• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2  *           auto carrier detecting ethernet driver.  Also known as the
3  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
4  *
5  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6  *		2006, 2008 David S. Miller (davem@davemloft.net)
7  *
8  * Changes :
9  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10  *   - port to non-sparc architectures. Tested only on x86 and
11  *     only currently works with QFE PCI cards.
12  *   - ability to specify the MAC address at module load time by passing this
13  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
37 #include <linux/dma-mapping.h>
38 
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/dma.h>
42 #include <asm/byteorder.h>
43 
44 #ifdef CONFIG_SPARC
45 #include <linux/of.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
50 #include <asm/prom.h>
51 #include <asm/auxio.h>
52 #endif
53 #include <asm/uaccess.h>
54 
55 #include <asm/pgtable.h>
56 #include <asm/irq.h>
57 
58 #ifdef CONFIG_PCI
59 #include <linux/pci.h>
60 #endif
61 
62 #include "sunhme.h"
63 
64 #define DRV_NAME	"sunhme"
65 #define DRV_VERSION	"3.10"
66 #define DRV_RELDATE	"August 26, 2008"
67 #define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
68 
69 static char version[] =
70 	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
71 
72 MODULE_VERSION(DRV_VERSION);
73 MODULE_AUTHOR(DRV_AUTHOR);
74 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
75 MODULE_LICENSE("GPL");
76 
77 static int macaddr[6];
78 
79 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
80 module_param_array(macaddr, int, NULL, 0);
81 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
82 
83 #ifdef CONFIG_SBUS
84 static struct quattro *qfe_sbus_list;
85 #endif
86 
87 #ifdef CONFIG_PCI
88 static struct quattro *qfe_pci_list;
89 #endif
90 
91 #undef HMEDEBUG
92 #undef SXDEBUG
93 #undef RXDEBUG
94 #undef TXDEBUG
95 #undef TXLOGGING
96 
97 #ifdef TXLOGGING
98 struct hme_tx_logent {
99 	unsigned int tstamp;
100 	int tx_new, tx_old;
101 	unsigned int action;
102 #define TXLOG_ACTION_IRQ	0x01
103 #define TXLOG_ACTION_TXMIT	0x02
104 #define TXLOG_ACTION_TBUSY	0x04
105 #define TXLOG_ACTION_NBUFS	0x08
106 	unsigned int status;
107 };
108 #define TX_LOG_LEN	128
109 static struct hme_tx_logent tx_log[TX_LOG_LEN];
110 static int txlog_cur_entry;
tx_add_log(struct happy_meal * hp,unsigned int a,unsigned int s)111 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
112 {
113 	struct hme_tx_logent *tlp;
114 	unsigned long flags;
115 
116 	local_irq_save(flags);
117 	tlp = &tx_log[txlog_cur_entry];
118 	tlp->tstamp = (unsigned int)jiffies;
119 	tlp->tx_new = hp->tx_new;
120 	tlp->tx_old = hp->tx_old;
121 	tlp->action = a;
122 	tlp->status = s;
123 	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
124 	local_irq_restore(flags);
125 }
tx_dump_log(void)126 static __inline__ void tx_dump_log(void)
127 {
128 	int i, this;
129 
130 	this = txlog_cur_entry;
131 	for (i = 0; i < TX_LOG_LEN; i++) {
132 		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
133 		       tx_log[this].tstamp,
134 		       tx_log[this].tx_new, tx_log[this].tx_old,
135 		       tx_log[this].action, tx_log[this].status);
136 		this = (this + 1) & (TX_LOG_LEN - 1);
137 	}
138 }
tx_dump_ring(struct happy_meal * hp)139 static __inline__ void tx_dump_ring(struct happy_meal *hp)
140 {
141 	struct hmeal_init_block *hb = hp->happy_block;
142 	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
143 	int i;
144 
145 	for (i = 0; i < TX_RING_SIZE; i+=4) {
146 		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
147 		       i, i + 4,
148 		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
149 		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
150 		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
151 		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
152 	}
153 }
154 #else
155 #define tx_add_log(hp, a, s)		do { } while(0)
156 #define tx_dump_log()			do { } while(0)
157 #define tx_dump_ring(hp)		do { } while(0)
158 #endif
159 
160 #ifdef HMEDEBUG
161 #define HMD(x)  printk x
162 #else
163 #define HMD(x)
164 #endif
165 
166 /* #define AUTO_SWITCH_DEBUG */
167 
168 #ifdef AUTO_SWITCH_DEBUG
169 #define ASD(x)  printk x
170 #else
171 #define ASD(x)
172 #endif
173 
174 #define DEFAULT_IPG0      16 /* For lance-mode only */
175 #define DEFAULT_IPG1       8 /* For all modes */
176 #define DEFAULT_IPG2       4 /* For all modes */
177 #define DEFAULT_JAMSIZE    4 /* Toe jam */
178 
179 /* NOTE: In the descriptor writes one _must_ write the address
180  *	 member _first_.  The card must not be allowed to see
181  *	 the updated descriptor flags until the address is
182  *	 correct.  I've added a write memory barrier between
183  *	 the two stores so that I can sleep well at night... -DaveM
184  */
185 
186 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
sbus_hme_write32(void __iomem * reg,u32 val)187 static void sbus_hme_write32(void __iomem *reg, u32 val)
188 {
189 	sbus_writel(val, reg);
190 }
191 
sbus_hme_read32(void __iomem * reg)192 static u32 sbus_hme_read32(void __iomem *reg)
193 {
194 	return sbus_readl(reg);
195 }
196 
sbus_hme_write_rxd(struct happy_meal_rxd * rxd,u32 flags,u32 addr)197 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
198 {
199 	rxd->rx_addr = (__force hme32)addr;
200 	wmb();
201 	rxd->rx_flags = (__force hme32)flags;
202 }
203 
sbus_hme_write_txd(struct happy_meal_txd * txd,u32 flags,u32 addr)204 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
205 {
206 	txd->tx_addr = (__force hme32)addr;
207 	wmb();
208 	txd->tx_flags = (__force hme32)flags;
209 }
210 
sbus_hme_read_desc32(hme32 * p)211 static u32 sbus_hme_read_desc32(hme32 *p)
212 {
213 	return (__force u32)*p;
214 }
215 
pci_hme_write32(void __iomem * reg,u32 val)216 static void pci_hme_write32(void __iomem *reg, u32 val)
217 {
218 	writel(val, reg);
219 }
220 
pci_hme_read32(void __iomem * reg)221 static u32 pci_hme_read32(void __iomem *reg)
222 {
223 	return readl(reg);
224 }
225 
pci_hme_write_rxd(struct happy_meal_rxd * rxd,u32 flags,u32 addr)226 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
227 {
228 	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
229 	wmb();
230 	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
231 }
232 
pci_hme_write_txd(struct happy_meal_txd * txd,u32 flags,u32 addr)233 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
234 {
235 	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
236 	wmb();
237 	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
238 }
239 
pci_hme_read_desc32(hme32 * p)240 static u32 pci_hme_read_desc32(hme32 *p)
241 {
242 	return le32_to_cpup((__le32 *)p);
243 }
244 
245 #define hme_write32(__hp, __reg, __val) \
246 	((__hp)->write32((__reg), (__val)))
247 #define hme_read32(__hp, __reg) \
248 	((__hp)->read32(__reg))
249 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
250 	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
251 #define hme_write_txd(__hp, __txd, __flags, __addr) \
252 	((__hp)->write_txd((__txd), (__flags), (__addr)))
253 #define hme_read_desc32(__hp, __p) \
254 	((__hp)->read_desc32(__p))
255 #define hme_dma_map(__hp, __ptr, __size, __dir) \
256 	((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
257 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
258 	((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
260 	((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
261 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
262 	((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
263 #else
264 #ifdef CONFIG_SBUS
265 /* SBUS only compilation */
266 #define hme_write32(__hp, __reg, __val) \
267 	sbus_writel((__val), (__reg))
268 #define hme_read32(__hp, __reg) \
269 	sbus_readl(__reg)
270 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
271 do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
272 	wmb(); \
273 	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
274 } while(0)
275 #define hme_write_txd(__hp, __txd, __flags, __addr) \
276 do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
277 	wmb(); \
278 	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
279 } while(0)
280 #define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
281 #define hme_dma_map(__hp, __ptr, __size, __dir) \
282 	dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
283 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
284 	dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
286 	dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
287 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
288 	dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
289 #else
290 /* PCI only compilation */
291 #define hme_write32(__hp, __reg, __val) \
292 	writel((__val), (__reg))
293 #define hme_read32(__hp, __reg) \
294 	readl(__reg)
295 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
296 do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
297 	wmb(); \
298 	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
299 } while(0)
300 #define hme_write_txd(__hp, __txd, __flags, __addr) \
301 do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
302 	wmb(); \
303 	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
304 } while(0)
hme_read_desc32(struct happy_meal * hp,hme32 * p)305 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
306 {
307 	return le32_to_cpup((__le32 *)p);
308 }
309 #define hme_dma_map(__hp, __ptr, __size, __dir) \
310 	pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
311 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
312 	pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
313 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
314 	pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
315 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
316 	pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
317 #endif
318 #endif
319 
320 
321 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
BB_PUT_BIT(struct happy_meal * hp,void __iomem * tregs,int bit)322 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
323 {
324 	hme_write32(hp, tregs + TCVR_BBDATA, bit);
325 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
326 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
327 }
328 
329 #if 0
330 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
331 {
332 	u32 ret;
333 
334 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
335 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
336 	ret = hme_read32(hp, tregs + TCVR_CFG);
337 	if (internal)
338 		ret &= TCV_CFG_MDIO0;
339 	else
340 		ret &= TCV_CFG_MDIO1;
341 
342 	return ret;
343 }
344 #endif
345 
BB_GET_BIT2(struct happy_meal * hp,void __iomem * tregs,int internal)346 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
347 {
348 	u32 retval;
349 
350 	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
351 	udelay(1);
352 	retval = hme_read32(hp, tregs + TCVR_CFG);
353 	if (internal)
354 		retval &= TCV_CFG_MDIO0;
355 	else
356 		retval &= TCV_CFG_MDIO1;
357 	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
358 
359 	return retval;
360 }
361 
362 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
363 
happy_meal_bb_read(struct happy_meal * hp,void __iomem * tregs,int reg)364 static int happy_meal_bb_read(struct happy_meal *hp,
365 			      void __iomem *tregs, int reg)
366 {
367 	u32 tmp;
368 	int retval = 0;
369 	int i;
370 
371 	ASD(("happy_meal_bb_read: reg=%d ", reg));
372 
373 	/* Enable the MIF BitBang outputs. */
374 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
375 
376 	/* Force BitBang into the idle state. */
377 	for (i = 0; i < 32; i++)
378 		BB_PUT_BIT(hp, tregs, 1);
379 
380 	/* Give it the read sequence. */
381 	BB_PUT_BIT(hp, tregs, 0);
382 	BB_PUT_BIT(hp, tregs, 1);
383 	BB_PUT_BIT(hp, tregs, 1);
384 	BB_PUT_BIT(hp, tregs, 0);
385 
386 	/* Give it the PHY address. */
387 	tmp = hp->paddr & 0xff;
388 	for (i = 4; i >= 0; i--)
389 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
390 
391 	/* Tell it what register we want to read. */
392 	tmp = (reg & 0xff);
393 	for (i = 4; i >= 0; i--)
394 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
395 
396 	/* Close down the MIF BitBang outputs. */
397 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
398 
399 	/* Now read in the value. */
400 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
401 	for (i = 15; i >= 0; i--)
402 		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405 	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
406 	ASD(("value=%x\n", retval));
407 	return retval;
408 }
409 
happy_meal_bb_write(struct happy_meal * hp,void __iomem * tregs,int reg,unsigned short value)410 static void happy_meal_bb_write(struct happy_meal *hp,
411 				void __iomem *tregs, int reg,
412 				unsigned short value)
413 {
414 	u32 tmp;
415 	int i;
416 
417 	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
418 
419 	/* Enable the MIF BitBang outputs. */
420 	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
421 
422 	/* Force BitBang into the idle state. */
423 	for (i = 0; i < 32; i++)
424 		BB_PUT_BIT(hp, tregs, 1);
425 
426 	/* Give it write sequence. */
427 	BB_PUT_BIT(hp, tregs, 0);
428 	BB_PUT_BIT(hp, tregs, 1);
429 	BB_PUT_BIT(hp, tregs, 0);
430 	BB_PUT_BIT(hp, tregs, 1);
431 
432 	/* Give it the PHY address. */
433 	tmp = (hp->paddr & 0xff);
434 	for (i = 4; i >= 0; i--)
435 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
436 
437 	/* Tell it what register we will be writing. */
438 	tmp = (reg & 0xff);
439 	for (i = 4; i >= 0; i--)
440 		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
441 
442 	/* Tell it to become ready for the bits. */
443 	BB_PUT_BIT(hp, tregs, 1);
444 	BB_PUT_BIT(hp, tregs, 0);
445 
446 	for (i = 15; i >= 0; i--)
447 		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
448 
449 	/* Close down the MIF BitBang outputs. */
450 	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
451 }
452 
453 #define TCVR_READ_TRIES   16
454 
happy_meal_tcvr_read(struct happy_meal * hp,void __iomem * tregs,int reg)455 static int happy_meal_tcvr_read(struct happy_meal *hp,
456 				void __iomem *tregs, int reg)
457 {
458 	int tries = TCVR_READ_TRIES;
459 	int retval;
460 
461 	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
462 	if (hp->tcvr_type == none) {
463 		ASD(("no transceiver, value=TCVR_FAILURE\n"));
464 		return TCVR_FAILURE;
465 	}
466 
467 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
468 		ASD(("doing bit bang\n"));
469 		return happy_meal_bb_read(hp, tregs, reg);
470 	}
471 
472 	hme_write32(hp, tregs + TCVR_FRAME,
473 		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
474 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
475 		udelay(20);
476 	if (!tries) {
477 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
478 		return TCVR_FAILURE;
479 	}
480 	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
481 	ASD(("value=%04x\n", retval));
482 	return retval;
483 }
484 
485 #define TCVR_WRITE_TRIES  16
486 
happy_meal_tcvr_write(struct happy_meal * hp,void __iomem * tregs,int reg,unsigned short value)487 static void happy_meal_tcvr_write(struct happy_meal *hp,
488 				  void __iomem *tregs, int reg,
489 				  unsigned short value)
490 {
491 	int tries = TCVR_WRITE_TRIES;
492 
493 	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
494 
495 	/* Welcome to Sun Microsystems, can I take your order please? */
496 	if (!(hp->happy_flags & HFLAG_FENABLE)) {
497 		happy_meal_bb_write(hp, tregs, reg, value);
498 		return;
499 	}
500 
501 	/* Would you like fries with that? */
502 	hme_write32(hp, tregs + TCVR_FRAME,
503 		    (FRAME_WRITE | (hp->paddr << 23) |
504 		     ((reg & 0xff) << 18) | (value & 0xffff)));
505 	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
506 		udelay(20);
507 
508 	/* Anything else? */
509 	if (!tries)
510 		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
511 
512 	/* Fifty-two cents is your change, have a nice day. */
513 }
514 
515 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
516  * that keeps watching the auto negotiation process as it progresses.
