• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2 
3   Intel PRO/100 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  *	e100.c: Intel(R) PRO/100 ethernet driver
31  *
32  *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
33  *	original e100 driver, but better described as a munging of
34  *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35  *
36  *	References:
37  *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
38  *		Open Source Software Developers Manual,
39  *		http://sourceforge.net/projects/e1000
40  *
41  *
42  *	                      Theory of Operation
43  *
44  *	I.   General
45  *
46  *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47  *	controller family, which includes the 82557, 82558, 82559, 82550,
48  *	82551, and 82562 devices.  82558 and greater controllers
49  *	integrate the Intel 82555 PHY.  The controllers are used in
50  *	server and client network interface cards, as well as in
51  *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52  *	configurations.  8255x supports a 32-bit linear addressing
53  *	mode and operates at 33Mhz PCI clock rate.
54  *
55  *	II.  Driver Operation
56  *
57  *	Memory-mapped mode is used exclusively to access the device's
58  *	shared-memory structure, the Control/Status Registers (CSR). All
59  *	setup, configuration, and control of the device, including queuing
60  *	of Tx, Rx, and configuration commands is through the CSR.
61  *	cmd_lock serializes accesses to the CSR command register.  cb_lock
62  *	protects the shared Command Block List (CBL).
63  *
64  *	8255x is highly MII-compliant and all access to the PHY go
65  *	through the Management Data Interface (MDI).  Consequently, the
66  *	driver leverages the mii.c library shared with other MII-compliant
67  *	devices.
68  *
69  *	Big- and Little-Endian byte order as well as 32- and 64-bit
70  *	archs are supported.  Weak-ordered memory and non-cache-coherent
71  *	archs are supported.
72  *
73  *	III. Transmit
74  *
75  *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
76  *	together in a fixed-size ring (CBL) thus forming the flexible mode
77  *	memory structure.  A TCB marked with the suspend-bit indicates
78  *	the end of the ring.  The last TCB processed suspends the
79  *	controller, and the controller can be restarted by issue a CU
80  *	resume command to continue from the suspend point, or a CU start
81  *	command to start at a given position in the ring.
82  *
83  *	Non-Tx commands (config, multicast setup, etc) are linked
84  *	into the CBL ring along with Tx commands.  The common structure
85  *	used for both Tx and non-Tx commands is the Command Block (CB).
86  *
87  *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
88  *	is the next CB to check for completion; cb_to_send is the first
89  *	CB to start on in case of a previous failure to resume.  CB clean
90  *	up happens in interrupt context in response to a CU interrupt.
91  *	cbs_avail keeps track of number of free CB resources available.
92  *
93  * 	Hardware padding of short packets to minimum packet size is
94  * 	enabled.  82557 pads with 7Eh, while the later controllers pad
95  * 	with 00h.
96  *
97  *	IV.  Receive
98  *
99  *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
100  *	Descriptors (RFD) + data buffer, thus forming the simplified mode
101  *	memory structure.  Rx skbs are allocated to contain both the RFD
102  *	and the data buffer, but the RFD is pulled off before the skb is
103  *	indicated.  The data buffer is aligned such that encapsulated
104  *	protocol headers are u32-aligned.  Since the RFD is part of the
105  *	mapped shared memory, and completion status is contained within
106  *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
107  *	view from software and hardware.
108  *
109  *	In order to keep updates to the RFD link field from colliding with
110  *	hardware writes to mark packets complete, we use the feature that
111  *	hardware will not write to a size 0 descriptor and mark the previous
112  *	packet as end-of-list (EL).   After updating the link, we remove EL
113  *	and only then restore the size such that hardware may use the
114  *	previous-to-end RFD.
115  *
116  *	Under typical operation, the  receive unit (RU) is start once,
117  *	and the controller happily fills RFDs as frames arrive.  If
118  *	replacement RFDs cannot be allocated, or the RU goes non-active,
119  *	the RU must be restarted.  Frame arrival generates an interrupt,
120  *	and Rx indication and re-allocation happen in the same context,
121  *	therefore no locking is required.  A software-generated interrupt
122  *	is generated from the watchdog to recover from a failed allocation
123  *	scenario where all Rx resources have been indicated and none re-
124  *	placed.
125  *
126  *	V.   Miscellaneous
127  *
128  * 	VLAN offloading of tagging, stripping and filtering is not
129  * 	supported, but driver will accommodate the extra 4-byte VLAN tag
130  * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
131  * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
132  * 	not supported (hardware limitation).
133  *
134  * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
135  *
136  * 	Thanks to JC (jchapman@katalix.com) for helping with
137  * 	testing/troubleshooting the development driver.
138  *
139  * 	TODO:
140  * 	o several entry points race with dev->close
141  * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
142  *
143  *	FIXES:
144  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145  *	- Stratus87247: protect MDI control register manipulations
146  */
147 
148 #include <linux/module.h>
149 #include <linux/moduleparam.h>
150 #include <linux/kernel.h>
151 #include <linux/types.h>
152 #include <linux/slab.h>
153 #include <linux/delay.h>
154 #include <linux/init.h>
155 #include <linux/pci.h>
156 #include <linux/dma-mapping.h>
157 #include <linux/netdevice.h>
158 #include <linux/etherdevice.h>
159 #include <linux/mii.h>
160 #include <linux/if_vlan.h>
161 #include <linux/skbuff.h>
162 #include <linux/ethtool.h>
163 #include <linux/string.h>
164 #include <linux/firmware.h>
165 #include <asm/unaligned.h>
166 
167 
168 #define DRV_NAME		"e100"
169 #define DRV_EXT			"-NAPI"
170 #define DRV_VERSION		"3.5.23-k6"DRV_EXT
171 #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
172 #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
173 #define PFX			DRV_NAME ": "
174 
175 #define E100_WATCHDOG_PERIOD	(2 * HZ)
176 #define E100_NAPI_WEIGHT	16
177 
178 #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
179 #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
180 #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
181 
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_FIRMWARE(FIRMWARE_D101M);
187 MODULE_FIRMWARE(FIRMWARE_D101S);
188 MODULE_FIRMWARE(FIRMWARE_D102E);
189 
190 static int debug = 3;
191 static int eeprom_bad_csum_allow = 0;
192 static int use_io = 0;
193 module_param(debug, int, 0);
194 module_param(eeprom_bad_csum_allow, int, 0);
195 module_param(use_io, int, 0);
196 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
198 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
199 #define DPRINTK(nlevel, klevel, fmt, args...) \
200 	(void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
201 	printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
202 		__func__ , ## args))
203 
204 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
205 	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
206 	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
207 static struct pci_device_id e100_id_table[] = {
208 	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
209 	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
210 	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
211 	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
212 	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
213 	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
214 	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
215 	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
216 	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
217 	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
218 	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
219 	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
220 	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
221 	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
222 	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
223 	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
224 	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
225 	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
226 	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
227 	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
228 	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
229 	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
230 	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
231 	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
232 	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
233 	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
234 	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
235 	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
236 	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
237 	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
238 	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
239 	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
240 	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
241 	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
242 	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
243 	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
244 	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
245 	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
246 	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
247 	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
248 	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
249 	{ 0, }
250 };
251 MODULE_DEVICE_TABLE(pci, e100_id_table);
252 
253 enum mac {
254 	mac_82557_D100_A  = 0,
255 	mac_82557_D100_B  = 1,
256 	mac_82557_D100_C  = 2,
257 	mac_82558_D101_A4 = 4,
258 	mac_82558_D101_B0 = 5,
259 	mac_82559_D101M   = 8,
260 	mac_82559_D101S   = 9,
261 	mac_82550_D102    = 12,
262 	mac_82550_D102_C  = 13,
263 	mac_82551_E       = 14,
264 	mac_82551_F       = 15,
265 	mac_82551_10      = 16,
266 	mac_unknown       = 0xFF,
267 };
268 
269 enum phy {
270 	phy_100a     = 0x000003E0,
271 	phy_100c     = 0x035002A8,
272 	phy_82555_tx = 0x015002A8,
273 	phy_nsc_tx   = 0x5C002000,
274 	phy_82562_et = 0x033002A8,
275 	phy_82562_em = 0x032002A8,
276 	phy_82562_ek = 0x031002A8,
277 	phy_82562_eh = 0x017002A8,
278 	phy_unknown  = 0xFFFFFFFF,
279 };
280 
281 /* CSR (Control/Status Registers) */
282 struct csr {
283 	struct {
284 		u8 status;
285 		u8 stat_ack;
286 		u8 cmd_lo;
287 		u8 cmd_hi;
288 		u32 gen_ptr;
289 	} scb;
290 	u32 port;
291 	u16 flash_ctrl;
292 	u8 eeprom_ctrl_lo;
293 	u8 eeprom_ctrl_hi;
294 	u32 mdi_ctrl;
295 	u32 rx_dma_count;
296 };
