1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54
55 #include <linux/filter.h>
56 #include <linux/rculist_nulls.h>
57
58 #include <asm/atomic.h>
59 #include <net/dst.h>
60 #include <net/checksum.h>
61
62 /*
63 * This structure really needs to be cleaned up.
64 * Most of it is for TCP, and not used by any of
65 * the other protocols.
66 */
67
68 /* Define this to get the SOCK_DBG debugging facility. */
69 #define SOCK_DEBUGGING
70 #ifdef SOCK_DEBUGGING
71 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
72 printk(KERN_DEBUG msg); } while (0)
73 #else
74 /* Validate arguments and do nothing */
75 static void inline int __attribute__ ((format (printf, 2, 3)))
SOCK_DEBUG(struct sock * sk,const char * msg,...)76 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
77 {
78 }
79 #endif
80
81 /* This is the per-socket lock. The spinlock provides a synchronization
82 * between user contexts and software interrupt processing, whereas the
83 * mini-semaphore synchronizes multiple users amongst themselves.
84 */
85 typedef struct {
86 spinlock_t slock;
87 int owned;
88 wait_queue_head_t wq;
89 /*
90 * We express the mutex-alike socket_lock semantics
91 * to the lock validator by explicitly managing
92 * the slock as a lock variant (in addition to
93 * the slock itself):
94 */
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 struct lockdep_map dep_map;
97 #endif
98 } socket_lock_t;
99
100 struct sock;
101 struct proto;
102 struct net;
103
104 /**
105 * struct sock_common - minimal network layer representation of sockets
106 * @skc_family: network address family
107 * @skc_state: Connection state
108 * @skc_reuse: %SO_REUSEADDR setting
109 * @skc_bound_dev_if: bound device index if != 0
110 * @skc_node: main hash linkage for various protocol lookup tables
111 * @skc_nulls_node: main hash linkage for UDP/UDP-Lite protocol
112 * @skc_bind_node: bind hash linkage for various protocol lookup tables
113 * @skc_refcnt: reference count
114 * @skc_hash: hash value used with various protocol lookup tables
115 * @skc_prot: protocol handlers inside a network family
116 * @skc_net: reference to the network namespace of this socket
117 *
118 * This is the minimal network layer representation of sockets, the header
119 * for struct sock and struct inet_timewait_sock.
120 */
121 struct sock_common {
122 unsigned short skc_family;
123 volatile unsigned char skc_state;
124 unsigned char skc_reuse;
125 int skc_bound_dev_if;
126 union {
127 struct hlist_node skc_node;
128 struct hlist_nulls_node skc_nulls_node;
129 };
130 struct hlist_node skc_bind_node;
131 atomic_t skc_refcnt;
132 unsigned int skc_hash;
133 struct proto *skc_prot;
134 #ifdef CONFIG_NET_NS
135 struct net *skc_net;
136 #endif
137 };
138
139 /**
140 * struct sock - network layer representation of sockets
141 * @__sk_common: shared layout with inet_timewait_sock
142 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
143 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
144 * @sk_lock: synchronizer
145 * @sk_rcvbuf: size of receive buffer in bytes
146 * @sk_sleep: sock wait queue
147 * @sk_dst_cache: destination cache
148 * @sk_dst_lock: destination cache lock
149 * @sk_policy: flow policy
150 * @sk_rmem_alloc: receive queue bytes committed
151 * @sk_receive_queue: incoming packets
152 * @sk_wmem_alloc: transmit queue bytes committed
153 * @sk_write_queue: Packet sending queue
154 * @sk_async_wait_queue: DMA copied packets
155 * @sk_omem_alloc: "o" is "option" or "other"
156 * @sk_wmem_queued: persistent queue size
157 * @sk_forward_alloc: space allocated forward
158 * @sk_allocation: allocation mode
159 * @sk_sndbuf: size of send buffer in bytes
160 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
161 * %SO_OOBINLINE settings
162 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
163 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
164 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
165 * @sk_gso_max_size: Maximum GSO segment size to build
166 * @sk_lingertime: %SO_LINGER l_linger setting
167 * @sk_backlog: always used with the per-socket spinlock held
168 * @sk_callback_lock: used with the callbacks in the end of this struct
169 * @sk_error_queue: rarely used
170 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
171 * IPV6_ADDRFORM for instance)
172 * @sk_err: last error
173 * @sk_err_soft: errors that don't cause failure but are the cause of a
174 * persistent failure not just 'timed out'
175 * @sk_drops: raw/udp drops counter
176 * @sk_ack_backlog: current listen backlog
177 * @sk_max_ack_backlog: listen backlog set in listen()
178 * @sk_priority: %SO_PRIORITY setting
179 * @sk_type: socket type (%SOCK_STREAM, etc)
180 * @sk_protocol: which protocol this socket belongs in this network family
181 * @sk_peercred: %SO_PEERCRED setting
182 * @sk_rcvlowat: %SO_RCVLOWAT setting
183 * @sk_rcvtimeo: %SO_RCVTIMEO setting
184 * @sk_sndtimeo: %SO_SNDTIMEO setting
185 * @sk_filter: socket filtering instructions
186 * @sk_protinfo: private area, net family specific, when not using slab
187 * @sk_timer: sock cleanup timer
188 * @sk_stamp: time stamp of last packet received
189 * @sk_socket: Identd and reporting IO signals
190 * @sk_user_data: RPC layer private data
191 * @sk_sndmsg_page: cached page for sendmsg
192 * @sk_sndmsg_off: cached offset for sendmsg
193 * @sk_send_head: front of stuff to transmit
194 * @sk_security: used by security modules
195 * @sk_mark: generic packet mark
196 * @sk_write_pending: a write to stream socket waits to start
197 * @sk_state_change: callback to indicate change in the state of the sock
198 * @sk_data_ready: callback to indicate there is data to be processed
199 * @sk_write_space: callback to indicate there is bf sending space available
200 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
201 * @sk_backlog_rcv: callback to process the backlog
202 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
203 */
204 struct sock {
205 /*
206 * Now struct inet_timewait_sock also uses sock_common, so please just
207 * don't add nothing before this first member (__sk_common) --acme
208 */
209 struct sock_common __sk_common;
210 #define sk_family __sk_common.skc_family
211 #define sk_state __sk_common.skc_state
212 #define sk_reuse __sk_common.skc_reuse
213 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
214 #define sk_node __sk_common.skc_node
215 #define sk_nulls_node __sk_common.skc_nulls_node
216 #define sk_bind_node __sk_common.skc_bind_node
217 #define sk_refcnt __sk_common.skc_refcnt
218 #define sk_hash __sk_common.skc_hash
219 #define sk_prot __sk_common.skc_prot
220 #define sk_net __sk_common.skc_net
221 unsigned char sk_shutdown : 2,
222 sk_no_check : 2,
223 sk_userlocks : 4;
224 unsigned char sk_protocol;
225 unsigned short sk_type;
226 int sk_rcvbuf;
227 socket_lock_t sk_lock;
228 /*
229 * The backlog queue is special, it is always used with
230 * the per-socket spinlock held and requires low latency
231 * access. Therefore we special case it's implementation.
