
825 /* ------------------------------------------------------------------------- */
826 /* The Level one LXT970 is used by many boards				     */
827 
828 #define MII_LXT970_MIRROR    16  /* Mirror register           */
829 #define MII_LXT970_IER       17  /* Interrupt Enable Register */
830 #define MII_LXT970_ISR       18  /* Interrupt Status Register */
831 #define MII_LXT970_CONFIG    19  /* Configuration Register    */
832 #define MII_LXT970_CSR       20  /* Chip Status Register      */
833 
mii_parse_lxt970_csr(uint mii_reg,struct net_device * dev)834 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
835 {
836 	struct fec_enet_private *fep = netdev_priv(dev);
837 	volatile uint *s = &(fep->phy_status);
838 	uint status;
839 
840 	status = *s & ~(PHY_STAT_SPMASK);
841 	if (mii_reg & 0x0800) {
842 		if (mii_reg & 0x1000)
843 			status |= PHY_STAT_100FDX;
844 		else
845 			status |= PHY_STAT_100HDX;
846 	} else {
847 		if (mii_reg & 0x1000)
848 			status |= PHY_STAT_10FDX;
849 		else
850 			status |= PHY_STAT_10HDX;
851 	}
852 	*s = status;
853 }
854 
855 static phy_cmd_t const phy_cmd_lxt970_config[] = {
856 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
857 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
858 		{ mk_mii_end, }
859 	};
860 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
861 		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
862 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
863 		{ mk_mii_end, }
864 	};
865 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
866 		/* read SR and ISR to acknowledge */
867 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
868 		{ mk_mii_read(MII_LXT970_ISR), NULL },
869 
870 		/* find out the current status */
871 		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
872 		{ mk_mii_end, }
873 	};
874 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
875 		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
876 		{ mk_mii_end, }
877 	};
878 static phy_info_t const phy_info_lxt970 = {
879 	.id = 0x07810000,
880 	.name = "LXT970",
881 	.config = phy_cmd_lxt970_config,
882 	.startup = phy_cmd_lxt970_startup,
883 	.ack_int = phy_cmd_lxt970_ack_int,
884 	.shutdown = phy_cmd_lxt970_shutdown
885 };
886 
887 /* ------------------------------------------------------------------------- */
888 /* The Level one LXT971 is used on some of my custom boards                  */
889 
890 /* register definitions for the 971 */
891 
892 #define MII_LXT971_PCR       16  /* Port Control Register     */
893 #define MII_LXT971_SR2       17  /* Status Register 2         */
894 #define MII_LXT971_IER       18  /* Interrupt Enable Register */
895 #define MII_LXT971_ISR       19  /* Interrupt Status Register */
896 #define MII_LXT971_LCR       20  /* LED Control Register      */
897 #define MII_LXT971_TCR       30  /* Transmit Control Register */
898 
899 /*
900  * I had some nice ideas of running the MDIO faster...
901  * The 971 should support 8MHz and I tried it, but things acted really
902  * weird, so 2.5 MHz ought to be enough for anyone...
903  */
904 
mii_parse_lxt971_sr2(uint mii_reg,struct net_device * dev)905 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
906 {
907 	struct fec_enet_private *fep = netdev_priv(dev);
908 	volatile uint *s = &(fep->phy_status);
909 	uint status;
910 
911 	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
912 
913 	if (mii_reg & 0x0400) {
914 		fep->link = 1;
915 		status |= PHY_STAT_LINK;
916 	} else {
917 		fep->link = 0;
918 	}
919 	if (mii_reg & 0x0080)
920 		status |= PHY_STAT_ANC;
921 	if (mii_reg & 0x4000) {
922 		if (mii_reg & 0x0200)
923 			status |= PHY_STAT_100FDX;
924 		else
925 			status |= PHY_STAT_100HDX;
926 	} else {
927 		if (mii_reg & 0x0200)
928 			status |= PHY_STAT_10FDX;
929 		else
930 			status |= PHY_STAT_10HDX;
931 	}
932 	if (mii_reg & 0x0008)
933 		status |= PHY_STAT_FAULT;
934 
935 	*s = status;
936 }
937 
938 static phy_cmd_t const phy_cmd_lxt971_config[] = {
939 		/* limit to 10MBit because my prototype board
940 		 * doesn't work with 100. */
941 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
942 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
943 		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
944 		{ mk_mii_end, }
945 	};
946 static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
947 		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
948 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
949 		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
950 		/* Somehow does the 971 tell me that the link is down
951 		 * the first read after power-up.
952 		 * read here to get a valid value in ack_int */
953 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
954 		{ mk_mii_end, }
955 	};
956 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
957 		/* acknowledge the int before reading status ! */
958 		{ mk_mii_read(MII_LXT971_ISR), NULL },
959 		/* find out the current status */
960 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
961 		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
962 		{ mk_mii_end, }
963 	};
964 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
965 		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
966 		{ mk_mii_end, }
967 	};
968 static phy_info_t const phy_info_lxt971 = {
969 	.id = 0x0001378e,
970 	.name = "LXT971",
971 	.config = phy_cmd_lxt971_config,
972 	.startup = phy_cmd_lxt971_startup,
973 	.ack_int = phy_cmd_lxt971_ack_int,
974 	.shutdown = phy_cmd_lxt971_shutdown
975 };
976 
977 /* ------------------------------------------------------------------------- */
978 /* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */
979 
980 /* register definitions */
981 
982 #define MII_QS6612_MCR       17  /* Mode Control Register      */
983 #define MII_QS6612_FTR       27  /* Factory Test Register      */
984 #define MII_QS6612_MCO       28  /* Misc. Control Register     */
985 #define MII_QS6612_ISR       29  /* Interrupt Source Register  */
986 #define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
987 #define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */
988 
mii_parse_qs6612_pcr(uint mii_reg,struct net_device * dev)989 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
990 {
991 	struct fec_enet_private *fep = netdev_priv(dev);
992 	volatile uint *s = &(fep->phy_status);
993 	uint status;
994 
995 	status = *s & ~(PHY_STAT_SPMASK);
996 
997 	switch((mii_reg >> 2) & 7) {
998 	case 1: status |= PHY_STAT_10HDX; break;
999 	case 2: status |= PHY_STAT_100HDX; break;
1000 	case 5: status |= PHY_STAT_10FDX; break;
1001 	case 6: status |= PHY_STAT_100FDX; break;
1002 }
1003 
1004 	*s = status;
1005 }
1006 
1007 static phy_cmd_t const phy_cmd_qs6612_config[] = {
1008 		/* The PHY powers up isolated on the RPX,
1009 		 * so send a command to allow operation.