517  * The DP83840 is first told to start doing it's thing, we set up the time
518  * and place the timer state machine in it's initial state.
519  *
520  * Here the timer peeks at the DP83840 status registers at each click to see
521  * if the auto negotiation has completed, we assume here that the DP83840 PHY
522  * will time out at some point and just tell us what (didn't) happen.  For
523  * complete coverage we only allow so many of the ticks at this level to run,
524  * when this has expired we print a warning message and try another strategy.
525  * This "other" strategy is to force the interface into various speed/duplex
526  * configurations and we stop when we see a link-up condition before the
527  * maximum number of "peek" ticks have occurred.
528  *
529  * Once a valid link status has been detected we configure the BigMAC and
530  * the rest of the Happy Meal to speak the most efficient protocol we could
531  * get a clean link for.  The priority for link configurations, highest first
532  * is:
533  *                 100 Base-T Full Duplex
534  *                 100 Base-T Half Duplex
535  *                 10 Base-T Full Duplex
536  *                 10 Base-T Half Duplex
537  *
538  * We start a new timer now, after a successful auto negotiation status has
539  * been detected.  This timer just waits for the link-up bit to get set in
540  * the BMCR of the DP83840.  When this occurs we print a kernel log message
541  * describing the link type in use and the fact that it is up.
542  *
543  * If a fatal error of some sort is signalled and detected in the interrupt
544  * service routine, and the chip is reset, or the link is ifconfig'd down
545  * and then back up, this entire process repeats itself all over again.
546  */
try_next_permutation(struct happy_meal * hp,void __iomem * tregs)547 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
548 {
549 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
550 
551 	/* Downgrade from full to half duplex.  Only possible
552 	 * via ethtool.
553 	 */
554 	if (hp->sw_bmcr & BMCR_FULLDPLX) {
555 		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
556 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
557 		return 0;
558 	}
559 
560 	/* Downgrade from 100 to 10. */
561 	if (hp->sw_bmcr & BMCR_SPEED100) {
562 		hp->sw_bmcr &= ~(BMCR_SPEED100);
563 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
564 		return 0;
565 	}
566 
567 	/* We've tried everything. */
568 	return -1;
569 }
570 
display_link_mode(struct happy_meal * hp,void __iomem * tregs)571 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
572 {
573 	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
574 	if (hp->tcvr_type == external)
575 		printk("external ");
576 	else
577 		printk("internal ");
578 	printk("transceiver at ");
579 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
580 	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
581 		if (hp->sw_lpa & LPA_100FULL)
582 			printk("100Mb/s, Full Duplex.\n");
583 		else
584 			printk("100Mb/s, Half Duplex.\n");
585 	} else {
586 		if (hp->sw_lpa & LPA_10FULL)
587 			printk("10Mb/s, Full Duplex.\n");
588 		else
589 			printk("10Mb/s, Half Duplex.\n");
590 	}
591 }
592 
display_forced_link_mode(struct happy_meal * hp,void __iomem * tregs)593 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
594 {
595 	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
596 	if (hp->tcvr_type == external)
597 		printk("external ");
598 	else
599 		printk("internal ");
600 	printk("transceiver at ");
601 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
602 	if (hp->sw_bmcr & BMCR_SPEED100)
603 		printk("100Mb/s, ");
604 	else
605 		printk("10Mb/s, ");
606 	if (hp->sw_bmcr & BMCR_FULLDPLX)
607 		printk("Full Duplex.\n");
608 	else
609 		printk("Half Duplex.\n");
610 }
611 
set_happy_link_modes(struct happy_meal * hp,void __iomem * tregs)612 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
613 {
614 	int full;
615 
616 	/* All we care about is making sure the bigmac tx_cfg has a
617 	 * proper duplex setting.
618 	 */
619 	if (hp->timer_state == arbwait) {
620 		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
621 		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
622 			goto no_response;
623 		if (hp->sw_lpa & LPA_100FULL)
624 			full = 1;
625 		else if (hp->sw_lpa & LPA_100HALF)
626 			full = 0;
627 		else if (hp->sw_lpa & LPA_10FULL)
628 			full = 1;
629 		else
630 			full = 0;
631 	} else {
632 		/* Forcing a link mode. */
633 		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
634 		if (hp->sw_bmcr & BMCR_FULLDPLX)
635 			full = 1;
636 		else
637 			full = 0;
638 	}
639 
640 	/* Before changing other bits in the tx_cfg register, and in
641 	 * general any of other the TX config registers too, you
642 	 * must:
643 	 * 1) Clear Enable
644 	 * 2) Poll with reads until that bit reads back as zero
645 	 * 3) Make TX configuration changes
646 	 * 4) Set Enable once more
647 	 */
648 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
649 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
650 		    ~(BIGMAC_TXCFG_ENABLE));
651 	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
652 		barrier();
653 	if (full) {
654 		hp->happy_flags |= HFLAG_FULL;
655 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
656 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
657 			    BIGMAC_TXCFG_FULLDPLX);
658 	} else {
659 		hp->happy_flags &= ~(HFLAG_FULL);
660 		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
661 			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
662 			    ~(BIGMAC_TXCFG_FULLDPLX));
663 	}
664 	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
665 		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
666 		    BIGMAC_TXCFG_ENABLE);
667 	return 0;
668 no_response:
669 	return 1;
670 }
671 
672 static int happy_meal_init(struct happy_meal *hp);
673 
is_lucent_phy(struct happy_meal * hp)674 static int is_lucent_phy(struct happy_meal *hp)
675 {
676 	void __iomem *tregs = hp->tcvregs;
677 	unsigned short mr2, mr3;
678 	int ret = 0;
679 
680 	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
681 	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
682 	if ((mr2 & 0xffff) == 0x0180 &&
683 	    ((mr3 & 0xffff) >> 10) == 0x1d)
684 		ret = 1;
685 
686 	return ret;
687 }
688 
happy_meal_timer(unsigned long data)689 static void happy_meal_timer(unsigned long data)
690 {
691 	struct happy_meal *hp = (struct happy_meal *) data;
692 	void __iomem *tregs = hp->tcvregs;
693 	int restart_timer = 0;
694 
695 	spin_lock_irq(&hp->happy_lock);
696 
697 	hp->timer_ticks++;
698 	switch(hp->timer_state) {
699 	case arbwait:
700 		/* Only allow for 5 ticks, thats 10 seconds and much too
701 		 * long to wait for arbitration to complete.
702 		 */
703 		if (hp->timer_ticks >= 10) {
704 			/* Enter force mode. */
705 	do_force_mode:
706 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
707 			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
708 			       hp->dev->name);
709 			hp->sw_bmcr = BMCR_SPEED100;
710 			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
711 
712 			if (!is_lucent_phy(hp)) {
713 				/* OK, seems we need do disable the transceiver for the first
714 				 * tick to make sure we get an accurate link state at the
715 				 * second tick.
716 				 */
717 				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
718 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
719 				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
720 			}
721 			hp->timer_state = ltrywait;
722 			hp->timer_ticks = 0;
723 			restart_timer = 1;
724 		} else {
725 			/* Anything interesting happen? */
726 			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
727 			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
728 				int ret;
729 
730 				/* Just what we've been waiting for... */
731 				ret = set_happy_link_modes(hp, tregs);
732 				if (ret) {
733 					/* Ooops, something bad happened, go to force
734 					 * mode.
735 					 *
736 					 * XXX Broken hubs which don't support 802.3u
737 					 * XXX auto-negotiation make this happen as well.
738 					 */
739 					goto do_force_mode;
740 				}
741 
742 				/* Success, at least so far, advance our state engine. */
743 				hp->timer_state = lupwait;
744 				restart_timer = 1;
745 			} else {
746 				restart_timer = 1;
747 			}
748 		}
749 		break;
750 
751 	case lupwait:
752 		/* Auto negotiation was successful and we are awaiting a
753 		 * link up status.  I have decided to let this timer run
754 		 * forever until some sort of error is signalled, reporting
755 		 * a message to the user at 10 second intervals.
756 		 */
757 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
758 		if (hp->sw_bmsr & BMSR_LSTATUS) {
759 			/* Wheee, it's up, display the link mode in use and put
760 			 * the timer to sleep.
761 			 */
762 			display_link_mode(hp, tregs);
763 			hp->timer_state = asleep;
764 			restart_timer = 0;
765 		} else {
766 			if (hp->timer_ticks >= 10) {
767 				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
768 				       "not completely up.\n", hp->dev->name);
769 				hp->timer_ticks = 0;
770 				restart_timer = 1;
771 			} else {
772 				restart_timer = 1;
773 			}
774 		}
775 		break;
776 
777 	case ltrywait:
778 		/* Making the timeout here too long can make it take
779 		 * annoyingly long to attempt all of the link mode
780 		 * permutations, but then again this is essentially
781 		 * error recovery code for the most part.
782 		 */
783 		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
784 		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
785 		if (hp->timer_ticks == 1) {
786 			if (!is_lucent_phy(hp)) {
787 				/* Re-enable transceiver, we'll re-enable the transceiver next
788 				 * tick, then check link state on the following tick.
789 				 */
790 				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
791 				happy_meal_tcvr_write(hp, tregs,
792 						      DP83840_CSCONFIG, hp->sw_csconfig);
793 			}
794 			restart_timer = 1;
795 			break;
796 		}
797 		if (hp->timer_ticks == 2) {
798 			if (!is_lucent_phy(hp)) {
799 				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
800 				happy_meal_tcvr_write(hp, tregs,
801 						      DP83840_CSCONFIG, hp->sw_csconfig);
802 			}
803 			restart_timer = 1;
804 			break;
805 		}
806 		if (hp->sw_bmsr & BMSR_LSTATUS) {
807 			/* Force mode selection success. */
808 			display_forced_link_mode(hp, tregs);
809 			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
810 			hp->timer_state = asleep;
811 			restart_timer = 0;
812 		} else {
813 			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
814 				int ret;
815 
816 				ret = try_next_permutation(hp, tregs);
817 				if (ret == -1) {
818 					/* Aieee, tried them all, reset the
819 					 * chip and try all over again.