232 */
233 struct {
234 struct sk_buff *head;
235 struct sk_buff *tail;
236 } sk_backlog;
237 wait_queue_head_t *sk_sleep;
238 struct dst_entry *sk_dst_cache;
239 #ifdef CONFIG_XFRM
240 struct xfrm_policy *sk_policy[2];
241 #endif
242 rwlock_t sk_dst_lock;
243 atomic_t sk_rmem_alloc;
244 atomic_t sk_wmem_alloc;
245 atomic_t sk_omem_alloc;
246 int sk_sndbuf;
247 struct sk_buff_head sk_receive_queue;
248 struct sk_buff_head sk_write_queue;
249 #ifdef CONFIG_NET_DMA
250 struct sk_buff_head sk_async_wait_queue;
251 #endif
252 int sk_wmem_queued;
253 int sk_forward_alloc;
254 gfp_t sk_allocation;
255 int sk_route_caps;
256 int sk_gso_type;
257 unsigned int sk_gso_max_size;
258 int sk_rcvlowat;
259 unsigned long sk_flags;
260 unsigned long sk_lingertime;
261 struct sk_buff_head sk_error_queue;
262 struct proto *sk_prot_creator;
263 rwlock_t sk_callback_lock;
264 int sk_err,
265 sk_err_soft;
266 atomic_t sk_drops;
267 unsigned short sk_ack_backlog;
268 unsigned short sk_max_ack_backlog;
269 __u32 sk_priority;
270 struct ucred sk_peercred;
271 long sk_rcvtimeo;
272 long sk_sndtimeo;
273 struct sk_filter *sk_filter;
274 void *sk_protinfo;
275 struct timer_list sk_timer;
276 ktime_t sk_stamp;
277 struct socket *sk_socket;
278 void *sk_user_data;
279 struct page *sk_sndmsg_page;
280 struct sk_buff *sk_send_head;
281 __u32 sk_sndmsg_off;
282 int sk_write_pending;
283 #ifdef CONFIG_SECURITY
284 void *sk_security;
285 #endif
286 __u32 sk_mark;
287 /* XXX 4 bytes hole on 64 bit */
288 void (*sk_state_change)(struct sock *sk);
289 void (*sk_data_ready)(struct sock *sk, int bytes);
290 void (*sk_write_space)(struct sock *sk);
291 void (*sk_error_report)(struct sock *sk);
292 int (*sk_backlog_rcv)(struct sock *sk,
293 struct sk_buff *skb);
294 void (*sk_destruct)(struct sock *sk);
295 };
296
297 /*
298 * Hashed lists helper routines
299 */
__sk_head(const struct hlist_head * head)300 static inline struct sock *__sk_head(const struct hlist_head *head)
301 {
302 return hlist_entry(head->first, struct sock, sk_node);
303 }
304
sk_head(const struct hlist_head * head)305 static inline struct sock *sk_head(const struct hlist_head *head)
306 {
307 return hlist_empty(head) ? NULL : __sk_head(head);
308 }
309
__sk_nulls_head(const struct hlist_nulls_head * head)310 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
311 {
312 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
313 }
314
sk_nulls_head(const struct hlist_nulls_head * head)315 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
316 {
317 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
318 }
319
sk_next(const struct sock * sk)320 static inline struct sock *sk_next(const struct sock *sk)
321 {
322 return sk->sk_node.next ?
323 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
324 }
325
sk_nulls_next(const struct sock * sk)326 static inline struct sock *sk_nulls_next(const struct sock *sk)
327 {
328 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
329 hlist_nulls_entry(sk->sk_nulls_node.next,
330 struct sock, sk_nulls_node) :
331 NULL;
332 }
333
sk_unhashed(const struct sock * sk)334 static inline int sk_unhashed(const struct sock *sk)
335 {
336 return hlist_unhashed(&sk->sk_node);
337 }
338
sk_hashed(const struct sock * sk)339 static inline int sk_hashed(const struct sock *sk)
340 {
341 return !sk_unhashed(sk);
342 }
343
sk_node_init(struct hlist_node * node)344 static __inline__ void sk_node_init(struct hlist_node *node)
345 {
346 node->pprev = NULL;
347 }
348
sk_nulls_node_init(struct hlist_nulls_node * node)349 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
350 {
351 node->pprev = NULL;
352 }
353
__sk_del_node(struct sock * sk)354 static __inline__ void __sk_del_node(struct sock *sk)
355 {
356 __hlist_del(&sk->sk_node);
357 }
358
__sk_del_node_init(struct sock * sk)359 static __inline__ int __sk_del_node_init(struct sock *sk)
360 {
361 if (sk_hashed(sk)) {
362 __sk_del_node(sk);
363 sk_node_init(&sk->sk_node);
364 return 1;
365 }
366 return 0;
367 }
368
369 /* Grab socket reference count. This operation is valid only
370 when sk is ALREADY grabbed f.e. it is found in hash table
371 or a list and the lookup is made under lock preventing hash table
372 modifications.
