• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  fs/eventpoll.c (Efficent event polling implementation)
3  *  Copyright (C) 2001,...,2007	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66  * It is possible to drop the "ep->mtx" and to use the global
67  * mutex "epmutex" (together with "ep->lock") to have it working,
68  * but having "ep->mtx" will make the interface more scalable.
69  * Events that require holding "epmutex" are very rare, while for
70  * normal operations the epoll private "ep->mtx" will guarantee
71  * a better scalability.
72  */
73 
74 #define DEBUG_EPOLL 0
75 
76 #if DEBUG_EPOLL > 0
77 #define DPRINTK(x) printk x
78 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0)
79 #else /* #if DEBUG_EPOLL > 0 */
80 #define DPRINTK(x) (void) 0
81 #define DNPRINTK(n, x) (void) 0
82 #endif /* #if DEBUG_EPOLL > 0 */
83 
84 #define DEBUG_EPI 0
85 
86 #if DEBUG_EPI != 0
87 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */)
88 #else /* #if DEBUG_EPI != 0 */
89 #define EPI_SLAB_DEBUG 0
90 #endif /* #if DEBUG_EPI != 0 */
91 
92 /* Epoll private bits inside the event mask */
93 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
94 
95 /* Maximum number of poll wake up nests we are allowing */
96 #define EP_MAX_POLLWAKE_NESTS 4
97 
98 /* Maximum msec timeout value storeable in a long int */
99 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 };
111 
112 /*
113  * Node that is linked into the "wake_task_list" member of the "struct poll_safewake".
114  * It is used to keep track on all tasks that are currently inside the wake_up() code
115  * to 1) short-circuit the one coming from the same task and same wait queue head
116  * (loop) 2) allow a maximum number of epoll descriptors inclusion nesting
117  * 3) let go the ones coming from other tasks.
118  */
119 struct wake_task_node {
120 	struct list_head llink;
121 	struct task_struct *task;
122 	wait_queue_head_t *wq;
123 };
124 
125 /*
126  * This is used to implement the safe poll wake up avoiding to reenter
127  * the poll callback from inside wake_up().
128  */
129 struct poll_safewake {
130 	struct list_head wake_task_list;
131 	spinlock_t lock;
132 };
133 
134 /*
135  * Each file descriptor added to the eventpoll interface will
136  * have an entry of this type linked to the "rbr" RB tree.
137  */
138 struct epitem {
139 	/* RB tree node used to link this structure to the eventpoll RB tree */
140 	struct rb_node rbn;
141 
142 	/* List header used to link this structure to the eventpoll ready list */
143 	struct list_head rdllink;
144 
145 	/*
146 	 * Works together "struct eventpoll"->ovflist in keeping the
147 	 * single linked chain of items.
148 	 */
149 	struct epitem *next;
150 
151 	/* The file descriptor information this item refers to */
152 	struct epoll_filefd ffd;
153 
154 	/* Number of active wait queue attached to poll operations */
155 	int nwait;
156 
157 	/* List containing poll wait queues */
158 	struct list_head pwqlist;
159 
160 	/* The "container" of this item */
161 	struct eventpoll *ep;
162 
163 	/* List header used to link this item to the "struct file" items list */
164 	struct list_head fllink;
165 
166 	/* The structure that describe the interested events and the source fd */
167 	struct epoll_event event;
168 };
169 
170 /*
171  * This structure is stored inside the "private_data" member of the file
172  * structure and rapresent the main data sructure for the eventpoll
173  * interface.
174  */
175 struct eventpoll {
176 	/* Protect the this structure access */
177 	spinlock_t lock;
178 
179 	/*
180 	 * This mutex is used to ensure that files are not removed
181 	 * while epoll is using them. This is held during the event
182 	 * collection loop, the file cleanup path, the epoll file exit
183 	 * code and the ctl operations.
184 	 */
185 	struct mutex mtx;
186 
187 	/* Wait queue used by sys_epoll_wait() */
188 	wait_queue_head_t wq;
189 
190 	/* Wait queue used by file->poll() */
191 	wait_queue_head_t poll_wait;
192 
193 	/* List of ready file descriptors */
194 	struct list_head rdllist;
195 
196 	/* RB tree root used to store monitored fd structs */
197 	struct rb_root rbr;
198 
199 	/*
200 	 * This is a single linked list that chains all the "struct epitem" that
201 	 * happened while transfering ready events to userspace w/out
202 	 * holding ->lock.
203 	 */
204 	struct epitem *ovflist;
205 
206 	/* The user that created the eventpoll descriptor */
207 	struct user_struct *user;
208 };
209 
210 /* Wait structure used by the poll hooks */
211 struct eppoll_entry {
212 	/* List header used to link this structure to the "struct epitem" */
213 	struct list_head llink;
214 
215 	/* The "base" pointer is set to the container "struct epitem" */
216 	void *base;
217 
218 	/*
219 	 * Wait queue item that will be linked to the target file wait
220 	 * queue head.
221 	 */
222 	wait_queue_t wait;
223 
224 	/* The wait queue head that linked the "wait" wait queue item */
225 	wait_queue_head_t *whead;
226 };
227 
228 /* Wrapper struct used by poll queueing */
229 struct ep_pqueue {
230 	poll_table pt;
231 	struct epitem *epi;
232 };
233 
234 /*
235  * Configuration options available inside /proc/sys/fs/epoll/
236  */
237 /* Maximum number of epoll watched descriptors, per user */
238 static int max_user_watches __read_mostly;
239 
240 /*
241  * This mutex is used to serialize ep_free() and eventpoll_release_file().