820 					 */
821 
822 					/* Let the user know... */
823 					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
824 					       hp->dev->name);
825 
826 					ret = happy_meal_init(hp);
827 					if (ret) {
828 						/* ho hum... */
829 						printk(KERN_ERR "%s: Error, cannot re-init the "
830 						       "Happy Meal.\n", hp->dev->name);
831 					}
832 					goto out;
833 				}
834 				if (!is_lucent_phy(hp)) {
835 					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
836 									       DP83840_CSCONFIG);
837 					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
838 					happy_meal_tcvr_write(hp, tregs,
839 							      DP83840_CSCONFIG, hp->sw_csconfig);
840 				}
841 				hp->timer_ticks = 0;
842 				restart_timer = 1;
843 			} else {
844 				restart_timer = 1;
845 			}
846 		}
847 		break;
848 
849 	case asleep:
850 	default:
851 		/* Can't happens.... */
852 		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
853 		       hp->dev->name);
854 		restart_timer = 0;
855 		hp->timer_ticks = 0;
856 		hp->timer_state = asleep; /* foo on you */
857 		break;
858 	};
859 
860 	if (restart_timer) {
861 		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
862 		add_timer(&hp->happy_timer);
863 	}
864 
865 out:
866 	spin_unlock_irq(&hp->happy_lock);
867 }
868 
869 #define TX_RESET_TRIES     32
870 #define RX_RESET_TRIES     32
871 
872 /* hp->happy_lock must be held */
happy_meal_tx_reset(struct happy_meal * hp,void __iomem * bregs)873 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
874 {
875 	int tries = TX_RESET_TRIES;
876 
877 	HMD(("happy_meal_tx_reset: reset, "));
878 
879 	/* Would you like to try our SMCC Delux? */
880 	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
881 	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
882 		udelay(20);
883 
884 	/* Lettuce, tomato, buggy hardware (no extra charge)? */
885 	if (!tries)
886 		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
887 
888 	/* Take care. */
889 	HMD(("done\n"));
890 }
891 
892 /* hp->happy_lock must be held */
happy_meal_rx_reset(struct happy_meal * hp,void __iomem * bregs)893 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
894 {
895 	int tries = RX_RESET_TRIES;
896 
897 	HMD(("happy_meal_rx_reset: reset, "));
898 
899 	/* We have a special on GNU/Viking hardware bugs today. */
900 	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
901 	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
902 		udelay(20);
903 
904 	/* Will that be all? */
905 	if (!tries)
906 		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
907 
908 	/* Don't forget your vik_1137125_wa.  Have a nice day. */
909 	HMD(("done\n"));
910 }
911 
912 #define STOP_TRIES         16
913 
914 /* hp->happy_lock must be held */
happy_meal_stop(struct happy_meal * hp,void __iomem * gregs)915 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
916 {
917 	int tries = STOP_TRIES;
918 
919 	HMD(("happy_meal_stop: reset, "));
920 
921 	/* We're consolidating our STB products, it's your lucky day. */
922 	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
923 	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
924 		udelay(20);
925 
926 	/* Come back next week when we are "Sun Microelectronics". */
927 	if (!tries)
928 		printk(KERN_ERR "happy meal: Fry guys.");
929 
930 	/* Remember: "Different name, same old buggy as shit hardware." */
931 	HMD(("done\n"));
932 }
933 
934 /* hp->happy_lock must be held */
happy_meal_get_counters(struct happy_meal * hp,void __iomem * bregs)935 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
936 {
937 	struct net_device_stats *stats = &hp->net_stats;
938 
939 	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
940 	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
941 
942 	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
943 	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
944 
945 	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
946 	hme_write32(hp, bregs + BMAC_GLECTR, 0);
947 
948 	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
949 
950 	stats->collisions +=
951 		(hme_read32(hp, bregs + BMAC_EXCTR) +
952 		 hme_read32(hp, bregs + BMAC_LTCTR));
953 	hme_write32(hp, bregs + BMAC_EXCTR, 0);
954 	hme_write32(hp, bregs + BMAC_LTCTR, 0);
955 }
956 
957 /* hp->happy_lock must be held */
happy_meal_poll_stop(struct happy_meal * hp,void __iomem * tregs)958 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
959 {
960 	ASD(("happy_meal_poll_stop: "));
961 
962 	/* If polling disabled or not polling already, nothing to do. */
963 	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
964 	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
965 		HMD(("not polling, return\n"));
966 		return;
967 	}
968 
969 	/* Shut up the MIF. */
970 	ASD(("were polling, mif ints off, "));
971 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
972 
973 	/* Turn off polling. */
974 	ASD(("polling off, "));
975 	hme_write32(hp, tregs + TCVR_CFG,
976 		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
977 
978 	/* We are no longer polling. */
979 	hp->happy_flags &= ~(HFLAG_POLL);
980 
981 	/* Let the bits set. */
982 	udelay(200);
983 	ASD(("done\n"));
984 }
985 
986 /* Only Sun can take such nice parts and fuck up the programming interface
987  * like this.  Good job guys...
988  */
989 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
990 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
991 
992 /* hp->happy_lock must be held */
happy_meal_tcvr_reset(struct happy_meal * hp,void __iomem * tregs)993 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
994 {
995 	u32 tconfig;
996 	int result, tries = TCVR_RESET_TRIES;
997 
998 	tconfig = hme_read32(hp, tregs + TCVR_CFG);
999 	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1000 	if (hp->tcvr_type == external) {
1001 		ASD(("external<"));
1002 		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1003 		hp->tcvr_type = internal;
1004 		hp->paddr = TCV_PADDR_ITX;
1005 		ASD(("ISOLATE,"));
1006 		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1007 				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1008 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1009 		if (result == TCVR_FAILURE) {
1010 			ASD(("phyread_fail>\n"));
1011 			return -1;
1012 		}
1013 		ASD(("phyread_ok,PSELECT>"));
1014 		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1015 		hp->tcvr_type = external;
1016 		hp->paddr = TCV_PADDR_ETX;
1017 	} else {
1018 		if (tconfig & TCV_CFG_MDIO1) {
1019 			ASD(("internal<PSELECT,"));
1020 			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1021 			ASD(("ISOLATE,"));
1022 			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1023 					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1024 			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1025 			if (result == TCVR_FAILURE) {
1026 				ASD(("phyread_fail>\n"));
1027 				return -1;
1028 			}
1029 			ASD(("phyread_ok,~PSELECT>"));
1030 			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1031 			hp->tcvr_type = internal;
1032 			hp->paddr = TCV_PADDR_ITX;
1033 		}
1034 	}
1035 
1036 	ASD(("BMCR_RESET "));
1037 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1038 
1039 	while (--tries) {
1040 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1041 		if (result == TCVR_FAILURE)
1042 			return -1;
1043 		hp->sw_bmcr = result;
1044 		if (!(result & BMCR_RESET))
1045 			break;
1046 		udelay(20);
1047 	}
1048 	if (!tries) {
1049 		ASD(("BMCR RESET FAILED!\n"));
1050 		return -1;
1051 	}
1052 	ASD(("RESET_OK\n"));
1053 
1054 	/* Get fresh copies of the PHY registers. */
1055 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1056 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1057 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1058 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1059 
1060 	ASD(("UNISOLATE"));
1061 	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1062 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1063 
1064 	tries = TCVR_UNISOLATE_TRIES;
1065 	while (--tries) {
1066 		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1067 		if (result == TCVR_FAILURE)
1068 			return -1;
1069 		if (!(result & BMCR_ISOLATE))
1070 			break;
1071 		udelay(20);
1072 	}
1073 	if (!tries) {
1074 		ASD((" FAILED!\n"));
1075 		return -1;
1076 	}
1077 	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1078 	if (!is_lucent_phy(hp)) {
1079 		result = happy_meal_tcvr_read(hp, tregs,
1080 					      DP83840_CSCONFIG);
1081 		happy_meal_tcvr_write(hp, tregs,
1082 				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1083 	}
1084 	return 0;
1085 }
1086 
1087 /* Figure out whether we have an internal or external transceiver.
1088  *
1089  * hp->happy_lock must be held
1090  */
happy_meal_transceiver_check(struct happy_meal * hp,void __iomem * tregs)1091 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1092 {
1093 	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1094 
1095 	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1096 	if (hp->happy_flags & HFLAG_POLL) {
1097 		/* If we are polling, we must stop to get the transceiver type. */
1098 		ASD(("<polling> "));
1099 		if (hp->tcvr_type == internal) {
1100 			if (tconfig & TCV_CFG_MDIO1) {
1101 				ASD(("<internal> <poll stop> "));
1102 				happy_meal_poll_stop(hp, tregs);
1103 				hp->paddr = TCV_PADDR_ETX;
1104 				hp->tcvr_type = external;
1105 				ASD(("<external>\n"));
1106 				tconfig &= ~(TCV_CFG_PENABLE);
1107 				tconfig |= TCV_CFG_PSELECT;
1108 				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1109 			}
1110 		} else {
1111 			if (hp->tcvr_type == external) {
1112 				ASD(("<external> "));
1113 				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1114 					ASD(("<poll stop> "));
1115 					happy_meal_poll_stop(hp, tregs);
1116 					hp->paddr = TCV_PADDR_ITX;
1117 					hp->tcvr_type = internal;
1118 					ASD(("<internal>\n"));
1119 					hme_write32(hp, tregs + TCVR_CFG,
1120 						    hme_read32(hp, tregs + TCVR_CFG) &
1121 						    ~(TCV_CFG_PSELECT));
1122 				}
1123 				ASD(("\n"));
1124 			} else {
1125 				ASD(("<none>\n"));
1126 			}
1127 		}
1128 	} else {
1129 		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1130 
1131 		/* Else we can just work off of the MDIO bits. */
1132 		ASD(("<not polling> "));
1133 		if (reread & TCV_CFG_MDIO1) {
1134 			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1135 			hp->paddr = TCV_PADDR_ETX;
1136 			hp->tcvr_type = external;
1137 			ASD(("<external>\n"));
1138 		} else {
1139 			if (reread & TCV_CFG_MDIO0) {
1140 				hme_write32(hp, tregs + TCVR_CFG,
1141 					    tconfig & ~(TCV_CFG_PSELECT));
1142 				hp->paddr = TCV_PADDR_ITX;
1143 				hp->tcvr_type = internal;
1144 				ASD(("<internal>\n"));
1145 			} else {
1146 				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1147 				hp->tcvr_type = none; /* Grrr... */
1148 				ASD(("<none>\n"));
1149 			}
1150 		}
1151 	}
1152 }
1153 
1154 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1155  *
1156  * The buffers we dma into must be 64 byte aligned.  So we use a special
1157  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1158  * we really need.
1159  *
1160  * We use skb_reserve() to align the data block we get in the skb.  We
1161  * also program the etxregs->cfg register to use an offset of 2.  This
1162  * imperical constant plus the ethernet header size will always leave
1163  * us with a nicely aligned ip header once we pass things up to the
1164  * protocol layers.
1165  *
1166  * The numbers work out to:
1167  *
1168  *         Max ethernet frame size         1518
1169  *         Ethernet header size              14
1170  *         Happy Meal base offset             2
1171  *
1172  * Say a skb data area is at 0xf001b010, and its size alloced is
1173  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1174  *
1175  * First our alloc_skb() routine aligns the data base to a 64 byte
1176  * boundary.  We now have 0xf001b040 as our skb data address.  We
1177  * plug this into the receive descriptor address.
1178  *
1179  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1180  * So now the data we will end up looking at starts at 0xf001b042.  When
1181  * the packet arrives, we will check out the size received and subtract
1182  * this from the skb->length.  Then we just pass the packet up to the
1183  * protocols as is, and allocate a new skb to replace this slot we have
1184  * just received from.
1185  *
1186  * The ethernet layer will strip the ether header from the front of the
1187  * skb we just sent to it, this leaves us with the ip header sitting
1188  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1189  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1190  * bit checksum is obtained from the low bits of the receive descriptor
1191  * flags, thus:
1192  *
1193  * 	skb->csum = rxd->rx_flags & 0xffff;
1194  * 	skb->ip_summed = CHECKSUM_COMPLETE;
1195  *
1196  * before sending off the skb to the protocols, and we are good as gold.
1197  */
happy_meal_clean_rings(struct happy_meal * hp)1198 static void happy_meal_clean_rings(struct happy_meal *hp)
1199 {
1200 	int i;
1201 
1202 	for (i = 0; i < RX_RING_SIZE; i++) {
1203 		if (hp->rx_skbs[i] != NULL) {
1204 			struct sk_buff *skb = hp->rx_skbs[i];
1205 			struct happy_meal_rxd *rxd;
1206 			u32 dma_addr;
1207 
1208 			rxd = &hp->happy_block->happy_meal_rxd[i];
1209 			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1210 			dma_unmap_single(hp->dma_dev, dma_addr,
1211 					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1212 			dev_kfree_skb_any(skb);
1213 			hp->rx_skbs[i] = NULL;
1214 		}
1215 	}
1216 
1217 	for (i = 0; i < TX_RING_SIZE; i++) {
1218 		if (hp->tx_skbs[i] != NULL) {
1219 			struct sk_buff *skb = hp->tx_skbs[i];
1220 			struct happy_meal_txd *txd;
1221 			u32 dma_addr;
1222 			int frag;
1223 
1224 			hp->tx_skbs[i] = NULL;
1225 
1226 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1227 				txd = &hp->happy_block->happy_meal_txd[i];
1228 				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1229 				dma_unmap_single(hp->dma_dev, dma_addr,
1230 						 (hme_read_desc32(hp, &txd->tx_flags)
1231 						  & TXFLAG_SIZE),
1232 						 DMA_TO_DEVICE);
1233 
1234 				if (frag != skb_shinfo(skb)->nr_frags)
1235 					i++;
1236 			}
1237 
1238 			dev_kfree_skb_any(skb);
1239 		}
1240 	}
1241 }
1242 
1243 /* hp->happy_lock must be held */
happy_meal_init_rings(struct happy_meal * hp)1244 static void happy_meal_init_rings(struct happy_meal *hp)
1245 {
1246 	struct hmeal_init_block *hb = hp->happy_block;
1247 	struct net_device *dev = hp->dev;
1248 	int i;
1249 
1250 	HMD(("happy_meal_init_rings: counters to zero, "));
1251 	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1252 
1253 	/* Free any skippy bufs left around in the rings. */
1254 	HMD(("clean, "));
1255 	happy_meal_clean_rings(hp);
1256 
1257 	/* Now get new skippy bufs for the receive ring. */
1258 	HMD(("init rxring, "));
1259 	for (i = 0; i < RX_RING_SIZE; i++) {
1260 		struct sk_buff *skb;
1261 
1262 		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1263 		if (!skb) {
1264 			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1265 			continue;
1266 		}
1267 		hp->rx_skbs[i] = skb;
1268 		skb->dev = dev;
1269 
1270 		/* Because we reserve afterwards. */
1271 		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1272 		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1273 			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1274 			      dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1275 					     DMA_FROM_DEVICE));
1276 		skb_reserve(skb, RX_OFFSET);
1277 	}
1278 
1279 	HMD(("init txring, "));
1280 	for (i = 0; i < TX_RING_SIZE; i++)
1281 		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1282 
1283 	HMD(("done\n"));
1284 }
1285 
1286 /* hp->happy_lock must be held */
happy_meal_begin_auto_negotiation(struct happy_meal * hp,void __iomem * tregs,struct ethtool_cmd * ep)1287 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1288 					      void __iomem *tregs,
1289 					      struct ethtool_cmd *ep)
1290 {
1291 	int timeout;
1292 
1293 	/* Read all of the registers we are interested in now. */
1294 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1295 	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1296 	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1297 	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1298 
1299 	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1300 
1301 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1302 	if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1303 		/* Advertise everything we can support. */
1304 		if (hp->sw_bmsr & BMSR_10HALF)
1305 			hp->sw_advertise |= (ADVERTISE_10HALF);
1306 		else
1307 			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1308 
1309 		if (hp->sw_bmsr & BMSR_10FULL)
1310 			hp->sw_advertise |= (ADVERTISE_10FULL);
1311 		else
1312 			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1313 		if (hp->sw_bmsr & BMSR_100HALF)
1314 			hp->sw_advertise |= (ADVERTISE_100HALF);
1315 		else
1316 			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1317 		if (hp->sw_bmsr & BMSR_100FULL)
1318 			hp->sw_advertise |= (ADVERTISE_100FULL);
1319 		else
1320 			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1321 		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1322 
1323 		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1324 		 * XXX and this is because the DP83840 does not support it, changes
1325 		 * XXX would need to be made to the tx/rx logic in the driver as well
1326 		 * XXX so I completely skip checking for it in the BMSR for now.