373 */
374
sock_hold(struct sock * sk)375 static inline void sock_hold(struct sock *sk)
376 {
377 atomic_inc(&sk->sk_refcnt);
378 }
379
380 /* Ungrab socket in the context, which assumes that socket refcnt
381 cannot hit zero, f.e. it is true in context of any socketcall.
382 */
__sock_put(struct sock * sk)383 static inline void __sock_put(struct sock *sk)
384 {
385 atomic_dec(&sk->sk_refcnt);
386 }
387
sk_del_node_init(struct sock * sk)388 static __inline__ int sk_del_node_init(struct sock *sk)
389 {
390 int rc = __sk_del_node_init(sk);
391
392 if (rc) {
393 /* paranoid for a while -acme */
394 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
395 __sock_put(sk);
396 }
397 return rc;
398 }
399
__sk_nulls_del_node_init_rcu(struct sock * sk)400 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
401 {
402 if (sk_hashed(sk)) {
403 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
404 return 1;
405 }
406 return 0;
407 }
408
sk_nulls_del_node_init_rcu(struct sock * sk)409 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
410 {
411 int rc = __sk_nulls_del_node_init_rcu(sk);
412
413 if (rc) {
414 /* paranoid for a while -acme */
415 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
416 __sock_put(sk);
417 }
418 return rc;
419 }
420
__sk_add_node(struct sock * sk,struct hlist_head * list)421 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
422 {
423 hlist_add_head(&sk->sk_node, list);
424 }
425
sk_add_node(struct sock * sk,struct hlist_head * list)426 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
427 {
428 sock_hold(sk);
429 __sk_add_node(sk, list);
430 }
431
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)432 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
433 {
434 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
435 }
436
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)437 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
438 {
439 sock_hold(sk);
440 __sk_nulls_add_node_rcu(sk, list);
441 }
442
__sk_del_bind_node(struct sock * sk)443 static __inline__ void __sk_del_bind_node(struct sock *sk)
444 {
445 __hlist_del(&sk->sk_bind_node);
446 }
447
sk_add_bind_node(struct sock * sk,struct hlist_head * list)448 static __inline__ void sk_add_bind_node(struct sock *sk,
449 struct hlist_head *list)
450 {
451 hlist_add_head(&sk->sk_bind_node, list);
452 }
453
454 #define sk_for_each(__sk, node, list) \
455 hlist_for_each_entry(__sk, node, list, sk_node)
456 #define sk_nulls_for_each(__sk, node, list) \
457 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
458 #define sk_nulls_for_each_rcu(__sk, node, list) \
459 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
460 #define sk_for_each_from(__sk, node) \
461 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
462 hlist_for_each_entry_from(__sk, node, sk_node)
463 #define sk_nulls_for_each_from(__sk, node) \
464 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
465 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
466 #define sk_for_each_continue(__sk, node) \
467 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
468 hlist_for_each_entry_continue(__sk, node, sk_node)
469 #define sk_for_each_safe(__sk, node, tmp, list) \
470 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
471 #define sk_for_each_bound(__sk, node, list) \
472 hlist_for_each_entry(__sk, node, list, sk_bind_node)
473
474 /* Sock flags */
475 enum sock_flags {
476 SOCK_DEAD,
477 SOCK_DONE,
478 SOCK_URGINLINE,
479 SOCK_KEEPOPEN,
480 SOCK_LINGER,
481 SOCK_DESTROY,
482 SOCK_BROADCAST,
483 SOCK_TIMESTAMP,
484 SOCK_ZAPPED,
485 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
486 SOCK_DBG, /* %SO_DEBUG setting */
487 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
488 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
489 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
490 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
491 };
492
sock_copy_flags(struct sock * nsk,struct sock * osk)493 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
494 {
495 nsk->sk_flags = osk->sk_flags;
496 }
497
sock_set_flag(struct sock * sk,enum sock_flags flag)498 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
499 {
500 __set_bit(flag, &sk->sk_flags);
501 }
502
sock_reset_flag(struct sock * sk,enum sock_flags flag)503 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
504 {
505 __clear_bit(flag, &sk->sk_flags);
506 }
507
sock_flag(struct sock * sk,enum sock_flags flag)508 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
509 {
510 return test_bit(flag, &sk->sk_flags);
511 }
512
sk_acceptq_removed(struct sock * sk)513 static inline void sk_acceptq_removed(struct sock *sk)
514 {
515 sk->sk_ack_backlog--;
516 }
517
sk_acceptq_added(struct sock * sk)518 static inline void sk_acceptq_added(struct sock *sk)
519 {
520 sk->sk_ack_backlog++;
521 }
522
sk_acceptq_is_full(struct sock * sk)523 static inline int sk_acceptq_is_full(struct sock *sk)
524 {
525 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
526 }
527
528 /*
529 * Compute minimal free write space needed to queue new packets.
