1 /*
2 * 2.5 block I/O model
3 *
4 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public Licens
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 */
20 #ifndef __LINUX_BIO_H
21 #define __LINUX_BIO_H
22
23 #include <linux/highmem.h>
24 #include <linux/mempool.h>
25 #include <linux/ioprio.h>
26
27 #ifdef CONFIG_BLOCK
28
29 #include <asm/io.h>
30
31 #define BIO_DEBUG
32
33 #ifdef BIO_DEBUG
34 #define BIO_BUG_ON BUG_ON
35 #else
36 #define BIO_BUG_ON
37 #endif
38
39 #define BIO_MAX_PAGES 256
40 #define BIO_MAX_SIZE (BIO_MAX_PAGES << PAGE_CACHE_SHIFT)
41 #define BIO_MAX_SECTORS (BIO_MAX_SIZE >> 9)
42
43 /*
44 * was unsigned short, but we might as well be ready for > 64kB I/O pages
45 */
46 struct bio_vec {
47 struct page *bv_page;
48 unsigned int bv_len;
49 unsigned int bv_offset;
50 };
51
52 struct bio_set;
53 struct bio;
54 struct bio_integrity_payload;
55 typedef void (bio_end_io_t) (struct bio *, int);
56 typedef void (bio_destructor_t) (struct bio *);
57
58 /*
59 * main unit of I/O for the block layer and lower layers (ie drivers and
60 * stacking drivers)
61 */
62 struct bio {
63 sector_t bi_sector; /* device address in 512 byte
64 sectors */
65 struct bio *bi_next; /* request queue link */
66 struct block_device *bi_bdev;
67 unsigned long bi_flags; /* status, command, etc */
68 unsigned long bi_rw; /* bottom bits READ/WRITE,
69 * top bits priority
70 */
71
72 unsigned short bi_vcnt; /* how many bio_vec's */
73 unsigned short bi_idx; /* current index into bvl_vec */
74
75 /* Number of segments in this BIO after
76 * physical address coalescing is performed.
77 */
78 unsigned int bi_phys_segments;
79
80 unsigned int bi_size; /* residual I/O count */
81
82 /*
83 * To keep track of the max segment size, we account for the
84 * sizes of the first and last mergeable segments in this bio.
85 */
86 unsigned int bi_seg_front_size;
87 unsigned int bi_seg_back_size;
88
89 unsigned int bi_max_vecs; /* max bvl_vecs we can hold */
90
91 unsigned int bi_comp_cpu; /* completion CPU */
92
93 atomic_t bi_cnt; /* pin count */
94
95 struct bio_vec *bi_io_vec; /* the actual vec list */
96
97 bio_end_io_t *bi_end_io;
98
99 void *bi_private;
100 #if defined(CONFIG_BLK_DEV_INTEGRITY)
101 struct bio_integrity_payload *bi_integrity; /* data integrity */
102 #endif
103
104 bio_destructor_t *bi_destructor; /* destructor */
105
106 /*
107 * We can inline a number of vecs at the end of the bio, to avoid
108 * double allocations for a small number of bio_vecs. This member
109 * MUST obviously be kept at the very end of the bio.