297 
298 enum scb_status {
299 	rus_no_res       = 0x08,
300 	rus_ready        = 0x10,
301 	rus_mask         = 0x3C,
302 };
303 
304 enum ru_state  {
305 	RU_SUSPENDED = 0,
306 	RU_RUNNING	 = 1,
307 	RU_UNINITIALIZED = -1,
308 };
309 
310 enum scb_stat_ack {
311 	stat_ack_not_ours    = 0x00,
312 	stat_ack_sw_gen      = 0x04,
313 	stat_ack_rnr         = 0x10,
314 	stat_ack_cu_idle     = 0x20,
315 	stat_ack_frame_rx    = 0x40,
316 	stat_ack_cu_cmd_done = 0x80,
317 	stat_ack_not_present = 0xFF,
318 	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
319 	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
320 };
321 
322 enum scb_cmd_hi {
323 	irq_mask_none = 0x00,
324 	irq_mask_all  = 0x01,
325 	irq_sw_gen    = 0x02,
326 };
327 
328 enum scb_cmd_lo {
329 	cuc_nop        = 0x00,
330 	ruc_start      = 0x01,
331 	ruc_load_base  = 0x06,
332 	cuc_start      = 0x10,
333 	cuc_resume     = 0x20,
334 	cuc_dump_addr  = 0x40,
335 	cuc_dump_stats = 0x50,
336 	cuc_load_base  = 0x60,
337 	cuc_dump_reset = 0x70,
338 };
339 
340 enum cuc_dump {
341 	cuc_dump_complete       = 0x0000A005,
342 	cuc_dump_reset_complete = 0x0000A007,
343 };
344 
345 enum port {
346 	software_reset  = 0x0000,
347 	selftest        = 0x0001,
348 	selective_reset = 0x0002,
349 };
350 
351 enum eeprom_ctrl_lo {
352 	eesk = 0x01,
353 	eecs = 0x02,
354 	eedi = 0x04,
355 	eedo = 0x08,
356 };
357 
358 enum mdi_ctrl {
359 	mdi_write = 0x04000000,
360 	mdi_read  = 0x08000000,
361 	mdi_ready = 0x10000000,
362 };
363 
364 enum eeprom_op {
365 	op_write = 0x05,
366 	op_read  = 0x06,
367 	op_ewds  = 0x10,
368 	op_ewen  = 0x13,
369 };
370 
371 enum eeprom_offsets {
372 	eeprom_cnfg_mdix  = 0x03,
373 	eeprom_id         = 0x0A,
374 	eeprom_config_asf = 0x0D,
375 	eeprom_smbus_addr = 0x90,
376 };
377 
378 enum eeprom_cnfg_mdix {
379 	eeprom_mdix_enabled = 0x0080,
380 };
381 
382 enum eeprom_id {
383 	eeprom_id_wol = 0x0020,
384 };
385 
386 enum eeprom_config_asf {
387 	eeprom_asf = 0x8000,
388 	eeprom_gcl = 0x4000,
389 };
390 
391 enum cb_status {
392 	cb_complete = 0x8000,
393 	cb_ok       = 0x2000,
394 };
395 
396 enum cb_command {
397 	cb_nop    = 0x0000,
398 	cb_iaaddr = 0x0001,
399 	cb_config = 0x0002,
400 	cb_multi  = 0x0003,
401 	cb_tx     = 0x0004,
402 	cb_ucode  = 0x0005,
403 	cb_dump   = 0x0006,
404 	cb_tx_sf  = 0x0008,
405 	cb_cid    = 0x1f00,
406 	cb_i      = 0x2000,
407 	cb_s      = 0x4000,
408 	cb_el     = 0x8000,
409 };
410 
411 struct rfd {
412 	__le16 status;
413 	__le16 command;
414 	__le32 link;
415 	__le32 rbd;
416 	__le16 actual_size;
417 	__le16 size;
418 };
419 
420 struct rx {
421 	struct rx *next, *prev;
422 	struct sk_buff *skb;
423 	dma_addr_t dma_addr;
424 };
425 
426 #if defined(__BIG_ENDIAN_BITFIELD)
427 #define X(a,b)	b,a
428 #else
429 #define X(a,b)	a,b
430 #endif
431 struct config {
432 /*0*/	u8 X(byte_count:6, pad0:2);
433 /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
434 /*2*/	u8 adaptive_ifs;
435 /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
436 	   term_write_cache_line:1), pad3:4);
437 /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
438 /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
439 /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
440 	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
441 	   rx_discard_overruns:1), rx_save_bad_frames:1);
442 /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
443 	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
444 	   tx_dynamic_tbd:1);
445 /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
446 /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
447 	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
448 /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
449 	   loopback:2);
450 /*11*/	u8 X(linear_priority:3, pad11:5);
451 /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
452 /*13*/	u8 ip_addr_lo;
453 /*14*/	u8 ip_addr_hi;
454 /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
455 	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
456 	   pad15_2:1), crs_or_cdt:1);
457 /*16*/	u8 fc_delay_lo;
458 /*17*/	u8 fc_delay_hi;
459 /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
460 	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
461 /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
462 	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
463 	   full_duplex_force:1), full_duplex_pin:1);
464 /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
465 /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
466 /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
467 	u8 pad_d102[9];
468 };
469 
470 #define E100_MAX_MULTICAST_ADDRS	64
471 struct multi {
472 	__le16 count;
473 	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
474 };
475 
476 /* Important: keep total struct u32-aligned */
477 #define UCODE_SIZE			134
478 struct cb {
479 	__le16 status;
480 	__le16 command;
481 	__le32 link;
482 	union {
483 		u8 iaaddr[ETH_ALEN];
484 		__le32 ucode[UCODE_SIZE];
485 		struct config config;
486 		struct multi multi;
487 		struct {
488 			u32 tbd_array;
489 			u16 tcb_byte_count;
490 			u8 threshold;
491 			u8 tbd_count;
492 			struct {
493 				__le32 buf_addr;
494 				__le16 size;
495 				u16 eol;
496 			} tbd;
497 		} tcb;
498 		__le32 dump_buffer_addr;
499 	} u;
500 	struct cb *next, *prev;
501 	dma_addr_t dma_addr;
502 	struct sk_buff *skb;
503 };
504 
505 enum loopback {
506 	lb_none = 0, lb_mac = 1, lb_phy = 3,
507 };
508 
509 struct stats {
510 	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
511 		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
512 		tx_multiple_collisions, tx_total_collisions;
513 	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
514 		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
515 		rx_short_frame_errors;
516 	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
517 	__le16 xmt_tco_frames, rcv_tco_frames;
518 	__le32 complete;
519 };
520 
521 struct mem {
522 	struct {
523 		u32 signature;
524 		u32 result;
525 	} selftest;
526 	struct stats stats;
527 	u8 dump_buf[596];
528 };
529 
530 struct param_range {
531 	u32 min;
532 	u32 max;
533 	u32 count;
534 };
535 
536 struct params {
537 	struct param_range rfds;
538 	struct param_range cbs;
539 };
540 
541 struct nic {
542 	/* Begin: frequently used values: keep adjacent for cache effect */
543 	u32 msg_enable				____cacheline_aligned;
544 	struct net_device *netdev;
545 	struct pci_dev *pdev;
546 
547 	struct rx *rxs				____cacheline_aligned;
548 	struct rx *rx_to_use;
549 	struct rx *rx_to_clean;
550 	struct rfd blank_rfd;
551 	enum ru_state ru_running;
552 
553 	spinlock_t cb_lock			____cacheline_aligned;
554 	spinlock_t cmd_lock;
555 	struct csr __iomem *csr;
556 	enum scb_cmd_lo cuc_cmd;
557 	unsigned int cbs_avail;
558 	struct napi_struct napi;
559 	struct cb *cbs;
560 	struct cb *cb_to_use;
561 	struct cb *cb_to_send;
562 	struct cb *cb_to_clean;
563 	__le16 tx_command;
564 	/* End: frequently used values: keep adjacent for cache effect */
565 
566 	enum {
567 		ich                = (1 << 0),
568 		promiscuous        = (1 << 1),
569 		multicast_all      = (1 << 2),
570 		wol_magic          = (1 << 3),
571 		ich_10h_workaround = (1 << 4),
572 	} flags					____cacheline_aligned;
573 
574 	enum mac mac;
575 	enum phy phy;
576 	struct params params;
577 	struct timer_list watchdog;
578 	struct timer_list blink_timer;
579 	struct mii_if_info mii;
580 	struct work_struct tx_timeout_task;
581 	enum loopback loopback;
582 
583 	struct mem *mem;
584 	dma_addr_t dma_addr;
585 
586 	dma_addr_t cbs_dma_addr;
587 	u8 adaptive_ifs;
588 	u8 tx_threshold;
589 	u32 tx_frames;
590 	u32 tx_collisions;
591 	u32 tx_deferred;
592 	u32 tx_single_collisions;
593 	u32 tx_multiple_collisions;
594 	u32 tx_fc_pause;
595 	u32 tx_tco_frames;
596 
597 	u32 rx_fc_pause;
598 	u32 rx_fc_unsupported;
599 	u32 rx_tco_frames;
600 	u32 rx_over_length_errors;
601 
602 	u16 leds;
603 	u16 eeprom_wc;
604 	__le16 eeprom[256];
605 	spinlock_t mdio_lock;
606 };
607 
e100_write_flush(struct nic * nic)608 static inline void e100_write_flush(struct nic *nic)
609 {
610 	/* Flush previous PCI writes through intermediate bridges
611 	 * by doing a benign read */
612 	(void)ioread8(&nic->csr->scb.status);
613 }
614 
e100_enable_irq(struct nic * nic)615 static void e100_enable_irq(struct nic *nic)
616 {
617 	unsigned long flags;
618 
619 	spin_lock_irqsave(&nic->cmd_lock, flags);
620 	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
621 	e100_write_flush(nic);
622 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
623 }
624 
e100_disable_irq(struct nic * nic)625 static void e100_disable_irq(struct nic *nic)
626 {
627 	unsigned long flags;
628 
629 	spin_lock_irqsave(&nic->cmd_lock, flags);
630 	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
631 	e100_write_flush(nic);
632 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
633 }
634 
e100_hw_reset(struct nic * nic)635 static void e100_hw_reset(struct nic *nic)
636 {
637 	/* Put CU and RU into idle with a selective reset to get
638 	 * device off of PCI bus */
639 	iowrite32(selective_reset, &nic->csr->port);
640 	e100_write_flush(nic); udelay(20);
641 
642 	/* Now fully reset device */
643 	iowrite32(software_reset, &nic->csr->port);
644 	e100_write_flush(nic); udelay(20);
645 
646 	/* Mask off our interrupt line - it's unmasked after reset */
647 	e100_disable_irq(nic);
648 }
649 
e100_self_test(struct nic * nic)650 static int e100_self_test(struct nic *nic)
651 {
652 	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
653 
654 	/* Passing the self-test is a pretty good indication
655 	 * that the device can DMA to/from host memory */
656 
657 	nic->mem->selftest.signature = 0;
658 	nic->mem->selftest.result = 0xFFFFFFFF;
659 
660 	iowrite32(selftest | dma_addr, &nic->csr->port);
661 	e100_write_flush(nic);
662 	/* Wait 10 msec for self-test to complete */
663 	msleep(10);
664 
665 	/* Interrupts are enabled after self-test */
666 	e100_disable_irq(nic);
667 
668 	/* Check results of self-test */
669 	if (nic->mem->selftest.result != 0) {
670 		DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
671 			nic->mem->selftest.result);
672 		return -ETIMEDOUT;
673 	}
674 	if (nic->mem->selftest.signature == 0) {
675 		DPRINTK(HW, ERR, "Self-test failed: timed out\n");
676 		return -ETIMEDOUT;
677 	}
678 
679 	return 0;
680 }
681 
e100_eeprom_write(struct nic * nic,u16 addr_len,u16 addr,__le16 data)682 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
683 {
684 	u32 cmd_addr_data[3];
685 	u8 ctrl;
686 	int i, j;
687 
688 	/* Three cmds: write/erase enable, write data, write/erase disable */
689 	cmd_addr_data[0] = op_ewen << (addr_len - 2);
690 	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
691 		le16_to_cpu(data);
692 	cmd_addr_data[2] = op_ewds << (addr_len - 2);
693 
694 	/* Bit-bang cmds to write word to eeprom */
695 	for (j = 0; j < 3; j++) {
696 
697 		/* Chip select */
698 		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
699 		e100_write_flush(nic); udelay(4);
700 
701 		for (i = 31; i >= 0; i--) {
702 			ctrl = (cmd_addr_data[j] & (1 << i)) ?