242  */
243 static DEFINE_MUTEX(epmutex);
244 
245 /* Safe wake up implementation */
246 static struct poll_safewake psw;
247 
248 /* Slab cache used to allocate "struct epitem" */
249 static struct kmem_cache *epi_cache __read_mostly;
250 
251 /* Slab cache used to allocate "struct eppoll_entry" */
252 static struct kmem_cache *pwq_cache __read_mostly;
253 
254 #ifdef CONFIG_SYSCTL
255 
256 #include <linux/sysctl.h>
257 
258 static int zero;
259 
260 ctl_table epoll_table[] = {
261 	{
262 		.procname	= "max_user_watches",
263 		.data		= &max_user_watches,
264 		.maxlen		= sizeof(int),
265 		.mode		= 0644,
266 		.proc_handler	= &proc_dointvec_minmax,
267 		.extra1		= &zero,
268 	},
269 	{ .ctl_name = 0 }
270 };
271 #endif /* CONFIG_SYSCTL */
272 
273 
274 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)275 static inline void ep_set_ffd(struct epoll_filefd *ffd,
276 			      struct file *file, int fd)
277 {
278 	ffd->file = file;
279 	ffd->fd = fd;
280 }
281 
282 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)283 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
284 			     struct epoll_filefd *p2)
285 {
286 	return (p1->file > p2->file ? +1:
287 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
288 }
289 
290 /* Tells us if the item is currently linked */
ep_is_linked(struct list_head * p)291 static inline int ep_is_linked(struct list_head *p)
292 {
293 	return !list_empty(p);
294 }
295 
296 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_t * p)297 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
298 {
299 	return container_of(p, struct eppoll_entry, wait)->base;
300 }
301 
302 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)303 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
304 {
305 	return container_of(p, struct ep_pqueue, pt)->epi;
306 }
307 
308 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
ep_op_has_event(int op)309 static inline int ep_op_has_event(int op)
310 {
311 	return op != EPOLL_CTL_DEL;
312 }
313 
314 /* Initialize the poll safe wake up structure */
ep_poll_safewake_init(struct poll_safewake * psw)315 static void ep_poll_safewake_init(struct poll_safewake *psw)
316 {
317 
318 	INIT_LIST_HEAD(&psw->wake_task_list);
319 	spin_lock_init(&psw->lock);
320 }
321 
322 /*
323  * Perform a safe wake up of the poll wait list. The problem is that
324  * with the new callback'd wake up system, it is possible that the
325  * poll callback is reentered from inside the call to wake_up() done
326  * on the poll wait queue head. The rule is that we cannot reenter the
327  * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times,
328  * and we cannot reenter the same wait queue head at all. This will
329  * enable to have a hierarchy of epoll file descriptor of no more than
330  * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock
331  * because this one gets called by the poll callback, that in turn is called
332  * from inside a wake_up(), that might be called from irq context.
333  */
ep_poll_safewake(struct poll_safewake * psw,wait_queue_head_t * wq)334 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq)
335 {
336 	int wake_nests = 0;
337 	unsigned long flags;
338 	struct task_struct *this_task = current;
339 	struct list_head *lsthead = &psw->wake_task_list;
340 	struct wake_task_node *tncur;
341 	struct wake_task_node tnode;
342 
343 	spin_lock_irqsave(&psw->lock, flags);
344 
345 	/* Try to see if the current task is already inside this wakeup call */
346 	list_for_each_entry(tncur, lsthead, llink) {
347 
348 		if (tncur->wq == wq ||
349 		    (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) {
350 			/*
351 			 * Ops ... loop detected or maximum nest level reached.
352 			 * We abort this wake by breaking the cycle itself.
353 			 */
354 			spin_unlock_irqrestore(&psw->lock, flags);
355 			return;
356 		}
357 	}
358 
359 	/* Add the current task to the list */
360 	tnode.task = this_task;
361 	tnode.wq = wq;
362 	list_add(&tnode.llink, lsthead);
363 
364 	spin_unlock_irqrestore(&psw->lock, flags);
365 
366 	/* Do really wake up now */
367 	wake_up_nested(wq, 1 + wake_nests);
368 
369 	/* Remove the current task from the list */
370 	spin_lock_irqsave(&psw->lock, flags);
371 	list_del(&tnode.llink);
372 	spin_unlock_irqrestore(&psw->lock, flags);
373 }
374 
375 /*
376  * This function unregister poll callbacks from the associated file descriptor.
377  * Since this must be called without holding "ep->lock" the atomic exchange trick
378  * will protect us from multiple unregister.
379  */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)380 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
381 {
382 	int nwait;
383 	struct list_head *lsthead = &epi->pwqlist;
384 	struct eppoll_entry *pwq;
385 
386 	/* This is called without locks, so we need the atomic exchange */
387 	nwait = xchg(&epi->nwait, 0);
388 
389 	if (nwait) {
390 		while (!list_empty(lsthead)) {
391 			pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
392 
393 			list_del_init(&pwq->llink);
394 			remove_wait_queue(pwq->whead, &pwq->wait);
395 			kmem_cache_free(pwq_cache, pwq);
396 		}
397 	}
398 }
399 
400 /*
401  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
402  * all the associated resources. Must be called with "mtx" held.