110 */
111 struct bio_vec bi_inline_vecs[0];
112 };
113
114 /*
115 * bio flags
116 */
117 #define BIO_UPTODATE 0 /* ok after I/O completion */
118 #define BIO_RW_BLOCK 1 /* RW_AHEAD set, and read/write would block */
119 #define BIO_EOF 2 /* out-out-bounds error */
120 #define BIO_SEG_VALID 3 /* bi_phys_segments valid */
121 #define BIO_CLONED 4 /* doesn't own data */
122 #define BIO_BOUNCED 5 /* bio is a bounce bio */
123 #define BIO_USER_MAPPED 6 /* contains user pages */
124 #define BIO_EOPNOTSUPP 7 /* not supported */
125 #define BIO_CPU_AFFINE 8 /* complete bio on same CPU as submitted */
126 #define BIO_NULL_MAPPED 9 /* contains invalid user pages */
127 #define BIO_FS_INTEGRITY 10 /* fs owns integrity data, not block layer */
128 #define BIO_QUIET 11 /* Make BIO Quiet */
129 #define bio_flagged(bio, flag) ((bio)->bi_flags & (1 << (flag)))
130
131 /*
132 * top 4 bits of bio flags indicate the pool this bio came from
133 */
134 #define BIO_POOL_BITS (4)
135 #define BIO_POOL_OFFSET (BITS_PER_LONG - BIO_POOL_BITS)
136 #define BIO_POOL_MASK (1UL << BIO_POOL_OFFSET)
137 #define BIO_POOL_IDX(bio) ((bio)->bi_flags >> BIO_POOL_OFFSET)
138
139 /*
140 * bio bi_rw flags
141 *
142 * bit 0 -- data direction
143 * If not set, bio is a read from device. If set, it's a write to device.
144 * bit 1 -- rw-ahead when set
145 * bit 2 -- barrier
146 * Insert a serialization point in the IO queue, forcing previously
147 * submitted IO to be completed before this one is issued.
148 * bit 3 -- synchronous I/O hint: the block layer will unplug immediately
149 * Note that this does NOT indicate that the IO itself is sync, just
150 * that the block layer will not postpone issue of this IO by plugging.
151 * bit 4 -- metadata request
152 * Used for tracing to differentiate metadata and data IO. May also
153 * get some preferential treatment in the IO scheduler
154 * bit 5 -- discard sectors
155 * Informs the lower level device that this range of sectors is no longer
156 * used by the file system and may thus be freed by the device. Used
157 * for flash based storage.
158 * bit 6 -- fail fast device errors
159 * bit 7 -- fail fast transport errors
160 * bit 8 -- fail fast driver errors
161 * Don't want driver retries for any fast fail whatever the reason.
162 */
163 #define BIO_RW 0 /* Must match RW in req flags (blkdev.h) */
164 #define BIO_RW_AHEAD 1 /* Must match FAILFAST in req flags */
165 #define BIO_RW_BARRIER 2
166 #define BIO_RW_SYNCIO 3
167 #define BIO_RW_UNPLUG 4
168 #define BIO_RW_META 5
169 #define BIO_RW_DISCARD 6
170 #define BIO_RW_FAILFAST_DEV 7
171 #define BIO_RW_FAILFAST_TRANSPORT 8
172 #define BIO_RW_FAILFAST_DRIVER 9
173
174 #define bio_rw_flagged(bio, flag) ((bio)->bi_rw & (1 << (flag)))
175
176 /*
177 * Old defines, these should eventually be replaced by direct usage of
178 * bio_rw_flagged()
179 */
180 #define bio_barrier(bio) bio_rw_flagged(bio, BIO_RW_BARRIER)
181 #define bio_sync(bio) bio_rw_flagged(bio, BIO_RW_SYNCIO)
182 #define bio_unplug(bio) bio_rw_flagged(bio, BIO_RW_UNPLUG)
183 #define bio_failfast_dev(bio) bio_rw_flagged(bio, BIO_RW_FAILFAST_DEV)
184 #define bio_failfast_transport(bio) \
185 bio_rw_flagged(bio, BIO_RW_FAILFAST_TRANSPORT)
186 #define bio_failfast_driver(bio) \