703 				eecs | eedi : eecs;
704 			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
705 			e100_write_flush(nic); udelay(4);
706 
707 			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
708 			e100_write_flush(nic); udelay(4);
709 		}
710 		/* Wait 10 msec for cmd to complete */
711 		msleep(10);
712 
713 		/* Chip deselect */
714 		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
715 		e100_write_flush(nic); udelay(4);
716 	}
717 };
718 
719 /* General technique stolen from the eepro100 driver - very clever */
e100_eeprom_read(struct nic * nic,u16 * addr_len,u16 addr)720 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
721 {
722 	u32 cmd_addr_data;
723 	u16 data = 0;
724 	u8 ctrl;
725 	int i;
726 
727 	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
728 
729 	/* Chip select */
730 	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
731 	e100_write_flush(nic); udelay(4);
732 
733 	/* Bit-bang to read word from eeprom */
734 	for (i = 31; i >= 0; i--) {
735 		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
736 		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
737 		e100_write_flush(nic); udelay(4);
738 
739 		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
740 		e100_write_flush(nic); udelay(4);
741 
742 		/* Eeprom drives a dummy zero to EEDO after receiving
743 		 * complete address.  Use this to adjust addr_len. */
744 		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
745 		if (!(ctrl & eedo) && i > 16) {
746 			*addr_len -= (i - 16);
747 			i = 17;
748 		}
749 
750 		data = (data << 1) | (ctrl & eedo ? 1 : 0);
751 	}
752 
753 	/* Chip deselect */
754 	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
755 	e100_write_flush(nic); udelay(4);
756 
757 	return cpu_to_le16(data);
758 };
759 
760 /* Load entire EEPROM image into driver cache and validate checksum */
e100_eeprom_load(struct nic * nic)761 static int e100_eeprom_load(struct nic *nic)
762 {
763 	u16 addr, addr_len = 8, checksum = 0;
764 
765 	/* Try reading with an 8-bit addr len to discover actual addr len */
766 	e100_eeprom_read(nic, &addr_len, 0);
767 	nic->eeprom_wc = 1 << addr_len;
768 
769 	for (addr = 0; addr < nic->eeprom_wc; addr++) {
770 		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
771 		if (addr < nic->eeprom_wc - 1)
772 			checksum += le16_to_cpu(nic->eeprom[addr]);
773 	}
774 
775 	/* The checksum, stored in the last word, is calculated such that
776 	 * the sum of words should be 0xBABA */
777 	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
778 		DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
779 		if (!eeprom_bad_csum_allow)
780 			return -EAGAIN;
781 	}
782 
783 	return 0;
784 }
785 
786 /* Save (portion of) driver EEPROM cache to device and update checksum */
e100_eeprom_save(struct nic * nic,u16 start,u16 count)787 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
788 {
789 	u16 addr, addr_len = 8, checksum = 0;
790 
791 	/* Try reading with an 8-bit addr len to discover actual addr len */
792 	e100_eeprom_read(nic, &addr_len, 0);
793 	nic->eeprom_wc = 1 << addr_len;
794 
795 	if (start + count >= nic->eeprom_wc)
796 		return -EINVAL;
797 
798 	for (addr = start; addr < start + count; addr++)
799 		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
800 
801 	/* The checksum, stored in the last word, is calculated such that
802 	 * the sum of words should be 0xBABA */
803 	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
804 		checksum += le16_to_cpu(nic->eeprom[addr]);
805 	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
806 	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
807 		nic->eeprom[nic->eeprom_wc - 1]);
808 
809 	return 0;
810 }
811 
812 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
813 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
e100_exec_cmd(struct nic * nic,u8 cmd,dma_addr_t dma_addr)814 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
815 {
816 	unsigned long flags;
817 	unsigned int i;
818 	int err = 0;
819 
820 	spin_lock_irqsave(&nic->cmd_lock, flags);
821 
822 	/* Previous command is accepted when SCB clears */
823 	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
824 		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
825 			break;
826 		cpu_relax();
827 		if (unlikely(i > E100_WAIT_SCB_FAST))
828 			udelay(5);
829 	}
830 	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
831 		err = -EAGAIN;
832 		goto err_unlock;
833 	}
834 
835 	if (unlikely(cmd != cuc_resume))
836 		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
837 	iowrite8(cmd, &nic->csr->scb.cmd_lo);
838 
839 err_unlock:
840 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
841 
842 	return err;
843 }
844 
e100_exec_cb(struct nic * nic,struct sk_buff * skb,void (* cb_prepare)(struct nic *,struct cb *,struct sk_buff *))845 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
846 	void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
847 {
848 	struct cb *cb;
849 	unsigned long flags;
850 	int err = 0;
851 
852 	spin_lock_irqsave(&nic->cb_lock, flags);
853 
854 	if (unlikely(!nic->cbs_avail)) {
855 		err = -ENOMEM;
856 		goto err_unlock;
857 	}
858 
859 	cb = nic->cb_to_use;
860 	nic->cb_to_use = cb->next;
861 	nic->cbs_avail--;
862 	cb->skb = skb;
863 
864 	if (unlikely(!nic->cbs_avail))
865 		err = -ENOSPC;
866 
867 	cb_prepare(nic, cb, skb);
868 
869 	/* Order is important otherwise we'll be in a race with h/w:
870 	 * set S-bit in current first, then clear S-bit in previous. */
871 	cb->command |= cpu_to_le16(cb_s);
872 	wmb();
873 	cb->prev->command &= cpu_to_le16(~cb_s);
874 
875 	while (nic->cb_to_send != nic->cb_to_use) {
876 		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
877 			nic->cb_to_send->dma_addr))) {
878 			/* Ok, here's where things get sticky.  It's
879 			 * possible that we can't schedule the command
880 			 * because the controller is too busy, so
881 			 * let's just queue the command and try again
882 			 * when another command is scheduled. */
883 			if (err == -ENOSPC) {
884 				//request a reset
885 				schedule_work(&nic->tx_timeout_task);
886 			}
887 			break;
888 		} else {
889 			nic->cuc_cmd = cuc_resume;
890 			nic->cb_to_send = nic->cb_to_send->next;
891 		}
892 	}
893 
894 err_unlock:
895 	spin_unlock_irqrestore(&nic->cb_lock, flags);
896 
897 	return err;
898 }
899 
mdio_ctrl(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)900 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
901 {
902 	u32 data_out = 0;
903 	unsigned int i;
904 	unsigned long flags;
905 
906 
907 	/*
908 	 * Stratus87247: we shouldn't be writing the MDI control
909 	 * register until the Ready bit shows True.  Also, since
910 	 * manipulation of the MDI control registers is a multi-step
911 	 * procedure it should be done under lock.
912 	 */
913 	spin_lock_irqsave(&nic->mdio_lock, flags);
914 	for (i = 100; i; --i) {
915 		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
916 			break;
917 		udelay(20);
918 	}
919 	if (unlikely(!i)) {
920 		printk("e100.mdio_ctrl(%s) won't go Ready\n",
921 			nic->netdev->name );
922 		spin_unlock_irqrestore(&nic->mdio_lock, flags);
923 		return 0;		/* No way to indicate timeout error */
924 	}
925 	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
926 
927 	for (i = 0; i < 100; i++) {
928 		udelay(20);
929 		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
930 			break;
931 	}
932 	spin_unlock_irqrestore(&nic->mdio_lock, flags);
933 	DPRINTK(HW, DEBUG,
934 		"%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
935 		dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
936 	return (u16)data_out;
937 }
938 
mdio_read(struct net_device * netdev,int addr,int reg)939 static int mdio_read(struct net_device *netdev, int addr, int reg)
940 {
941 	return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
942 }
943 
mdio_write(struct net_device * netdev,int addr,int reg,int data)944 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
945 {
946 	mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
947 }
948 
e100_get_defaults(struct nic * nic)949 static void e100_get_defaults(struct nic *nic)
950 {
951 	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
952 	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
953 
954 	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
955 	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
956 	if (nic->mac == mac_unknown)
957 		nic->mac = mac_82557_D100_A;
958 
959 	nic->params.rfds = rfds;
960 	nic->params.cbs = cbs;
961 
962 	/* Quadwords to DMA into FIFO before starting frame transmit */
963 	nic->tx_threshold = 0xE0;
964 
965 	/* no interrupt for every tx completion, delay = 256us if not 557 */
966 	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
967 		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
968 
969 	/* Template for a freshly allocated RFD */
970 	nic->blank_rfd.command = 0;
971 	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
972 	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
973 
974 	/* MII setup */
975 	nic->mii.phy_id_mask = 0x1F;
976 	nic->mii.reg_num_mask = 0x1F;
977 	nic->mii.dev = nic->netdev;
978 	nic->mii.mdio_read = mdio_read;
979 	nic->mii.mdio_write = mdio_write;
980 }
981 
e100_configure(struct nic * nic,struct cb * cb,struct sk_buff * skb)982 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
983 {
984 	struct config *config = &cb->u.config;
985 	u8 *c = (u8 *)config;
986 
987 	cb->command = cpu_to_le16(cb_config);
988 
989 	memset(config, 0, sizeof(struct config));
990 
991 	config->byte_count = 0x16;		/* bytes in this struct */
992 	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
993 	config->direct_rx_dma = 0x1;		/* reserved */
994 	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
995 	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
996 	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
997 	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
998 	config->mii_mode = 0x1;			/* 1=MII mode, 0=503 mode */
999 	config->pad10 = 0x6;
1000 	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1001 	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1002 	config->ifs = 0x6;			/* x16 = inter frame spacing */
1003 	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1004 	config->pad15_1 = 0x1;
1005 	config->pad15_2 = 0x1;
1006 	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1007 	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1008 	config->tx_padding = 0x1;		/* 1=pad short frames */
1009 	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1010 	config->pad18 = 0x1;
1011 	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1012 	config->pad20_1 = 0x1F;
1013 	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1014 	config->pad21_1 = 0x5;
1015 
1016 	config->adaptive_ifs = nic->adaptive_ifs;
1017 	config->loopback = nic->loopback;
1018 
1019 	if (nic->mii.force_media && nic->mii.full_duplex)
1020 		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1021 
1022 	if (nic->flags & promiscuous || nic->loopback) {
1023 		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1024 		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1025 		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1026 	}
1027 
1028 	if (nic->flags & multicast_all)
1029 		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1030 
1031 	/* disable WoL when up */
1032 	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1033 		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1034 
1035 	if (nic->mac >= mac_82558_D101_A4) {
1036 		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1037 		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1038 		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1039 		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1040 		if (nic->mac >= mac_82559_D101M) {
1041 			config->tno_intr = 0x1;		/* TCO stats enable */
1042 			/* Enable TCO in extended config */
1043 			if (nic->mac >= mac_82551_10) {
1044 				config->byte_count = 0x20; /* extended bytes */
1045 				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1046 			}
1047 		} else {
1048 			config->standard_stat_counter = 0x0;
1049 		}
1050 	}
1051 
1052 	DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1053 		c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1054 	DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1055 		c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1056 	DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1057 		c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1058 }
1059 
1060 /*************************************************************************
1061 *  CPUSaver parameters
1062 *
1063 *  All CPUSaver parameters are 16-bit literals that are part of a
1064 *  "move immediate value" instruction.  By changing the value of
1065 *  the literal in the instruction before the code is loaded, the
1066 *  driver can change the algorithm.
1067 *
1068 *  INTDELAY - This loads the dead-man timer with its initial value.
1069 *    When this timer expires the interrupt is asserted, and the
1070 *    timer is reset each time a new packet is received.  (see
1071 *    BUNDLEMAX below to set the limit on number of chained packets)
1072 *    The current default is 0x600 or 1536.  Experiments show that
1073 *    the value should probably stay within the 0x200 - 0x1000.
1074 *
1075 *  BUNDLEMAX -
1076 *    This sets the maximum number of frames that will be bundled.  In
1077 *    some situations, such as the TCP windowing algorithm, it may be
1078 *    better to limit the growth of the bundle size than let it go as
1079 *    high as it can, because that could cause too much added latency.
1080 *    The default is six, because this is the number of packets in the
1081 *    default TCP window size.  A value of 1 would make CPUSaver indicate
1082 *    an interrupt for every frame received.  If you do not want to put
1083 *    a limit on the bundle size, set this value to xFFFF.
1084 *
1085 *  BUNDLESMALL -
1086 *    This contains a bit-mask describing the minimum size frame that
1087 *    will be bundled.  The default masks the lower 7 bits, which means
1088 *    that any frame less than 128 bytes in length will not be bundled,
1089 *    but will instead immediately generate an interrupt.  This does
1090 *    not affect the current bundle in any way.  Any frame that is 128
1091 *    bytes or large will be bundled normally.  This feature is meant
1092 *    to provide immediate indication of ACK frames in a TCP environment.
1093 *    Customers were seeing poor performance when a machine with CPUSaver
1094 *    enabled was sending but not receiving.  The delay introduced when
1095 *    the ACKs were received was enough to reduce total throughput, because
1096 *    the sender would sit idle until the ACK was finally seen.
1097 *
1098 *    The current default is 0xFF80, which masks out the lower 7 bits.
1099 *    This means that any frame which is x7F (127) bytes or smaller
1100 *    will cause an immediate interrupt.  Because this value must be a
1101 *    bit mask, there are only a few valid values that can be used.  To
1102 *    turn this feature off, the driver can write the value xFFFF to the
1103 *    lower word of this instruction (in the same way that the other
1104 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1105 *    cause an interrupt to be generated for every frame, because all
1106 *    standard Ethernet frames are <= 2047 bytes in length.