403  */
ep_remove(struct eventpoll * ep,struct epitem * epi)404 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
405 {
406 	unsigned long flags;
407 	struct file *file = epi->ffd.file;
408 
409 	/*
410 	 * Removes poll wait queue hooks. We _have_ to do this without holding
411 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
412 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
413 	 * queue head lock when unregistering the wait queue. The wakeup callback
414 	 * will run by holding the wait queue head lock and will call our callback
415 	 * that will try to get "ep->lock".
416 	 */
417 	ep_unregister_pollwait(ep, epi);
418 
419 	/* Remove the current item from the list of epoll hooks */
420 	spin_lock(&file->f_ep_lock);
421 	if (ep_is_linked(&epi->fllink))
422 		list_del_init(&epi->fllink);
423 	spin_unlock(&file->f_ep_lock);
424 
425 	rb_erase(&epi->rbn, &ep->rbr);
426 
427 	spin_lock_irqsave(&ep->lock, flags);
428 	if (ep_is_linked(&epi->rdllink))
429 		list_del_init(&epi->rdllink);
430 	spin_unlock_irqrestore(&ep->lock, flags);
431 
432 	/* At this point it is safe to free the eventpoll item */
433 	kmem_cache_free(epi_cache, epi);
434 
435 	atomic_dec(&ep->user->epoll_watches);
436 
437 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p)\n",
438 		     current, ep, file));
439 
440 	return 0;
441 }
442 
ep_free(struct eventpoll * ep)443 static void ep_free(struct eventpoll *ep)
444 {
445 	struct rb_node *rbp;
446 	struct epitem *epi;
447 
448 	/* We need to release all tasks waiting for these file */
449 	if (waitqueue_active(&ep->poll_wait))
450 		ep_poll_safewake(&psw, &ep->poll_wait);
451 
452 	/*
453 	 * We need to lock this because we could be hit by
454 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
455 	 * We do not need to hold "ep->mtx" here because the epoll file
456 	 * is on the way to be removed and no one has references to it
457 	 * anymore. The only hit might come from eventpoll_release_file() but
458 	 * holding "epmutex" is sufficent here.
459 	 */
460 	mutex_lock(&epmutex);
461 
462 	/*
463 	 * Walks through the whole tree by unregistering poll callbacks.
464 	 */
465 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
466 		epi = rb_entry(rbp, struct epitem, rbn);
467 
468 		ep_unregister_pollwait(ep, epi);
469 	}
470 
471 	/*
472 	 * Walks through the whole tree by freeing each "struct epitem". At this
473 	 * point we are sure no poll callbacks will be lingering around, and also by
474 	 * holding "epmutex" we can be sure that no file cleanup code will hit
475 	 * us during this operation. So we can avoid the lock on "ep->lock".
476 	 */
477 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
478 		epi = rb_entry(rbp, struct epitem, rbn);
479 		ep_remove(ep, epi);
480 	}
481 
482 	mutex_unlock(&epmutex);
483 	mutex_destroy(&ep->mtx);
484 	free_uid(ep->user);
485 	kfree(ep);
486 }
487 
ep_eventpoll_release(struct inode * inode,struct file * file)488 static int ep_eventpoll_release(struct inode *inode, struct file *file)
489 {
490 	struct eventpoll *ep = file->private_data;
491 
492 	if (ep)
493 		ep_free(ep);
494 
495 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep));
496 	return 0;
497 }
498 
ep_eventpoll_poll(struct file * file,poll_table * wait)499 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
500 {
501 	unsigned int pollflags = 0;
502 	unsigned long flags;
503 	struct eventpoll *ep = file->private_data;
504 
505 	/* Insert inside our poll wait queue */
506 	poll_wait(file, &ep->poll_wait, wait);
507 
508 	/* Check our condition */
509 	spin_lock_irqsave(&ep->lock, flags);
510 	if (!list_empty(&ep->rdllist))
511 		pollflags = POLLIN | POLLRDNORM;
512 	spin_unlock_irqrestore(&ep->lock, flags);
513 
514 	return pollflags;
515 }
516 
517 /* File callbacks that implement the eventpoll file behaviour */
518 static const struct file_operations eventpoll_fops = {
519 	.release	= ep_eventpoll_release,
520 	.poll		= ep_eventpoll_poll
521 };
522 
523 /* Fast test to see if the file is an evenpoll file */
is_file_epoll(struct file * f)524 static inline int is_file_epoll(struct file *f)
525 {
526 	return f->f_op == &eventpoll_fops;
527 }
528 
529 /*
530  * This is called from eventpoll_release() to unlink files from the eventpoll
531  * interface. We need to have this facility to cleanup correctly files that are
532  * closed without being removed from the eventpoll interface.
533  */
eventpoll_release_file(struct file * file)534 void eventpoll_release_file(struct file *file)
535 {
536 	struct list_head *lsthead = &file->f_ep_links;
537 	struct eventpoll *ep;
538 	struct epitem *epi;
539 
540 	/*
541 	 * We don't want to get "file->f_ep_lock" because it is not
542 	 * necessary. It is not necessary because we're in the "struct file"
543 	 * cleanup path, and this means that noone is using this file anymore.
544 	 * So, for example, epoll_ctl() cannot hit here sicne if we reach this
545 	 * point, the file counter already went to zero and fget() would fail.
546 	 * The only hit might come from ep_free() but by holding the mutex
547 	 * will correctly serialize the operation. We do need to acquire
548 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
549 	 * from anywhere but ep_free().