187 bio_rw_flagged(bio, BIO_RW_FAILFAST_DRIVER)
188 #define bio_rw_ahead(bio) bio_rw_flagged(bio, BIO_RW_AHEAD)
189 #define bio_rw_meta(bio) bio_rw_flagged(bio, BIO_RW_META)
190 #define bio_discard(bio) bio_rw_flagged(bio, BIO_RW_DISCARD)
191
192 /*
193 * upper 16 bits of bi_rw define the io priority of this bio
194 */
195 #define BIO_PRIO_SHIFT (8 * sizeof(unsigned long) - IOPRIO_BITS)
196 #define bio_prio(bio) ((bio)->bi_rw >> BIO_PRIO_SHIFT)
197 #define bio_prio_valid(bio) ioprio_valid(bio_prio(bio))
198
199 #define bio_set_prio(bio, prio) do { \
200 WARN_ON(prio >= (1 << IOPRIO_BITS)); \
201 (bio)->bi_rw &= ((1UL << BIO_PRIO_SHIFT) - 1); \
202 (bio)->bi_rw |= ((unsigned long) (prio) << BIO_PRIO_SHIFT); \
203 } while (0)
204
205 /*
206 * various member access, note that bio_data should of course not be used
207 * on highmem page vectors
208 */
209 #define bio_iovec_idx(bio, idx) (&((bio)->bi_io_vec[(idx)]))
210 #define bio_iovec(bio) bio_iovec_idx((bio), (bio)->bi_idx)
211 #define bio_page(bio) bio_iovec((bio))->bv_page
212 #define bio_offset(bio) bio_iovec((bio))->bv_offset
213 #define bio_segments(bio) ((bio)->bi_vcnt - (bio)->bi_idx)
214 #define bio_sectors(bio) ((bio)->bi_size >> 9)
215 #define bio_empty_barrier(bio) (bio_barrier(bio) && !bio_has_data(bio) && !bio_discard(bio))
216
bio_cur_sectors(struct bio * bio)217 static inline unsigned int bio_cur_sectors(struct bio *bio)
218 {
219 if (bio->bi_vcnt)
220 return bio_iovec(bio)->bv_len >> 9;
221 else /* dataless requests such as discard */
222 return bio->bi_size >> 9;
223 }
224
bio_data(struct bio * bio)225 static inline void *bio_data(struct bio *bio)
226 {
227 if (bio->bi_vcnt)
228 return page_address(bio_page(bio)) + bio_offset(bio);
229
230 return NULL;
231 }
232
bio_has_allocated_vec(struct bio * bio)233 static inline int bio_has_allocated_vec(struct bio *bio)
234 {
235 return bio->bi_io_vec && bio->bi_io_vec != bio->bi_inline_vecs;
236 }
237
238 /*
239 * will die
240 */
241 #define bio_to_phys(bio) (page_to_phys(bio_page((bio))) + (unsigned long) bio_offset((bio)))
242 #define bvec_to_phys(bv) (page_to_phys((bv)->bv_page) + (unsigned long) (bv)->bv_offset)
243
244 /*
245 * queues that have highmem support enabled may still need to revert to
246 * PIO transfers occasionally and thus map high pages temporarily. For
247 * permanent PIO fall back, user is probably better off disabling highmem
248 * I/O completely on that queue (see ide-dma for example)
249 */
250 #define __bio_kmap_atomic(bio, idx, kmtype) \
251 (kmap_atomic(bio_iovec_idx((bio), (idx))->bv_page, kmtype) + \
252 bio_iovec_idx((bio), (idx))->bv_offset)
253
254 #define __bio_kunmap_atomic(addr, kmtype) kunmap_atomic(addr, kmtype)
255
256 /*
257 * merge helpers etc
258 */
259
260 #define __BVEC_END(bio) bio_iovec_idx((bio), (bio)->bi_vcnt - 1)
261 #define __BVEC_START(bio) bio_iovec_idx((bio), (bio)->bi_idx)
262
263 /* Default implementation of BIOVEC_PHYS_MERGEABLE */
264 #define __BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
265 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
266
267 /*
268 * allow arch override, for eg virtualized architectures (put in asm/io.h)
269 */
270 #ifndef BIOVEC_PHYS_MERGEABLE
271 #define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