1107 *************************************************************************/
1108 
1109 /* if you wish to disable the ucode functionality, while maintaining the
1110  * workarounds it provides, set the following defines to:
1111  * BUNDLESMALL 0
1112  * BUNDLEMAX 1
1113  * INTDELAY 1
1114  */
1115 #define BUNDLESMALL 1
1116 #define BUNDLEMAX (u16)6
1117 #define INTDELAY (u16)1536 /* 0x600 */
1118 
1119 /* Initialize firmware */
e100_request_firmware(struct nic * nic)1120 static const struct firmware *e100_request_firmware(struct nic *nic)
1121 {
1122 	const char *fw_name;
1123 	const struct firmware *fw;
1124 	u8 timer, bundle, min_size;
1125 	int err;
1126 
1127 	/* do not load u-code for ICH devices */
1128 	if (nic->flags & ich)
1129 		return NULL;
1130 
1131 	/* Search for ucode match against h/w revision */
1132 	if (nic->mac == mac_82559_D101M)
1133 		fw_name = FIRMWARE_D101M;
1134 	else if (nic->mac == mac_82559_D101S)
1135 		fw_name = FIRMWARE_D101S;
1136 	else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1137 		fw_name = FIRMWARE_D102E;
1138 	else /* No ucode on other devices */
1139 		return NULL;
1140 
1141 	err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1142 	if (err) {
1143 		DPRINTK(PROBE, ERR, "Failed to load firmware \"%s\": %d\n",
1144 			fw_name, err);
1145 		return ERR_PTR(err);
1146 	}
1147 	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1148 	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1149 	if (fw->size != UCODE_SIZE * 4 + 3) {
1150 		DPRINTK(PROBE, ERR, "Firmware \"%s\" has wrong size %zu\n",
1151 			fw_name, fw->size);
1152 		release_firmware(fw);
1153 		return ERR_PTR(-EINVAL);
1154 	}
1155 
1156 	/* Read timer, bundle and min_size from end of firmware blob */
1157 	timer = fw->data[UCODE_SIZE * 4];
1158 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1159 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1160 
1161 	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1162 	    min_size >= UCODE_SIZE) {
1163 		DPRINTK(PROBE, ERR,
1164 			"\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1165 			fw_name, timer, bundle, min_size);
1166 		release_firmware(fw);
1167 		return ERR_PTR(-EINVAL);
1168 	}
1169 	/* OK, firmware is validated and ready to use... */
1170 	return fw;
1171 }
1172 
e100_setup_ucode(struct nic * nic,struct cb * cb,struct sk_buff * skb)1173 static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1174 			     struct sk_buff *skb)
1175 {
1176 	const struct firmware *fw = (void *)skb;
1177 	u8 timer, bundle, min_size;
1178 
1179 	/* It's not a real skb; we just abused the fact that e100_exec_cb
1180 	   will pass it through to here... */
1181 	cb->skb = NULL;
1182 
1183 	/* firmware is stored as little endian already */
1184 	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1185 
1186 	/* Read timer, bundle and min_size from end of firmware blob */
1187 	timer = fw->data[UCODE_SIZE * 4];
1188 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1189 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1190 
1191 	/* Insert user-tunable settings in cb->u.ucode */
1192 	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1193 	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1194 	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1195 	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1196 	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1197 	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1198 
1199 	cb->command = cpu_to_le16(cb_ucode | cb_el);
1200 }
1201 
e100_load_ucode_wait(struct nic * nic)1202 static inline int e100_load_ucode_wait(struct nic *nic)
1203 {
1204 	const struct firmware *fw;
1205 	int err = 0, counter = 50;
1206 	struct cb *cb = nic->cb_to_clean;
1207 
1208 	fw = e100_request_firmware(nic);
1209 	/* If it's NULL, then no ucode is required */
1210 	if (!fw || IS_ERR(fw))
1211 		return PTR_ERR(fw);
1212 
1213 	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1214 		DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1215 
1216 	/* must restart cuc */
1217 	nic->cuc_cmd = cuc_start;
1218 
1219 	/* wait for completion */
1220 	e100_write_flush(nic);
1221 	udelay(10);
1222 
1223 	/* wait for possibly (ouch) 500ms */
1224 	while (!(cb->status & cpu_to_le16(cb_complete))) {
1225 		msleep(10);
1226 		if (!--counter) break;
1227 	}
1228 
1229 	/* ack any interrupts, something could have been set */
1230 	iowrite8(~0, &nic->csr->scb.stat_ack);
1231 
1232 	/* if the command failed, or is not OK, notify and return */
1233 	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1234 		DPRINTK(PROBE,ERR, "ucode load failed\n");
1235 		err = -EPERM;
1236 	}
1237 
1238 	return err;
1239 }
1240 
e100_setup_iaaddr(struct nic * nic,struct cb * cb,struct sk_buff * skb)1241 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1242 	struct sk_buff *skb)
1243 {
1244 	cb->command = cpu_to_le16(cb_iaaddr);
1245 	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1246 }
1247 
e100_dump(struct nic * nic,struct cb * cb,struct sk_buff * skb)1248 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1249 {
1250 	cb->command = cpu_to_le16(cb_dump);
1251 	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1252 		offsetof(struct mem, dump_buf));
1253 }
1254 
1255 #define NCONFIG_AUTO_SWITCH	0x0080
1256 #define MII_NSC_CONG		MII_RESV1
1257 #define NSC_CONG_ENABLE		0x0100
1258 #define NSC_CONG_TXREADY	0x0400
1259 #define ADVERTISE_FC_SUPPORTED	0x0400
e100_phy_init(struct nic * nic)1260 static int e100_phy_init(struct nic *nic)
1261 {
1262 	struct net_device *netdev = nic->netdev;
1263 	u32 addr;
1264 	u16 bmcr, stat, id_lo, id_hi, cong;
1265 
1266 	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1267 	for (addr = 0; addr < 32; addr++) {
1268 		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1269 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1270 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1271 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1272 		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1273 			break;
1274 	}
1275 	DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1276 	if (addr == 32)
1277 		return -EAGAIN;
1278 
1279 	/* Selected the phy and isolate the rest */
1280 	for (addr = 0; addr < 32; addr++) {
1281 		if (addr != nic->mii.phy_id) {
1282 			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1283 		} else {
1284 			bmcr = mdio_read(netdev, addr, MII_BMCR);
1285 			mdio_write(netdev, addr, MII_BMCR,
1286 				bmcr & ~BMCR_ISOLATE);
1287 		}
1288 	}
1289 
1290 	/* Get phy ID */
1291 	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1292 	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1293 	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1294 	DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1295 
1296 	/* Handle National tx phys */
1297 #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1298 	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1299 		/* Disable congestion control */
1300 		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1301 		cong |= NSC_CONG_TXREADY;
1302 		cong &= ~NSC_CONG_ENABLE;
1303 		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1304 	}
1305 
1306 	if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1307 	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1308 		!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1309 		/* enable/disable MDI/MDI-X auto-switching. */
1310 		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1311 				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1312 	}
1313 
1314 	return 0;
1315 }
1316 
e100_hw_init(struct nic * nic)1317 static int e100_hw_init(struct nic *nic)
1318 {
1319 	int err;
1320 
1321 	e100_hw_reset(nic);
1322 
1323 	DPRINTK(HW, ERR, "e100_hw_init\n");
1324 	if (!in_interrupt() && (err = e100_self_test(nic)))
1325 		return err;
1326 
1327 	if ((err = e100_phy_init(nic)))
1328 		return err;
1329 	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1330 		return err;
1331 	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1332 		return err;
1333 	if ((err = e100_load_ucode_wait(nic)))
1334 		return err;
1335 	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1336 		return err;
1337 	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1338 		return err;
1339 	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1340 		nic->dma_addr + offsetof(struct mem, stats))))
1341 		return err;
1342 	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1343 		return err;
1344 
1345 	e100_disable_irq(nic);
1346 
1347 	return 0;
1348 }
1349 
e100_multi(struct nic * nic,struct cb * cb,struct sk_buff * skb)1350 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1351 {
1352 	struct net_device *netdev = nic->netdev;
1353 	struct dev_mc_list *list = netdev->mc_list;
1354 	u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1355 
1356 	cb->command = cpu_to_le16(cb_multi);
1357 	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1358 	for (i = 0; list && i < count; i++, list = list->next)
1359 		memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1360 			ETH_ALEN);
1361 }
1362 
e100_set_multicast_list(struct net_device * netdev)1363 static void e100_set_multicast_list(struct net_device *netdev)
1364 {
1365 	struct nic *nic = netdev_priv(netdev);
1366 
1367 	DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1368 		netdev->mc_count, netdev->flags);
1369 
1370 	if (netdev->flags & IFF_PROMISC)
1371 		nic->flags |= promiscuous;
1372 	else
1373 		nic->flags &= ~promiscuous;
1374 
1375 	if (netdev->flags & IFF_ALLMULTI ||
1376 		netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1377 		nic->flags |= multicast_all;
1378 	else
1379 		nic->flags &= ~multicast_all;
1380 
1381 	e100_exec_cb(nic, NULL, e100_configure);
1382 	e100_exec_cb(nic, NULL, e100_multi);
1383 }
1384 
e100_update_stats(struct nic * nic)1385 static void e100_update_stats(struct nic *nic)
1386 {
1387 	struct net_device *dev = nic->netdev;
1388 	struct net_device_stats *ns = &dev->stats;
1389 	struct stats *s = &nic->mem->stats;
1390 	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1391 		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1392 		&s->complete;
1393 
1394 	/* Device's stats reporting may take several microseconds to
1395 	 * complete, so we're always waiting for results of the
1396 	 * previous command. */
1397 
1398 	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1399 		*complete = 0;
1400 		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1401 		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1402 		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1403 		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1404 		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1405 		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1406 		ns->collisions += nic->tx_collisions;
1407 		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1408 			le32_to_cpu(s->tx_lost_crs);
1409 		ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1410 			nic->rx_over_length_errors;
1411 		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1412 		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1413 		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1414 		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1415 		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1416 		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1417 			le32_to_cpu(s->rx_alignment_errors) +
1418 			le32_to_cpu(s->rx_short_frame_errors) +
1419 			le32_to_cpu(s->rx_cdt_errors);
1420 		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1421 		nic->tx_single_collisions +=
1422 			le32_to_cpu(s->tx_single_collisions);
1423 		nic->tx_multiple_collisions +=
1424 			le32_to_cpu(s->tx_multiple_collisions);
1425 		if (nic->mac >= mac_82558_D101_A4) {
1426 			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1427 			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1428 			nic->rx_fc_unsupported +=
1429 				le32_to_cpu(s->fc_rcv_unsupported);
1430 			if (nic->mac >= mac_82559_D101M) {
1431 				nic->tx_tco_frames +=
1432 					le16_to_cpu(s->xmt_tco_frames);
1433 				nic->rx_tco_frames +=
1434 					le16_to_cpu(s->rcv_tco_frames);
1435 			}
1436 		}
1437 	}
1438 
1439 
1440 	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1441 		DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1442 }
1443 
e100_adjust_adaptive_ifs(struct nic * nic,int speed,int duplex)1444 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1445 {
1446 	/* Adjust inter-frame-spacing (IFS) between two transmits if
1447 	 * we're getting collisions on a half-duplex connection. */
1448 
1449 	if (duplex == DUPLEX_HALF) {
1450 		u32 prev = nic->adaptive_ifs;
1451 		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1452 
1453 		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1454 		   (nic->tx_frames > min_frames)) {
1455 			if (nic->adaptive_ifs < 60)
1456 				nic->adaptive_ifs += 5;
1457 		} else if (nic->tx_frames < min_frames) {
1458 			if (nic->adaptive_ifs >= 5)
1459 				nic->adaptive_ifs -= 5;
1460 		}
1461 		if (nic->adaptive_ifs != prev)
1462 			e100_exec_cb(nic, NULL, e100_configure);
1463 	}
1464 }
1465 
e100_watchdog(unsigned long data)1466 static void e100_watchdog(unsigned long data)
1467 {
1468 	struct nic *nic = (struct nic *)data;
1469 	struct ethtool_cmd cmd;
1470 
1471 	DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1472 
1473 	/* mii library handles link maintenance tasks */
1474 
1475 	mii_ethtool_gset(&nic->mii, &cmd);
1476 
1477 	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1478 		printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n",
1479 		       nic->netdev->name,
1480 		       cmd.speed == SPEED_100 ? "100" : "10",
1481 		       cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1482 	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1483 		printk(KERN_INFO "e100: %s NIC Link is Down\n",
1484 		       nic->netdev->name);
1485 	}
1486 
1487 	mii_check_link(&nic->mii);
1488 
1489 	/* Software generated interrupt to recover from (rare) Rx
1490 	 * allocation failure.