550 	 */
551 	mutex_lock(&epmutex);
552 
553 	while (!list_empty(lsthead)) {
554 		epi = list_first_entry(lsthead, struct epitem, fllink);
555 
556 		ep = epi->ep;
557 		list_del_init(&epi->fllink);
558 		mutex_lock(&ep->mtx);
559 		ep_remove(ep, epi);
560 		mutex_unlock(&ep->mtx);
561 	}
562 
563 	mutex_unlock(&epmutex);
564 }
565 
ep_alloc(struct eventpoll ** pep)566 static int ep_alloc(struct eventpoll **pep)
567 {
568 	int error;
569 	struct user_struct *user;
570 	struct eventpoll *ep;
571 
572 	user = get_current_user();
573 	error = -ENOMEM;
574 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
575 	if (unlikely(!ep))
576 		goto free_uid;
577 
578 	spin_lock_init(&ep->lock);
579 	mutex_init(&ep->mtx);
580 	init_waitqueue_head(&ep->wq);
581 	init_waitqueue_head(&ep->poll_wait);
582 	INIT_LIST_HEAD(&ep->rdllist);
583 	ep->rbr = RB_ROOT;
584 	ep->ovflist = EP_UNACTIVE_PTR;
585 	ep->user = user;
586 
587 	*pep = ep;
588 
589 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n",
590 		     current, ep));
591 	return 0;
592 
593 free_uid:
594 	free_uid(user);
595 	return error;
596 }
597 
598 /*
599  * Search the file inside the eventpoll tree. The RB tree operations
600  * are protected by the "mtx" mutex, and ep_find() must be called with
601  * "mtx" held.
602  */
ep_find(struct eventpoll * ep,struct file * file,int fd)603 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
604 {
605 	int kcmp;
606 	struct rb_node *rbp;
607 	struct epitem *epi, *epir = NULL;
608 	struct epoll_filefd ffd;
609 
610 	ep_set_ffd(&ffd, file, fd);
611 	for (rbp = ep->rbr.rb_node; rbp; ) {
612 		epi = rb_entry(rbp, struct epitem, rbn);
613 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
614 		if (kcmp > 0)
615 			rbp = rbp->rb_right;
616 		else if (kcmp < 0)
617 			rbp = rbp->rb_left;
618 		else {
619 			epir = epi;
620 			break;
621 		}
622 	}
623 
624 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n",
625 		     current, file, epir));
626 
627 	return epir;
628 }
629 
630 /*
631  * This is the callback that is passed to the wait queue wakeup
632  * machanism. It is called by the stored file descriptors when they
633  * have events to report.
634  */
ep_poll_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)635 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
636 {
637 	int pwake = 0;
638 	unsigned long flags;
639 	struct epitem *epi = ep_item_from_wait(wait);
640 	struct eventpoll *ep = epi->ep;
641 
642 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n",
643 		     current, epi->ffd.file, epi, ep));
644 
645 	spin_lock_irqsave(&ep->lock, flags);
646 
647 	/*
648 	 * If the event mask does not contain any poll(2) event, we consider the
649 	 * descriptor to be disabled. This condition is likely the effect of the
650 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
651 	 * until the next EPOLL_CTL_MOD will be issued.
652 	 */
653 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
654 		goto out_unlock;
655 
656 	/*
657 	 * If we are trasfering events to userspace, we can hold no locks
658 	 * (because we're accessing user memory, and because of linux f_op->poll()
659 	 * semantics). All the events that happens during that period of time are
660 	 * chained in ep->ovflist and requeued later on.
661 	 */
662 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
663 		if (epi->next == EP_UNACTIVE_PTR) {
664 			epi->next = ep->ovflist;
665 			ep->ovflist = epi;
666 		}
667 		goto out_unlock;
668 	}
669 
670 	/* If this file is already in the ready list we exit soon */
671 	if (ep_is_linked(&epi->rdllink))
672 		goto is_linked;
673 
674 	list_add_tail(&epi->rdllink, &ep->rdllist);
675 
676 is_linked:
677 	/*
678 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
679 	 * wait list.
680 	 */
681 	if (waitqueue_active(&ep->wq))
682 		wake_up_locked(&ep->wq);
683 	if (waitqueue_active(&ep->poll_wait))
684 		pwake++;
685 
686 out_unlock:
687 	spin_unlock_irqrestore(&ep->lock, flags);
688 
689 	/* We have to call this outside the lock */
690 	if (pwake)
691 		ep_poll_safewake(&psw, &ep->poll_wait);
692 
693 	return 1;
694 }
695 
696 /*
697  * This is the callback that is used to add our wait queue to the
698  * target file wakeup lists.
699  */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)700 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
701 				 poll_table *pt)
702 {
703 	struct epitem *epi = ep_item_from_epqueue(pt);
704 	struct eppoll_entry *pwq;
705 
706 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
707 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
708 		pwq->whead = whead;
709 		pwq->base = epi;
710 		add_wait_queue(whead, &pwq->wait);
711 		list_add_tail(&pwq->llink, &epi->pwqlist);
712 		epi->nwait++;
713 	} else {
714 		/* We have to signal that an error occurred */
715 		epi->nwait = -1;
716 	}
717 }
718 
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)719 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
720 {
721 	int kcmp;
722 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
723 	struct epitem *epic;
724 
725 	while (*p) {
726 		parent = *p;
727 		epic = rb_entry(parent, struct epitem, rbn);
728 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
729 		if (kcmp > 0)
730 			p = &parent->rb_right;
731 		else
732 			p = &parent->rb_left;
733 	}
734 	rb_link_node(&epi->rbn, parent, p);
735 	rb_insert_color(&epi->rbn, &ep->rbr);
736 }
737 
738 /*
739  * Must be called with "mtx" held.