272 __BIOVEC_PHYS_MERGEABLE(vec1, vec2)
273 #endif
274
275 #define __BIO_SEG_BOUNDARY(addr1, addr2, mask) \
276 (((addr1) | (mask)) == (((addr2) - 1) | (mask)))
277 #define BIOVEC_SEG_BOUNDARY(q, b1, b2) \
278 __BIO_SEG_BOUNDARY(bvec_to_phys((b1)), bvec_to_phys((b2)) + (b2)->bv_len, (q)->seg_boundary_mask)
279 #define BIO_SEG_BOUNDARY(q, b1, b2) \
280 BIOVEC_SEG_BOUNDARY((q), __BVEC_END((b1)), __BVEC_START((b2)))
281
282 #define bio_io_error(bio) bio_endio((bio), -EIO)
283
284 /*
285 * drivers should not use the __ version unless they _really_ want to
286 * run through the entire bio and not just pending pieces
287 */
288 #define __bio_for_each_segment(bvl, bio, i, start_idx) \
289 for (bvl = bio_iovec_idx((bio), (start_idx)), i = (start_idx); \
290 i < (bio)->bi_vcnt; \
291 bvl++, i++)
292
293 #define bio_for_each_segment(bvl, bio, i) \
294 __bio_for_each_segment(bvl, bio, i, (bio)->bi_idx)
295
296 /*
297 * get a reference to a bio, so it won't disappear. the intended use is
298 * something like:
299 *
300 * bio_get(bio);
301 * submit_bio(rw, bio);
302 * if (bio->bi_flags ...)
303 * do_something
304 * bio_put(bio);
305 *
306 * without the bio_get(), it could potentially complete I/O before submit_bio
307 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
308 * runs
309 */
310 #define bio_get(bio) atomic_inc(&(bio)->bi_cnt)
311
312 #if defined(CONFIG_BLK_DEV_INTEGRITY)
313 /*
314 * bio integrity payload
315 */
316 struct bio_integrity_payload {
317 struct bio *bip_bio; /* parent bio */
318 struct bio_vec *bip_vec; /* integrity data vector */
319
320 sector_t bip_sector; /* virtual start sector */
321
322 void *bip_buf; /* generated integrity data */
323 bio_end_io_t *bip_end_io; /* saved I/O completion fn */
324
325 unsigned int bip_size;
326
327 unsigned short bip_pool; /* pool the ivec came from */
328 unsigned short bip_vcnt; /* # of integrity bio_vecs */
329 unsigned short bip_idx; /* current bip_vec index */
330
331 struct work_struct bip_work; /* I/O completion */
332 };
333 #endif /* CONFIG_BLK_DEV_INTEGRITY */
334
335 /*
336 * A bio_pair is used when we need to split a bio.
337 * This can only happen for a bio that refers to just one
338 * page of data, and in the unusual situation when the
339 * page crosses a chunk/device boundary
340 *
341 * The address of the master bio is stored in bio1.bi_private
342 * The address of the pool the pair was allocated from is stored
343 * in bio2.bi_private
344 */
345 struct bio_pair {
346 struct bio bio1, bio2;
347 struct bio_vec bv1, bv2;
348 #if defined(CONFIG_BLK_DEV_INTEGRITY)
349 struct bio_integrity_payload bip1, bip2;
350 struct bio_vec iv1, iv2;
351 #endif
352 atomic_t cnt;
353 int error;
354 };
355 extern struct bio_pair *bio_split(struct bio *bi, int first_sectors);
356 extern void bio_pair_release(struct bio_pair *dbio);
357
358 extern struct bio_set *bioset_create(unsigned int, unsigned int);
359 extern void bioset_free(struct bio_set *);
360
361 extern struct bio *bio_alloc(gfp_t, int);
362 extern struct bio *bio_kmalloc(gfp_t, int);
363 extern struct bio *bio_alloc_bioset(gfp_t, int, struct bio_set *);
364 extern void bio_put(struct bio *);
365 extern void bio_free(struct bio *, struct bio_set *);
366
367 extern void bio_endio(struct bio *, int);