1327 		 */
1328 
1329 #ifdef AUTO_SWITCH_DEBUG
1330 		ASD(("%s: Advertising [ ", hp->dev->name));
1331 		if (hp->sw_advertise & ADVERTISE_10HALF)
1332 			ASD(("10H "));
1333 		if (hp->sw_advertise & ADVERTISE_10FULL)
1334 			ASD(("10F "));
1335 		if (hp->sw_advertise & ADVERTISE_100HALF)
1336 			ASD(("100H "));
1337 		if (hp->sw_advertise & ADVERTISE_100FULL)
1338 			ASD(("100F "));
1339 #endif
1340 
1341 		/* Enable Auto-Negotiation, this is usually on already... */
1342 		hp->sw_bmcr |= BMCR_ANENABLE;
1343 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1344 
1345 		/* Restart it to make sure it is going. */
1346 		hp->sw_bmcr |= BMCR_ANRESTART;
1347 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1348 
1349 		/* BMCR_ANRESTART self clears when the process has begun. */
1350 
1351 		timeout = 64;  /* More than enough. */
1352 		while (--timeout) {
1353 			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1354 			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1355 				break; /* got it. */
1356 			udelay(10);
1357 		}
1358 		if (!timeout) {
1359 			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1360 			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1361 			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1362 			       hp->dev->name);
1363 			goto force_link;
1364 		} else {
1365 			hp->timer_state = arbwait;
1366 		}
1367 	} else {
1368 force_link:
1369 		/* Force the link up, trying first a particular mode.
1370 		 * Either we are here at the request of ethtool or
1371 		 * because the Happy Meal would not start to autoneg.
1372 		 */
1373 
1374 		/* Disable auto-negotiation in BMCR, enable the duplex and
1375 		 * speed setting, init the timer state machine, and fire it off.
1376 		 */
1377 		if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1378 			hp->sw_bmcr = BMCR_SPEED100;
1379 		} else {
1380 			if (ep->speed == SPEED_100)
1381 				hp->sw_bmcr = BMCR_SPEED100;
1382 			else
1383 				hp->sw_bmcr = 0;
1384 			if (ep->duplex == DUPLEX_FULL)
1385 				hp->sw_bmcr |= BMCR_FULLDPLX;
1386 		}
1387 		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1388 
1389 		if (!is_lucent_phy(hp)) {
1390 			/* OK, seems we need do disable the transceiver for the first
1391 			 * tick to make sure we get an accurate link state at the
1392 			 * second tick.
1393 			 */
1394 			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1395 							       DP83840_CSCONFIG);
1396 			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1397 			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1398 					      hp->sw_csconfig);
1399 		}
1400 		hp->timer_state = ltrywait;
1401 	}
1402 
1403 	hp->timer_ticks = 0;
1404 	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1405 	hp->happy_timer.data = (unsigned long) hp;
1406 	hp->happy_timer.function = &happy_meal_timer;
1407 	add_timer(&hp->happy_timer);
1408 }
1409 
1410 /* hp->happy_lock must be held */
happy_meal_init(struct happy_meal * hp)1411 static int happy_meal_init(struct happy_meal *hp)
1412 {
1413 	void __iomem *gregs        = hp->gregs;
1414 	void __iomem *etxregs      = hp->etxregs;
1415 	void __iomem *erxregs      = hp->erxregs;
1416 	void __iomem *bregs        = hp->bigmacregs;
1417 	void __iomem *tregs        = hp->tcvregs;
1418 	u32 regtmp, rxcfg;
1419 	unsigned char *e = &hp->dev->dev_addr[0];
1420 
1421 	/* If auto-negotiation timer is running, kill it. */
1422 	del_timer(&hp->happy_timer);
1423 
1424 	HMD(("happy_meal_init: happy_flags[%08x] ",
1425 	     hp->happy_flags));
1426 	if (!(hp->happy_flags & HFLAG_INIT)) {
1427 		HMD(("set HFLAG_INIT, "));
1428 		hp->happy_flags |= HFLAG_INIT;
1429 		happy_meal_get_counters(hp, bregs);
1430 	}
1431 
1432 	/* Stop polling. */
1433 	HMD(("to happy_meal_poll_stop\n"));
1434 	happy_meal_poll_stop(hp, tregs);
1435 
1436 	/* Stop transmitter and receiver. */
1437 	HMD(("happy_meal_init: to happy_meal_stop\n"));
1438 	happy_meal_stop(hp, gregs);
1439 
1440 	/* Alloc and reset the tx/rx descriptor chains. */
1441 	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1442 	happy_meal_init_rings(hp);
1443 
1444 	/* Shut up the MIF. */
1445 	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1446 	     hme_read32(hp, tregs + TCVR_IMASK)));
1447 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1448 
1449 	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1450 	if (hp->happy_flags & HFLAG_FENABLE) {
1451 		HMD(("use frame old[%08x], ",
1452 		     hme_read32(hp, tregs + TCVR_CFG)));
1453 		hme_write32(hp, tregs + TCVR_CFG,
1454 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1455 	} else {
1456 		HMD(("use bitbang old[%08x], ",
1457 		     hme_read32(hp, tregs + TCVR_CFG)));
1458 		hme_write32(hp, tregs + TCVR_CFG,
1459 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1460 	}
1461 
1462 	/* Check the state of the transceiver. */
1463 	HMD(("to happy_meal_transceiver_check\n"));
1464 	happy_meal_transceiver_check(hp, tregs);
1465 
1466 	/* Put the Big Mac into a sane state. */
1467 	HMD(("happy_meal_init: "));
1468 	switch(hp->tcvr_type) {
1469 	case none:
1470 		/* Cannot operate if we don't know the transceiver type! */
1471 		HMD(("AAIEEE no transceiver type, EAGAIN"));
1472 		return -EAGAIN;
1473 
1474 	case internal:
1475 		/* Using the MII buffers. */
1476 		HMD(("internal, using MII, "));
1477 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1478 		break;
1479 
1480 	case external:
1481 		/* Not using the MII, disable it. */
1482 		HMD(("external, disable MII, "));
1483 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1484 		break;
1485 	};
1486 
1487 	if (happy_meal_tcvr_reset(hp, tregs))
1488 		return -EAGAIN;
1489 
1490 	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1491 	HMD(("tx/rx reset, "));
1492 	happy_meal_tx_reset(hp, bregs);
1493 	happy_meal_rx_reset(hp, bregs);
1494 
1495 	/* Set jam size and inter-packet gaps to reasonable defaults. */
1496 	HMD(("jsize/ipg1/ipg2, "));
1497 	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1498 	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1499 	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1500 
1501 	/* Load up the MAC address and random seed. */
1502 	HMD(("rseed/macaddr, "));
1503 
1504 	/* The docs recommend to use the 10LSB of our MAC here. */
1505 	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1506 
1507 	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1508 	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1509 	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1510 
1511 	HMD(("htable, "));
1512 	if ((hp->dev->flags & IFF_ALLMULTI) ||
1513 	    (hp->dev->mc_count > 64)) {
1514 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1515 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1516 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1517 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1518 	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1519 		u16 hash_table[4];
1520 		struct dev_mc_list *dmi = hp->dev->mc_list;
1521 		char *addrs;
1522 		int i;
1523 		u32 crc;
1524 
1525 		for (i = 0; i < 4; i++)
1526 			hash_table[i] = 0;
1527 
1528 		for (i = 0; i < hp->dev->mc_count; i++) {
1529 			addrs = dmi->dmi_addr;
1530 			dmi = dmi->next;
1531 
1532 			if (!(*addrs & 1))
1533 				continue;
1534 
1535 			crc = ether_crc_le(6, addrs);
1536 			crc >>= 26;
1537 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1538 		}
1539 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1540 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1541 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1542 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1543 	} else {
1544 		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1545 		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1546 		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1547 		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1548 	}
1549 
1550 	/* Set the RX and TX ring ptrs. */
1551 	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1552 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1553 	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1554 	hme_write32(hp, erxregs + ERX_RING,
1555 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1556 	hme_write32(hp, etxregs + ETX_RING,
1557 		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1558 
1559 	/* Parity issues in the ERX unit of some HME revisions can cause some
1560 	 * registers to not be written unless their parity is even.  Detect such
1561 	 * lost writes and simply rewrite with a low bit set (which will be ignored
1562 	 * since the rxring needs to be 2K aligned).
1563 	 */
1564 	if (hme_read32(hp, erxregs + ERX_RING) !=
1565 	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1566 		hme_write32(hp, erxregs + ERX_RING,
1567 			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1568 			    | 0x4);
1569 
1570 	/* Set the supported burst sizes. */
1571 	HMD(("happy_meal_init: old[%08x] bursts<",
1572 	     hme_read32(hp, gregs + GREG_CFG)));
1573 
1574 #ifndef CONFIG_SPARC
1575 	/* It is always PCI and can handle 64byte bursts. */
1576 	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1577 #else
1578 	if ((hp->happy_bursts & DMA_BURST64) &&
1579 	    ((hp->happy_flags & HFLAG_PCI) != 0
1580 #ifdef CONFIG_SBUS
1581 	     || sbus_can_burst64()
1582 #endif
1583 	     || 0)) {
1584 		u32 gcfg = GREG_CFG_BURST64;
1585 
1586 		/* I have no idea if I should set the extended
1587 		 * transfer mode bit for Cheerio, so for now I
1588 		 * do not.  -DaveM
1589 		 */
1590 #ifdef CONFIG_SBUS
1591 		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1592 			struct of_device *op = hp->happy_dev;
1593 			if (sbus_can_dma_64bit()) {
1594 				sbus_set_sbus64(&op->dev,
1595 						hp->happy_bursts);
1596 				gcfg |= GREG_CFG_64BIT;
1597 			}
1598 		}
1599 #endif
1600 
1601 		HMD(("64>"));
1602 		hme_write32(hp, gregs + GREG_CFG, gcfg);
1603 	} else if (hp->happy_bursts & DMA_BURST32) {
1604 		HMD(("32>"));
1605 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1606 	} else if (hp->happy_bursts & DMA_BURST16) {
1607 		HMD(("16>"));
1608 		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1609 	} else {
1610 		HMD(("XXX>"));
1611 		hme_write32(hp, gregs + GREG_CFG, 0);
1612 	}
1613 #endif /* CONFIG_SPARC */
1614 
1615 	/* Turn off interrupts we do not want to hear. */
1616 	HMD((", enable global interrupts, "));
1617 	hme_write32(hp, gregs + GREG_IMASK,
1618 		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1619 		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1620 
1621 	/* Set the transmit ring buffer size. */
1622 	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1623 	     hme_read32(hp, etxregs + ETX_RSIZE)));
1624 	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1625 
1626 	/* Enable transmitter DVMA. */
1627 	HMD(("tx dma enable old[%08x], ",
1628 	     hme_read32(hp, etxregs + ETX_CFG)));
1629 	hme_write32(hp, etxregs + ETX_CFG,
1630 		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1631 
1632 	/* This chip really rots, for the receiver sometimes when you
1633 	 * write to its control registers not all the bits get there
1634 	 * properly.  I cannot think of a sane way to provide complete
1635 	 * coverage for this hardware bug yet.
1636 	 */
1637 	HMD(("erx regs bug old[%08x]\n",
1638 	     hme_read32(hp, erxregs + ERX_CFG)));
1639 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1640 	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1641 	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1642 	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1643 		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1644 		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1645 		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1646 		/* XXX Should return failure here... */
1647 	}
1648 
1649 	/* Enable Big Mac hash table filter. */
1650 	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1651 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1652 	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1653 	if (hp->dev->flags & IFF_PROMISC)
1654 		rxcfg |= BIGMAC_RXCFG_PMISC;
1655 	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1656 
1657 	/* Let the bits settle in the chip. */
1658 	udelay(10);
1659 
1660 	/* Ok, configure the Big Mac transmitter. */
1661 	HMD(("BIGMAC init, "));
1662 	regtmp = 0;
1663 	if (hp->happy_flags & HFLAG_FULL)
1664 		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1665 
1666 	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1667 	 * to deadlock with the PHY if a Jabber occurs.