1491 	 * Unfortunately have to use a spinlock to not re-enable interrupts
1492 	 * accidentally, due to hardware that shares a register between the
1493 	 * interrupt mask bit and the SW Interrupt generation bit */
1494 	spin_lock_irq(&nic->cmd_lock);
1495 	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1496 	e100_write_flush(nic);
1497 	spin_unlock_irq(&nic->cmd_lock);
1498 
1499 	e100_update_stats(nic);
1500 	e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1501 
1502 	if (nic->mac <= mac_82557_D100_C)
1503 		/* Issue a multicast command to workaround a 557 lock up */
1504 		e100_set_multicast_list(nic->netdev);
1505 
1506 	if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1507 		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1508 		nic->flags |= ich_10h_workaround;
1509 	else
1510 		nic->flags &= ~ich_10h_workaround;
1511 
1512 	mod_timer(&nic->watchdog,
1513 		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1514 }
1515 
e100_xmit_prepare(struct nic * nic,struct cb * cb,struct sk_buff * skb)1516 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1517 	struct sk_buff *skb)
1518 {
1519 	cb->command = nic->tx_command;
1520 	/* interrupt every 16 packets regardless of delay */
1521 	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1522 		cb->command |= cpu_to_le16(cb_i);
1523 	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1524 	cb->u.tcb.tcb_byte_count = 0;
1525 	cb->u.tcb.threshold = nic->tx_threshold;
1526 	cb->u.tcb.tbd_count = 1;
1527 	cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1528 		skb->data, skb->len, PCI_DMA_TODEVICE));
1529 	/* check for mapping failure? */
1530 	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1531 }
1532 
e100_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1533 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1534 {
1535 	struct nic *nic = netdev_priv(netdev);
1536 	int err;
1537 
1538 	if (nic->flags & ich_10h_workaround) {
1539 		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1540 		   Issue a NOP command followed by a 1us delay before
1541 		   issuing the Tx command. */
1542 		if (e100_exec_cmd(nic, cuc_nop, 0))
1543 			DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1544 		udelay(1);
1545 	}
1546 
1547 	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1548 
1549 	switch (err) {
1550 	case -ENOSPC:
1551 		/* We queued the skb, but now we're out of space. */
1552 		DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1553 		netif_stop_queue(netdev);
1554 		break;
1555 	case -ENOMEM:
1556 		/* This is a hard error - log it. */
1557 		DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1558 		netif_stop_queue(netdev);
1559 		return 1;
1560 	}
1561 
1562 	netdev->trans_start = jiffies;
1563 	return 0;
1564 }
1565 
e100_tx_clean(struct nic * nic)1566 static int e100_tx_clean(struct nic *nic)
1567 {
1568 	struct net_device *dev = nic->netdev;
1569 	struct cb *cb;
1570 	int tx_cleaned = 0;
1571 
1572 	spin_lock(&nic->cb_lock);
1573 
1574 	/* Clean CBs marked complete */
1575 	for (cb = nic->cb_to_clean;
1576 	    cb->status & cpu_to_le16(cb_complete);
1577 	    cb = nic->cb_to_clean = cb->next) {
1578 		DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1579 		        (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1580 		        cb->status);
1581 
1582 		if (likely(cb->skb != NULL)) {
1583 			dev->stats.tx_packets++;
1584 			dev->stats.tx_bytes += cb->skb->len;
1585 
1586 			pci_unmap_single(nic->pdev,
1587 				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1588 				le16_to_cpu(cb->u.tcb.tbd.size),
1589 				PCI_DMA_TODEVICE);
1590 			dev_kfree_skb_any(cb->skb);
1591 			cb->skb = NULL;
1592 			tx_cleaned = 1;
1593 		}
1594 		cb->status = 0;
1595 		nic->cbs_avail++;
1596 	}
1597 
1598 	spin_unlock(&nic->cb_lock);
1599 
1600 	/* Recover from running out of Tx resources in xmit_frame */
1601 	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1602 		netif_wake_queue(nic->netdev);
1603 
1604 	return tx_cleaned;
1605 }
1606 
e100_clean_cbs(struct nic * nic)1607 static void e100_clean_cbs(struct nic *nic)
1608 {
1609 	if (nic->cbs) {
1610 		while (nic->cbs_avail != nic->params.cbs.count) {
1611 			struct cb *cb = nic->cb_to_clean;
1612 			if (cb->skb) {
1613 				pci_unmap_single(nic->pdev,
1614 					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1615 					le16_to_cpu(cb->u.tcb.tbd.size),
1616 					PCI_DMA_TODEVICE);
1617 				dev_kfree_skb(cb->skb);
1618 			}
1619 			nic->cb_to_clean = nic->cb_to_clean->next;
1620 			nic->cbs_avail++;
1621 		}
1622 		pci_free_consistent(nic->pdev,
1623 			sizeof(struct cb) * nic->params.cbs.count,
1624 			nic->cbs, nic->cbs_dma_addr);
1625 		nic->cbs = NULL;
1626 		nic->cbs_avail = 0;
1627 	}
1628 	nic->cuc_cmd = cuc_start;
1629 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1630 		nic->cbs;
1631 }
1632 
e100_alloc_cbs(struct nic * nic)1633 static int e100_alloc_cbs(struct nic *nic)
1634 {
1635 	struct cb *cb;
1636 	unsigned int i, count = nic->params.cbs.count;
1637 
1638 	nic->cuc_cmd = cuc_start;
1639 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1640 	nic->cbs_avail = 0;
1641 
1642 	nic->cbs = pci_alloc_consistent(nic->pdev,
1643 		sizeof(struct cb) * count, &nic->cbs_dma_addr);
1644 	if (!nic->cbs)
1645 		return -ENOMEM;
1646 
1647 	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1648 		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1649 		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1650 
1651 		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1652 		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1653 			((i+1) % count) * sizeof(struct cb));
1654 		cb->skb = NULL;
1655 	}
1656 
1657 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1658 	nic->cbs_avail = count;
1659 
1660 	return 0;
1661 }
1662 
e100_start_receiver(struct nic * nic,struct rx * rx)1663 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1664 {
1665 	if (!nic->rxs) return;
1666 	if (RU_SUSPENDED != nic->ru_running) return;
1667 
1668 	/* handle init time starts */
1669 	if (!rx) rx = nic->rxs;
1670 
1671 	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1672 	if (rx->skb) {
1673 		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1674 		nic->ru_running = RU_RUNNING;
1675 	}
1676 }
1677 
1678 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
e100_rx_alloc_skb(struct nic * nic,struct rx * rx)1679 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1680 {
1681 	if (!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1682 		return -ENOMEM;
1683 
1684 	/* Align, init, and map the RFD. */
1685 	skb_reserve(rx->skb, NET_IP_ALIGN);
1686 	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1687 	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1688 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1689 
1690 	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1691 		dev_kfree_skb_any(rx->skb);
1692 		rx->skb = NULL;
1693 		rx->dma_addr = 0;
1694 		return -ENOMEM;
1695 	}
1696 
1697 	/* Link the RFD to end of RFA by linking previous RFD to
1698 	 * this one.  We are safe to touch the previous RFD because
1699 	 * it is protected by the before last buffer's el bit being set */
1700 	if (rx->prev->skb) {
1701 		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1702 		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1703 		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1704 			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1705 	}
1706 
1707 	return 0;
1708 }
1709 
e100_rx_indicate(struct nic * nic,struct rx * rx,unsigned int * work_done,unsigned int work_to_do)1710 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1711 	unsigned int *work_done, unsigned int work_to_do)
1712 {
1713 	struct net_device *dev = nic->netdev;
1714 	struct sk_buff *skb = rx->skb;
1715 	struct rfd *rfd = (struct rfd *)skb->data;
1716 	u16 rfd_status, actual_size;
1717 
1718 	if (unlikely(work_done && *work_done >= work_to_do))
1719 		return -EAGAIN;
1720 
1721 	/* Need to sync before taking a peek at cb_complete bit */
1722 	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1723 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1724 	rfd_status = le16_to_cpu(rfd->status);
1725 
1726 	DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1727 
1728 	/* If data isn't ready, nothing to indicate */
1729 	if (unlikely(!(rfd_status & cb_complete))) {
1730 		/* If the next buffer has the el bit, but we think the receiver
1731 		 * is still running, check to see if it really stopped while
1732 		 * we had interrupts off.
1733 		 * This allows for a fast restart without re-enabling
1734 		 * interrupts */
1735 		if ((le16_to_cpu(rfd->command) & cb_el) &&
1736 		    (RU_RUNNING == nic->ru_running))
1737 
1738 			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1739 				nic->ru_running = RU_SUSPENDED;
1740 		return -ENODATA;
1741 	}
1742 
1743 	/* Get actual data size */
1744 	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1745 	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1746 		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1747 
1748 	/* Get data */
1749 	pci_unmap_single(nic->pdev, rx->dma_addr,
1750 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1751 
1752 	/* If this buffer has the el bit, but we think the receiver
1753 	 * is still running, check to see if it really stopped while
1754 	 * we had interrupts off.
1755 	 * This allows for a fast restart without re-enabling interrupts.
1756 	 * This can happen when the RU sees the size change but also sees
1757 	 * the el bit set. */
1758 	if ((le16_to_cpu(rfd->command) & cb_el) &&
1759 	    (RU_RUNNING == nic->ru_running)) {
1760 
1761 	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
1762 		nic->ru_running = RU_SUSPENDED;
1763 	}
1764 
1765 	/* Pull off the RFD and put the actual data (minus eth hdr) */
1766 	skb_reserve(skb, sizeof(struct rfd));
1767 	skb_put(skb, actual_size);
1768 	skb->protocol = eth_type_trans(skb, nic->netdev);
1769 
1770 	if (unlikely(!(rfd_status & cb_ok))) {
1771 		/* Don't indicate if hardware indicates errors */
1772 		dev_kfree_skb_any(skb);
1773 	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1774 		/* Don't indicate oversized frames */
1775 		nic->rx_over_length_errors++;
1776 		dev_kfree_skb_any(skb);
1777 	} else {
1778 		dev->stats.rx_packets++;
1779 		dev->stats.rx_bytes += actual_size;
1780 		netif_receive_skb(skb);
1781 		if (work_done)
1782 			(*work_done)++;
1783 	}
1784 
1785 	rx->skb = NULL;
1786 
1787 	return 0;
1788 }
1789 
e100_rx_clean(struct nic * nic,unsigned int * work_done,unsigned int work_to_do)1790 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1791 	unsigned int work_to_do)
1792 {
1793 	struct rx *rx;
1794 	int restart_required = 0, err = 0;
1795 	struct rx *old_before_last_rx, *new_before_last_rx;
1796 	struct rfd *old_before_last_rfd, *new_before_last_rfd;
1797 
1798 	/* Indicate newly arrived packets */
1799 	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1800 		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1801 		/* Hit quota or no more to clean */
1802 		if (-EAGAIN == err || -ENODATA == err)
1803 			break;
1804 	}
1805 
1806 
1807 	/* On EAGAIN, hit quota so have more work to do, restart once
1808 	 * cleanup is complete.
1809 	 * Else, are we already rnr? then pay attention!!! this ensures that
1810 	 * the state machine progression never allows a start with a
1811 	 * partially cleaned list, avoiding a race between hardware
1812 	 * and rx_to_clean when in NAPI mode */
1813 	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
1814 		restart_required = 1;
1815 
1816 	old_before_last_rx = nic->rx_to_use->prev->prev;
1817 	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
1818 
1819 	/* Alloc new skbs to refill list */
1820 	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1821 		if (unlikely(e100_rx_alloc_skb(nic, rx)))
1822 			break; /* Better luck next time (see watchdog) */
1823 	}
1824 
1825 	new_before_last_rx = nic->rx_to_use->prev->prev;
1826 	if (new_before_last_rx != old_before_last_rx) {
1827 		/* Set the el-bit on the buffer that is before the last buffer.
1828 		 * This lets us update the next pointer on the last buffer
1829 		 * without worrying about hardware touching it.
1830 		 * We set the size to 0 to prevent hardware from touching this
1831 		 * buffer.