1010 		 */
1011 		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1012 
1013 		/* parse cr and anar to get some info */
1014 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
1015 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1016 		{ mk_mii_end, }
1017 	};
1018 static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
1019 		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1020 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1021 		{ mk_mii_end, }
1022 	};
1023 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1024 		/* we need to read ISR, SR and ANER to acknowledge */
1025 		{ mk_mii_read(MII_QS6612_ISR), NULL },
1026 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
1027 		{ mk_mii_read(MII_REG_ANER), NULL },
1028 
1029 		/* read pcr to get info */
1030 		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1031 		{ mk_mii_end, }
1032 	};
1033 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1034 		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1035 		{ mk_mii_end, }
1036 	};
1037 static phy_info_t const phy_info_qs6612 = {
1038 	.id = 0x00181440,
1039 	.name = "QS6612",
1040 	.config = phy_cmd_qs6612_config,
1041 	.startup = phy_cmd_qs6612_startup,
1042 	.ack_int = phy_cmd_qs6612_ack_int,
1043 	.shutdown = phy_cmd_qs6612_shutdown
1044 };
1045 
1046 /* ------------------------------------------------------------------------- */
1047 /* AMD AM79C874 phy                                                          */
1048 
1049 /* register definitions for the 874 */
1050 
1051 #define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
1052 #define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
1053 #define MII_AM79C874_DR        18  /* Diagnostic Register            */
1054 #define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
1055 #define MII_AM79C874_MCR       21  /* ModeControl Register           */
1056 #define MII_AM79C874_DC        23  /* Disconnect Counter             */
1057 #define MII_AM79C874_REC       24  /* Recieve Error Counter          */
1058 
mii_parse_am79c874_dr(uint mii_reg,struct net_device * dev)1059 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1060 {
1061 	struct fec_enet_private *fep = netdev_priv(dev);
1062 	volatile uint *s = &(fep->phy_status);
1063 	uint status;
1064 
1065 	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1066 
1067 	if (mii_reg & 0x0080)
1068 		status |= PHY_STAT_ANC;
1069 	if (mii_reg & 0x0400)
1070 		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1071 	else
1072 		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1073 
1074 	*s = status;
1075 }
1076 
1077 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1078 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
1079 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1080 		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1081 		{ mk_mii_end, }
1082 	};
1083 static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
1084 		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1085 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1086 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
1087 		{ mk_mii_end, }
1088 	};
1089 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1090 		/* find out the current status */
1091 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
1092 		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1093 		/* we only need to read ISR to acknowledge */
1094 		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
1095 		{ mk_mii_end, }
1096 	};
1097 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1098 		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1099 		{ mk_mii_end, }
1100 	};
1101 static phy_info_t const phy_info_am79c874 = {
1102 	.id = 0x00022561,
1103 	.name = "AM79C874",
1104 	.config = phy_cmd_am79c874_config,
1105 	.startup = phy_cmd_am79c874_startup,
1106 	.ack_int = phy_cmd_am79c874_ack_int,
1107 	.shutdown = phy_cmd_am79c874_shutdown
1108 };
1109 
1110 
1111 /* ------------------------------------------------------------------------- */
1112 /* Kendin KS8721BL phy                                                       */
1113 
1114 /* register definitions for the 8721 */
1115 
1116 #define MII_KS8721BL_RXERCR	21
1117 #define MII_KS8721BL_ICSR	22
1118 #define	MII_KS8721BL_PHYCR	31
1119 
1120 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1121 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
1122 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1123 		{ mk_mii_end, }
1124 	};
1125 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
1126 		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1127 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1128 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
1129 		{ mk_mii_end, }
1130 	};
1131 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1132 		/* find out the current status */
1133 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
1134 		/* we only need to read ISR to acknowledge */
1135 		{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
1136 		{ mk_mii_end, }
1137 	};
1138 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1139 		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1140 		{ mk_mii_end, }
1141 	};
1142 static phy_info_t const phy_info_ks8721bl = {
1143 	.id = 0x00022161,
1144 	.name = "KS8721BL",
1145 	.config = phy_cmd_ks8721bl_config,
1146 	.startup = phy_cmd_ks8721bl_startup,
1147 	.ack_int = phy_cmd_ks8721bl_ack_int,
1148 	.shutdown = phy_cmd_ks8721bl_shutdown
1149 };
1150 
1151 /* ------------------------------------------------------------------------- */
1152 /* register definitions for the DP83848 */
1153 
1154 #define MII_DP8384X_PHYSTST    16  /* PHY Status Register */
1155 
mii_parse_dp8384x_sr2(uint mii_reg,struct net_device * dev)1156 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1157 {
1158 	struct fec_enet_private *fep = netdev_priv(dev);
1159 	volatile uint *s = &(fep->phy_status);
1160 
1161 	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1162 
1163 	/* Link up */
1164 	if (mii_reg & 0x0001) {
1165 		fep->link = 1;
1166 		*s |= PHY_STAT_LINK;
1167 	} else
1168 		fep->link = 0;
1169 	/* Status of link */
1170 	if (mii_reg & 0x0010)   /* Autonegotioation complete */
1171 		*s |= PHY_STAT_ANC;
1172 	if (mii_reg & 0x0002) {   /* 10MBps? */
1173 		if (mii_reg & 0x0004)   /* Full Duplex? */
1174 			*s |= PHY_STAT_10FDX;
1175 		else
1176 			*s |= PHY_STAT_10HDX;
1177 	} else {                  /* 100 Mbps? */
1178 		if (mii_reg & 0x0004)   /* Full Duplex? */
1179 			*s |= PHY_STAT_100FDX;
1180 		else
1181 			*s |= PHY_STAT_100HDX;
1182 	}
1183 	if (mii_reg & 0x0008)
1184 		*s |= PHY_STAT_FAULT;
1185 }
1186 
1187 static phy_info_t phy_info_dp83848= {
1188 	0x020005c9,
1189 	"DP83848",
1190 
1191 	(const phy_cmd_t []) {  /* config */
1192 		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
1193 		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1194 		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1195 		{ mk_mii_end, }
1196 	},
1197 	(const phy_cmd_t []) {  /* startup - enable interrupts */
1198 		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1199 		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
1200 		{ mk_mii_end, }
1201 	},
1202 	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1203 		{ mk_mii_end, }
1204 	},
1205 	(const phy_cmd_t []) {  /* shutdown */
1206 		{ mk_mii_end, }
1207 	},
1208 };
1209 
1210 /* ------------------------------------------------------------------------- */
1211 
1212 static phy_info_t const * const phy_info[] = {
1213 	&phy_info_lxt970,
1214 	&phy_info_lxt971,
1215 	&phy_info_qs6612,
1216 	&phy_info_am79c874,
1217 	&phy_info_ks8721bl,
1218 	&phy_info_dp83848,
1219 	NULL
1220 };
1221 
1222 /* ------------------------------------------------------------------------- */
1223 #ifdef HAVE_mii_link_interrupt
1224 static irqreturn_t
1225 mii_link_interrupt(int irq, void * dev_id);
1226 #endif
1227 
1228 #if defined(CONFIG_M5272)
1229 /*
1230  *	Code specific to Coldfire 5272 setup.
1231  */
fec_request_intrs(struct net_device * dev)1232 static void __inline__ fec_request_intrs(struct net_device *dev)
1233 {
1234 	volatile unsigned long *icrp;
1235 	static const struct idesc {
1236 		char *name;
1237 		unsigned short irq;
1238 		irq_handler_t handler;
1239 	} *idp, id[] = {
1240 		{ "fec(RX)", 86, fec_enet_interrupt },
1241 		{ "fec(TX)", 87, fec_enet_interrupt },
1242 		{ "fec(OTHER)", 88, fec_enet_interrupt },
1243 		{ "fec(MII)", 66, mii_link_interrupt },
1244 		{ NULL },
1245 	};
1246 
1247 	/* Setup interrupt handlers. */
1248 	for (idp = id; idp->name; idp++) {
1249 		if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
1250 			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1251 	}
1252 
1253 	/* Unmask interrupt at ColdFire 5272 SIM */
1254 	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1255 	*icrp = 0x00000ddd;
1256 	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1257 	*icrp = 0x0d000000;
1258 }
1259 
fec_set_mii(struct net_device * dev,struct fec_enet_private * fep)1260 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1261 {
1262 	volatile fec_t *fecp;
1263 
1264 	fecp = fep->hwp;
1265 	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1266 	fecp->fec_x_cntrl = 0x00;
1267 
1268 	/*
1269 	 * Set MII speed to 2.5 MHz
1270 	 * See 5272 manual section 11.5.8: MSCR
1271 	 */
1272 	fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1273 	fecp->fec_mii_speed = fep->phy_speed;
1274 
1275 	fec_restart(dev, 0);
1276 }
1277 
fec_get_mac(struct net_device * dev)1278 static void __inline__ fec_get_mac(struct net_device *dev)
1279 {
1280 	struct fec_enet_private *fep = netdev_priv(dev);
1281 	volatile fec_t *fecp;
1282 	unsigned char *iap, tmpaddr[ETH_ALEN];
1283 
1284 	fecp = fep->hwp;
1285 
1286 	if (FEC_FLASHMAC) {
1287 		/*
1288 		 * Get MAC address from FLASH.