1668 	 */
1669 	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1670 
1671 	/* Give up after 16 TX attempts. */
1672 	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1673 
1674 	/* Enable the output drivers no matter what. */
1675 	regtmp = BIGMAC_XCFG_ODENABLE;
1676 
1677 	/* If card can do lance mode, enable it. */
1678 	if (hp->happy_flags & HFLAG_LANCE)
1679 		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1680 
1681 	/* Disable the MII buffers if using external transceiver. */
1682 	if (hp->tcvr_type == external)
1683 		regtmp |= BIGMAC_XCFG_MIIDISAB;
1684 
1685 	HMD(("XIF config old[%08x], ",
1686 	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1687 	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1688 
1689 	/* Start things up. */
1690 	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1691 	     hme_read32(hp, bregs + BMAC_TXCFG),
1692 	     hme_read32(hp, bregs + BMAC_RXCFG)));
1693 
1694 	/* Set larger TX/RX size to allow for 802.1q */
1695 	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1696 	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1697 
1698 	hme_write32(hp, bregs + BMAC_TXCFG,
1699 		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1700 	hme_write32(hp, bregs + BMAC_RXCFG,
1701 		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1702 
1703 	/* Get the autonegotiation started, and the watch timer ticking. */
1704 	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1705 
1706 	/* Success. */
1707 	return 0;
1708 }
1709 
1710 /* hp->happy_lock must be held */
happy_meal_set_initial_advertisement(struct happy_meal * hp)1711 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1712 {
1713 	void __iomem *tregs	= hp->tcvregs;
1714 	void __iomem *bregs	= hp->bigmacregs;
1715 	void __iomem *gregs	= hp->gregs;
1716 
1717 	happy_meal_stop(hp, gregs);
1718 	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1719 	if (hp->happy_flags & HFLAG_FENABLE)
1720 		hme_write32(hp, tregs + TCVR_CFG,
1721 			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1722 	else
1723 		hme_write32(hp, tregs + TCVR_CFG,
1724 			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1725 	happy_meal_transceiver_check(hp, tregs);
1726 	switch(hp->tcvr_type) {
1727 	case none:
1728 		return;
1729 	case internal:
1730 		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1731 		break;
1732 	case external:
1733 		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1734 		break;
1735 	};
1736 	if (happy_meal_tcvr_reset(hp, tregs))
1737 		return;
1738 
1739 	/* Latch PHY registers as of now. */
1740 	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1741 	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1742 
1743 	/* Advertise everything we can support. */
1744 	if (hp->sw_bmsr & BMSR_10HALF)
1745 		hp->sw_advertise |= (ADVERTISE_10HALF);
1746 	else
1747 		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1748 
1749 	if (hp->sw_bmsr & BMSR_10FULL)
1750 		hp->sw_advertise |= (ADVERTISE_10FULL);
1751 	else
1752 		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1753 	if (hp->sw_bmsr & BMSR_100HALF)
1754 		hp->sw_advertise |= (ADVERTISE_100HALF);
1755 	else
1756 		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1757 	if (hp->sw_bmsr & BMSR_100FULL)
1758 		hp->sw_advertise |= (ADVERTISE_100FULL);
1759 	else
1760 		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1761 
1762 	/* Update the PHY advertisement register. */
1763 	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1764 }
1765 
1766 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1767  * the hardware, so we cannot re-read it and get a correct value.
1768  *
1769  * hp->happy_lock must be held
1770  */
happy_meal_is_not_so_happy(struct happy_meal * hp,u32 status)1771 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1772 {
1773 	int reset = 0;
1774 
1775 	/* Only print messages for non-counter related interrupts. */
1776 	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1777 		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1778 		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1779 		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1780 		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1781 		      GREG_STAT_SLVPERR))
1782 		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1783 		       hp->dev->name, status);
1784 
1785 	if (status & GREG_STAT_RFIFOVF) {
1786 		/* Receive FIFO overflow is harmless and the hardware will take
1787 		   care of it, just some packets are lost. Who cares. */
1788 		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1789 	}
1790 
1791 	if (status & GREG_STAT_STSTERR) {
1792 		/* BigMAC SQE link test failed. */
1793 		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1794 		reset = 1;
1795 	}
1796 
1797 	if (status & GREG_STAT_TFIFO_UND) {
1798 		/* Transmit FIFO underrun, again DMA error likely. */
1799 		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1800 		       hp->dev->name);
1801 		reset = 1;
1802 	}
1803 
1804 	if (status & GREG_STAT_MAXPKTERR) {
1805 		/* Driver error, tried to transmit something larger
1806 		 * than ethernet max mtu.
1807 		 */
1808 		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1809 		reset = 1;
1810 	}
1811 
1812 	if (status & GREG_STAT_NORXD) {
1813 		/* This is harmless, it just means the system is
1814 		 * quite loaded and the incoming packet rate was
1815 		 * faster than the interrupt handler could keep up
1816 		 * with.
1817 		 */
1818 		printk(KERN_INFO "%s: Happy Meal out of receive "
1819 		       "descriptors, packet dropped.\n",
1820 		       hp->dev->name);
1821 	}
1822 
1823 	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1824 		/* All sorts of DMA receive errors. */
1825 		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1826 		if (status & GREG_STAT_RXERR)
1827 			printk("GenericError ");
1828 		if (status & GREG_STAT_RXPERR)
1829 			printk("ParityError ");
1830 		if (status & GREG_STAT_RXTERR)
1831 			printk("RxTagBotch ");
1832 		printk("]\n");
1833 		reset = 1;
1834 	}
1835 
1836 	if (status & GREG_STAT_EOPERR) {
1837 		/* Driver bug, didn't set EOP bit in tx descriptor given
1838 		 * to the happy meal.
1839 		 */
1840 		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1841 		       hp->dev->name);
1842 		reset = 1;
1843 	}
1844 
1845 	if (status & GREG_STAT_MIFIRQ) {
1846 		/* MIF signalled an interrupt, were we polling it? */
1847 		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1848 	}
1849 
1850 	if (status &
1851 	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1852 		/* All sorts of transmit DMA errors. */
1853 		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1854 		if (status & GREG_STAT_TXEACK)
1855 			printk("GenericError ");
1856 		if (status & GREG_STAT_TXLERR)
1857 			printk("LateError ");
1858 		if (status & GREG_STAT_TXPERR)
1859 			printk("ParityErro ");
1860 		if (status & GREG_STAT_TXTERR)
1861 			printk("TagBotch ");
1862 		printk("]\n");
1863 		reset = 1;
1864 	}
1865 
1866 	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1867 		/* Bus or parity error when cpu accessed happy meal registers
1868 		 * or it's internal FIFO's.  Should never see this.
1869 		 */
1870 		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1871 		       hp->dev->name,
1872 		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1873 		reset = 1;
1874 	}
1875 
1876 	if (reset) {
1877 		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1878 		happy_meal_init(hp);
1879 		return 1;
1880 	}
1881 	return 0;
1882 }
1883 
1884 /* hp->happy_lock must be held */
happy_meal_mif_interrupt(struct happy_meal * hp)1885 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1886 {
1887 	void __iomem *tregs = hp->tcvregs;
1888 
1889 	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1890 	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1891 	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1892 
1893 	/* Use the fastest transmission protocol possible. */
1894 	if (hp->sw_lpa & LPA_100FULL) {
1895 		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1896 		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1897 	} else if (hp->sw_lpa & LPA_100HALF) {
1898 		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1899 		hp->sw_bmcr |= BMCR_SPEED100;
1900 	} else if (hp->sw_lpa & LPA_10FULL) {
1901 		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1902 		hp->sw_bmcr |= BMCR_FULLDPLX;
1903 	} else {
1904 		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1905 	}
1906 	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1907 
1908 	/* Finally stop polling and shut up the MIF. */
1909 	happy_meal_poll_stop(hp, tregs);
1910 }
1911 
1912 #ifdef TXDEBUG
1913 #define TXD(x) printk x
1914 #else
1915 #define TXD(x)
1916 #endif
1917 
1918 /* hp->happy_lock must be held */
happy_meal_tx(struct happy_meal * hp)1919 static void happy_meal_tx(struct happy_meal *hp)
1920 {
1921 	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1922 	struct happy_meal_txd *this;
1923 	struct net_device *dev = hp->dev;
1924 	int elem;
1925 
1926 	elem = hp->tx_old;
1927 	TXD(("TX<"));
1928 	while (elem != hp->tx_new) {
1929 		struct sk_buff *skb;
1930 		u32 flags, dma_addr, dma_len;
1931 		int frag;
1932 
1933 		TXD(("[%d]", elem));
1934 		this = &txbase[elem];
1935 		flags = hme_read_desc32(hp, &this->tx_flags);
1936 		if (flags & TXFLAG_OWN)
1937 			break;
1938 		skb = hp->tx_skbs[elem];
1939 		if (skb_shinfo(skb)->nr_frags) {
1940 			int last;
1941 
1942 			last = elem + skb_shinfo(skb)->nr_frags;
1943 			last &= (TX_RING_SIZE - 1);
1944 			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1945 			if (flags & TXFLAG_OWN)
1946 				break;
1947 		}
1948 		hp->tx_skbs[elem] = NULL;
1949 		hp->net_stats.tx_bytes += skb->len;
1950 
1951 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1952 			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1953 			dma_len = hme_read_desc32(hp, &this->tx_flags);
1954 
1955 			dma_len &= TXFLAG_SIZE;
1956 			dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1957 
1958 			elem = NEXT_TX(elem);
1959 			this = &txbase[elem];
1960 		}
1961 
1962 		dev_kfree_skb_irq(skb);
1963 		hp->net_stats.tx_packets++;
1964 	}
1965 	hp->tx_old = elem;
1966 	TXD((">"));
1967 
1968 	if (netif_queue_stopped(dev) &&
1969 	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1970 		netif_wake_queue(dev);
1971 }
1972 
1973 #ifdef RXDEBUG
1974 #define RXD(x) printk x
1975 #else
1976 #define RXD(x)
1977 #endif
1978 
1979 /* Originally I used to handle the allocation failure by just giving back just
1980  * that one ring buffer to the happy meal.  Problem is that usually when that
1981  * condition is triggered, the happy meal expects you to do something reasonable
1982  * with all of the packets it has DMA'd in.  So now I just drop the entire
1983  * ring when we cannot get a new skb and give them all back to the happy meal,
1984  * maybe things will be "happier" now.
1985  *
1986  * hp->happy_lock must be held
1987  */
happy_meal_rx(struct happy_meal * hp,struct net_device * dev)1988 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1989 {
1990 	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1991 	struct happy_meal_rxd *this;
1992 	int elem = hp->rx_new, drops = 0;
1993 	u32 flags;
1994 
1995 	RXD(("RX<"));
1996 	this = &rxbase[elem];
1997 	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1998 		struct sk_buff *skb;
1999 		int len = flags >> 16;
2000 		u16 csum = flags & RXFLAG_CSUM;
2001 		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2002 
2003 		RXD(("[%d ", elem));
2004 
2005 		/* Check for errors. */
2006 		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2007 			RXD(("ERR(%08x)]", flags));
2008 			hp->net_stats.rx_errors++;
2009 			if (len < ETH_ZLEN)
2010 				hp->net_stats.rx_length_errors++;
2011 			if (len & (RXFLAG_OVERFLOW >> 16)) {
2012 				hp->net_stats.rx_over_errors++;
2013 				hp->net_stats.rx_fifo_errors++;
2014 			}
2015 
2016 			/* Return it to the Happy meal. */
2017 	drop_it:
2018 			hp->net_stats.rx_dropped++;
2019 			hme_write_rxd(hp, this,
2020 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2021 				      dma_addr);
2022 			goto next;
2023 		}
2024 		skb = hp->rx_skbs[elem];
2025 		if (len > RX_COPY_THRESHOLD) {
2026 			struct sk_buff *new_skb;
2027 
2028 			/* Now refill the entry, if we can. */
2029 			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2030 			if (new_skb == NULL) {
2031 				drops++;
2032 				goto drop_it;
2033 			}
2034 			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2035 			hp->rx_skbs[elem] = new_skb;
2036 			new_skb->dev = dev;
2037 			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2038 			hme_write_rxd(hp, this,
2039 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2040 				      dma_map_single(hp->dma_dev, new_skb->data, RX_BUF_ALLOC_SIZE,
2041 						     DMA_FROM_DEVICE));
2042 			skb_reserve(new_skb, RX_OFFSET);
2043 
2044 			/* Trim the original skb for the netif. */
2045 			skb_trim(skb, len);
2046 		} else {
2047 			struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2048 
2049 			if (copy_skb == NULL) {
2050 				drops++;
2051 				goto drop_it;
2052 			}
2053 
2054 			skb_reserve(copy_skb, 2);
2055 			skb_put(copy_skb, len);
2056 			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2057 			skb_copy_from_linear_data(skb, copy_skb->data, len);
2058 			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2059 			/* Reuse original ring buffer. */
2060 			hme_write_rxd(hp, this,
2061 				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2062 				      dma_addr);
2063 
2064 			skb = copy_skb;
2065 		}
2066 
2067 		/* This card is _fucking_ hot... */
2068 		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2069 		skb->ip_summed = CHECKSUM_COMPLETE;
2070 
2071 		RXD(("len=%d csum=%4x]", len, csum));
2072 		skb->protocol = eth_type_trans(skb, dev);
2073 		netif_rx(skb);
2074 
2075 		hp->net_stats.rx_packets++;
2076 		hp->net_stats.rx_bytes += len;
2077 	next:
2078 		elem = NEXT_RX(elem);
2079 		this = &rxbase[elem];
2080 	}
2081 	hp->rx_new = elem;
2082 	if (drops)
2083 		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2084 	RXD((">"));
2085 }
2086 
happy_meal_interrupt(int irq,void * dev_id)2087 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2088 {
2089 	struct net_device *dev = dev_id;
2090 	struct happy_meal *hp  = netdev_priv(dev);
2091 	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2092 
2093 	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2094 
2095 	spin_lock(&hp->happy_lock);
2096 
2097 	if (happy_status & GREG_STAT_ERRORS) {
2098 		HMD(("ERRORS "));
2099 		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2100 			goto out;
2101 	}
2102 
2103 	if (happy_status & GREG_STAT_MIFIRQ) {
2104 		HMD(("MIFIRQ "));
2105 		happy_meal_mif_interrupt(hp);
2106 	}
2107 
2108 	if (happy_status & GREG_STAT_TXALL) {
2109 		HMD(("TXALL "));
2110 		happy_meal_tx(hp);
2111 	}
2112 
2113 	if (happy_status & GREG_STAT_RXTOHOST) {
2114 		HMD(("RXTOHOST "));
2115 		happy_meal_rx(hp, dev);
2116 	}
2117 
2118 	HMD(("done\n"));
2119 out:
2120 	spin_unlock(&hp->happy_lock);
2121 
2122 	return IRQ_HANDLED;
2123 }
2124 
2125 #ifdef CONFIG_SBUS
quattro_sbus_interrupt(int irq,void * cookie)2126 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2127 {
2128 	struct quattro *qp = (struct quattro *) cookie;
2129 	int i;
2130 
2131 	for (i = 0; i < 4; i++) {
2132 		struct net_device *dev = qp->happy_meals[i];
2133 		struct happy_meal *hp  = netdev_priv(dev);
2134 		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2135 
2136 		HMD(("quattro_interrupt: status=%08x ", happy_status));
2137 
2138 		if (!(happy_status & (GREG_STAT_ERRORS |
2139 				      GREG_STAT_MIFIRQ |
2140 				      GREG_STAT_TXALL |
2141 				      GREG_STAT_RXTOHOST)))
2142 			continue;
2143 
2144 		spin_lock(&hp->happy_lock);
2145 
2146 		if (happy_status & GREG_STAT_ERRORS) {
2147 			HMD(("ERRORS "));
2148 			if (happy_meal_is_not_so_happy(hp, happy_status))
2149 				goto next;
2150 		}
2151 
2152 		if (happy_status & GREG_STAT_MIFIRQ) {
2153 			HMD(("MIFIRQ "));
2154 			happy_meal_mif_interrupt(hp);
2155 		}
2156 
2157 		if (happy_status & GREG_STAT_TXALL) {
2158 			HMD(("TXALL "));
2159 			happy_meal_tx(hp);
2160 		}
2161 
2162 		if (happy_status & GREG_STAT_RXTOHOST) {
2163 			HMD(("RXTOHOST "));
2164 			happy_meal_rx(hp, dev);
2165 		}
2166 
2167 	next:
2168 		spin_unlock(&hp->happy_lock);
2169 	}
2170 	HMD(("done\n"));
2171 
2172 	return IRQ_HANDLED;
2173 }
2174 #endif
2175 
happy_meal_open(struct net_device * dev)2176 static int happy_meal_open(struct net_device *dev)
2177 {
2178 	struct happy_meal *hp = netdev_priv(dev);
2179 	int res;
2180 
2181 	HMD(("happy_meal_open: "));
2182 
2183 	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2184 	 * into a single source which we register handling at probe time.