530 */
sk_stream_min_wspace(struct sock * sk)531 static inline int sk_stream_min_wspace(struct sock *sk)
532 {
533 return sk->sk_wmem_queued >> 1;
534 }
535
sk_stream_wspace(struct sock * sk)536 static inline int sk_stream_wspace(struct sock *sk)
537 {
538 return sk->sk_sndbuf - sk->sk_wmem_queued;
539 }
540
541 extern void sk_stream_write_space(struct sock *sk);
542
sk_stream_memory_free(struct sock * sk)543 static inline int sk_stream_memory_free(struct sock *sk)
544 {
545 return sk->sk_wmem_queued < sk->sk_sndbuf;
546 }
547
548 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb)549 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
550 {
551 if (!sk->sk_backlog.tail) {
552 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
553 } else {
554 sk->sk_backlog.tail->next = skb;
555 sk->sk_backlog.tail = skb;
556 }
557 skb->next = NULL;
558 }
559
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)560 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
561 {
562 return sk->sk_backlog_rcv(sk, skb);
563 }
564
565 #define sk_wait_event(__sk, __timeo, __condition) \
566 ({ int __rc; \
567 release_sock(__sk); \
568 __rc = __condition; \
569 if (!__rc) { \
570 *(__timeo) = schedule_timeout(*(__timeo)); \
571 } \
572 lock_sock(__sk); \
573 __rc = __condition; \
574 __rc; \
575 })
576
577 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
578 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
579 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
580 extern int sk_stream_error(struct sock *sk, int flags, int err);
581 extern void sk_stream_kill_queues(struct sock *sk);
582
583 extern int sk_wait_data(struct sock *sk, long *timeo);
584
585 struct request_sock_ops;
586 struct timewait_sock_ops;
587 struct inet_hashinfo;
588 struct raw_hashinfo;
589
590 /* Networking protocol blocks we attach to sockets.
591 * socket layer -> transport layer interface
592 * transport -> network interface is defined by struct inet_proto
593 */
594 struct proto {
595 void (*close)(struct sock *sk,
596 long timeout);
597 int (*connect)(struct sock *sk,
598 struct sockaddr *uaddr,
599 int addr_len);
600 int (*disconnect)(struct sock *sk, int flags);
601
602 struct sock * (*accept) (struct sock *sk, int flags, int *err);
603
604 int (*ioctl)(struct sock *sk, int cmd,
605 unsigned long arg);
606 int (*init)(struct sock *sk);
607 void (*destroy)(struct sock *sk);
608 void (*shutdown)(struct sock *sk, int how);
609 int (*setsockopt)(struct sock *sk, int level,
610 int optname, char __user *optval,
611 int optlen);
612 int (*getsockopt)(struct sock *sk, int level,
613 int optname, char __user *optval,
614 int __user *option);
615 #ifdef CONFIG_COMPAT
616 int (*compat_setsockopt)(struct sock *sk,
617 int level,
618 int optname, char __user *optval,
619 int optlen);
620 int (*compat_getsockopt)(struct sock *sk,
621 int level,
622 int optname, char __user *optval,
623 int __user *option);
624 #endif
625 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
626 struct msghdr *msg, size_t len);
627 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
628 struct msghdr *msg,
629 size_t len, int noblock, int flags,
630 int *addr_len);
631 int (*sendpage)(struct sock *sk, struct page *page,
632 int offset, size_t size, int flags);
633 int (*bind)(struct sock *sk,
634 struct sockaddr *uaddr, int addr_len);
635
636 int (*backlog_rcv) (struct sock *sk,
637 struct sk_buff *skb);
638
639 /* Keeping track of sk's, looking them up, and port selection methods. */
640 void (*hash)(struct sock *sk);
641 void (*unhash)(struct sock *sk);
642 int (*get_port)(struct sock *sk, unsigned short snum);
643
644 /* Keeping track of sockets in use */
645 #ifdef CONFIG_PROC_FS
646 unsigned int inuse_idx;
647 #endif
648
649 /* Memory pressure */
650 void (*enter_memory_pressure)(struct sock *sk);
651 atomic_t *memory_allocated; /* Current allocated memory. */
652 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
653 /*
654 * Pressure flag: try to collapse.
655 * Technical note: it is used by multiple contexts non atomically.
656 * All the __sk_mem_schedule() is of this nature: accounting
657 * is strict, actions are advisory and have some latency.
658 */
659 int *memory_pressure;
660 int *sysctl_mem;
661 int *sysctl_wmem;
662 int *sysctl_rmem;
663 int max_header;
664
665 struct kmem_cache *slab;
666 unsigned int obj_size;
667 int slab_flags;
668
669 struct percpu_counter *orphan_count;
670
671 struct request_sock_ops *rsk_prot;
672 struct timewait_sock_ops *twsk_prot;
673
674 union {
675 struct inet_hashinfo *hashinfo;
676 struct udp_table *udp_table;
677 struct raw_hashinfo *raw_hash;
678 } h;
679
680 struct module *owner;
681
682 char name[32];
683
684 struct list_head node;
685 #ifdef SOCK_REFCNT_DEBUG
686 atomic_t socks;
687 #endif
688 };
689
690 extern int proto_register(struct proto *prot, int alloc_slab);
691 extern void proto_unregister(struct proto *prot);
692
693 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)694 static inline void sk_refcnt_debug_inc(struct sock *sk)
695 {
696 atomic_inc(&sk->sk_prot->socks);
697 }
698
sk_refcnt_debug_dec(struct sock * sk)699 static inline void sk_refcnt_debug_dec(struct sock *sk)
700 {
701 atomic_dec(&sk->sk_prot->socks);
702 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
703 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
704 }
705
sk_refcnt_debug_release(const struct sock * sk)706 static inline void sk_refcnt_debug_release(const struct sock *sk)
707 {
708 if (atomic_read(&sk->sk_refcnt) != 1)
709 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
710 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
711 }
712 #else /* SOCK_REFCNT_DEBUG */
713 #define sk_refcnt_debug_inc(sk) do { } while (0)
714 #define sk_refcnt_debug_dec(sk) do { } while (0)
715 #define sk_refcnt_debug_release(sk) do { } while (0)
716 #endif /* SOCK_REFCNT_DEBUG */
717
718
719 #ifdef CONFIG_PROC_FS
720 /* Called with local bh disabled */
721 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
722 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
723 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)724 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
725 int inc)
726 {
727 }
728 #endif
729
730
731 /* With per-bucket locks this operation is not-atomic, so that
732 * this version is not worse.