1289 		 * If it is all 1's or 0's, use the default.
1290 		 */
1291 		iap = (unsigned char *)FEC_FLASHMAC;
1292 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1293 		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1294 			iap = fec_mac_default;
1295 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1296 		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1297 			iap = fec_mac_default;
1298 	} else {
1299 		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1300 		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1301 		iap = &tmpaddr[0];
1302 	}
1303 
1304 	memcpy(dev->dev_addr, iap, ETH_ALEN);
1305 
1306 	/* Adjust MAC if using default MAC address */
1307 	if (iap == fec_mac_default)
1308 		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1309 }
1310 
fec_enable_phy_intr(void)1311 static void __inline__ fec_enable_phy_intr(void)
1312 {
1313 }
1314 
fec_disable_phy_intr(void)1315 static void __inline__ fec_disable_phy_intr(void)
1316 {
1317 	volatile unsigned long *icrp;
1318 	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1319 	*icrp = 0x08000000;
1320 }
1321 
fec_phy_ack_intr(void)1322 static void __inline__ fec_phy_ack_intr(void)
1323 {
1324 	volatile unsigned long *icrp;
1325 	/* Acknowledge the interrupt */
1326 	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1327 	*icrp = 0x0d000000;
1328 }
1329 
fec_localhw_setup(void)1330 static void __inline__ fec_localhw_setup(void)
1331 {
1332 }
1333 
1334 /*
1335  *	Do not need to make region uncached on 5272.
1336  */
fec_uncache(unsigned long addr)1337 static void __inline__ fec_uncache(unsigned long addr)
1338 {
1339 }
1340 
1341 /* ------------------------------------------------------------------------- */
1342 
1343 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1344 
1345 /*
1346  *	Code specific to Coldfire 5230/5231/5232/5234/5235,
1347  *	the 5270/5271/5274/5275 and 5280/5282 setups.
1348  */
fec_request_intrs(struct net_device * dev)1349 static void __inline__ fec_request_intrs(struct net_device *dev)
1350 {
1351 	struct fec_enet_private *fep;
1352 	int b;
1353 	static const struct idesc {
1354 		char *name;
1355 		unsigned short irq;
1356 	} *idp, id[] = {
1357 		{ "fec(TXF)", 23 },
1358 		{ "fec(RXF)", 27 },
1359 		{ "fec(MII)", 29 },
1360 		{ NULL },
1361 	};
1362 
1363 	fep = netdev_priv(dev);
1364 	b = (fep->index) ? 128 : 64;
1365 
1366 	/* Setup interrupt handlers. */
1367 	for (idp = id; idp->name; idp++) {
1368 		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
1369 			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1370 	}
1371 
1372 	/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1373 	{
1374 		volatile unsigned char  *icrp;
1375 		volatile unsigned long  *imrp;
1376 		int i, ilip;
1377 
1378 		b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1379 		icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1380 			MCFINTC_ICR0);
1381 		for (i = 23, ilip = 0x28; (i < 36); i++)
1382 			icrp[i] = ilip--;
1383 
1384 		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1385 			MCFINTC_IMRH);
1386 		*imrp &= ~0x0000000f;
1387 		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1388 			MCFINTC_IMRL);
1389 		*imrp &= ~0xff800001;
1390 	}
1391 
1392 #if defined(CONFIG_M528x)
1393 	/* Set up gpio outputs for MII lines */
1394 	{
1395 		volatile u16 *gpio_paspar;
1396 		volatile u8 *gpio_pehlpar;
1397 
1398 		gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1399 		gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1400 		*gpio_paspar |= 0x0f00;
1401 		*gpio_pehlpar = 0xc0;
1402 	}
1403 #endif
1404 
1405 #if defined(CONFIG_M527x)
1406 	/* Set up gpio outputs for MII lines */
1407 	{
1408 		volatile u8 *gpio_par_fec;
1409 		volatile u16 *gpio_par_feci2c;
1410 
1411 		gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
1412 		/* Set up gpio outputs for FEC0 MII lines */
1413 		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);
1414 
1415 		*gpio_par_feci2c |= 0x0f00;
1416 		*gpio_par_fec |= 0xc0;
1417 
1418 #if defined(CONFIG_FEC2)
1419 		/* Set up gpio outputs for FEC1 MII lines */
1420 		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);
1421 
1422 		*gpio_par_feci2c |= 0x00a0;
1423 		*gpio_par_fec |= 0xc0;
1424 #endif /* CONFIG_FEC2 */
1425 	}
1426 #endif /* CONFIG_M527x */
1427 }
1428 
fec_set_mii(struct net_device * dev,struct fec_enet_private * fep)1429 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1430 {
1431 	volatile fec_t *fecp;
1432 
1433 	fecp = fep->hwp;
1434 	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1435 	fecp->fec_x_cntrl = 0x00;
1436 
1437 	/*
1438 	 * Set MII speed to 2.5 MHz
1439 	 * See 5282 manual section 17.5.4.7: MSCR
1440 	 */
1441 	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1442 	fecp->fec_mii_speed = fep->phy_speed;
1443 
1444 	fec_restart(dev, 0);
1445 }
1446 
fec_get_mac(struct net_device * dev)1447 static void __inline__ fec_get_mac(struct net_device *dev)
1448 {
1449 	struct fec_enet_private *fep = netdev_priv(dev);
1450 	volatile fec_t *fecp;
1451 	unsigned char *iap, tmpaddr[ETH_ALEN];
1452 
1453 	fecp = fep->hwp;
1454 
1455 	if (FEC_FLASHMAC) {
1456 		/*
1457 		 * Get MAC address from FLASH.
1458 		 * If it is all 1's or 0's, use the default.
1459 		 */
1460 		iap = FEC_FLASHMAC;
1461 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1462 		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1463 			iap = fec_mac_default;
1464 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1465 		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1466 			iap = fec_mac_default;
1467 	} else {
1468 		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1469 		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1470 		iap = &tmpaddr[0];
1471 	}
1472 
1473 	memcpy(dev->dev_addr, iap, ETH_ALEN);
1474 
1475 	/* Adjust MAC if using default MAC address */
1476 	if (iap == fec_mac_default)
1477 		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1478 }
1479 
fec_enable_phy_intr(void)1480 static void __inline__ fec_enable_phy_intr(void)
1481 {
1482 }
1483 
fec_disable_phy_intr(void)1484 static void __inline__ fec_disable_phy_intr(void)
1485 {
1486 }
1487 
fec_phy_ack_intr(void)1488 static void __inline__ fec_phy_ack_intr(void)
1489 {
1490 }
1491 
fec_localhw_setup(void)1492 static void __inline__ fec_localhw_setup(void)
1493 {
1494 }
1495 
1496 /*
1497  *	Do not need to make region uncached on 5272.