2185 	 */
2186 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2187 		if (request_irq(dev->irq, &happy_meal_interrupt,
2188 				IRQF_SHARED, dev->name, (void *)dev)) {
2189 			HMD(("EAGAIN\n"));
2190 			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2191 			       dev->irq);
2192 
2193 			return -EAGAIN;
2194 		}
2195 	}
2196 
2197 	HMD(("to happy_meal_init\n"));
2198 
2199 	spin_lock_irq(&hp->happy_lock);
2200 	res = happy_meal_init(hp);
2201 	spin_unlock_irq(&hp->happy_lock);
2202 
2203 	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2204 		free_irq(dev->irq, dev);
2205 	return res;
2206 }
2207 
happy_meal_close(struct net_device * dev)2208 static int happy_meal_close(struct net_device *dev)
2209 {
2210 	struct happy_meal *hp = netdev_priv(dev);
2211 
2212 	spin_lock_irq(&hp->happy_lock);
2213 	happy_meal_stop(hp, hp->gregs);
2214 	happy_meal_clean_rings(hp);
2215 
2216 	/* If auto-negotiation timer is running, kill it. */
2217 	del_timer(&hp->happy_timer);
2218 
2219 	spin_unlock_irq(&hp->happy_lock);
2220 
2221 	/* On Quattro QFE cards, all hme interrupts are concentrated
2222 	 * into a single source which we register handling at probe
2223 	 * time and never unregister.
2224 	 */
2225 	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2226 		free_irq(dev->irq, dev);
2227 
2228 	return 0;
2229 }
2230 
2231 #ifdef SXDEBUG
2232 #define SXD(x) printk x
2233 #else
2234 #define SXD(x)
2235 #endif
2236 
happy_meal_tx_timeout(struct net_device * dev)2237 static void happy_meal_tx_timeout(struct net_device *dev)
2238 {
2239 	struct happy_meal *hp = netdev_priv(dev);
2240 
2241 	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2242 	tx_dump_log();
2243 	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2244 		hme_read32(hp, hp->gregs + GREG_STAT),
2245 		hme_read32(hp, hp->etxregs + ETX_CFG),
2246 		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2247 
2248 	spin_lock_irq(&hp->happy_lock);
2249 	happy_meal_init(hp);
2250 	spin_unlock_irq(&hp->happy_lock);
2251 
2252 	netif_wake_queue(dev);
2253 }
2254 
happy_meal_start_xmit(struct sk_buff * skb,struct net_device * dev)2255 static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev)
2256 {
2257 	struct happy_meal *hp = netdev_priv(dev);
2258  	int entry;
2259  	u32 tx_flags;
2260 
2261 	tx_flags = TXFLAG_OWN;
2262 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2263 		const u32 csum_start_off = skb_transport_offset(skb);
2264 		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2265 
2266 		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2267 			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2268 			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2269 	}
2270 
2271 	spin_lock_irq(&hp->happy_lock);
2272 
2273  	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2274 		netif_stop_queue(dev);
2275 		spin_unlock_irq(&hp->happy_lock);
2276 		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2277 		       dev->name);
2278 		return 1;
2279 	}
2280 
2281 	entry = hp->tx_new;
2282 	SXD(("SX<l[%d]e[%d]>", len, entry));
2283 	hp->tx_skbs[entry] = skb;
2284 
2285 	if (skb_shinfo(skb)->nr_frags == 0) {
2286 		u32 mapping, len;
2287 
2288 		len = skb->len;
2289 		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2290 		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2291 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2292 			      (tx_flags | (len & TXFLAG_SIZE)),
2293 			      mapping);
2294 		entry = NEXT_TX(entry);
2295 	} else {
2296 		u32 first_len, first_mapping;
2297 		int frag, first_entry = entry;
2298 
2299 		/* We must give this initial chunk to the device last.
2300 		 * Otherwise we could race with the device.
2301 		 */
2302 		first_len = skb_headlen(skb);
2303 		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2304 					       DMA_TO_DEVICE);
2305 		entry = NEXT_TX(entry);
2306 
2307 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2308 			skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2309 			u32 len, mapping, this_txflags;
2310 
2311 			len = this_frag->size;
2312 			mapping = dma_map_page(hp->dma_dev, this_frag->page,
2313 					       this_frag->page_offset, len,
2314 					       DMA_TO_DEVICE);
2315 			this_txflags = tx_flags;
2316 			if (frag == skb_shinfo(skb)->nr_frags - 1)
2317 				this_txflags |= TXFLAG_EOP;
2318 			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2319 				      (this_txflags | (len & TXFLAG_SIZE)),
2320 				      mapping);
2321 			entry = NEXT_TX(entry);
2322 		}
2323 		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2324 			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2325 			      first_mapping);
2326 	}
2327 
2328 	hp->tx_new = entry;
2329 
2330 	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2331 		netif_stop_queue(dev);
2332 
2333 	/* Get it going. */
2334 	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2335 
2336 	spin_unlock_irq(&hp->happy_lock);
2337 
2338 	dev->trans_start = jiffies;
2339 
2340 	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2341 	return 0;
2342 }
2343 
happy_meal_get_stats(struct net_device * dev)2344 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2345 {
2346 	struct happy_meal *hp = netdev_priv(dev);
2347 
2348 	spin_lock_irq(&hp->happy_lock);
2349 	happy_meal_get_counters(hp, hp->bigmacregs);
2350 	spin_unlock_irq(&hp->happy_lock);
2351 
2352 	return &hp->net_stats;
2353 }
2354 
happy_meal_set_multicast(struct net_device * dev)2355 static void happy_meal_set_multicast(struct net_device *dev)
2356 {
2357 	struct happy_meal *hp = netdev_priv(dev);
2358 	void __iomem *bregs = hp->bigmacregs;
2359 	struct dev_mc_list *dmi = dev->mc_list;
2360 	char *addrs;
2361 	int i;
2362 	u32 crc;
2363 
2364 	spin_lock_irq(&hp->happy_lock);
2365 
2366 	if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
2367 		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2368 		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2369 		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2370 		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2371 	} else if (dev->flags & IFF_PROMISC) {
2372 		hme_write32(hp, bregs + BMAC_RXCFG,
2373 			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2374 	} else {
2375 		u16 hash_table[4];
2376 
2377 		for (i = 0; i < 4; i++)
2378 			hash_table[i] = 0;
2379 
2380 		for (i = 0; i < dev->mc_count; i++) {
2381 			addrs = dmi->dmi_addr;
2382 			dmi = dmi->next;
2383 
2384 			if (!(*addrs & 1))
2385 				continue;
2386 
2387 			crc = ether_crc_le(6, addrs);
2388 			crc >>= 26;
2389 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2390 		}
2391 		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2392 		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2393 		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2394 		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2395 	}
2396 
2397 	spin_unlock_irq(&hp->happy_lock);
2398 }
2399 
2400 /* Ethtool support... */
hme_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2401 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2402 {
2403 	struct happy_meal *hp = netdev_priv(dev);
2404 
2405 	cmd->supported =
2406 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2407 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2408 		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2409 
2410 	/* XXX hardcoded stuff for now */
2411 	cmd->port = PORT_TP; /* XXX no MII support */
2412 	cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2413 	cmd->phy_address = 0; /* XXX fixed PHYAD */
2414 
2415 	/* Record PHY settings. */
2416 	spin_lock_irq(&hp->happy_lock);
2417 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2418 	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2419 	spin_unlock_irq(&hp->happy_lock);
2420 
2421 	if (hp->sw_bmcr & BMCR_ANENABLE) {
2422 		cmd->autoneg = AUTONEG_ENABLE;
2423 		cmd->speed =
2424 			(hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2425 			SPEED_100 : SPEED_10;
2426 		if (cmd->speed == SPEED_100)
2427 			cmd->duplex =
2428 				(hp->sw_lpa & (LPA_100FULL)) ?
2429 				DUPLEX_FULL : DUPLEX_HALF;
2430 		else
2431 			cmd->duplex =
2432 				(hp->sw_lpa & (LPA_10FULL)) ?
2433 				DUPLEX_FULL : DUPLEX_HALF;
2434 	} else {
2435 		cmd->autoneg = AUTONEG_DISABLE;
2436 		cmd->speed =
2437 			(hp->sw_bmcr & BMCR_SPEED100) ?
2438 			SPEED_100 : SPEED_10;
2439 		cmd->duplex =
2440 			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2441 			DUPLEX_FULL : DUPLEX_HALF;
2442 	}
2443 	return 0;
2444 }
2445 
hme_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2446 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2447 {
2448 	struct happy_meal *hp = netdev_priv(dev);
2449 
2450 	/* Verify the settings we care about. */
2451 	if (cmd->autoneg != AUTONEG_ENABLE &&
2452 	    cmd->autoneg != AUTONEG_DISABLE)
2453 		return -EINVAL;
2454 	if (cmd->autoneg == AUTONEG_DISABLE &&
2455 	    ((cmd->speed != SPEED_100 &&
2456 	      cmd->speed != SPEED_10) ||
2457 	     (cmd->duplex != DUPLEX_HALF &&
2458 	      cmd->duplex != DUPLEX_FULL)))
2459 		return -EINVAL;
2460 
2461 	/* Ok, do it to it. */
2462 	spin_lock_irq(&hp->happy_lock);
2463 	del_timer(&hp->happy_timer);
2464 	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2465 	spin_unlock_irq(&hp->happy_lock);
2466 
2467 	return 0;
2468 }
2469 
hme_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2470 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2471 {
2472 	struct happy_meal *hp = netdev_priv(dev);
2473 
2474 	strcpy(info->driver, "sunhme");
2475 	strcpy(info->version, "2.02");
2476 	if (hp->happy_flags & HFLAG_PCI) {
2477 		struct pci_dev *pdev = hp->happy_dev;
2478 		strcpy(info->bus_info, pci_name(pdev));
2479 	}
2480 #ifdef CONFIG_SBUS
2481 	else {
2482 		const struct linux_prom_registers *regs;
2483 		struct of_device *op = hp->happy_dev;
2484 		regs = of_get_property(op->node, "regs", NULL);
2485 		if (regs)
2486 			sprintf(info->bus_info, "SBUS:%d",
2487 				regs->which_io);
2488 	}
2489 #endif
2490 }
2491 
hme_get_link(struct net_device * dev)2492 static u32 hme_get_link(struct net_device *dev)
2493 {
2494 	struct happy_meal *hp = netdev_priv(dev);
2495 
2496 	spin_lock_irq(&hp->happy_lock);
2497 	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2498 	spin_unlock_irq(&hp->happy_lock);
2499 
2500 	return (hp->sw_bmsr & BMSR_LSTATUS);
2501 }
2502 
2503 static const struct ethtool_ops hme_ethtool_ops = {
2504 	.get_settings		= hme_get_settings,
2505 	.set_settings		= hme_set_settings,
2506 	.get_drvinfo		= hme_get_drvinfo,
2507 	.get_link		= hme_get_link,
2508 };
2509 
2510 static int hme_version_printed;
2511 
2512 #ifdef CONFIG_SBUS
2513 /* Given a happy meal sbus device, find it's quattro parent.
2514  * If none exist, allocate and return a new one.
2515  *
2516  * Return NULL on failure.