733 */
__sk_prot_rehash(struct sock * sk)734 static inline void __sk_prot_rehash(struct sock *sk)
735 {
736 sk->sk_prot->unhash(sk);
737 sk->sk_prot->hash(sk);
738 }
739
740 /* About 10 seconds */
741 #define SOCK_DESTROY_TIME (10*HZ)
742
743 /* Sockets 0-1023 can't be bound to unless you are superuser */
744 #define PROT_SOCK 1024
745
746 #define SHUTDOWN_MASK 3
747 #define RCV_SHUTDOWN 1
748 #define SEND_SHUTDOWN 2
749
750 #define SOCK_SNDBUF_LOCK 1
751 #define SOCK_RCVBUF_LOCK 2
752 #define SOCK_BINDADDR_LOCK 4
753 #define SOCK_BINDPORT_LOCK 8
754
755 /* sock_iocb: used to kick off async processing of socket ios */
756 struct sock_iocb {
757 struct list_head list;
758
759 int flags;
760 int size;
761 struct socket *sock;
762 struct sock *sk;
763 struct scm_cookie *scm;
764 struct msghdr *msg, async_msg;
765 struct kiocb *kiocb;
766 };
767
kiocb_to_siocb(struct kiocb * iocb)768 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
769 {
770 return (struct sock_iocb *)iocb->private;
771 }
772
siocb_to_kiocb(struct sock_iocb * si)773 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
774 {
775 return si->kiocb;
776 }
777
778 struct socket_alloc {
779 struct socket socket;
780 struct inode vfs_inode;
781 };
782
SOCKET_I(struct inode * inode)783 static inline struct socket *SOCKET_I(struct inode *inode)
784 {
785 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
786 }
787
SOCK_INODE(struct socket * socket)788 static inline struct inode *SOCK_INODE(struct socket *socket)
789 {
790 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
791 }
792
793 /*
794 * Functions for memory accounting
795 */
796 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
797 extern void __sk_mem_reclaim(struct sock *sk);
798
799 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
800 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
801 #define SK_MEM_SEND 0
802 #define SK_MEM_RECV 1
803
sk_mem_pages(int amt)804 static inline int sk_mem_pages(int amt)
805 {
806 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
807 }
808
sk_has_account(struct sock * sk)809 static inline int sk_has_account(struct sock *sk)
810 {
811 /* return true if protocol supports memory accounting */
812 return !!sk->sk_prot->memory_allocated;
813 }
814
sk_wmem_schedule(struct sock * sk,int size)815 static inline int sk_wmem_schedule(struct sock *sk, int size)
816 {
817 if (!sk_has_account(sk))
818 return 1;
819 return size <= sk->sk_forward_alloc ||
820 __sk_mem_schedule(sk, size, SK_MEM_SEND);
821 }
822
sk_rmem_schedule(struct sock * sk,int size)823 static inline int sk_rmem_schedule(struct sock *sk, int size)
824 {
825 if (!sk_has_account(sk))
826 return 1;
827 return size <= sk->sk_forward_alloc ||
828 __sk_mem_schedule(sk, size, SK_MEM_RECV);
829 }
830
sk_mem_reclaim(struct sock * sk)831 static inline void sk_mem_reclaim(struct sock *sk)
832 {
833 if (!sk_has_account(sk))
834 return;
835 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
836 __sk_mem_reclaim(sk);
837 }
838
sk_mem_reclaim_partial(struct sock * sk)839 static inline void sk_mem_reclaim_partial(struct sock *sk)
840 {
841 if (!sk_has_account(sk))
842 return;
843 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
844 __sk_mem_reclaim(sk);
845 }
846
sk_mem_charge(struct sock * sk,int size)847 static inline void sk_mem_charge(struct sock *sk, int size)
848 {
849 if (!sk_has_account(sk))
850 return;
851 sk->sk_forward_alloc -= size;
852 }
853
sk_mem_uncharge(struct sock * sk,int size)854 static inline void sk_mem_uncharge(struct sock *sk, int size)
855 {
856 if (!sk_has_account(sk))
857 return;
858 sk->sk_forward_alloc += size;
859 }
860
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)861 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
862 {
863 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
864 sk->sk_wmem_queued -= skb->truesize;
865 sk_mem_uncharge(sk, skb->truesize);
866 __kfree_skb(skb);
867 }
868
869 /* Used by processes to "lock" a socket state, so that
870 * interrupts and bottom half handlers won't change it
871 * from under us. It essentially blocks any incoming
872 * packets, so that we won't get any new data or any
873 * packets that change the state of the socket.
874 *
875 * While locked, BH processing will add new packets to
876 * the backlog queue. This queue is processed by the
877 * owner of the socket lock right before it is released.
878 *
879 * Since ~2.3.5 it is also exclusive sleep lock serializing
880 * accesses from user process context.
881 */
882 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
883
884 /*
885 * Macro so as to not evaluate some arguments when
886 * lockdep is not enabled.
887 *
888 * Mark both the sk_lock and the sk_lock.slock as a
889 * per-address-family lock class.