1498  */
fec_uncache(unsigned long addr)1499 static void __inline__ fec_uncache(unsigned long addr)
1500 {
1501 }
1502 
1503 /* ------------------------------------------------------------------------- */
1504 
1505 #elif defined(CONFIG_M520x)
1506 
1507 /*
1508  *	Code specific to Coldfire 520x
1509  */
fec_request_intrs(struct net_device * dev)1510 static void __inline__ fec_request_intrs(struct net_device *dev)
1511 {
1512 	struct fec_enet_private *fep;
1513 	int b;
1514 	static const struct idesc {
1515 		char *name;
1516 		unsigned short irq;
1517 	} *idp, id[] = {
1518 		{ "fec(TXF)", 23 },
1519 		{ "fec(RXF)", 27 },
1520 		{ "fec(MII)", 29 },
1521 		{ NULL },
1522 	};
1523 
1524 	fep = netdev_priv(dev);
1525 	b = 64 + 13;
1526 
1527 	/* Setup interrupt handlers. */
1528 	for (idp = id; idp->name; idp++) {
1529 		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1530 			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1531 	}
1532 
1533 	/* Unmask interrupts at ColdFire interrupt controller */
1534 	{
1535 		volatile unsigned char  *icrp;
1536 		volatile unsigned long  *imrp;
1537 
1538 		icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1539 			MCFINTC_ICR0);
1540 		for (b = 36; (b < 49); b++)
1541 			icrp[b] = 0x04;
1542 		imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1543 			MCFINTC_IMRH);
1544 		*imrp &= ~0x0001FFF0;
1545 	}
1546 	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1547 	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1548 }
1549 
fec_set_mii(struct net_device * dev,struct fec_enet_private * fep)1550 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1551 {
1552 	volatile fec_t *fecp;
1553 
1554 	fecp = fep->hwp;
1555 	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1556 	fecp->fec_x_cntrl = 0x00;
1557 
1558 	/*
1559 	 * Set MII speed to 2.5 MHz
1560 	 * See 5282 manual section 17.5.4.7: MSCR
1561 	 */
1562 	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1563 	fecp->fec_mii_speed = fep->phy_speed;
1564 
1565 	fec_restart(dev, 0);
1566 }
1567 
fec_get_mac(struct net_device * dev)1568 static void __inline__ fec_get_mac(struct net_device *dev)
1569 {
1570 	struct fec_enet_private *fep = netdev_priv(dev);
1571 	volatile fec_t *fecp;
1572 	unsigned char *iap, tmpaddr[ETH_ALEN];
1573 
1574 	fecp = fep->hwp;
1575 
1576 	if (FEC_FLASHMAC) {
1577 		/*
1578 		 * Get MAC address from FLASH.
1579 		 * If it is all 1's or 0's, use the default.
1580 		 */
1581 		iap = FEC_FLASHMAC;
1582 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1583 		   (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1584 			iap = fec_mac_default;
1585 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1586 		   (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1587 			iap = fec_mac_default;
1588 	} else {
1589 		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1590 		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1591 		iap = &tmpaddr[0];
1592 	}
1593 
1594 	memcpy(dev->dev_addr, iap, ETH_ALEN);
1595 
1596 	/* Adjust MAC if using default MAC address */
1597 	if (iap == fec_mac_default)
1598 		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1599 }
1600 
fec_enable_phy_intr(void)1601 static void __inline__ fec_enable_phy_intr(void)
1602 {
1603 }
1604 
fec_disable_phy_intr(void)1605 static void __inline__ fec_disable_phy_intr(void)
1606 {
1607 }
1608 
fec_phy_ack_intr(void)1609 static void __inline__ fec_phy_ack_intr(void)
1610 {
1611 }
1612 
fec_localhw_setup(void)1613 static void __inline__ fec_localhw_setup(void)
1614 {
1615 }
1616 
fec_uncache(unsigned long addr)1617 static void __inline__ fec_uncache(unsigned long addr)
1618 {
1619 }
1620 
1621 /* ------------------------------------------------------------------------- */
1622 
1623 #elif defined(CONFIG_M532x)
1624 /*
1625  * Code specific for M532x
1626  */
fec_request_intrs(struct net_device * dev)1627 static void __inline__ fec_request_intrs(struct net_device *dev)
1628 {
1629 	struct fec_enet_private *fep;
1630 	int b;
1631 	static const struct idesc {
1632 		char *name;
1633 		unsigned short irq;
1634 	} *idp, id[] = {
1635 	    { "fec(TXF)", 36 },
1636 	    { "fec(RXF)", 40 },
1637 	    { "fec(MII)", 42 },
1638 	    { NULL },
1639 	};
1640 
1641 	fep = netdev_priv(dev);
1642 	b = (fep->index) ? 128 : 64;
1643 
1644 	/* Setup interrupt handlers. */
1645 	for (idp = id; idp->name; idp++) {
1646 		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1647 			printk("FEC: Could not allocate %s IRQ(%d)!\n",
1648 				idp->name, b+idp->irq);
1649 	}
1650 
1651 	/* Unmask interrupts */
1652 	MCF_INTC0_ICR36 = 0x2;
1653 	MCF_INTC0_ICR37 = 0x2;
1654 	MCF_INTC0_ICR38 = 0x2;
1655 	MCF_INTC0_ICR39 = 0x2;
1656 	MCF_INTC0_ICR40 = 0x2;
1657 	MCF_INTC0_ICR41 = 0x2;
1658 	MCF_INTC0_ICR42 = 0x2;
1659 	MCF_INTC0_ICR43 = 0x2;
1660 	MCF_INTC0_ICR44 = 0x2;
1661 	MCF_INTC0_ICR45 = 0x2;
1662 	MCF_INTC0_ICR46 = 0x2;
1663 	MCF_INTC0_ICR47 = 0x2;
1664 	MCF_INTC0_ICR48 = 0x2;
1665 
1666 	MCF_INTC0_IMRH &= ~(
1667 		MCF_INTC_IMRH_INT_MASK36 |
1668 		MCF_INTC_IMRH_INT_MASK37 |
1669 		MCF_INTC_IMRH_INT_MASK38 |
1670 		MCF_INTC_IMRH_INT_MASK39 |
1671 		MCF_INTC_IMRH_INT_MASK40 |
1672 		MCF_INTC_IMRH_INT_MASK41 |
1673 		MCF_INTC_IMRH_INT_MASK42 |
1674 		MCF_INTC_IMRH_INT_MASK43 |
1675 		MCF_INTC_IMRH_INT_MASK44 |
1676 		MCF_INTC_IMRH_INT_MASK45 |
1677 		MCF_INTC_IMRH_INT_MASK46 |
1678 		MCF_INTC_IMRH_INT_MASK47 |
1679 		MCF_INTC_IMRH_INT_MASK48 );
1680 
1681 	/* Set up gpio outputs for MII lines */
1682 	MCF_GPIO_PAR_FECI2C |= (0 |
1683 		MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1684 		MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1685 	MCF_GPIO_PAR_FEC = (0 |
1686 		MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1687 		MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1688 }
1689 
fec_set_mii(struct net_device * dev,struct fec_enet_private * fep)1690 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1691 {
1692 	volatile fec_t *fecp;
1693 
1694 	fecp = fep->hwp;
1695 	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1696 	fecp->fec_x_cntrl = 0x00;
1697 
1698 	/*
1699 	 * Set MII speed to 2.5 MHz
1700 	 */
1701 	fep->phy_speed = (MCF_CLK / 3) / (2500000 * 2 ) * 2;
1702 	fecp->fec_mii_speed = fep->phy_speed;
1703 
1704 	fec_restart(dev, 0);
1705 }
1706 
fec_get_mac(struct net_device * dev)1707 static void __inline__ fec_get_mac(struct net_device *dev)
1708 {
1709 	struct fec_enet_private *fep = netdev_priv(dev);
1710 	volatile fec_t *fecp;
1711 	unsigned char *iap, tmpaddr[ETH_ALEN];
1712 
1713 	fecp = fep->hwp;
1714 
1715 	if (FEC_FLASHMAC) {
1716 		/*
1717 		 * Get MAC address from FLASH.