2517  */
quattro_sbus_find(struct of_device * child)2518 static struct quattro * __devinit quattro_sbus_find(struct of_device *child)
2519 {
2520 	struct device *parent = child->dev.parent;
2521 	struct of_device *op;
2522 	struct quattro *qp;
2523 
2524 	op = to_of_device(parent);
2525 	qp = dev_get_drvdata(&op->dev);
2526 	if (qp)
2527 		return qp;
2528 
2529 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2530 	if (qp != NULL) {
2531 		int i;
2532 
2533 		for (i = 0; i < 4; i++)
2534 			qp->happy_meals[i] = NULL;
2535 
2536 		qp->quattro_dev = child;
2537 		qp->next = qfe_sbus_list;
2538 		qfe_sbus_list = qp;
2539 
2540 		dev_set_drvdata(&op->dev, qp);
2541 	}
2542 	return qp;
2543 }
2544 
2545 /* After all quattro cards have been probed, we call these functions
2546  * to register the IRQ handlers for the cards that have been
2547  * successfully probed and skip the cards that failed to initialize
2548  */
quattro_sbus_register_irqs(void)2549 static int __init quattro_sbus_register_irqs(void)
2550 {
2551 	struct quattro *qp;
2552 
2553 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2554 		struct of_device *op = qp->quattro_dev;
2555 		int err, qfe_slot, skip = 0;
2556 
2557 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2558 			if (!qp->happy_meals[qfe_slot])
2559 				skip = 1;
2560 		}
2561 		if (skip)
2562 			continue;
2563 
2564 		err = request_irq(op->irqs[0],
2565 				  quattro_sbus_interrupt,
2566 				  IRQF_SHARED, "Quattro",
2567 				  qp);
2568 		if (err != 0) {
2569 			printk(KERN_ERR "Quattro HME: IRQ registration "
2570 			       "error %d.\n", err);
2571 			return err;
2572 		}
2573 	}
2574 
2575 	return 0;
2576 }
2577 
quattro_sbus_free_irqs(void)2578 static void quattro_sbus_free_irqs(void)
2579 {
2580 	struct quattro *qp;
2581 
2582 	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2583 		struct of_device *op = qp->quattro_dev;
2584 		int qfe_slot, skip = 0;
2585 
2586 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2587 			if (!qp->happy_meals[qfe_slot])
2588 				skip = 1;
2589 		}
2590 		if (skip)
2591 			continue;
2592 
2593 		free_irq(op->irqs[0], qp);
2594 	}
2595 }
2596 #endif /* CONFIG_SBUS */
2597 
2598 #ifdef CONFIG_PCI
quattro_pci_find(struct pci_dev * pdev)2599 static struct quattro * __devinit quattro_pci_find(struct pci_dev *pdev)
2600 {
2601 	struct pci_dev *bdev = pdev->bus->self;
2602 	struct quattro *qp;
2603 
2604 	if (!bdev) return NULL;
2605 	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2606 		struct pci_dev *qpdev = qp->quattro_dev;
2607 
2608 		if (qpdev == bdev)
2609 			return qp;
2610 	}
2611 	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2612 	if (qp != NULL) {
2613 		int i;
2614 
2615 		for (i = 0; i < 4; i++)
2616 			qp->happy_meals[i] = NULL;
2617 
2618 		qp->quattro_dev = bdev;
2619 		qp->next = qfe_pci_list;
2620 		qfe_pci_list = qp;
2621 
2622 		/* No range tricks necessary on PCI. */
2623 		qp->nranges = 0;
2624 	}
2625 	return qp;
2626 }
2627 #endif /* CONFIG_PCI */
2628 
2629 static const struct net_device_ops hme_netdev_ops = {
2630 	.ndo_open		= happy_meal_open,
2631 	.ndo_stop		= happy_meal_close,
2632 	.ndo_start_xmit		= happy_meal_start_xmit,
2633 	.ndo_tx_timeout		= happy_meal_tx_timeout,
2634 	.ndo_get_stats		= happy_meal_get_stats,
2635 	.ndo_set_multicast_list = happy_meal_set_multicast,
2636 	.ndo_change_mtu		= eth_change_mtu,
2637 	.ndo_set_mac_address 	= eth_mac_addr,
2638 	.ndo_validate_addr	= eth_validate_addr,
2639 };
2640 
2641 #ifdef CONFIG_SBUS
happy_meal_sbus_probe_one(struct of_device * op,int is_qfe)2642 static int __devinit happy_meal_sbus_probe_one(struct of_device *op, int is_qfe)
2643 {
2644 	struct device_node *dp = op->node, *sbus_dp;
2645 	struct quattro *qp = NULL;
2646 	struct happy_meal *hp;
2647 	struct net_device *dev;
2648 	int i, qfe_slot = -1;
2649 	int err = -ENODEV;
2650 
2651 	sbus_dp = to_of_device(op->dev.parent)->node;
2652 
2653 	/* We can match PCI devices too, do not accept those here. */
2654 	if (strcmp(sbus_dp->name, "sbus"))
2655 		return err;
2656 
2657 	if (is_qfe) {
2658 		qp = quattro_sbus_find(op);
2659 		if (qp == NULL)
2660 			goto err_out;
2661 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2662 			if (qp->happy_meals[qfe_slot] == NULL)
2663 				break;
2664 		if (qfe_slot == 4)
2665 			goto err_out;
2666 	}
2667 
2668 	err = -ENOMEM;
2669 	dev = alloc_etherdev(sizeof(struct happy_meal));
2670 	if (!dev)
2671 		goto err_out;
2672 	SET_NETDEV_DEV(dev, &op->dev);
2673 
2674 	if (hme_version_printed++ == 0)
2675 		printk(KERN_INFO "%s", version);
2676 
2677 	/* If user did not specify a MAC address specifically, use
2678 	 * the Quattro local-mac-address property...
2679 	 */
2680 	for (i = 0; i < 6; i++) {
2681 		if (macaddr[i] != 0)
2682 			break;
2683 	}
2684 	if (i < 6) { /* a mac address was given */
2685 		for (i = 0; i < 6; i++)
2686 			dev->dev_addr[i] = macaddr[i];
2687 		macaddr[5]++;
2688 	} else {
2689 		const unsigned char *addr;
2690 		int len;
2691 
2692 		addr = of_get_property(dp, "local-mac-address", &len);
2693 
2694 		if (qfe_slot != -1 && addr && len == 6)
2695 			memcpy(dev->dev_addr, addr, 6);
2696 		else
2697 			memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2698 	}
2699 
2700 	hp = netdev_priv(dev);
2701 
2702 	hp->happy_dev = op;
2703 	hp->dma_dev = &op->dev;
2704 
2705 	spin_lock_init(&hp->happy_lock);
2706 
2707 	err = -ENODEV;
2708 	if (qp != NULL) {
2709 		hp->qfe_parent = qp;
2710 		hp->qfe_ent = qfe_slot;
2711 		qp->happy_meals[qfe_slot] = dev;
2712 	}
2713 
2714 	hp->gregs = of_ioremap(&op->resource[0], 0,
2715 			       GREG_REG_SIZE, "HME Global Regs");
2716 	if (!hp->gregs) {
2717 		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2718 		goto err_out_free_netdev;
2719 	}
2720 
2721 	hp->etxregs = of_ioremap(&op->resource[1], 0,
2722 				 ETX_REG_SIZE, "HME TX Regs");
2723 	if (!hp->etxregs) {
2724 		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2725 		goto err_out_iounmap;
2726 	}
2727 
2728 	hp->erxregs = of_ioremap(&op->resource[2], 0,
2729 				 ERX_REG_SIZE, "HME RX Regs");
2730 	if (!hp->erxregs) {
2731 		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2732 		goto err_out_iounmap;
2733 	}
2734 
2735 	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2736 				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2737 	if (!hp->bigmacregs) {
2738 		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2739 		goto err_out_iounmap;
2740 	}
2741 
2742 	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2743 				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2744 	if (!hp->tcvregs) {
2745 		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2746 		goto err_out_iounmap;
2747 	}
2748 
2749 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2750 	if (hp->hm_revision == 0xff)
2751 		hp->hm_revision = 0xa0;
2752 
2753 	/* Now enable the feature flags we can. */
2754 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2755 		hp->happy_flags = HFLAG_20_21;
2756 	else if (hp->hm_revision != 0xa0)
2757 		hp->happy_flags = HFLAG_NOT_A0;
2758 
2759 	if (qp != NULL)
2760 		hp->happy_flags |= HFLAG_QUATTRO;
2761 
2762 	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2763 	hp->happy_bursts = of_getintprop_default(sbus_dp,
2764 						 "burst-sizes", 0x00);
2765 
2766 	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2767 					     PAGE_SIZE,
2768 					     &hp->hblock_dvma,
2769 					     GFP_ATOMIC);
2770 	err = -ENOMEM;
2771 	if (!hp->happy_block) {
2772 		printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2773 		goto err_out_iounmap;
2774 	}
2775 
2776 	/* Force check of the link first time we are brought up. */
2777 	hp->linkcheck = 0;
2778 
2779 	/* Force timer state to 'asleep' with count of zero. */
2780 	hp->timer_state = asleep;
2781 	hp->timer_ticks = 0;
2782 
2783 	init_timer(&hp->happy_timer);
2784 
2785 	hp->dev = dev;
2786 	dev->netdev_ops = &hme_netdev_ops;
2787 	dev->watchdog_timeo = 5*HZ;
2788 	dev->ethtool_ops = &hme_ethtool_ops;
2789 
2790 	/* Happy Meal can do it all... */
2791 	dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
2792 
2793 	dev->irq = op->irqs[0];
2794 
2795 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2796 	/* Hook up SBUS register/descriptor accessors. */
2797 	hp->read_desc32 = sbus_hme_read_desc32;
2798 	hp->write_txd = sbus_hme_write_txd;
2799 	hp->write_rxd = sbus_hme_write_rxd;
2800 	hp->read32 = sbus_hme_read32;
2801 	hp->write32 = sbus_hme_write32;
2802 #endif
2803 
2804 	/* Grrr, Happy Meal comes up by default not advertising
2805 	 * full duplex 100baseT capabilities, fix this.
2806 	 */
2807 	spin_lock_irq(&hp->happy_lock);
2808 	happy_meal_set_initial_advertisement(hp);
2809 	spin_unlock_irq(&hp->happy_lock);
2810 
2811 	if (register_netdev(hp->dev)) {
2812 		printk(KERN_ERR "happymeal: Cannot register net device, "
2813 		       "aborting.\n");
2814 		goto err_out_free_coherent;
2815 	}
2816 
2817 	dev_set_drvdata(&op->dev, hp);
2818 
2819 	if (qfe_slot != -1)
2820 		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2821 		       dev->name, qfe_slot);
2822 	else
2823 		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2824 		       dev->name);
2825 
2826 	printk("%pM\n", dev->dev_addr);
2827 
2828 	return 0;
2829 
2830 err_out_free_coherent:
2831 	dma_free_coherent(hp->dma_dev,
2832 			  PAGE_SIZE,
2833 			  hp->happy_block,
2834 			  hp->hblock_dvma);
2835 
2836 err_out_iounmap:
2837 	if (hp->gregs)
2838 		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2839 	if (hp->etxregs)
2840 		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2841 	if (hp->erxregs)
2842 		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2843 	if (hp->bigmacregs)
2844 		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2845 	if (hp->tcvregs)
2846 		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2847 
2848 	if (qp)
2849 		qp->happy_meals[qfe_slot] = NULL;
2850 
2851 err_out_free_netdev:
2852 	free_netdev(dev);
2853 
2854 err_out:
2855 	return err;
2856 }
2857 #endif
2858 
2859 #ifdef CONFIG_PCI
2860 #ifndef CONFIG_SPARC
is_quattro_p(struct pci_dev * pdev)2861 static int is_quattro_p(struct pci_dev *pdev)
2862 {
2863 	struct pci_dev *busdev = pdev->bus->self;
2864 	struct list_head *tmp;
2865 	int n_hmes;
2866 
2867 	if (busdev == NULL ||
2868 	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2869 	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2870 		return 0;
2871 
2872 	n_hmes = 0;
2873 	tmp = pdev->bus->devices.next;
2874 	while (tmp != &pdev->bus->devices) {
2875 		struct pci_dev *this_pdev = pci_dev_b(tmp);
2876 
2877 		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2878 		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2879 			n_hmes++;
2880 
2881 		tmp = tmp->next;
2882 	}
2883 
2884 	if (n_hmes != 4)
2885 		return 0;
2886 
2887 	return 1;
2888 }
2889 
2890 /* Fetch MAC address from vital product data of PCI ROM. */
find_eth_addr_in_vpd(void __iomem * rom_base,int len,int index,unsigned char * dev_addr)2891 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2892 {
2893 	int this_offset;
2894 
2895 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2896 		void __iomem *p = rom_base + this_offset;
2897 
2898 		if (readb(p + 0) != 0x90 ||
2899 		    readb(p + 1) != 0x00 ||
2900 		    readb(p + 2) != 0x09 ||
2901 		    readb(p + 3) != 0x4e ||
2902 		    readb(p + 4) != 0x41 ||
2903 		    readb(p + 5) != 0x06)
2904 			continue;
2905 
2906 		this_offset += 6;
2907 		p += 6;
2908 
2909 		if (index == 0) {
2910 			int i;
2911 
2912 			for (i = 0; i < 6; i++)
2913 				dev_addr[i] = readb(p + i);
2914 			return 1;
2915 		}
2916 		index--;
2917 	}
2918 	return 0;
2919 }
2920 
get_hme_mac_nonsparc(struct pci_dev * pdev,unsigned char * dev_addr)2921 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2922 {
2923 	size_t size;
2924 	void __iomem *p = pci_map_rom(pdev, &size);
2925 
2926 	if (p) {
2927 		int index = 0;
2928 		int found;
2929 
2930 		if (is_quattro_p(pdev))