740  */
ep_insert(struct eventpoll * ep,struct epoll_event * event,struct file * tfile,int fd)741 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
742 		     struct file *tfile, int fd)
743 {
744 	int error, revents, pwake = 0;
745 	unsigned long flags;
746 	struct epitem *epi;
747 	struct ep_pqueue epq;
748 
749 	if (unlikely(atomic_read(&ep->user->epoll_watches) >=
750 		     max_user_watches))
751 		return -ENOSPC;
752 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
753 		return -ENOMEM;
754 
755 	/* Item initialization follow here ... */
756 	INIT_LIST_HEAD(&epi->rdllink);
757 	INIT_LIST_HEAD(&epi->fllink);
758 	INIT_LIST_HEAD(&epi->pwqlist);
759 	epi->ep = ep;
760 	ep_set_ffd(&epi->ffd, tfile, fd);
761 	epi->event = *event;
762 	epi->nwait = 0;
763 	epi->next = EP_UNACTIVE_PTR;
764 
765 	/* Initialize the poll table using the queue callback */
766 	epq.epi = epi;
767 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
768 
769 	/*
770 	 * Attach the item to the poll hooks and get current event bits.
771 	 * We can safely use the file* here because its usage count has
772 	 * been increased by the caller of this function. Note that after
773 	 * this operation completes, the poll callback can start hitting
774 	 * the new item.
775 	 */
776 	revents = tfile->f_op->poll(tfile, &epq.pt);
777 
778 	/*
779 	 * We have to check if something went wrong during the poll wait queue
780 	 * install process. Namely an allocation for a wait queue failed due
781 	 * high memory pressure.
782 	 */
783 	error = -ENOMEM;
784 	if (epi->nwait < 0)
785 		goto error_unregister;
786 
787 	/* Add the current item to the list of active epoll hook for this file */
788 	spin_lock(&tfile->f_ep_lock);
789 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
790 	spin_unlock(&tfile->f_ep_lock);
791 
792 	/*
793 	 * Add the current item to the RB tree. All RB tree operations are
794 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
795 	 */
796 	ep_rbtree_insert(ep, epi);
797 
798 	/* We have to drop the new item inside our item list to keep track of it */
799 	spin_lock_irqsave(&ep->lock, flags);
800 
801 	/* If the file is already "ready" we drop it inside the ready list */
802 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
803 		list_add_tail(&epi->rdllink, &ep->rdllist);
804 
805 		/* Notify waiting tasks that events are available */
806 		if (waitqueue_active(&ep->wq))
807 			wake_up_locked(&ep->wq);
808 		if (waitqueue_active(&ep->poll_wait))
809 			pwake++;
810 	}
811 
812 	spin_unlock_irqrestore(&ep->lock, flags);
813 
814 	atomic_inc(&ep->user->epoll_watches);
815 
816 	/* We have to call this outside the lock */
817 	if (pwake)
818 		ep_poll_safewake(&psw, &ep->poll_wait);
819 
820 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n",
821 		     current, ep, tfile, fd));
822 
823 	return 0;
824 
825 error_unregister:
826 	ep_unregister_pollwait(ep, epi);
827 
828 	/*
829 	 * We need to do this because an event could have been arrived on some
830 	 * allocated wait queue. Note that we don't care about the ep->ovflist
831 	 * list, since that is used/cleaned only inside a section bound by "mtx".
832 	 * And ep_insert() is called with "mtx" held.
833 	 */
834 	spin_lock_irqsave(&ep->lock, flags);
835 	if (ep_is_linked(&epi->rdllink))
836 		list_del_init(&epi->rdllink);
837 	spin_unlock_irqrestore(&ep->lock, flags);
838 
839 	kmem_cache_free(epi_cache, epi);
840 
841 	return error;
842 }
843 
844 /*
845  * Modify the interest event mask by dropping an event if the new mask
846  * has a match in the current file status. Must be called with "mtx" held.
847  */
ep_modify(struct eventpoll * ep,struct epitem * epi,struct epoll_event * event)848 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
849 {
850 	int pwake = 0;
851 	unsigned int revents;
852 	unsigned long flags;
853 
854 	/*
855 	 * Set the new event interest mask before calling f_op->poll(), otherwise
856 	 * a potential race might occur. In fact if we do this operation inside
857 	 * the lock, an event might happen between the f_op->poll() call and the
858 	 * new event set registering.
859 	 */
860 	epi->event.events = event->events;
861 
862 	/*
863 	 * Get current event bits. We can safely use the file* here because
864 	 * its usage count has been increased by the caller of this function.
865 	 */
866 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
867 
868 	spin_lock_irqsave(&ep->lock, flags);
869 
870 	/* Copy the data member from inside the lock */
871 	epi->event.data = event->data;
872 
873 	/*
874 	 * If the item is "hot" and it is not registered inside the ready
875 	 * list, push it inside.