1832 		 * When the hardware hits the before last buffer with el-bit
1833 		 * and size of 0, it will RNR interrupt, the RUS will go into
1834 		 * the No Resources state.  It will not complete nor write to
1835 		 * this buffer. */
1836 		new_before_last_rfd =
1837 			(struct rfd *)new_before_last_rx->skb->data;
1838 		new_before_last_rfd->size = 0;
1839 		new_before_last_rfd->command |= cpu_to_le16(cb_el);
1840 		pci_dma_sync_single_for_device(nic->pdev,
1841 			new_before_last_rx->dma_addr, sizeof(struct rfd),
1842 			PCI_DMA_BIDIRECTIONAL);
1843 
1844 		/* Now that we have a new stopping point, we can clear the old
1845 		 * stopping point.  We must sync twice to get the proper
1846 		 * ordering on the hardware side of things. */
1847 		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
1848 		pci_dma_sync_single_for_device(nic->pdev,
1849 			old_before_last_rx->dma_addr, sizeof(struct rfd),
1850 			PCI_DMA_BIDIRECTIONAL);
1851 		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1852 		pci_dma_sync_single_for_device(nic->pdev,
1853 			old_before_last_rx->dma_addr, sizeof(struct rfd),
1854 			PCI_DMA_BIDIRECTIONAL);
1855 	}
1856 
1857 	if (restart_required) {
1858 		// ack the rnr?
1859 		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
1860 		e100_start_receiver(nic, nic->rx_to_clean);
1861 		if (work_done)
1862 			(*work_done)++;
1863 	}
1864 }
1865 
e100_rx_clean_list(struct nic * nic)1866 static void e100_rx_clean_list(struct nic *nic)
1867 {
1868 	struct rx *rx;
1869 	unsigned int i, count = nic->params.rfds.count;
1870 
1871 	nic->ru_running = RU_UNINITIALIZED;
1872 
1873 	if (nic->rxs) {
1874 		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
1875 			if (rx->skb) {
1876 				pci_unmap_single(nic->pdev, rx->dma_addr,
1877 					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1878 				dev_kfree_skb(rx->skb);
1879 			}
1880 		}
1881 		kfree(nic->rxs);
1882 		nic->rxs = NULL;
1883 	}
1884 
1885 	nic->rx_to_use = nic->rx_to_clean = NULL;
1886 }
1887 
e100_rx_alloc_list(struct nic * nic)1888 static int e100_rx_alloc_list(struct nic *nic)
1889 {
1890 	struct rx *rx;
1891 	unsigned int i, count = nic->params.rfds.count;
1892 	struct rfd *before_last;
1893 
1894 	nic->rx_to_use = nic->rx_to_clean = NULL;
1895 	nic->ru_running = RU_UNINITIALIZED;
1896 
1897 	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
1898 		return -ENOMEM;
1899 
1900 	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
1901 		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1902 		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1903 		if (e100_rx_alloc_skb(nic, rx)) {
1904 			e100_rx_clean_list(nic);
1905 			return -ENOMEM;
1906 		}
1907 	}
1908 	/* Set the el-bit on the buffer that is before the last buffer.
1909 	 * This lets us update the next pointer on the last buffer without
1910 	 * worrying about hardware touching it.
1911 	 * We set the size to 0 to prevent hardware from touching this buffer.
1912 	 * When the hardware hits the before last buffer with el-bit and size
1913 	 * of 0, it will RNR interrupt, the RU will go into the No Resources
1914 	 * state.  It will not complete nor write to this buffer. */
1915 	rx = nic->rxs->prev->prev;
1916 	before_last = (struct rfd *)rx->skb->data;
1917 	before_last->command |= cpu_to_le16(cb_el);
1918 	before_last->size = 0;
1919 	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1920 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1921 
1922 	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1923 	nic->ru_running = RU_SUSPENDED;
1924 
1925 	return 0;
1926 }
1927 
e100_intr(int irq,void * dev_id)1928 static irqreturn_t e100_intr(int irq, void *dev_id)
1929 {
1930 	struct net_device *netdev = dev_id;
1931 	struct nic *nic = netdev_priv(netdev);
1932 	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
1933 
1934 	DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1935 
1936 	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
1937 	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
1938 		return IRQ_NONE;
1939 
1940 	/* Ack interrupt(s) */
1941 	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
1942 
1943 	/* We hit Receive No Resource (RNR); restart RU after cleaning */
1944 	if (stat_ack & stat_ack_rnr)
1945 		nic->ru_running = RU_SUSPENDED;
1946 
1947 	if (likely(netif_rx_schedule_prep(&nic->napi))) {
1948 		e100_disable_irq(nic);
1949 		__netif_rx_schedule(&nic->napi);
1950 	}
1951 
1952 	return IRQ_HANDLED;
1953 }
1954 
e100_poll(struct napi_struct * napi,int budget)1955 static int e100_poll(struct napi_struct *napi, int budget)
1956 {
1957 	struct nic *nic = container_of(napi, struct nic, napi);
1958 	unsigned int work_done = 0;
1959 
1960 	e100_rx_clean(nic, &work_done, budget);
1961 	e100_tx_clean(nic);
1962 
1963 	/* If budget not fully consumed, exit the polling mode */
1964 	if (work_done < budget) {
1965 		netif_rx_complete(napi);
1966 		e100_enable_irq(nic);
1967 	}
1968 
1969 	return work_done;
1970 }
1971 
1972 #ifdef CONFIG_NET_POLL_CONTROLLER
e100_netpoll(struct net_device * netdev)1973 static void e100_netpoll(struct net_device *netdev)
1974 {
1975 	struct nic *nic = netdev_priv(netdev);
1976 
1977 	e100_disable_irq(nic);
1978 	e100_intr(nic->pdev->irq, netdev);
1979 	e100_tx_clean(nic);
1980 	e100_enable_irq(nic);
1981 }
1982 #endif
1983 
e100_set_mac_address(struct net_device * netdev,void * p)1984 static int e100_set_mac_address(struct net_device *netdev, void *p)
1985 {
1986 	struct nic *nic = netdev_priv(netdev);
1987 	struct sockaddr *addr = p;
1988 
1989 	if (!is_valid_ether_addr(addr->sa_data))
1990 		return -EADDRNOTAVAIL;
1991 
1992 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1993 	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
1994 
1995 	return 0;
1996 }
1997 
e100_change_mtu(struct net_device * netdev,int new_mtu)1998 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
1999 {
2000 	if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2001 		return -EINVAL;
2002 	netdev->mtu = new_mtu;
2003 	return 0;
2004 }
2005 
e100_asf(struct nic * nic)2006 static int e100_asf(struct nic *nic)
2007 {
2008 	/* ASF can be enabled from eeprom */
2009 	return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2010 	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2011 	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2012 	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2013 }
2014 
e100_up(struct nic * nic)2015 static int e100_up(struct nic *nic)
2016 {
2017 	int err;
2018 
2019 	if ((err = e100_rx_alloc_list(nic)))
2020 		return err;
2021 	if ((err = e100_alloc_cbs(nic)))
2022 		goto err_rx_clean_list;
2023 	if ((err = e100_hw_init(nic)))
2024 		goto err_clean_cbs;
2025 	e100_set_multicast_list(nic->netdev);
2026 	e100_start_receiver(nic, NULL);
2027 	mod_timer(&nic->watchdog, jiffies);
2028 	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2029 		nic->netdev->name, nic->netdev)))
2030 		goto err_no_irq;
2031 	netif_wake_queue(nic->netdev);
2032 	napi_enable(&nic->napi);
2033 	/* enable ints _after_ enabling poll, preventing a race between
2034 	 * disable ints+schedule */
2035 	e100_enable_irq(nic);
2036 	return 0;
2037 
2038 err_no_irq:
2039 	del_timer_sync(&nic->watchdog);
2040 err_clean_cbs:
2041 	e100_clean_cbs(nic);
2042 err_rx_clean_list:
2043 	e100_rx_clean_list(nic);
2044 	return err;
2045 }
2046 
e100_down(struct nic * nic)2047 static void e100_down(struct nic *nic)
2048 {
2049 	/* wait here for poll to complete */
2050 	napi_disable(&nic->napi);
2051 	netif_stop_queue(nic->netdev);
2052 	e100_hw_reset(nic);
2053 	free_irq(nic->pdev->irq, nic->netdev);
2054 	del_timer_sync(&nic->watchdog);
2055 	netif_carrier_off(nic->netdev);
2056 	e100_clean_cbs(nic);
2057 	e100_rx_clean_list(nic);
2058 }
2059 
e100_tx_timeout(struct net_device * netdev)2060 static void e100_tx_timeout(struct net_device *netdev)
2061 {
2062 	struct nic *nic = netdev_priv(netdev);
2063 
2064 	/* Reset outside of interrupt context, to avoid request_irq
2065 	 * in interrupt context */
2066 	schedule_work(&nic->tx_timeout_task);
2067 }
2068 
e100_tx_timeout_task(struct work_struct * work)2069 static void e100_tx_timeout_task(struct work_struct *work)
2070 {
2071 	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2072 	struct net_device *netdev = nic->netdev;
2073 
2074 	DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2075 		ioread8(&nic->csr->scb.status));
2076 	e100_down(netdev_priv(netdev));
2077 	e100_up(netdev_priv(netdev));
2078 }
2079 
e100_loopback_test(struct nic * nic,enum loopback loopback_mode)2080 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2081 {
2082 	int err;
2083 	struct sk_buff *skb;
2084 
2085 	/* Use driver resources to perform internal MAC or PHY
2086 	 * loopback test.  A single packet is prepared and transmitted
2087 	 * in loopback mode, and the test passes if the received
2088 	 * packet compares byte-for-byte to the transmitted packet. */
2089 
2090 	if ((err = e100_rx_alloc_list(nic)))
2091 		return err;
2092 	if ((err = e100_alloc_cbs(nic)))
2093 		goto err_clean_rx;
2094 
2095 	/* ICH PHY loopback is broken so do MAC loopback instead */
2096 	if (nic->flags & ich && loopback_mode == lb_phy)
2097 		loopback_mode = lb_mac;
2098 
2099 	nic->loopback = loopback_mode;
2100 	if ((err = e100_hw_init(nic)))
2101 		goto err_loopback_none;
2102 
2103 	if (loopback_mode == lb_phy)
2104 		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2105 			BMCR_LOOPBACK);
2106 
2107 	e100_start_receiver(nic, NULL);
2108 
2109 	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2110 		err = -ENOMEM;
2111 		goto err_loopback_none;
2112 	}
2113 	skb_put(skb, ETH_DATA_LEN);
2114 	memset(skb->data, 0xFF, ETH_DATA_LEN);
2115 	e100_xmit_frame(skb, nic->netdev);
2116 
2117 	msleep(10);
2118 
2119 	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2120 			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2121 
2122 	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2123 	   skb->data, ETH_DATA_LEN))
2124 		err = -EAGAIN;
2125 
2126 err_loopback_none:
2127 	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2128 	nic->loopback = lb_none;
2129 	e100_clean_cbs(nic);
2130 	e100_hw_reset(nic);
2131 err_clean_rx:
2132 	e100_rx_clean_list(nic);
2133 	return err;
2134 }
2135 
2136 #define MII_LED_CONTROL	0x1B
e100_blink_led(unsigned long data)2137 static void e100_blink_led(unsigned long data)
2138 {
2139 	struct nic *nic = (struct nic *)data;
2140 	enum led_state {
2141 		led_on     = 0x01,
2142 		led_off    = 0x04,
2143 		led_on_559 = 0x05,
2144 		led_on_557 = 0x07,
2145 	};
2146 
2147 	nic->leds = (nic->leds & led_on) ? led_off :
2148 		(nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2149 	mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2150 	mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2151 }
2152 
e100_get_settings(struct net_device * netdev,struct ethtool_cmd * cmd)2153 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2154 {
2155 	struct nic *nic = netdev_priv(netdev);
2156 	return mii_ethtool_gset(&nic->mii, cmd);
2157 }
2158 
e100_set_settings(struct net_device * netdev,struct ethtool_cmd * cmd)2159 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2160 {
2161 	struct nic *nic = netdev_priv(netdev);
2162 	int err;
2163 