1718 		 * If it is all 1's or 0's, use the default.
1719 		 */
1720 		iap = FEC_FLASHMAC;
1721 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1722 		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1723 			iap = fec_mac_default;
1724 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1725 		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1726 			iap = fec_mac_default;
1727 	} else {
1728 		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1729 		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1730 		iap = &tmpaddr[0];
1731 	}
1732 
1733 	memcpy(dev->dev_addr, iap, ETH_ALEN);
1734 
1735 	/* Adjust MAC if using default MAC address */
1736 	if (iap == fec_mac_default)
1737 		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1738 }
1739 
fec_enable_phy_intr(void)1740 static void __inline__ fec_enable_phy_intr(void)
1741 {
1742 }
1743 
fec_disable_phy_intr(void)1744 static void __inline__ fec_disable_phy_intr(void)
1745 {
1746 }
1747 
fec_phy_ack_intr(void)1748 static void __inline__ fec_phy_ack_intr(void)
1749 {
1750 }
1751 
fec_localhw_setup(void)1752 static void __inline__ fec_localhw_setup(void)
1753 {
1754 }
1755 
1756 /*
1757  *	Do not need to make region uncached on 532x.
1758  */
fec_uncache(unsigned long addr)1759 static void __inline__ fec_uncache(unsigned long addr)
1760 {
1761 }
1762 
1763 /* ------------------------------------------------------------------------- */
1764 
1765 
1766 #else
1767 
1768 /*
1769  *	Code specific to the MPC860T setup.
1770  */
fec_request_intrs(struct net_device * dev)1771 static void __inline__ fec_request_intrs(struct net_device *dev)
1772 {
1773 	volatile immap_t *immap;
1774 
1775 	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */
1776 
1777 	if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1778 		panic("Could not allocate FEC IRQ!");
1779 }
1780 
fec_get_mac(struct net_device * dev)1781 static void __inline__ fec_get_mac(struct net_device *dev)
1782 {
1783 	bd_t *bd;
1784 
1785 	bd = (bd_t *)__res;
1786 	memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1787 }
1788 
fec_set_mii(struct net_device * dev,struct fec_enet_private * fep)1789 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1790 {
1791 	extern uint _get_IMMR(void);
1792 	volatile immap_t *immap;
1793 	volatile fec_t *fecp;
1794 
1795 	fecp = fep->hwp;
1796 	immap = (immap_t *)IMAP_ADDR;	/* pointer to internal registers */
1797 
1798 	/* Configure all of port D for MII.
1799 	*/
1800 	immap->im_ioport.iop_pdpar = 0x1fff;
1801 
1802 	/* Bits moved from Rev. D onward.
1803 	*/
1804 	if ((_get_IMMR() & 0xffff) < 0x0501)
1805 		immap->im_ioport.iop_pddir = 0x1c58;	/* Pre rev. D */
1806 	else
1807 		immap->im_ioport.iop_pddir = 0x1fff;	/* Rev. D and later */
1808 
1809 	/* Set MII speed to 2.5 MHz
1810 	*/
1811 	fecp->fec_mii_speed = fep->phy_speed =
1812 		((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1813 }
1814 
fec_enable_phy_intr(void)1815 static void __inline__ fec_enable_phy_intr(void)
1816 {
1817 	volatile fec_t *fecp;
1818 
1819 	fecp = fep->hwp;
1820 
1821 	/* Enable MII command finished interrupt
1822 	*/
1823 	fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1824 }
1825 
fec_disable_phy_intr(void)1826 static void __inline__ fec_disable_phy_intr(void)
1827 {
1828 }
1829 
fec_phy_ack_intr(void)1830 static void __inline__ fec_phy_ack_intr(void)
1831 {
1832 }
1833 
fec_localhw_setup(void)1834 static void __inline__ fec_localhw_setup(void)
1835 {
1836 	volatile fec_t *fecp;
1837 
1838 	fecp = fep->hwp;
1839 	fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1840 	/* Enable big endian and don't care about SDMA FC.
1841 	*/
1842 	fecp->fec_fun_code = 0x78000000;
1843 }
1844 
fec_uncache(unsigned long addr)1845 static void __inline__ fec_uncache(unsigned long addr)
1846 {
1847 	pte_t *pte;
1848 	pte = va_to_pte(mem_addr);
1849 	pte_val(*pte) |= _PAGE_NO_CACHE;
1850 	flush_tlb_page(init_mm.mmap, mem_addr);
1851 }
1852 
1853 #endif
1854 
1855 /* ------------------------------------------------------------------------- */
1856 
mii_display_status(struct net_device * dev)1857 static void mii_display_status(struct net_device *dev)
1858 {
1859 	struct fec_enet_private *fep = netdev_priv(dev);
1860 	volatile uint *s = &(fep->phy_status);
1861 
1862 	if (!fep->link && !fep->old_link) {
1863 		/* Link is still down - don't print anything */
1864 		return;
1865 	}
1866 
1867 	printk("%s: status: ", dev->name);
1868 
1869 	if (!fep->link) {
1870 		printk("link down");
1871 	} else {
1872 		printk("link up");
1873 
1874 		switch(*s & PHY_STAT_SPMASK) {
1875 		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1876 		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1877 		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1878 		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1879 		default:
1880 			printk(", Unknown speed/duplex");
1881 		}
1882 
1883 		if (*s & PHY_STAT_ANC)
1884 			printk(", auto-negotiation complete");
1885 	}
1886 
1887 	if (*s & PHY_STAT_FAULT)
1888 		printk(", remote fault");
1889 
1890 	printk(".\n");
1891 }
1892 
mii_display_config(struct work_struct * work)1893 static void mii_display_config(struct work_struct *work)
1894 {
1895 	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1896 	struct net_device *dev = fep->netdev;
1897 	uint status = fep->phy_status;
1898 
1899 	/*
1900 	** When we get here, phy_task is already removed from
1901 	** the workqueue.  It is thus safe to allow to reuse it.
1902 	*/
1903 	fep->mii_phy_task_queued = 0;
1904 	printk("%s: config: auto-negotiation ", dev->name);
1905 
1906 	if (status & PHY_CONF_ANE)
1907 		printk("on");
1908 	else
1909 		printk("off");
1910 
1911 	if (status & PHY_CONF_100FDX)
1912 		printk(", 100FDX");
1913 	if (status & PHY_CONF_100HDX)
1914 		printk(", 100HDX");
1915 	if (status & PHY_CONF_10FDX)
1916 		printk(", 10FDX");
1917 	if (status & PHY_CONF_10HDX)
1918 		printk(", 10HDX");
1919 	if (!(status & PHY_CONF_SPMASK))
1920 		printk(", No speed/duplex selected?");
1921 
1922 	if (status & PHY_CONF_LOOP)
1923 		printk(", loopback enabled");
1924 
1925 	printk(".\n");
1926 
1927 	fep->sequence_done = 1;
1928 }
1929 
mii_relink(struct work_struct * work)1930 static void mii_relink(struct work_struct *work)
1931 {
1932 	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1933 	struct net_device *dev = fep->netdev;
1934 	int duplex;
1935 
1936 	/*
1937 	** When we get here, phy_task is already removed from
1938 	** the workqueue.  It is thus safe to allow to reuse it.