876 	 */
877 	if (revents & event->events) {
878 		if (!ep_is_linked(&epi->rdllink)) {
879 			list_add_tail(&epi->rdllink, &ep->rdllist);
880 
881 			/* Notify waiting tasks that events are available */
882 			if (waitqueue_active(&ep->wq))
883 				wake_up_locked(&ep->wq);
884 			if (waitqueue_active(&ep->poll_wait))
885 				pwake++;
886 		}
887 	}
888 	spin_unlock_irqrestore(&ep->lock, flags);
889 
890 	/* We have to call this outside the lock */
891 	if (pwake)
892 		ep_poll_safewake(&psw, &ep->poll_wait);
893 
894 	return 0;
895 }
896 
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)897 static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events,
898 			  int maxevents)
899 {
900 	int eventcnt, error = -EFAULT, pwake = 0;
901 	unsigned int revents;
902 	unsigned long flags;
903 	struct epitem *epi, *nepi;
904 	struct list_head txlist;
905 
906 	INIT_LIST_HEAD(&txlist);
907 
908 	/*
909 	 * We need to lock this because we could be hit by
910 	 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
911 	 */
912 	mutex_lock(&ep->mtx);
913 
914 	/*
915 	 * Steal the ready list, and re-init the original one to the
916 	 * empty list. Also, set ep->ovflist to NULL so that events
917 	 * happening while looping w/out locks, are not lost. We cannot
918 	 * have the poll callback to queue directly on ep->rdllist,
919 	 * because we are doing it in the loop below, in a lockless way.
920 	 */
921 	spin_lock_irqsave(&ep->lock, flags);
922 	list_splice(&ep->rdllist, &txlist);
923 	INIT_LIST_HEAD(&ep->rdllist);
924 	ep->ovflist = NULL;
925 	spin_unlock_irqrestore(&ep->lock, flags);
926 
927 	/*
928 	 * We can loop without lock because this is a task private list.
929 	 * We just splice'd out the ep->rdllist in ep_collect_ready_items().
930 	 * Items cannot vanish during the loop because we are holding "mtx".
931 	 */
932 	for (eventcnt = 0; !list_empty(&txlist) && eventcnt < maxevents;) {
933 		epi = list_first_entry(&txlist, struct epitem, rdllink);
934 
935 		list_del_init(&epi->rdllink);
936 
937 		/*
938 		 * Get the ready file event set. We can safely use the file
939 		 * because we are holding the "mtx" and this will guarantee
940 		 * that both the file and the item will not vanish.
941 		 */
942 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
943 		revents &= epi->event.events;
944 
945 		/*
946 		 * Is the event mask intersect the caller-requested one,
947 		 * deliver the event to userspace. Again, we are holding
948 		 * "mtx", so no operations coming from userspace can change
949 		 * the item.
950 		 */
951 		if (revents) {
952 			if (__put_user(revents,
953 				       &events[eventcnt].events) ||
954 			    __put_user(epi->event.data,
955 				       &events[eventcnt].data))
956 				goto errxit;
957 			if (epi->event.events & EPOLLONESHOT)
958 				epi->event.events &= EP_PRIVATE_BITS;
959 			eventcnt++;
960 		}
961 		/*
962 		 * At this point, noone can insert into ep->rdllist besides
963 		 * us. The epoll_ctl() callers are locked out by us holding
964 		 * "mtx" and the poll callback will queue them in ep->ovflist.
965 		 */
966 		if (!(epi->event.events & EPOLLET) &&
967 		    (revents & epi->event.events))
968 			list_add_tail(&epi->rdllink, &ep->rdllist);
969 	}
970 	error = 0;
971 
972 errxit:
973 
974 	spin_lock_irqsave(&ep->lock, flags);
975 	/*
976 	 * During the time we spent in the loop above, some other events
977 	 * might have been queued by the poll callback. We re-insert them
978 	 * inside the main ready-list here.
979 	 */
980 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
981 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
982 		/*
983 		 * If the above loop quit with errors, the epoll item might still
984 		 * be linked to "txlist", and the list_splice() done below will
985 		 * take care of those cases.
986 		 */
987 		if (!ep_is_linked(&epi->rdllink))
988 			list_add_tail(&epi->rdllink, &ep->rdllist);
989 	}
990 	/*
991 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
992 	 * releasing the lock, events will be queued in the normal way inside
993 	 * ep->rdllist.
994 	 */
995 	ep->ovflist = EP_UNACTIVE_PTR;
996 
997 	/*
998 	 * In case of error in the event-send loop, or in case the number of
999 	 * ready events exceeds the userspace limit, we need to splice the
1000 	 * "txlist" back inside ep->rdllist.
1001 	 */
1002 	list_splice(&txlist, &ep->rdllist);
1003 
1004 	if (!list_empty(&ep->rdllist)) {
1005 		/*
1006 		 * Wake up (if active) both the eventpoll wait list and the ->poll()
1007 		 * wait list (delayed after we release the lock).
1008 		 */
1009 		if (waitqueue_active(&ep->wq))
1010 			wake_up_locked(&ep->wq);
1011 		if (waitqueue_active(&ep->poll_wait))
1012 			pwake++;
1013 	}
1014 	spin_unlock_irqrestore(&ep->lock, flags);
1015 
1016 	mutex_unlock(&ep->mtx);
1017 
1018 	/* We have to call this outside the lock */
1019 	if (pwake)
1020 		ep_poll_safewake(&psw, &ep->poll_wait);
1021 
1022 	return eventcnt == 0 ? error: eventcnt;
1023 }
1024 
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1025 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1026 		   int maxevents, long timeout)
1027 {
1028 	int res, eavail;
1029 	unsigned long flags;
1030 	long jtimeout;
1031 	wait_queue_t wait;
1032 
1033 	/*
1034 	 * Calculate the timeout by checking for the "infinite" value ( -1 )
1035 	 * and the overflow condition. The passed timeout is in milliseconds,
1036 	 * that why (t * HZ) / 1000.