890 */
891 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
892 do { \
893 sk->sk_lock.owned = 0; \
894 init_waitqueue_head(&sk->sk_lock.wq); \
895 spin_lock_init(&(sk)->sk_lock.slock); \
896 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
897 sizeof((sk)->sk_lock)); \
898 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
899 (skey), (sname)); \
900 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
901 } while (0)
902
903 extern void lock_sock_nested(struct sock *sk, int subclass);
904
lock_sock(struct sock * sk)905 static inline void lock_sock(struct sock *sk)
906 {
907 lock_sock_nested(sk, 0);
908 }
909
910 extern void release_sock(struct sock *sk);
911
912 /* BH context may only use the following locking interface. */
913 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
914 #define bh_lock_sock_nested(__sk) \
915 spin_lock_nested(&((__sk)->sk_lock.slock), \
916 SINGLE_DEPTH_NESTING)
917 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
918
919 extern struct sock *sk_alloc(struct net *net, int family,
920 gfp_t priority,
921 struct proto *prot);
922 extern void sk_free(struct sock *sk);
923 extern void sk_release_kernel(struct sock *sk);
924 extern struct sock *sk_clone(const struct sock *sk,
925 const gfp_t priority);
926
927 extern struct sk_buff *sock_wmalloc(struct sock *sk,
928 unsigned long size, int force,
929 gfp_t priority);
930 extern struct sk_buff *sock_rmalloc(struct sock *sk,
931 unsigned long size, int force,
932 gfp_t priority);
933 extern void sock_wfree(struct sk_buff *skb);
934 extern void sock_rfree(struct sk_buff *skb);
935
936 extern int sock_setsockopt(struct socket *sock, int level,
937 int op, char __user *optval,
938 int optlen);
939
940 extern int sock_getsockopt(struct socket *sock, int level,
941 int op, char __user *optval,
942 int __user *optlen);
943 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
944 unsigned long size,
945 int noblock,
946 int *errcode);
947 extern void *sock_kmalloc(struct sock *sk, int size,
948 gfp_t priority);
949 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
950 extern void sk_send_sigurg(struct sock *sk);
951
952 /*
953 * Functions to fill in entries in struct proto_ops when a protocol
954 * does not implement a particular function.
955 */
956 extern int sock_no_bind(struct socket *,
957 struct sockaddr *, int);
958 extern int sock_no_connect(struct socket *,
959 struct sockaddr *, int, int);
960 extern int sock_no_socketpair(struct socket *,
961 struct socket *);
962 extern int sock_no_accept(struct socket *,
963 struct socket *, int);
964 extern int sock_no_getname(struct socket *,
965 struct sockaddr *, int *, int);
966 extern unsigned int sock_no_poll(struct file *, struct socket *,
967 struct poll_table_struct *);
968 extern int sock_no_ioctl(struct socket *, unsigned int,
969 unsigned long);
970 extern int sock_no_listen(struct socket *, int);
971 extern int sock_no_shutdown(struct socket *, int);
972 extern int sock_no_getsockopt(struct socket *, int , int,
973 char __user *, int __user *);
974 extern int sock_no_setsockopt(struct socket *, int, int,
975 char __user *, int);
976 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
977 struct msghdr *, size_t);
978 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
979 struct msghdr *, size_t, int);
980 extern int sock_no_mmap(struct file *file,
981 struct socket *sock,
982 struct vm_area_struct *vma);
983 extern ssize_t sock_no_sendpage(struct socket *sock,
984 struct page *page,
985 int offset, size_t size,
986 int flags);
987
988 /*
989 * Functions to fill in entries in struct proto_ops when a protocol
990 * uses the inet style.
991 */
992 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
993 char __user *optval, int __user *optlen);
994 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
995 struct msghdr *msg, size_t size, int flags);
996 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
997 char __user *optval, int optlen);
998 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
999 int optname, char __user *optval, int __user *optlen);
1000 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1001 int optname, char __user *optval, int optlen);
1002
1003 extern void sk_common_release(struct sock *sk);
1004
1005 /*
1006 * Default socket callbacks and setup code
1007 */
1008
1009 /* Initialise core socket variables */
1010 extern void sock_init_data(struct socket *sock, struct sock *sk);
1011
1012 /**
1013 * sk_filter_release: Release a socket filter
1014 * @fp: filter to remove
1015 *
1016 * Remove a filter from a socket and release its resources.
1017 */
1018
sk_filter_release(struct sk_filter * fp)1019 static inline void sk_filter_release(struct sk_filter *fp)
1020 {
1021 if (atomic_dec_and_test(&fp->refcnt))
1022 kfree(fp);
1023 }
1024
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1025 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1026 {
1027 unsigned int size = sk_filter_len(fp);
1028
1029 atomic_sub(size, &sk->sk_omem_alloc);
1030 sk_filter_release(fp);
1031 }
1032
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1033 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1034 {
1035 atomic_inc(&fp->refcnt);
1036 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1037 }
1038
1039 /*
1040 * Socket reference counting postulates.
1041 *
1042 * * Each user of socket SHOULD hold a reference count.
1043 * * Each access point to socket (an hash table bucket, reference from a list,
1044 * running timer, skb in flight MUST hold a reference count.
1045 * * When reference count hits 0, it means it will never increase back.
1046 * * When reference count hits 0, it means that no references from
1047 * outside exist to this socket and current process on current CPU
1048 * is last user and may/should destroy this socket.
1049 * * sk_free is called from any context: process, BH, IRQ. When
1050 * it is called, socket has no references from outside -> sk_free
1051 * may release descendant resources allocated by the socket, but
1052 * to the time when it is called, socket is NOT referenced by any
1053 * hash tables, lists etc.
1054 * * Packets, delivered from outside (from network or from another process)
1055 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1056 * when they sit in queue. Otherwise, packets will leak to hole, when
1057 * socket is looked up by one cpu and unhasing is made by another CPU.
1058 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1059 * (leak to backlog). Packet socket does all the processing inside
1060 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1061 * use separate SMP lock, so that they are prone too.