1939 	*/
1940 	fep->mii_phy_task_queued = 0;
1941 	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1942 	mii_display_status(dev);
1943 	fep->old_link = fep->link;
1944 
1945 	if (fep->link) {
1946 		duplex = 0;
1947 		if (fep->phy_status
1948 		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1949 			duplex = 1;
1950 		fec_restart(dev, duplex);
1951 	} else
1952 		fec_stop(dev);
1953 
1954 #if 0
1955 	enable_irq(fep->mii_irq);
1956 #endif
1957 
1958 }
1959 
1960 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
mii_queue_relink(uint mii_reg,struct net_device * dev)1961 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1962 {
1963 	struct fec_enet_private *fep = netdev_priv(dev);
1964 
1965 	/*
1966 	** We cannot queue phy_task twice in the workqueue.  It
1967 	** would cause an endless loop in the workqueue.
1968 	** Fortunately, if the last mii_relink entry has not yet been
1969 	** executed now, it will do the job for the current interrupt,
1970 	** which is just what we want.
1971 	*/
1972 	if (fep->mii_phy_task_queued)
1973 		return;
1974 
1975 	fep->mii_phy_task_queued = 1;
1976 	INIT_WORK(&fep->phy_task, mii_relink);
1977 	schedule_work(&fep->phy_task);
1978 }
1979 
1980 /* mii_queue_config is called in interrupt context from fec_enet_mii */
mii_queue_config(uint mii_reg,struct net_device * dev)1981 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1982 {
1983 	struct fec_enet_private *fep = netdev_priv(dev);
1984 
1985 	if (fep->mii_phy_task_queued)
1986 		return;
1987 
1988 	fep->mii_phy_task_queued = 1;
1989 	INIT_WORK(&fep->phy_task, mii_display_config);
1990 	schedule_work(&fep->phy_task);
1991 }
1992 
1993 phy_cmd_t const phy_cmd_relink[] = {
1994 	{ mk_mii_read(MII_REG_CR), mii_queue_relink },
1995 	{ mk_mii_end, }
1996 	};
1997 phy_cmd_t const phy_cmd_config[] = {
1998 	{ mk_mii_read(MII_REG_CR), mii_queue_config },
1999 	{ mk_mii_end, }
2000 	};
2001 
2002 /* Read remainder of PHY ID.
2003 */
2004 static void
mii_discover_phy3(uint mii_reg,struct net_device * dev)2005 mii_discover_phy3(uint mii_reg, struct net_device *dev)
2006 {
2007 	struct fec_enet_private *fep;
2008 	int i;
2009 
2010 	fep = netdev_priv(dev);
2011 	fep->phy_id |= (mii_reg & 0xffff);
2012 	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2013 
2014 	for(i = 0; phy_info[i]; i++) {
2015 		if(phy_info[i]->id == (fep->phy_id >> 4))
2016 			break;
2017 	}
2018 
2019 	if (phy_info[i])
2020 		printk(" -- %s\n", phy_info[i]->name);
2021 	else
2022 		printk(" -- unknown PHY!\n");
2023 
2024 	fep->phy = phy_info[i];
2025 	fep->phy_id_done = 1;
2026 }
2027 
2028 /* Scan all of the MII PHY addresses looking for someone to respond
2029  * with a valid ID.  This usually happens quickly.
2030  */
2031 static void
mii_discover_phy(uint mii_reg,struct net_device * dev)2032 mii_discover_phy(uint mii_reg, struct net_device *dev)
2033 {
2034 	struct fec_enet_private *fep;
2035 	volatile fec_t *fecp;
2036 	uint phytype;
2037 
2038 	fep = netdev_priv(dev);
2039 	fecp = fep->hwp;
2040 
2041 	if (fep->phy_addr < 32) {
2042 		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
2043 
2044 			/* Got first part of ID, now get remainder.
2045 			*/
2046 			fep->phy_id = phytype << 16;
2047 			mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2048 							mii_discover_phy3);
2049 		} else {
2050 			fep->phy_addr++;
2051 			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2052 							mii_discover_phy);
2053 		}
2054 	} else {
2055 		printk("FEC: No PHY device found.\n");
2056 		/* Disable external MII interface */
2057 		fecp->fec_mii_speed = fep->phy_speed = 0;
2058 		fec_disable_phy_intr();
2059 	}
2060 }
2061 
2062 /* This interrupt occurs when the PHY detects a link change.
2063 */
2064 #ifdef HAVE_mii_link_interrupt
2065 static irqreturn_t
mii_link_interrupt(int irq,void * dev_id)2066 mii_link_interrupt(int irq, void * dev_id)
2067 {
2068 	struct	net_device *dev = dev_id;
2069 	struct fec_enet_private *fep = netdev_priv(dev);
2070 
2071 	fec_phy_ack_intr();
2072 
2073 #if 0
2074 	disable_irq(fep->mii_irq);  /* disable now, enable later */
2075 #endif
2076 
2077 	mii_do_cmd(dev, fep->phy->ack_int);
2078 	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */
2079 
2080 	return IRQ_HANDLED;
2081 }
2082 #endif
2083 
2084 static int
fec_enet_open(struct net_device * dev)2085 fec_enet_open(struct net_device *dev)
2086 {
2087 	struct fec_enet_private *fep = netdev_priv(dev);
2088 
2089 	/* I should reset the ring buffers here, but I don't yet know
2090 	 * a simple way to do that.
2091 	 */
2092 	fec_set_mac_address(dev);
2093 
2094 	fep->sequence_done = 0;
2095 	fep->link = 0;
2096 
2097 	if (fep->phy) {
2098 		mii_do_cmd(dev, fep->phy->ack_int);
2099 		mii_do_cmd(dev, fep->phy->config);
2100 		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */
2101 
2102 		/* Poll until the PHY tells us its configuration
2103 		 * (not link state).
2104 		 * Request is initiated by mii_do_cmd above, but answer
2105 		 * comes by interrupt.
2106 		 * This should take about 25 usec per register at 2.5 MHz,
2107 		 * and we read approximately 5 registers.
2108 		 */
2109 		while(!fep->sequence_done)
2110 			schedule();
2111 
2112 		mii_do_cmd(dev, fep->phy->startup);
2113 
2114 		/* Set the initial link state to true. A lot of hardware
2115 		 * based on this device does not implement a PHY interrupt,
2116 		 * so we are never notified of link change.
2117 		 */
2118 		fep->link = 1;
2119 	} else {
2120 		fep->link = 1; /* lets just try it and see */
2121 		/* no phy,  go full duplex,  it's most likely a hub chip */
2122 		fec_restart(dev, 1);
2123 	}
2124 
2125 	netif_start_queue(dev);
2126 	fep->opened = 1;
2127 	return 0;		/* Success */
2128 }
2129 
2130 static int
fec_enet_close(struct net_device * dev)2131 fec_enet_close(struct net_device *dev)
2132 {
2133 	struct fec_enet_private *fep = netdev_priv(dev);
2134 
2135 	/* Don't know what to do yet.
2136 	*/
2137 	fep->opened = 0;
2138 	netif_stop_queue(dev);
2139 	fec_stop(dev);
2140 
2141 	return 0;
2142 }
2143 
2144 /* Set or clear the multicast filter for this adaptor.
2145  * Skeleton taken from sunlance driver.
2146  * The CPM Ethernet implementation allows Multicast as well as individual
2147  * MAC address filtering.  Some of the drivers check to make sure it is
2148  * a group multicast address, and discard those that are not.  I guess I
2149  * will do the same for now, but just remove the test if you want
2150  * individual filtering as well (do the upper net layers want or support
2151  * this kind of feature?).