2931 			index = PCI_SLOT(pdev->devfn);
2932 
2933 		found = readb(p) == 0x55 &&
2934 			readb(p + 1) == 0xaa &&
2935 			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2936 		pci_unmap_rom(pdev, p);
2937 		if (found)
2938 			return;
2939 	}
2940 
2941 	/* Sun MAC prefix then 3 random bytes. */
2942 	dev_addr[0] = 0x08;
2943 	dev_addr[1] = 0x00;
2944 	dev_addr[2] = 0x20;
2945 	get_random_bytes(&dev_addr[3], 3);
2946 	return;
2947 }
2948 #endif /* !(CONFIG_SPARC) */
2949 
happy_meal_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2950 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2951 					  const struct pci_device_id *ent)
2952 {
2953 	struct quattro *qp = NULL;
2954 #ifdef CONFIG_SPARC
2955 	struct device_node *dp;
2956 #endif
2957 	struct happy_meal *hp;
2958 	struct net_device *dev;
2959 	void __iomem *hpreg_base;
2960 	unsigned long hpreg_res;
2961 	int i, qfe_slot = -1;
2962 	char prom_name[64];
2963 	int err;
2964 
2965 	/* Now make sure pci_dev cookie is there. */
2966 #ifdef CONFIG_SPARC
2967 	dp = pci_device_to_OF_node(pdev);
2968 	strcpy(prom_name, dp->name);
2969 #else
2970 	if (is_quattro_p(pdev))
2971 		strcpy(prom_name, "SUNW,qfe");
2972 	else
2973 		strcpy(prom_name, "SUNW,hme");
2974 #endif
2975 
2976 	err = -ENODEV;
2977 
2978 	if (pci_enable_device(pdev))
2979 		goto err_out;
2980 	pci_set_master(pdev);
2981 
2982 	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2983 		qp = quattro_pci_find(pdev);
2984 		if (qp == NULL)
2985 			goto err_out;
2986 		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2987 			if (qp->happy_meals[qfe_slot] == NULL)
2988 				break;
2989 		if (qfe_slot == 4)
2990 			goto err_out;
2991 	}
2992 
2993 	dev = alloc_etherdev(sizeof(struct happy_meal));
2994 	err = -ENOMEM;
2995 	if (!dev)
2996 		goto err_out;
2997 	SET_NETDEV_DEV(dev, &pdev->dev);
2998 
2999 	if (hme_version_printed++ == 0)
3000 		printk(KERN_INFO "%s", version);
3001 
3002 	dev->base_addr = (long) pdev;
3003 
3004 	hp = netdev_priv(dev);
3005 	memset(hp, 0, sizeof(*hp));
3006 
3007 	hp->happy_dev = pdev;
3008 	hp->dma_dev = &pdev->dev;
3009 
3010 	spin_lock_init(&hp->happy_lock);
3011 
3012 	if (qp != NULL) {
3013 		hp->qfe_parent = qp;
3014 		hp->qfe_ent = qfe_slot;
3015 		qp->happy_meals[qfe_slot] = dev;
3016 	}
3017 
3018 	hpreg_res = pci_resource_start(pdev, 0);
3019 	err = -ENODEV;
3020 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3021 		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3022 		goto err_out_clear_quattro;
3023 	}
3024 	if (pci_request_regions(pdev, DRV_NAME)) {
3025 		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3026 		       "aborting.\n");
3027 		goto err_out_clear_quattro;
3028 	}
3029 
3030 	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3031 		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3032 		goto err_out_free_res;
3033 	}
3034 
3035 	for (i = 0; i < 6; i++) {
3036 		if (macaddr[i] != 0)
3037 			break;
3038 	}
3039 	if (i < 6) { /* a mac address was given */
3040 		for (i = 0; i < 6; i++)
3041 			dev->dev_addr[i] = macaddr[i];
3042 		macaddr[5]++;
3043 	} else {
3044 #ifdef CONFIG_SPARC
3045 		const unsigned char *addr;
3046 		int len;
3047 
3048 		if (qfe_slot != -1 &&
3049 		    (addr = of_get_property(dp,
3050 					    "local-mac-address", &len)) != NULL
3051 		    && len == 6) {
3052 			memcpy(dev->dev_addr, addr, 6);
3053 		} else {
3054 			memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3055 		}
3056 #else
3057 		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3058 #endif
3059 	}
3060 
3061 	/* Layout registers. */
3062 	hp->gregs      = (hpreg_base + 0x0000UL);
3063 	hp->etxregs    = (hpreg_base + 0x2000UL);
3064 	hp->erxregs    = (hpreg_base + 0x4000UL);
3065 	hp->bigmacregs = (hpreg_base + 0x6000UL);
3066 	hp->tcvregs    = (hpreg_base + 0x7000UL);
3067 
3068 #ifdef CONFIG_SPARC
3069 	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3070 	if (hp->hm_revision == 0xff)
3071 		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3072 #else
3073 	/* works with this on non-sparc hosts */
3074 	hp->hm_revision = 0x20;
3075 #endif
3076 
3077 	/* Now enable the feature flags we can. */
3078 	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3079 		hp->happy_flags = HFLAG_20_21;
3080 	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3081 		hp->happy_flags = HFLAG_NOT_A0;
3082 
3083 	if (qp != NULL)
3084 		hp->happy_flags |= HFLAG_QUATTRO;
3085 
3086 	/* And of course, indicate this is PCI. */
3087 	hp->happy_flags |= HFLAG_PCI;
3088 
3089 #ifdef CONFIG_SPARC
3090 	/* Assume PCI happy meals can handle all burst sizes. */
3091 	hp->happy_bursts = DMA_BURSTBITS;
3092 #endif
3093 
3094 	hp->happy_block = (struct hmeal_init_block *)
3095 		dma_alloc_coherent(&pdev->dev, PAGE_SIZE, &hp->hblock_dvma, GFP_KERNEL);
3096 
3097 	err = -ENODEV;
3098 	if (!hp->happy_block) {
3099 		printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3100 		goto err_out_iounmap;
3101 	}
3102 
3103 	hp->linkcheck = 0;
3104 	hp->timer_state = asleep;
3105 	hp->timer_ticks = 0;
3106 
3107 	init_timer(&hp->happy_timer);
3108 
3109 	hp->dev = dev;
3110 	dev->netdev_ops = &hme_netdev_ops;
3111 	dev->watchdog_timeo = 5*HZ;
3112 	dev->ethtool_ops = &hme_ethtool_ops;
3113 	dev->irq = pdev->irq;
3114 	dev->dma = 0;
3115 
3116 	/* Happy Meal can do it all... */
3117 	dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
3118 
3119 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3120 	/* Hook up PCI register/descriptor accessors. */
3121 	hp->read_desc32 = pci_hme_read_desc32;
3122 	hp->write_txd = pci_hme_write_txd;
3123 	hp->write_rxd = pci_hme_write_rxd;
3124 	hp->read32 = pci_hme_read32;
3125 	hp->write32 = pci_hme_write32;
3126 #endif
3127 
3128 	/* Grrr, Happy Meal comes up by default not advertising
3129 	 * full duplex 100baseT capabilities, fix this.
3130 	 */
3131 	spin_lock_irq(&hp->happy_lock);
3132 	happy_meal_set_initial_advertisement(hp);
3133 	spin_unlock_irq(&hp->happy_lock);
3134 
3135 	if (register_netdev(hp->dev)) {
3136 		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3137 		       "aborting.\n");
3138 		goto err_out_iounmap;
3139 	}
3140 
3141 	dev_set_drvdata(&pdev->dev, hp);
3142 
3143 	if (!qfe_slot) {
3144 		struct pci_dev *qpdev = qp->quattro_dev;
3145 
3146 		prom_name[0] = 0;
3147 		if (!strncmp(dev->name, "eth", 3)) {
3148 			int i = simple_strtoul(dev->name + 3, NULL, 10);
3149 			sprintf(prom_name, "-%d", i + 3);
3150 		}
3151 		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3152 		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3153 		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3154 			printk("DEC 21153 PCI Bridge\n");
3155 		else
3156 			printk("unknown bridge %04x.%04x\n",
3157 				qpdev->vendor, qpdev->device);
3158 	}
3159 
3160 	if (qfe_slot != -1)
3161 		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3162 		       dev->name, qfe_slot);
3163 	else
3164 		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3165 		       dev->name);
3166 
3167 	printk("%pM\n", dev->dev_addr);
3168 
3169 	return 0;
3170 
3171 err_out_iounmap:
3172 	iounmap(hp->gregs);
3173 
3174 err_out_free_res:
3175 	pci_release_regions(pdev);
3176 
3177 err_out_clear_quattro:
3178 	if (qp != NULL)
3179 		qp->happy_meals[qfe_slot] = NULL;
3180 
3181 	free_netdev(dev);
3182 
3183 err_out:
3184 	return err;
3185 }
3186 
happy_meal_pci_remove(struct pci_dev * pdev)3187 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3188 {
3189 	struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3190 	struct net_device *net_dev = hp->dev;
3191 
3192 	unregister_netdev(net_dev);
3193 
3194 	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3195 			  hp->happy_block, hp->hblock_dvma);
3196 	iounmap(hp->gregs);
3197 	pci_release_regions(hp->happy_dev);
3198 
3199 	free_netdev(net_dev);
3200 
3201 	dev_set_drvdata(&pdev->dev, NULL);
3202 }
3203 
3204 static struct pci_device_id happymeal_pci_ids[] = {
3205 	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3206 	{ }			/* Terminating entry */
3207 };
3208 
3209 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3210 
3211 static struct pci_driver hme_pci_driver = {
3212 	.name		= "hme",
3213 	.id_table	= happymeal_pci_ids,
3214 	.probe		= happy_meal_pci_probe,
3215 	.remove		= __devexit_p(happy_meal_pci_remove),
3216 };
3217 
happy_meal_pci_init(void)3218 static int __init happy_meal_pci_init(void)
3219 {
3220 	return pci_register_driver(&hme_pci_driver);
3221 }
3222 
happy_meal_pci_exit(void)3223 static void happy_meal_pci_exit(void)
3224 {
3225 	pci_unregister_driver(&hme_pci_driver);
3226 
3227 	while (qfe_pci_list) {
3228 		struct quattro *qfe = qfe_pci_list;
3229 		struct quattro *next = qfe->next;
3230 
3231 		kfree(qfe);
3232 
3233 		qfe_pci_list = next;
3234 	}
3235 }
3236 
3237 #endif
3238 
3239 #ifdef CONFIG_SBUS
hme_sbus_probe(struct of_device * op,const struct of_device_id * match)3240 static int __devinit hme_sbus_probe(struct of_device *op, const struct of_device_id *match)
3241 {
3242 	struct device_node *dp = op->node;
3243 	const char *model = of_get_property(dp, "model", NULL);
3244 	int is_qfe = (match->data != NULL);
3245 
3246 	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3247 		is_qfe = 1;
3248 
3249 	return happy_meal_sbus_probe_one(op, is_qfe);
3250 }
3251 
hme_sbus_remove(struct of_device * op)3252 static int __devexit hme_sbus_remove(struct of_device *op)
3253 {
3254 	struct happy_meal *hp = dev_get_drvdata(&op->dev);
3255 	struct net_device *net_dev = hp->dev;
3256 
3257 	unregister_netdev(net_dev);
3258 
3259 	/* XXX qfe parent interrupt... */
3260 
3261 	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3262 	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3263 	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3264 	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3265 	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3266 	dma_free_coherent(hp->dma_dev,
3267 			  PAGE_SIZE,
3268 			  hp->happy_block,
3269 			  hp->hblock_dvma);
3270 
3271 	free_netdev(net_dev);
3272 
3273 	dev_set_drvdata(&op->dev, NULL);
3274 
3275 	return 0;
3276 }
3277 
3278 static const struct of_device_id hme_sbus_match[] = {
3279 	{
3280 		.name = "SUNW,hme",
3281 	},
3282 	{
3283 		.name = "SUNW,qfe",
3284 		.data = (void *) 1,
3285 	},
3286 	{
3287 		.name = "qfe",
3288 		.data = (void *) 1,
3289 	},
3290 	{},
3291 };
3292 
3293 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3294 
3295 static struct of_platform_driver hme_sbus_driver = {
3296 	.name		= "hme",
3297 	.match_table	= hme_sbus_match,
3298 	.probe		= hme_sbus_probe,
3299 	.remove		= __devexit_p(hme_sbus_remove),
3300 };
3301 
happy_meal_sbus_init(void)3302 static int __init happy_meal_sbus_init(void)
3303 {
3304 	int err;
3305 
3306 	err = of_register_driver(&hme_sbus_driver, &of_bus_type);
3307 	if (!err)
3308 		err = quattro_sbus_register_irqs();
3309 
3310 	return err;
3311 }
3312 
happy_meal_sbus_exit(void)3313 static void happy_meal_sbus_exit(void)
3314 {
3315 	of_unregister_driver(&hme_sbus_driver);
3316 	quattro_sbus_free_irqs();
3317 
3318 	while (qfe_sbus_list) {
3319 		struct quattro *qfe = qfe_sbus_list;
3320 		struct quattro *next = qfe->next;
3321 
3322 		kfree(qfe);
3323 
3324 		qfe_sbus_list = next;
3325 	}
3326 }
3327 #endif
3328 
happy_meal_probe(void)3329 static int __init happy_meal_probe(void)
3330 {
3331 	int err = 0;
3332 
3333 #ifdef CONFIG_SBUS
3334 	err = happy_meal_sbus_init();
3335 #endif
3336 #ifdef CONFIG_PCI
3337 	if (!err) {
3338 		err = happy_meal_pci_init();
3339 #ifdef CONFIG_SBUS
3340 		if (err)
3341 			happy_meal_sbus_exit();
3342 #endif
3343 	}
3344 #endif
3345 
3346 	return err;
3347 }
3348 
3349 
happy_meal_exit(void)3350 static void __exit happy_meal_exit(void)
3351 {
3352 #ifdef CONFIG_SBUS
3353 	happy_meal_sbus_exit();
3354 #endif
3355 #ifdef CONFIG_PCI
3356 	happy_meal_pci_exit();
3357 #endif
3358 }
3359 
3360 module_init(happy_meal_probe);
3361 module_exit(happy_meal_exit);
3362