1062 */
1063
1064 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1065 static inline void sock_put(struct sock *sk)
1066 {
1067 if (atomic_dec_and_test(&sk->sk_refcnt))
1068 sk_free(sk);
1069 }
1070
1071 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1072 const int nested);
1073
sk_set_socket(struct sock * sk,struct socket * sock)1074 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1075 {
1076 sk->sk_socket = sock;
1077 }
1078
1079 /* Detach socket from process context.
1080 * Announce socket dead, detach it from wait queue and inode.
1081 * Note that parent inode held reference count on this struct sock,
1082 * we do not release it in this function, because protocol
1083 * probably wants some additional cleanups or even continuing
1084 * to work with this socket (TCP).
1085 */
sock_orphan(struct sock * sk)1086 static inline void sock_orphan(struct sock *sk)
1087 {
1088 write_lock_bh(&sk->sk_callback_lock);
1089 sock_set_flag(sk, SOCK_DEAD);
1090 sk_set_socket(sk, NULL);
1091 sk->sk_sleep = NULL;
1092 write_unlock_bh(&sk->sk_callback_lock);
1093 }
1094
sock_graft(struct sock * sk,struct socket * parent)1095 static inline void sock_graft(struct sock *sk, struct socket *parent)
1096 {
1097 write_lock_bh(&sk->sk_callback_lock);
1098 sk->sk_sleep = &parent->wait;
1099 parent->sk = sk;
1100 sk_set_socket(sk, parent);
1101 security_sock_graft(sk, parent);
1102 write_unlock_bh(&sk->sk_callback_lock);
1103 }
1104
1105 extern int sock_i_uid(struct sock *sk);
1106 extern unsigned long sock_i_ino(struct sock *sk);
1107
1108 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1109 __sk_dst_get(struct sock *sk)
1110 {
1111 return sk->sk_dst_cache;
1112 }
1113
1114 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1115 sk_dst_get(struct sock *sk)
1116 {
1117 struct dst_entry *dst;
1118
1119 read_lock(&sk->sk_dst_lock);
1120 dst = sk->sk_dst_cache;
1121 if (dst)
1122 dst_hold(dst);
1123 read_unlock(&sk->sk_dst_lock);
1124 return dst;
1125 }
1126
1127 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1128 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1129 {
1130 struct dst_entry *old_dst;
1131
1132 old_dst = sk->sk_dst_cache;
1133 sk->sk_dst_cache = dst;
1134 dst_release(old_dst);
1135 }
1136
1137 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1138 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1139 {
1140 write_lock(&sk->sk_dst_lock);
1141 __sk_dst_set(sk, dst);
1142 write_unlock(&sk->sk_dst_lock);
1143 }
1144
1145 static inline void
__sk_dst_reset(struct sock * sk)1146 __sk_dst_reset(struct sock *sk)
1147 {
1148 struct dst_entry *old_dst;
1149
1150 old_dst = sk->sk_dst_cache;
1151 sk->sk_dst_cache = NULL;
1152 dst_release(old_dst);
1153 }
1154
1155 static inline void
sk_dst_reset(struct sock * sk)1156 sk_dst_reset(struct sock *sk)
1157 {
1158 write_lock(&sk->sk_dst_lock);
1159 __sk_dst_reset(sk);
1160 write_unlock(&sk->sk_dst_lock);
1161 }
1162
1163 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1164
1165 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1166
sk_can_gso(const struct sock * sk)1167 static inline int sk_can_gso(const struct sock *sk)
1168 {
1169 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1170 }
1171
1172 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1173
skb_copy_to_page(struct sock * sk,char __user * from,struct sk_buff * skb,struct page * page,int off,int copy)1174 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1175 struct sk_buff *skb, struct page *page,
1176 int off, int copy)
1177 {
1178 if (skb->ip_summed == CHECKSUM_NONE) {
1179 int err = 0;
1180 __wsum csum = csum_and_copy_from_user(from,
1181 page_address(page) + off,
1182 copy, 0, &err);
1183 if (err)
1184 return err;
1185 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1186 } else if (copy_from_user(page_address(page) + off, from, copy))
1187 return -EFAULT;
1188
1189 skb->len += copy;
1190 skb->data_len += copy;
1191 skb->truesize += copy;
1192 sk->sk_wmem_queued += copy;
1193 sk_mem_charge(sk, copy);
1194 return 0;
1195 }
1196
1197 /*
1198 * Queue a received datagram if it will fit. Stream and sequenced
1199 * protocols can't normally use this as they need to fit buffers in
1200 * and play with them.
1201 *
1202 * Inlined as it's very short and called for pretty much every
1203 * packet ever received.