2152  */
2153 
2154 #define HASH_BITS	6		/* #bits in hash */
2155 #define CRC32_POLY	0xEDB88320
2156 
set_multicast_list(struct net_device * dev)2157 static void set_multicast_list(struct net_device *dev)
2158 {
2159 	struct fec_enet_private *fep;
2160 	volatile fec_t *ep;
2161 	struct dev_mc_list *dmi;
2162 	unsigned int i, j, bit, data, crc;
2163 	unsigned char hash;
2164 
2165 	fep = netdev_priv(dev);
2166 	ep = fep->hwp;
2167 
2168 	if (dev->flags&IFF_PROMISC) {
2169 		ep->fec_r_cntrl |= 0x0008;
2170 	} else {
2171 
2172 		ep->fec_r_cntrl &= ~0x0008;
2173 
2174 		if (dev->flags & IFF_ALLMULTI) {
2175 			/* Catch all multicast addresses, so set the
2176 			 * filter to all 1's.
2177 			 */
2178 			ep->fec_grp_hash_table_high = 0xffffffff;
2179 			ep->fec_grp_hash_table_low = 0xffffffff;
2180 		} else {
2181 			/* Clear filter and add the addresses in hash register.
2182 			*/
2183 			ep->fec_grp_hash_table_high = 0;
2184 			ep->fec_grp_hash_table_low = 0;
2185 
2186 			dmi = dev->mc_list;
2187 
2188 			for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2189 			{
2190 				/* Only support group multicast for now.
2191 				*/
2192 				if (!(dmi->dmi_addr[0] & 1))
2193 					continue;
2194 
2195 				/* calculate crc32 value of mac address
2196 				*/
2197 				crc = 0xffffffff;
2198 
2199 				for (i = 0; i < dmi->dmi_addrlen; i++)
2200 				{
2201 					data = dmi->dmi_addr[i];
2202 					for (bit = 0; bit < 8; bit++, data >>= 1)
2203 					{
2204 						crc = (crc >> 1) ^
2205 						(((crc ^ data) & 1) ? CRC32_POLY : 0);
2206 					}
2207 				}
2208 
2209 				/* only upper 6 bits (HASH_BITS) are used
2210 				   which point to specific bit in he hash registers
2211 				*/
2212 				hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2213 
2214 				if (hash > 31)
2215 					ep->fec_grp_hash_table_high |= 1 << (hash - 32);
2216 				else
2217 					ep->fec_grp_hash_table_low |= 1 << hash;
2218 			}
2219 		}
2220 	}
2221 }
2222 
2223 /* Set a MAC change in hardware.
2224  */
2225 static void
fec_set_mac_address(struct net_device * dev)2226 fec_set_mac_address(struct net_device *dev)
2227 {
2228 	volatile fec_t *fecp;
2229 
2230 	fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
2231 
2232 	/* Set station address. */
2233 	fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2234 		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2235 	fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2236 		(dev->dev_addr[4] << 24);
2237 
2238 }
2239 
2240 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2241  */
2242  /*
2243   * XXX:  We need to clean up on failure exits here.
2244   */
fec_enet_init(struct net_device * dev)2245 int __init fec_enet_init(struct net_device *dev)
2246 {
2247 	struct fec_enet_private *fep = netdev_priv(dev);
2248 	unsigned long	mem_addr;
2249 	volatile cbd_t	*bdp;
2250 	cbd_t		*cbd_base;
2251 	volatile fec_t	*fecp;
2252 	int 		i, j;
2253 	static int	index = 0;
2254 
2255 	/* Only allow us to be probed once. */
2256 	if (index >= FEC_MAX_PORTS)
2257 		return -ENXIO;
2258 
2259 	/* Allocate memory for buffer descriptors.
2260 	*/
2261 	mem_addr = __get_free_page(GFP_KERNEL);
2262 	if (mem_addr == 0) {
2263 		printk("FEC: allocate descriptor memory failed?\n");
2264 		return -ENOMEM;
2265 	}
2266 
2267 	spin_lock_init(&fep->hw_lock);
2268 	spin_lock_init(&fep->mii_lock);
2269 
2270 	/* Create an Ethernet device instance.
2271 	*/
2272 	fecp = (volatile fec_t *) fec_hw[index];
2273 
2274 	fep->index = index;
2275 	fep->hwp = fecp;
2276 	fep->netdev = dev;
2277 
2278 	/* Whack a reset.  We should wait for this.
2279 	*/
2280 	fecp->fec_ecntrl = 1;
2281 	udelay(10);
2282 
2283 	/* Set the Ethernet address.  If using multiple Enets on the 8xx,
2284 	 * this needs some work to get unique addresses.
2285 	 *
2286 	 * This is our default MAC address unless the user changes
2287 	 * it via eth_mac_addr (our dev->set_mac_addr handler).
2288 	 */
2289 	fec_get_mac(dev);
2290 
2291 	cbd_base = (cbd_t *)mem_addr;
2292 	/* XXX: missing check for allocation failure */
2293 
2294 	fec_uncache(mem_addr);
2295 
2296 	/* Set receive and transmit descriptor base.
2297 	*/
2298 	fep->rx_bd_base = cbd_base;
2299 	fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2300 
2301 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2302 	fep->cur_rx = fep->rx_bd_base;
2303 
2304 	fep->skb_cur = fep->skb_dirty = 0;
2305 
2306 	/* Initialize the receive buffer descriptors.
2307 	*/
2308 	bdp = fep->rx_bd_base;
2309 	for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2310 
2311 		/* Allocate a page.
2312 		*/
2313 		mem_addr = __get_free_page(GFP_KERNEL);
2314 		/* XXX: missing check for allocation failure */
2315 
2316 		fec_uncache(mem_addr);
2317 
2318 		/* Initialize the BD for every fragment in the page.
2319 		*/
2320 		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2321 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
2322 			bdp->cbd_bufaddr = __pa(mem_addr);
2323 			mem_addr += FEC_ENET_RX_FRSIZE;
2324 			bdp++;
2325 		}
2326 	}
2327 
2328 	/* Set the last buffer to wrap.
2329 	*/
2330 	bdp--;
2331 	bdp->cbd_sc |= BD_SC_WRAP;
2332 
2333 	/* ...and the same for transmmit.
2334 	*/
2335 	bdp = fep->tx_bd_base;
2336 	for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2337 		if (j >= FEC_ENET_TX_FRPPG) {
2338 			mem_addr = __get_free_page(GFP_KERNEL);
2339 			j = 1;
2340 		} else {
2341 			mem_addr += FEC_ENET_TX_FRSIZE;
2342 			j++;
2343 		}
2344 		fep->tx_bounce[i] = (unsigned char *) mem_addr;
2345 
2346 		/* Initialize the BD for every fragment in the page.
2347 		*/
2348 		bdp->cbd_sc = 0;
2349 		bdp->cbd_bufaddr = 0;
2350 		bdp++;
2351 	}
2352 
2353 	/* Set the last buffer to wrap.
2354 	*/
2355 	bdp--;
2356 	bdp->cbd_sc |= BD_SC_WRAP;
2357 
2358 	/* Set receive and transmit descriptor base.
2359 	*/
2360 	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2361 	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2362 
2363 	/* Install our interrupt handlers. This varies depending on
2364 	 * the architecture.