1037 	 */
1038 	jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1039 		MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1040 
1041 retry:
1042 	spin_lock_irqsave(&ep->lock, flags);
1043 
1044 	res = 0;
1045 	if (list_empty(&ep->rdllist)) {
1046 		/*
1047 		 * We don't have any available event to return to the caller.
1048 		 * We need to sleep here, and we will be wake up by
1049 		 * ep_poll_callback() when events will become available.
1050 		 */
1051 		init_waitqueue_entry(&wait, current);
1052 		wait.flags |= WQ_FLAG_EXCLUSIVE;
1053 		__add_wait_queue(&ep->wq, &wait);
1054 
1055 		for (;;) {
1056 			/*
1057 			 * We don't want to sleep if the ep_poll_callback() sends us
1058 			 * a wakeup in between. That's why we set the task state
1059 			 * to TASK_INTERRUPTIBLE before doing the checks.
1060 			 */
1061 			set_current_state(TASK_INTERRUPTIBLE);
1062 			if (!list_empty(&ep->rdllist) || !jtimeout)
1063 				break;
1064 			if (signal_pending(current)) {
1065 				res = -EINTR;
1066 				break;
1067 			}
1068 
1069 			spin_unlock_irqrestore(&ep->lock, flags);
1070 			jtimeout = schedule_timeout(jtimeout);
1071 			spin_lock_irqsave(&ep->lock, flags);
1072 		}
1073 		__remove_wait_queue(&ep->wq, &wait);
1074 
1075 		set_current_state(TASK_RUNNING);
1076 	}
1077 
1078 	/* Is it worth to try to dig for events ? */
1079 	eavail = !list_empty(&ep->rdllist);
1080 
1081 	spin_unlock_irqrestore(&ep->lock, flags);
1082 
1083 	/*
1084 	 * Try to transfer events to user space. In case we get 0 events and
1085 	 * there's still timeout left over, we go trying again in search of
1086 	 * more luck.
1087 	 */
1088 	if (!res && eavail &&
1089 	    !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1090 		goto retry;
1091 
1092 	return res;
1093 }
1094 
1095 /*
1096  * Open an eventpoll file descriptor.
1097  */
SYSCALL_DEFINE1(epoll_create1,int,flags)1098 SYSCALL_DEFINE1(epoll_create1, int, flags)
1099 {
1100 	int error, fd = -1;
1101 	struct eventpoll *ep;
1102 
1103 	/* Check the EPOLL_* constant for consistency.  */
1104 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1105 
1106 	if (flags & ~EPOLL_CLOEXEC)
1107 		return -EINVAL;
1108 
1109 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n",
1110 		     current, flags));
1111 
1112 	/*
1113 	 * Create the internal data structure ( "struct eventpoll" ).
1114 	 */
1115 	error = ep_alloc(&ep);
1116 	if (error < 0) {
1117 		fd = error;
1118 		goto error_return;
1119 	}
1120 
1121 	/*
1122 	 * Creates all the items needed to setup an eventpoll file. That is,
1123 	 * a file structure and a free file descriptor.
1124 	 */
1125 	fd = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1126 			      flags & O_CLOEXEC);
1127 	if (fd < 0)
1128 		ep_free(ep);
1129 
1130 error_return:
1131 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
1132 		     current, flags, fd));
1133 
1134 	return fd;
1135 }
1136 
SYSCALL_DEFINE1(epoll_create,int,size)1137 SYSCALL_DEFINE1(epoll_create, int, size)
1138 {
1139 	if (size < 0)
1140 		return -EINVAL;
1141 
1142 	return sys_epoll_create1(0);
1143 }
1144 
1145 /*
1146  * The following function implements the controller interface for
1147  * the eventpoll file that enables the insertion/removal/change of
1148  * file descriptors inside the interest set.
1149  */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)1150 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1151 		struct epoll_event __user *, event)
1152 {
1153 	int error;
1154 	struct file *file, *tfile;
1155 	struct eventpoll *ep;
1156 	struct epitem *epi;
1157 	struct epoll_event epds;
1158 
1159 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n",
1160 		     current, epfd, op, fd, event));
1161 
1162 	error = -EFAULT;
1163 	if (ep_op_has_event(op) &&
1164 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1165 		goto error_return;
1166 
1167 	/* Get the "struct file *" for the eventpoll file */
1168 	error = -EBADF;
1169 	file = fget(epfd);
1170 	if (!file)
1171 		goto error_return;
1172 
1173 	/* Get the "struct file *" for the target file */
1174 	tfile = fget(fd);
1175 	if (!tfile)
1176 		goto error_fput;
1177 
1178 	/* The target file descriptor must support poll */
1179 	error = -EPERM;
1180 	if (!tfile->f_op || !tfile->f_op->poll)
1181 		goto error_tgt_fput;
1182 
1183 	/*
1184 	 * We have to check that the file structure underneath the file descriptor
1185 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1186 	 * adding an epoll file descriptor inside itself.
1187 	 */
1188 	error = -EINVAL;
1189 	if (file == tfile || !is_file_epoll(file))
1190 		goto error_tgt_fput;
1191 
1192 	/*
1193 	 * At this point it is safe to assume that the "private_data" contains
1194 	 * our own data structure.