1204 */
1205
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)1206 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1207 {
1208 sock_hold(sk);
1209 skb->sk = sk;
1210 skb->destructor = sock_wfree;
1211 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1212 }
1213
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)1214 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1215 {
1216 skb->sk = sk;
1217 skb->destructor = sock_rfree;
1218 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1219 sk_mem_charge(sk, skb->truesize);
1220 }
1221
1222 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1223 unsigned long expires);
1224
1225 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1226
1227 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1228
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)1229 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1230 {
1231 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1232 number of warnings when compiling with -W --ANK
1233 */
1234 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1235 (unsigned)sk->sk_rcvbuf)
1236 return -ENOMEM;
1237 skb_set_owner_r(skb, sk);
1238 skb_queue_tail(&sk->sk_error_queue, skb);
1239 if (!sock_flag(sk, SOCK_DEAD))
1240 sk->sk_data_ready(sk, skb->len);
1241 return 0;
1242 }
1243
1244 /*
1245 * Recover an error report and clear atomically
1246 */
1247
sock_error(struct sock * sk)1248 static inline int sock_error(struct sock *sk)
1249 {
1250 int err;
1251 if (likely(!sk->sk_err))
1252 return 0;
1253 err = xchg(&sk->sk_err, 0);
1254 return -err;
1255 }
1256
sock_wspace(struct sock * sk)1257 static inline unsigned long sock_wspace(struct sock *sk)
1258 {
1259 int amt = 0;
1260
1261 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1262 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1263 if (amt < 0)
1264 amt = 0;
1265 }
1266 return amt;
1267 }
1268
sk_wake_async(struct sock * sk,int how,int band)1269 static inline void sk_wake_async(struct sock *sk, int how, int band)
1270 {
1271 if (sk->sk_socket && sk->sk_socket->fasync_list)
1272 sock_wake_async(sk->sk_socket, how, band);
1273 }
1274
1275 #define SOCK_MIN_SNDBUF 2048
1276 #define SOCK_MIN_RCVBUF 256
1277
sk_stream_moderate_sndbuf(struct sock * sk)1278 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1279 {
1280 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1281 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1282 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1283 }
1284 }
1285
1286 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1287
sk_stream_alloc_page(struct sock * sk)1288 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1289 {
1290 struct page *page = NULL;
1291
1292 page = alloc_pages(sk->sk_allocation, 0);
1293 if (!page) {
1294 sk->sk_prot->enter_memory_pressure(sk);
1295 sk_stream_moderate_sndbuf(sk);
1296 }
1297 return page;
1298 }
1299
1300 /*
1301 * Default write policy as shown to user space via poll/select/SIGIO
1302 */
sock_writeable(const struct sock * sk)1303 static inline int sock_writeable(const struct sock *sk)
1304 {
1305 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1306 }
1307
gfp_any(void)1308 static inline gfp_t gfp_any(void)
1309 {
1310 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1311 }
1312
sock_rcvtimeo(const struct sock * sk,int noblock)1313 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1314 {
1315 return noblock ? 0 : sk->sk_rcvtimeo;
1316 }
1317
sock_sndtimeo(const struct sock * sk,int noblock)1318 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1319 {
1320 return noblock ? 0 : sk->sk_sndtimeo;
1321 }
1322
sock_rcvlowat(const struct sock * sk,int waitall,int len)1323 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1324 {
1325 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1326 }
1327
1328 /* Alas, with timeout socket operations are not restartable.
1329 * Compare this to poll().
1330 */
sock_intr_errno(long timeo)1331 static inline int sock_intr_errno(long timeo)
1332 {
1333 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1334 }
1335
1336 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1337 struct sk_buff *skb);
1338
1339 static __inline__ void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1340 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1341 {
1342 ktime_t kt = skb->tstamp;
1343
1344 if (sock_flag(sk, SOCK_RCVTSTAMP))
1345 __sock_recv_timestamp(msg, sk, skb);
1346 else
1347 sk->sk_stamp = kt;
1348 }
1349
1350 /**
1351 * sk_eat_skb - Release a skb if it is no longer needed
1352 * @sk: socket to eat this skb from
1353 * @skb: socket buffer to eat
1354 * @copied_early: flag indicating whether DMA operations copied this data early
1355 *
1356 * This routine must be called with interrupts disabled or with the socket
1357 * locked so that the sk_buff queue operation is ok.
1358 */
1359 #ifdef CONFIG_NET_DMA
sk_eat_skb(struct sock * sk,struct sk_buff * skb,int copied_early)1360 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1361 {
1362 __skb_unlink(skb, &sk->sk_receive_queue);
1363 if (!copied_early)
1364 __kfree_skb(skb);
1365 else
1366 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1367 }
1368 #else
sk_eat_skb(struct sock * sk,struct sk_buff * skb,int copied_early)1369 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1370 {
1371 __skb_unlink(skb, &sk->sk_receive_queue);
1372 __kfree_skb(skb);
1373 }
1374 #endif
1375
1376 static inline
sock_net(const struct sock * sk)1377 struct net *sock_net(const struct sock *sk)
1378 {
1379 #ifdef CONFIG_NET_NS
1380 return sk->sk_net;
1381 #else
1382 return &init_net;
1383 #endif
1384 }
1385
1386 static inline
sock_net_set(struct sock * sk,struct net * net)1387 void sock_net_set(struct sock *sk, struct net *net)
1388 {
1389 #ifdef CONFIG_NET_NS
1390 sk->sk_net = net;
1391 #endif
1392 }
1393
1394 /*
1395 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1396 * They should not hold a referrence to a namespace in order to allow
1397 * to stop it.
1398 * Sockets after sk_change_net should be released using sk_release_kernel
1399 */
sk_change_net(struct sock * sk,struct net * net)1400 static inline void sk_change_net(struct sock *sk, struct net *net)
1401 {
1402 put_net(sock_net(sk));
1403 sock_net_set(sk, hold_net(net));
1404 }
1405
skb_steal_sock(struct sk_buff * skb)1406 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1407 {
1408 if (unlikely(skb->sk)) {
1409 struct sock *sk = skb->sk;
1410
1411 skb->destructor = NULL;
1412 skb->sk = NULL;
1413 return sk;
1414 }
1415 return NULL;
1416 }
1417
1418 extern void sock_enable_timestamp(struct sock *sk);
1419 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1420 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1421
1422 /*
1423 * Enable debug/info messages
1424 */
1425 extern int net_msg_warn;
1426 #define NETDEBUG(fmt, args...) \
1427 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1428
1429 #define LIMIT_NETDEBUG(fmt, args...) \
1430 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1431
1432 extern __u32 sysctl_wmem_max;
1433 extern __u32 sysctl_rmem_max;
1434
1435 extern void sk_init(void);
1436
1437 extern int sysctl_optmem_max;
1438
1439 extern __u32 sysctl_wmem_default;
1440 extern __u32 sysctl_rmem_default;
1441
1442 #endif /* _SOCK_H */
1443