2365 	*/
2366 	fec_request_intrs(dev);
2367 
2368 	fecp->fec_grp_hash_table_high = 0;
2369 	fecp->fec_grp_hash_table_low = 0;
2370 	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2371 	fecp->fec_ecntrl = 2;
2372 	fecp->fec_r_des_active = 0;
2373 #ifndef CONFIG_M5272
2374 	fecp->fec_hash_table_high = 0;
2375 	fecp->fec_hash_table_low = 0;
2376 #endif
2377 
2378 	dev->base_addr = (unsigned long)fecp;
2379 
2380 	/* The FEC Ethernet specific entries in the device structure. */
2381 	dev->open = fec_enet_open;
2382 	dev->hard_start_xmit = fec_enet_start_xmit;
2383 	dev->tx_timeout = fec_timeout;
2384 	dev->watchdog_timeo = TX_TIMEOUT;
2385 	dev->stop = fec_enet_close;
2386 	dev->set_multicast_list = set_multicast_list;
2387 
2388 	for (i=0; i<NMII-1; i++)
2389 		mii_cmds[i].mii_next = &mii_cmds[i+1];
2390 	mii_free = mii_cmds;
2391 
2392 	/* setup MII interface */
2393 	fec_set_mii(dev, fep);
2394 
2395 	/* Clear and enable interrupts */
2396 	fecp->fec_ievent = 0xffc00000;
2397 	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2398 
2399 	/* Queue up command to detect the PHY and initialize the
2400 	 * remainder of the interface.
2401 	 */
2402 	fep->phy_id_done = 0;
2403 	fep->phy_addr = 0;
2404 	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2405 
2406 	index++;
2407 	return 0;
2408 }
2409 
2410 /* This function is called to start or restart the FEC during a link
2411  * change.  This only happens when switching between half and full
2412  * duplex.
2413  */
2414 static void
fec_restart(struct net_device * dev,int duplex)2415 fec_restart(struct net_device *dev, int duplex)
2416 {
2417 	struct fec_enet_private *fep;
2418 	volatile cbd_t *bdp;
2419 	volatile fec_t *fecp;
2420 	int i;
2421 
2422 	fep = netdev_priv(dev);
2423 	fecp = fep->hwp;
2424 
2425 	/* Whack a reset.  We should wait for this.
2426 	*/
2427 	fecp->fec_ecntrl = 1;
2428 	udelay(10);
2429 
2430 	/* Clear any outstanding interrupt.
2431 	*/
2432 	fecp->fec_ievent = 0xffc00000;
2433 	fec_enable_phy_intr();
2434 
2435 	/* Set station address.
2436 	*/
2437 	fec_set_mac_address(dev);
2438 
2439 	/* Reset all multicast.
2440 	*/
2441 	fecp->fec_grp_hash_table_high = 0;
2442 	fecp->fec_grp_hash_table_low = 0;
2443 
2444 	/* Set maximum receive buffer size.
2445 	*/
2446 	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2447 
2448 	fec_localhw_setup();
2449 
2450 	/* Set receive and transmit descriptor base.
2451 	*/
2452 	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2453 	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2454 
2455 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2456 	fep->cur_rx = fep->rx_bd_base;
2457 
2458 	/* Reset SKB transmit buffers.
2459 	*/
2460 	fep->skb_cur = fep->skb_dirty = 0;
2461 	for (i=0; i<=TX_RING_MOD_MASK; i++) {
2462 		if (fep->tx_skbuff[i] != NULL) {
2463 			dev_kfree_skb_any(fep->tx_skbuff[i]);
2464 			fep->tx_skbuff[i] = NULL;
2465 		}
2466 	}
2467 
2468 	/* Initialize the receive buffer descriptors.
2469 	*/
2470 	bdp = fep->rx_bd_base;
2471 	for (i=0; i<RX_RING_SIZE; i++) {
2472 
2473 		/* Initialize the BD for every fragment in the page.
2474 		*/
2475 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2476 		bdp++;
2477 	}
2478 
2479 	/* Set the last buffer to wrap.
2480 	*/
2481 	bdp--;
2482 	bdp->cbd_sc |= BD_SC_WRAP;
2483 
2484 	/* ...and the same for transmmit.
2485 	*/
2486 	bdp = fep->tx_bd_base;
2487 	for (i=0; i<TX_RING_SIZE; i++) {
2488 
2489 		/* Initialize the BD for every fragment in the page.
2490 		*/
2491 		bdp->cbd_sc = 0;
2492 		bdp->cbd_bufaddr = 0;
2493 		bdp++;
2494 	}
2495 
2496 	/* Set the last buffer to wrap.
2497 	*/
2498 	bdp--;
2499 	bdp->cbd_sc |= BD_SC_WRAP;
2500 
2501 	/* Enable MII mode.
2502 	*/
2503 	if (duplex) {
2504 		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2505 		fecp->fec_x_cntrl = 0x04;		  /* FD enable */
2506 	} else {
2507 		/* MII enable|No Rcv on Xmit */
2508 		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2509 		fecp->fec_x_cntrl = 0x00;
2510 	}
2511 	fep->full_duplex = duplex;
2512 
2513 	/* Set MII speed.
2514 	*/
2515 	fecp->fec_mii_speed = fep->phy_speed;
2516 
2517 	/* And last, enable the transmit and receive processing.
2518 	*/
2519 	fecp->fec_ecntrl = 2;
2520 	fecp->fec_r_des_active = 0;
2521 
2522 	/* Enable interrupts we wish to service.
2523 	*/
2524 	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2525 }
2526 
2527 static void
fec_stop(struct net_device * dev)2528 fec_stop(struct net_device *dev)
2529 {
2530 	volatile fec_t *fecp;
2531 	struct fec_enet_private *fep;
2532 
2533 	fep = netdev_priv(dev);
2534 	fecp = fep->hwp;
2535 
2536 	/*
2537 	** We cannot expect a graceful transmit stop without link !!!
2538 	*/
2539 	if (fep->link)
2540 		{
2541 		fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */
2542 		udelay(10);
2543 		if (!(fecp->fec_ievent & FEC_ENET_GRA))
2544 			printk("fec_stop : Graceful transmit stop did not complete !\n");
2545 		}
2546 
2547 	/* Whack a reset.  We should wait for this.
2548 	*/
2549 	fecp->fec_ecntrl = 1;
2550 	udelay(10);
2551 
2552 	/* Clear outstanding MII command interrupts.
2553 	*/
2554 	fecp->fec_ievent = FEC_ENET_MII;
2555 	fec_enable_phy_intr();
2556 
2557 	fecp->fec_imask = FEC_ENET_MII;
2558 	fecp->fec_mii_speed = fep->phy_speed;
2559 }
2560 
fec_enet_module_init(void)2561 static int __init fec_enet_module_init(void)
2562 {
2563 	struct net_device *dev;
2564 	int i, err;
2565 
2566 	printk("FEC ENET Version 0.2\n");
2567 
2568 	for (i = 0; (i < FEC_MAX_PORTS); i++) {
2569 		dev = alloc_etherdev(sizeof(struct fec_enet_private));
2570 		if (!dev)
2571 			return -ENOMEM;
2572 		err = fec_enet_init(dev);
2573 		if (err) {
2574 			free_netdev(dev);
2575 			continue;
2576 		}
2577 		if (register_netdev(dev) != 0) {
2578 			/* XXX: missing cleanup here */
2579 			free_netdev(dev);
2580 			return -EIO;
2581 		}
2582 
2583 		printk("%s: ethernet %pM\n", dev->name, dev->dev_addr);
2584 	}
2585 	return 0;
2586 }
2587 
2588 module_init(fec_enet_module_init);
2589 
2590 MODULE_LICENSE("GPL");
2591