368 struct request_queue;
369 extern int bio_phys_segments(struct request_queue *, struct bio *);
370
371 extern void __bio_clone(struct bio *, struct bio *);
372 extern struct bio *bio_clone(struct bio *, gfp_t);
373
374 extern void bio_init(struct bio *);
375
376 extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int);
377 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
378 unsigned int, unsigned int);
379 extern int bio_get_nr_vecs(struct block_device *);
380 extern sector_t bio_sector_offset(struct bio *, unsigned short, unsigned int);
381 extern struct bio *bio_map_user(struct request_queue *, struct block_device *,
382 unsigned long, unsigned int, int, gfp_t);
383 struct sg_iovec;
384 struct rq_map_data;
385 extern struct bio *bio_map_user_iov(struct request_queue *,
386 struct block_device *,
387 struct sg_iovec *, int, int, gfp_t);
388 extern void bio_unmap_user(struct bio *);
389 extern struct bio *bio_map_kern(struct request_queue *, void *, unsigned int,
390 gfp_t);
391 extern struct bio *bio_copy_kern(struct request_queue *, void *, unsigned int,
392 gfp_t, int);
393 extern void bio_set_pages_dirty(struct bio *bio);
394 extern void bio_check_pages_dirty(struct bio *bio);
395 extern struct bio *bio_copy_user(struct request_queue *, struct rq_map_data *,
396 unsigned long, unsigned int, int, gfp_t);
397 extern struct bio *bio_copy_user_iov(struct request_queue *,
398 struct rq_map_data *, struct sg_iovec *,
399 int, int, gfp_t);
400 extern int bio_uncopy_user(struct bio *);
401 void zero_fill_bio(struct bio *bio);
402 extern struct bio_vec *bvec_alloc_bs(gfp_t, int, unsigned long *, struct bio_set *);
403 extern void bvec_free_bs(struct bio_set *, struct bio_vec *, unsigned int);
404 extern unsigned int bvec_nr_vecs(unsigned short idx);
405
406 /*
407 * Allow queuer to specify a completion CPU for this bio
408 */
bio_set_completion_cpu(struct bio * bio,unsigned int cpu)409 static inline void bio_set_completion_cpu(struct bio *bio, unsigned int cpu)
410 {
411 bio->bi_comp_cpu = cpu;
412 }
413
414 /*
415 * bio_set is used to allow other portions of the IO system to
416 * allocate their own private memory pools for bio and iovec structures.
417 * These memory pools in turn all allocate from the bio_slab
418 * and the bvec_slabs[].
419 */
420 #define BIO_POOL_SIZE 2
421 #define BIOVEC_NR_POOLS 6
422 #define BIOVEC_MAX_IDX (BIOVEC_NR_POOLS - 1)
423
424 struct bio_set {
425 struct kmem_cache *bio_slab;
426 unsigned int front_pad;
427
428 mempool_t *bio_pool;
429 #if defined(CONFIG_BLK_DEV_INTEGRITY)
430 mempool_t *bio_integrity_pool;
431 #endif
432 mempool_t *bvec_pool;
433 };
434
435 struct biovec_slab {
436 int nr_vecs;
437 char *name;
438 struct kmem_cache *slab;
439 };
440
441 extern struct bio_set *fs_bio_set;
442 extern struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly;
443
444 /*
445 * a small number of entries is fine, not going to be performance critical.
446 * basically we just need to survive
447 */
448 #define BIO_SPLIT_ENTRIES 2
449
450 #ifdef CONFIG_HIGHMEM
451 /*
452 * remember never ever reenable interrupts between a bvec_kmap_irq and
453 * bvec_kunmap_irq!
454 *
455 * This function MUST be inlined - it plays with the CPU interrupt flags.