1195 	 */
1196 	ep = file->private_data;
1197 
1198 	mutex_lock(&ep->mtx);
1199 
1200 	/*
1201 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1202 	 * above, we can be sure to be able to use the item looked up by
1203 	 * ep_find() till we release the mutex.
1204 	 */
1205 	epi = ep_find(ep, tfile, fd);
1206 
1207 	error = -EINVAL;
1208 	switch (op) {
1209 	case EPOLL_CTL_ADD:
1210 		if (!epi) {
1211 			epds.events |= POLLERR | POLLHUP;
1212 
1213 			error = ep_insert(ep, &epds, tfile, fd);
1214 		} else
1215 			error = -EEXIST;
1216 		break;
1217 	case EPOLL_CTL_DEL:
1218 		if (epi)
1219 			error = ep_remove(ep, epi);
1220 		else
1221 			error = -ENOENT;
1222 		break;
1223 	case EPOLL_CTL_MOD:
1224 		if (epi) {
1225 			epds.events |= POLLERR | POLLHUP;
1226 			error = ep_modify(ep, epi, &epds);
1227 		} else
1228 			error = -ENOENT;
1229 		break;
1230 	}
1231 	mutex_unlock(&ep->mtx);
1232 
1233 error_tgt_fput:
1234 	fput(tfile);
1235 error_fput:
1236 	fput(file);
1237 error_return:
1238 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n",
1239 		     current, epfd, op, fd, event, error));
1240 
1241 	return error;
1242 }
1243 
1244 /*
1245  * Implement the event wait interface for the eventpoll file. It is the kernel
1246  * part of the user space epoll_wait(2).
1247  */
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)1248 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1249 		int, maxevents, int, timeout)
1250 {
1251 	int error;
1252 	struct file *file;
1253 	struct eventpoll *ep;
1254 
1255 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
1256 		     current, epfd, events, maxevents, timeout));
1257 
1258 	/* The maximum number of event must be greater than zero */
1259 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1260 		return -EINVAL;
1261 
1262 	/* Verify that the area passed by the user is writeable */
1263 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1264 		error = -EFAULT;
1265 		goto error_return;
1266 	}
1267 
1268 	/* Get the "struct file *" for the eventpoll file */
1269 	error = -EBADF;
1270 	file = fget(epfd);
1271 	if (!file)
1272 		goto error_return;
1273 
1274 	/*
1275 	 * We have to check that the file structure underneath the fd
1276 	 * the user passed to us _is_ an eventpoll file.
1277 	 */
1278 	error = -EINVAL;
1279 	if (!is_file_epoll(file))
1280 		goto error_fput;
1281 
1282 	/*
1283 	 * At this point it is safe to assume that the "private_data" contains
1284 	 * our own data structure.
1285 	 */
1286 	ep = file->private_data;
1287 
1288 	/* Time to fish for events ... */
1289 	error = ep_poll(ep, events, maxevents, timeout);
1290 
1291 error_fput:
1292 	fput(file);
1293 error_return:
1294 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n",
1295 		     current, epfd, events, maxevents, timeout, error));
1296 
1297 	return error;
1298 }
1299 
1300 #ifdef HAVE_SET_RESTORE_SIGMASK
1301 
1302 /*
1303  * Implement the event wait interface for the eventpoll file. It is the kernel
1304  * part of the user space epoll_pwait(2).
1305  */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)1306 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1307 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1308 		size_t, sigsetsize)
1309 {
1310 	int error;
1311 	sigset_t ksigmask, sigsaved;
1312 
1313 	/*
1314 	 * If the caller wants a certain signal mask to be set during the wait,
1315 	 * we apply it here.
1316 	 */
1317 	if (sigmask) {
1318 		if (sigsetsize != sizeof(sigset_t))
1319 			return -EINVAL;
1320 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1321 			return -EFAULT;
1322 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1323 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1324 	}
1325 
1326 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1327 
1328 	/*
1329 	 * If we changed the signal mask, we need to restore the original one.
1330 	 * In case we've got a signal while waiting, we do not restore the
1331 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1332 	 * the way back to userspace, before the signal mask is restored.
1333 	 */
1334 	if (sigmask) {
1335 		if (error == -EINTR) {
1336 			memcpy(&current->saved_sigmask, &sigsaved,
1337 			       sizeof(sigsaved));
1338 			set_restore_sigmask();
1339 		} else
1340 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1341 	}
1342 
1343 	return error;
1344 }
1345 
1346 #endif /* HAVE_SET_RESTORE_SIGMASK */
1347 
eventpoll_init(void)1348 static int __init eventpoll_init(void)
1349 {
1350 	struct sysinfo si;
1351 
1352 	si_meminfo(&si);
1353 	/*
1354 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1355 	 */
1356 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1357 		EP_ITEM_COST;
1358 
1359 	/* Initialize the structure used to perform safe poll wait head wake ups */
1360 	ep_poll_safewake_init(&psw);
1361 
1362 	/* Allocates slab cache used to allocate "struct epitem" items */
1363 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1364 			0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
1365 			NULL);
1366 
1367 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1368 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1369 			sizeof(struct eppoll_entry), 0,
1370 			EPI_SLAB_DEBUG|SLAB_PANIC, NULL);
1371 
1372 	return 0;
1373 }
1374 fs_initcall(eventpoll_init);
1375