2164 	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2165 	err = mii_ethtool_sset(&nic->mii, cmd);
2166 	e100_exec_cb(nic, NULL, e100_configure);
2167 
2168 	return err;
2169 }
2170 
e100_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * info)2171 static void e100_get_drvinfo(struct net_device *netdev,
2172 	struct ethtool_drvinfo *info)
2173 {
2174 	struct nic *nic = netdev_priv(netdev);
2175 	strcpy(info->driver, DRV_NAME);
2176 	strcpy(info->version, DRV_VERSION);
2177 	strcpy(info->fw_version, "N/A");
2178 	strcpy(info->bus_info, pci_name(nic->pdev));
2179 }
2180 
2181 #define E100_PHY_REGS 0x1C
e100_get_regs_len(struct net_device * netdev)2182 static int e100_get_regs_len(struct net_device *netdev)
2183 {
2184 	struct nic *nic = netdev_priv(netdev);
2185 	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2186 }
2187 
e100_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)2188 static void e100_get_regs(struct net_device *netdev,
2189 	struct ethtool_regs *regs, void *p)
2190 {
2191 	struct nic *nic = netdev_priv(netdev);
2192 	u32 *buff = p;
2193 	int i;
2194 
2195 	regs->version = (1 << 24) | nic->pdev->revision;
2196 	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2197 		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2198 		ioread16(&nic->csr->scb.status);
2199 	for (i = E100_PHY_REGS; i >= 0; i--)
2200 		buff[1 + E100_PHY_REGS - i] =
2201 			mdio_read(netdev, nic->mii.phy_id, i);
2202 	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2203 	e100_exec_cb(nic, NULL, e100_dump);
2204 	msleep(10);
2205 	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2206 		sizeof(nic->mem->dump_buf));
2207 }
2208 
e100_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2209 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2210 {
2211 	struct nic *nic = netdev_priv(netdev);
2212 	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2213 	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2214 }
2215 
e100_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2216 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2217 {
2218 	struct nic *nic = netdev_priv(netdev);
2219 
2220 	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2221 	    !device_can_wakeup(&nic->pdev->dev))
2222 		return -EOPNOTSUPP;
2223 
2224 	if (wol->wolopts)
2225 		nic->flags |= wol_magic;
2226 	else
2227 		nic->flags &= ~wol_magic;
2228 
2229 	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2230 
2231 	e100_exec_cb(nic, NULL, e100_configure);
2232 
2233 	return 0;
2234 }
2235 
e100_get_msglevel(struct net_device * netdev)2236 static u32 e100_get_msglevel(struct net_device *netdev)
2237 {
2238 	struct nic *nic = netdev_priv(netdev);
2239 	return nic->msg_enable;
2240 }
2241 
e100_set_msglevel(struct net_device * netdev,u32 value)2242 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2243 {
2244 	struct nic *nic = netdev_priv(netdev);
2245 	nic->msg_enable = value;
2246 }
2247 
e100_nway_reset(struct net_device * netdev)2248 static int e100_nway_reset(struct net_device *netdev)
2249 {
2250 	struct nic *nic = netdev_priv(netdev);
2251 	return mii_nway_restart(&nic->mii);
2252 }
2253 
e100_get_link(struct net_device * netdev)2254 static u32 e100_get_link(struct net_device *netdev)
2255 {
2256 	struct nic *nic = netdev_priv(netdev);
2257 	return mii_link_ok(&nic->mii);
2258 }
2259 
e100_get_eeprom_len(struct net_device * netdev)2260 static int e100_get_eeprom_len(struct net_device *netdev)
2261 {
2262 	struct nic *nic = netdev_priv(netdev);
2263 	return nic->eeprom_wc << 1;
2264 }
2265 
2266 #define E100_EEPROM_MAGIC	0x1234
e100_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)2267 static int e100_get_eeprom(struct net_device *netdev,
2268 	struct ethtool_eeprom *eeprom, u8 *bytes)
2269 {
2270 	struct nic *nic = netdev_priv(netdev);
2271 
2272 	eeprom->magic = E100_EEPROM_MAGIC;
2273 	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2274 
2275 	return 0;
2276 }
2277 
e100_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)2278 static int e100_set_eeprom(struct net_device *netdev,
2279 	struct ethtool_eeprom *eeprom, u8 *bytes)
2280 {
2281 	struct nic *nic = netdev_priv(netdev);
2282 
2283 	if (eeprom->magic != E100_EEPROM_MAGIC)
2284 		return -EINVAL;
2285 
2286 	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2287 
2288 	return e100_eeprom_save(nic, eeprom->offset >> 1,
2289 		(eeprom->len >> 1) + 1);
2290 }
2291 
e100_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)2292 static void e100_get_ringparam(struct net_device *netdev,
2293 	struct ethtool_ringparam *ring)
2294 {
2295 	struct nic *nic = netdev_priv(netdev);
2296 	struct param_range *rfds = &nic->params.rfds;
2297 	struct param_range *cbs = &nic->params.cbs;
2298 
2299 	ring->rx_max_pending = rfds->max;
2300 	ring->tx_max_pending = cbs->max;
2301 	ring->rx_mini_max_pending = 0;
2302 	ring->rx_jumbo_max_pending = 0;
2303 	ring->rx_pending = rfds->count;
2304 	ring->tx_pending = cbs->count;
2305 	ring->rx_mini_pending = 0;
2306 	ring->rx_jumbo_pending = 0;
2307 }
2308 
e100_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)2309 static int e100_set_ringparam(struct net_device *netdev,
2310 	struct ethtool_ringparam *ring)
2311 {
2312 	struct nic *nic = netdev_priv(netdev);
2313 	struct param_range *rfds = &nic->params.rfds;
2314 	struct param_range *cbs = &nic->params.cbs;
2315 
2316 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2317 		return -EINVAL;
2318 
2319 	if (netif_running(netdev))
2320 		e100_down(nic);
2321 	rfds->count = max(ring->rx_pending, rfds->min);
2322 	rfds->count = min(rfds->count, rfds->max);
2323 	cbs->count = max(ring->tx_pending, cbs->min);
2324 	cbs->count = min(cbs->count, cbs->max);
2325 	DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2326 	        rfds->count, cbs->count);
2327 	if (netif_running(netdev))
2328 		e100_up(nic);
2329 
2330 	return 0;
2331 }
2332 
2333 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2334 	"Link test     (on/offline)",
2335 	"Eeprom test   (on/offline)",
2336 	"Self test        (offline)",
2337 	"Mac loopback     (offline)",
2338 	"Phy loopback     (offline)",
2339 };
2340 #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2341 
e100_diag_test(struct net_device * netdev,struct ethtool_test * test,u64 * data)2342 static void e100_diag_test(struct net_device *netdev,
2343 	struct ethtool_test *test, u64 *data)
2344 {
2345 	struct ethtool_cmd cmd;
2346 	struct nic *nic = netdev_priv(netdev);
2347 	int i, err;
2348 
2349 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2350 	data[0] = !mii_link_ok(&nic->mii);
2351 	data[1] = e100_eeprom_load(nic);
2352 	if (test->flags & ETH_TEST_FL_OFFLINE) {
2353 
2354 		/* save speed, duplex & autoneg settings */
2355 		err = mii_ethtool_gset(&nic->mii, &cmd);
2356 
2357 		if (netif_running(netdev))
2358 			e100_down(nic);
2359 		data[2] = e100_self_test(nic);
2360 		data[3] = e100_loopback_test(nic, lb_mac);
2361 		data[4] = e100_loopback_test(nic, lb_phy);
2362 
2363 		/* restore speed, duplex & autoneg settings */
2364 		err = mii_ethtool_sset(&nic->mii, &cmd);
2365 
2366 		if (netif_running(netdev))
2367 			e100_up(nic);
2368 	}
2369 	for (i = 0; i < E100_TEST_LEN; i++)
2370 		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2371 
2372 	msleep_interruptible(4 * 1000);
2373 }
2374 
e100_phys_id(struct net_device * netdev,u32 data)2375 static int e100_phys_id(struct net_device *netdev, u32 data)
2376 {
2377 	struct nic *nic = netdev_priv(netdev);
2378 
2379 	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2380 		data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2381 	mod_timer(&nic->blink_timer, jiffies);
2382 	msleep_interruptible(data * 1000);
2383 	del_timer_sync(&nic->blink_timer);
2384 	mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2385 
2386 	return 0;
2387 }
2388 
2389 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2390 	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2391 	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2392 	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2393 	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2394 	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2395 	"tx_heartbeat_errors", "tx_window_errors",
2396 	/* device-specific stats */
2397 	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2398 	"tx_flow_control_pause", "rx_flow_control_pause",
2399 	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2400 };
2401 #define E100_NET_STATS_LEN	21
2402 #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2403 
e100_get_sset_count(struct net_device * netdev,int sset)2404 static int e100_get_sset_count(struct net_device *netdev, int sset)
2405 {
2406 	switch (sset) {
2407 	case ETH_SS_TEST:
2408 		return E100_TEST_LEN;
2409 	case ETH_SS_STATS:
2410 		return E100_STATS_LEN;
2411 	default:
2412 		return -EOPNOTSUPP;
2413 	}
2414 }
2415 
e100_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2416 static void e100_get_ethtool_stats(struct net_device *netdev,
2417 	struct ethtool_stats *stats, u64 *data)
2418 {
2419 	struct nic *nic = netdev_priv(netdev);
2420 	int i;
2421 
2422 	for (i = 0; i < E100_NET_STATS_LEN; i++)
2423 		data[i] = ((unsigned long *)&netdev->stats)[i];
2424 
2425 	data[i++] = nic->tx_deferred;
2426 	data[i++] = nic->tx_single_collisions;
2427 	data[i++] = nic->tx_multiple_collisions;
2428 	data[i++] = nic->tx_fc_pause;
2429 	data[i++] = nic->rx_fc_pause;
2430 	data[i++] = nic->rx_fc_unsupported;
2431 	data[i++] = nic->tx_tco_frames;
2432 	data[i++] = nic->rx_tco_frames;
2433 }
2434 
e100_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2435 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2436 {
2437 	switch (stringset) {
2438 	case ETH_SS_TEST:
2439 		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2440 		break;
2441 	case ETH_SS_STATS:
2442 		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2443 		break;
2444 	}
2445 }
2446 
2447 static const struct ethtool_ops e100_ethtool_ops = {
2448 	.get_settings		= e100_get_settings,
2449 	.set_settings		= e100_set_settings,
2450 	.get_drvinfo		= e100_get_drvinfo,
2451 	.get_regs_len		= e100_get_regs_len,
2452 	.get_regs		= e100_get_regs,
2453 	.get_wol		= e100_get_wol,
2454 	.set_wol		= e100_set_wol,
2455 	.get_msglevel		= e100_get_msglevel,
2456 	.set_msglevel		= e100_set_msglevel,
2457 	.nway_reset		= e100_nway_reset,
2458 	.get_link		= e100_get_link,
2459 	.get_eeprom_len		= e100_get_eeprom_len,
2460 	.get_eeprom		= e100_get_eeprom,
2461 	.set_eeprom		= e100_set_eeprom,
2462 	.get_ringparam		= e100_get_ringparam,
2463 	.set_ringparam		= e100_set_ringparam,
2464 	.self_test		= e100_diag_test,
2465 	.get_strings		= e100_get_strings,
2466 	.phys_id		= e100_phys_id,
2467 	.get_ethtool_stats	= e100_get_ethtool_stats,
2468 	.get_sset_count		= e100_get_sset_count,
2469 };
2470 
e100_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2471 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2472 {
2473 	struct nic *nic = netdev_priv(netdev);
2474 
2475 	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2476 }
2477 
e100_alloc(struct nic * nic)2478 static int e100_alloc(struct nic *nic)
2479 {
2480 	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2481 		&nic->dma_addr);
2482 	return nic->mem ? 0 : -ENOMEM;
2483 }
2484 
e100_free(struct nic * nic)2485 static void e100_free(struct nic *nic)
2486 {
2487 	if (nic->mem) {
2488 		pci_free_consistent(nic->pdev, sizeof(struct mem),
2489 			nic->mem, nic->dma_addr);
2490 		nic->mem = NULL;
2491 	}
2492 }
2493 
e100_open(struct net_device * netdev)2494 static int e100_open(struct net_device *netdev)
2495 {
2496 	struct nic *nic = netdev_priv(netdev);
2497 	int err = 0;
2498 
2499 	netif_carrier_off(netdev);
2500 	if ((err = e100_up(nic)))
2501 		DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2502 	return err;
2503 }
2504 
e100_close(struct net_device * netdev)2505 static int e100_close(struct net_device *netdev)
2506 {
2507 	e100_down(netdev_priv(netdev));
2508 	return 0;
2509 }
2510 
2511 static const struct net_device_ops e100_netdev_ops = {
2512 	.ndo_open		= e100_open,
2513 	.ndo_stop		= e100_close,
2514 	.ndo_start_xmit		= e100_xmit_frame,
2515 	.ndo_validate_addr	= eth_validate_addr,
2516 	.ndo_set_multicast_list	= e100_set_multicast_list,
2517 	.ndo_set_mac_address	= e100_set_mac_address,
2518 	.ndo_change_mtu		= e100_change_mtu,
2519 	.ndo_do_ioctl		= e100_do_ioctl,
2520 	.ndo_tx_timeout		= e100_tx_timeout,
2521 #ifdef CONFIG_NET_POLL_CONTROLLER
2522 	.ndo_poll_controller	= e100_netpoll,
2523 #endif
2524 };
2525 
e100_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2526 static int __devinit e100_probe(struct pci_dev *pdev,
2527 	const struct pci_device_id *ent)
2528 {
2529 	struct net_device *netdev;
2530 	struct nic *nic;
2531 	int err;
2532 
2533 	if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2534 		if (((1 << debug) - 1) & NETIF_MSG_PROBE)
2535 			printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2536 		return -ENOMEM;
2537 	}
2538 
2539 	netdev->netdev_ops = &e100_netdev_ops;
2540 	SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2541 	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2542 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2543 
2544 	nic = netdev_priv(netdev);
2545 	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2546 	nic->netdev = netdev;
2547 	nic->pdev = pdev;
2548 	nic->msg_enable = (1 << debug) - 1;
2549 	pci_set_drvdata(pdev, netdev);
2550 
2551 	if ((err = pci_enable_device(pdev))) {
2552 		DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2553 		goto err_out_free_dev;
2554 	}
2555 
2556 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2557 		DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2558 			"base address, aborting.\n");
2559 		err = -ENODEV;
2560 		goto err_out_disable_pdev;
2561 	}
2562 
2563 	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2564 		DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2565 		goto err_out_disable_pdev;
2566 	}
2567 
2568 	if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
2569 		DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2570 		goto err_out_free_res;
2571 	}
2572 
2573 	SET_NETDEV_DEV(netdev, &pdev->dev);
2574 
2575 	if (use_io)
2576 		DPRINTK(PROBE, INFO, "using i/o access mode\n");
2577 
2578 	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2579 	if (!nic->csr) {
2580 		DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2581 		err = -ENOMEM;
2582 		goto err_out_free_res;
2583 	}
2584 
2585 	if (ent->driver_data)
2586 		nic->flags |= ich;
2587 	else
2588 		nic->flags &= ~ich;
2589 
2590 	e100_get_defaults(nic);
2591 
2592 	/* locks must be initialized before calling hw_reset */
2593 	spin_lock_init(&nic->cb_lock);
2594 	spin_lock_init(&nic->cmd_lock);
2595 	spin_lock_init(&nic->mdio_lock);
2596 
2597 	/* Reset the device before pci_set_master() in case device is in some
2598 	 * funky state and has an interrupt pending - hint: we don't have the
2599 	 * interrupt handler registered yet. */
2600 	e100_hw_reset(nic);
2601 
2602 	pci_set_master(pdev);
2603 
2604 	init_timer(&nic->watchdog);
2605 	nic->watchdog.function = e100_watchdog;
2606 	nic->watchdog.data = (unsigned long)nic;
2607 	init_timer(&nic->blink_timer);
2608 	nic->blink_timer.function = e100_blink_led;
2609 	nic->blink_timer.data = (unsigned long)nic;
2610 
2611 	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2612 
2613 	if ((err = e100_alloc(nic))) {
2614 		DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2615 		goto err_out_iounmap;
2616 	}
2617 
2618 	if ((err = e100_eeprom_load(nic)))
2619 		goto err_out_free;
2620 
2621 	e100_phy_init(nic);
2622 
2623 	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2624 	memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2625 	if (!is_valid_ether_addr(netdev->perm_addr)) {
2626 		if (!eeprom_bad_csum_allow) {
2627 			DPRINTK(PROBE, ERR, "Invalid MAC address from "
2628 			        "EEPROM, aborting.\n");
2629 			err = -EAGAIN;
2630 			goto err_out_free;
2631 		} else {
2632 			DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2633 			        "you MUST configure one.\n");
2634 		}
2635 	}
2636 
2637 	/* Wol magic packet can be enabled from eeprom */
2638 	if ((nic->mac >= mac_82558_D101_A4) &&
2639 	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2640 		nic->flags |= wol_magic;
2641 		device_set_wakeup_enable(&pdev->dev, true);
2642 	}
2643 
2644 	/* ack any pending wake events, disable PME */
2645 	pci_pme_active(pdev, false);
2646 
2647 	strcpy(netdev->name, "eth%d");
2648 	if ((err = register_netdev(netdev))) {
2649 		DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2650 		goto err_out_free;
2651 	}
2652 
2653 	DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n",
2654 		(unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2655 		pdev->irq, netdev->dev_addr);
2656 
2657 	return 0;
2658 
2659 err_out_free:
2660 	e100_free(nic);
2661 err_out_iounmap:
2662 	pci_iounmap(pdev, nic->csr);
2663 err_out_free_res:
2664 	pci_release_regions(pdev);
2665 err_out_disable_pdev:
2666 	pci_disable_device(pdev);
2667 err_out_free_dev:
2668 	pci_set_drvdata(pdev, NULL);
2669 	free_netdev(netdev);
2670 	return err;
2671 }
2672 
e100_remove(struct pci_dev * pdev)2673 static void __devexit e100_remove(struct pci_dev *pdev)
2674 {
2675 	struct net_device *netdev = pci_get_drvdata(pdev);
2676 
2677 	if (netdev) {
2678 		struct nic *nic = netdev_priv(netdev);
2679 		unregister_netdev(netdev);
2680 		e100_free(nic);
2681 		pci_iounmap(pdev, nic->csr);
2682 		free_netdev(netdev);
2683 		pci_release_regions(pdev);
2684 		pci_disable_device(pdev);
2685 		pci_set_drvdata(pdev, NULL);
2686 	}
2687 }
2688 
e100_suspend(struct pci_dev * pdev,pm_message_t state)2689 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2690 {
2691 	struct net_device *netdev = pci_get_drvdata(pdev);
2692 	struct nic *nic = netdev_priv(netdev);
2693 
2694 	if (netif_running(netdev))
2695 		e100_down(nic);
2696 	netif_device_detach(netdev);
2697 
2698 	pci_save_state(pdev);
2699 
2700 	if ((nic->flags & wol_magic) | e100_asf(nic)) {
2701 		if (pci_enable_wake(pdev, PCI_D3cold, true))
2702 			pci_enable_wake(pdev, PCI_D3hot, true);
2703 	} else {
2704 		pci_enable_wake(pdev, PCI_D3hot, false);
2705 	}
2706 
2707 	pci_disable_device(pdev);
2708 	pci_set_power_state(pdev, PCI_D3hot);
2709 
2710 	return 0;
2711 }
2712 
2713 #ifdef CONFIG_PM
e100_resume(struct pci_dev * pdev)2714 static int e100_resume(struct pci_dev *pdev)
2715 {
2716 	struct net_device *netdev = pci_get_drvdata(pdev);
2717 	struct nic *nic = netdev_priv(netdev);
2718 
2719 	pci_set_power_state(pdev, PCI_D0);
2720 	pci_restore_state(pdev);
2721 	/* ack any pending wake events, disable PME */
2722 	pci_enable_wake(pdev, 0, 0);
2723 
2724 	netif_device_attach(netdev);
2725 	if (netif_running(netdev))
2726 		e100_up(nic);
2727 
2728 	return 0;
2729 }
2730 #endif /* CONFIG_PM */
2731 
e100_shutdown(struct pci_dev * pdev)2732 static void e100_shutdown(struct pci_dev *pdev)
2733 {
2734 	e100_suspend(pdev, PMSG_SUSPEND);
2735 }
2736 
2737 /* ------------------ PCI Error Recovery infrastructure  -------------- */
2738 /**
2739  * e100_io_error_detected - called when PCI error is detected.
2740  * @pdev: Pointer to PCI device
2741  * @state: The current pci connection state
2742  */
e100_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2743 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2744 {
2745 	struct net_device *netdev = pci_get_drvdata(pdev);
2746 	struct nic *nic = netdev_priv(netdev);
2747 
2748 	/* Similar to calling e100_down(), but avoids adapter I/O. */
2749 	e100_close(netdev);
2750 
2751 	/* Detach; put netif into a state similar to hotplug unplug. */
2752 	napi_enable(&nic->napi);
2753 	netif_device_detach(netdev);
2754 	pci_disable_device(pdev);
2755 
2756 	/* Request a slot reset. */
2757 	return PCI_ERS_RESULT_NEED_RESET;
2758 }
2759 
2760 /**
2761  * e100_io_slot_reset - called after the pci bus has been reset.
2762  * @pdev: Pointer to PCI device
2763  *
2764  * Restart the card from scratch.
2765  */
e100_io_slot_reset(struct pci_dev * pdev)2766 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2767 {
2768 	struct net_device *netdev = pci_get_drvdata(pdev);
2769 	struct nic *nic = netdev_priv(netdev);
2770 
2771 	if (pci_enable_device(pdev)) {
2772 		printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2773 		return PCI_ERS_RESULT_DISCONNECT;
2774 	}
2775 	pci_set_master(pdev);
2776 
2777 	/* Only one device per card can do a reset */
2778 	if (0 != PCI_FUNC(pdev->devfn))
2779 		return PCI_ERS_RESULT_RECOVERED;
2780 	e100_hw_reset(nic);
2781 	e100_phy_init(nic);
2782 
2783 	return PCI_ERS_RESULT_RECOVERED;
2784 }
2785 
2786 /**
2787  * e100_io_resume - resume normal operations
2788  * @pdev: Pointer to PCI device
2789  *
2790  * Resume normal operations after an error recovery
2791  * sequence has been completed.
2792  */
e100_io_resume(struct pci_dev * pdev)2793 static void e100_io_resume(struct pci_dev *pdev)
2794 {
2795 	struct net_device *netdev = pci_get_drvdata(pdev);
2796 	struct nic *nic = netdev_priv(netdev);
2797 
2798 	/* ack any pending wake events, disable PME */
2799 	pci_enable_wake(pdev, 0, 0);
2800 
2801 	netif_device_attach(netdev);
2802 	if (netif_running(netdev)) {
2803 		e100_open(netdev);
2804 		mod_timer(&nic->watchdog, jiffies);
2805 	}
2806 }
2807 
2808 static struct pci_error_handlers e100_err_handler = {
2809 	.error_detected = e100_io_error_detected,
2810 	.slot_reset = e100_io_slot_reset,
2811 	.resume = e100_io_resume,
2812 };
2813 
2814 static struct pci_driver e100_driver = {
2815 	.name =         DRV_NAME,
2816 	.id_table =     e100_id_table,
2817 	.probe =        e100_probe,
2818 	.remove =       __devexit_p(e100_remove),
2819 #ifdef CONFIG_PM
2820 	/* Power Management hooks */
2821 	.suspend =      e100_suspend,
2822 	.resume =       e100_resume,
2823 #endif
2824 	.shutdown =     e100_shutdown,
2825 	.err_handler = &e100_err_handler,
2826 };
2827 
e100_init_module(void)2828 static int __init e100_init_module(void)
2829 {
2830 	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
2831 		printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2832 		printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2833 	}
2834 	return pci_register_driver(&e100_driver);
2835 }
2836 
e100_cleanup_module(void)2837 static void __exit e100_cleanup_module(void)
2838 {
2839 	pci_unregister_driver(&e100_driver);
2840 }
2841 
2842 module_init(e100_init_module);
2843 module_exit(e100_cleanup_module);
2844