456 */
bvec_kmap_irq(struct bio_vec * bvec,unsigned long * flags)457 static __always_inline char *bvec_kmap_irq(struct bio_vec *bvec,
458 unsigned long *flags)
459 {
460 unsigned long addr;
461
462 /*
463 * might not be a highmem page, but the preempt/irq count
464 * balancing is a lot nicer this way
465 */
466 local_irq_save(*flags);
467 addr = (unsigned long) kmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ);
468
469 BUG_ON(addr & ~PAGE_MASK);
470
471 return (char *) addr + bvec->bv_offset;
472 }
473
bvec_kunmap_irq(char * buffer,unsigned long * flags)474 static __always_inline void bvec_kunmap_irq(char *buffer,
475 unsigned long *flags)
476 {
477 unsigned long ptr = (unsigned long) buffer & PAGE_MASK;
478
479 kunmap_atomic((void *) ptr, KM_BIO_SRC_IRQ);
480 local_irq_restore(*flags);
481 }
482
483 #else
484 #define bvec_kmap_irq(bvec, flags) (page_address((bvec)->bv_page) + (bvec)->bv_offset)
485 #define bvec_kunmap_irq(buf, flags) do { *(flags) = 0; } while (0)
486 #endif
487
__bio_kmap_irq(struct bio * bio,unsigned short idx,unsigned long * flags)488 static inline char *__bio_kmap_irq(struct bio *bio, unsigned short idx,
489 unsigned long *flags)
490 {
491 return bvec_kmap_irq(bio_iovec_idx(bio, idx), flags);
492 }
493 #define __bio_kunmap_irq(buf, flags) bvec_kunmap_irq(buf, flags)
494
495 #define bio_kmap_irq(bio, flags) \
496 __bio_kmap_irq((bio), (bio)->bi_idx, (flags))
497 #define bio_kunmap_irq(buf,flags) __bio_kunmap_irq(buf, flags)
498
499 /*
500 * Check whether this bio carries any data or not. A NULL bio is allowed.
501 */
bio_has_data(struct bio * bio)502 static inline int bio_has_data(struct bio *bio)
503 {
504 return bio && bio->bi_io_vec != NULL;
505 }
506
507 #if defined(CONFIG_BLK_DEV_INTEGRITY)
508
509 #define bip_vec_idx(bip, idx) (&(bip->bip_vec[(idx)]))
510 #define bip_vec(bip) bip_vec_idx(bip, 0)
511
512 #define __bip_for_each_vec(bvl, bip, i, start_idx) \
513 for (bvl = bip_vec_idx((bip), (start_idx)), i = (start_idx); \
514 i < (bip)->bip_vcnt; \
515 bvl++, i++)
516
517 #define bip_for_each_vec(bvl, bip, i) \
518 __bip_for_each_vec(bvl, bip, i, (bip)->bip_idx)
519
520 #define bio_integrity(bio) (bio->bi_integrity != NULL)
521
522 extern struct bio_integrity_payload *bio_integrity_alloc_bioset(struct bio *, gfp_t, unsigned int, struct bio_set *);
523 extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int);
524 extern void bio_integrity_free(struct bio *, struct bio_set *);
525 extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int);
526 extern int bio_integrity_enabled(struct bio *bio);
527 extern int bio_integrity_set_tag(struct bio *, void *, unsigned int);
528 extern int bio_integrity_get_tag(struct bio *, void *, unsigned int);
529 extern int bio_integrity_prep(struct bio *);
530 extern void bio_integrity_endio(struct bio *, int);
531 extern void bio_integrity_advance(struct bio *, unsigned int);
532 extern void bio_integrity_trim(struct bio *, unsigned int, unsigned int);
533 extern void bio_integrity_split(struct bio *, struct bio_pair *, int);
534 extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t, struct bio_set *);
535 extern int bioset_integrity_create(struct bio_set *, int);
536 extern void bioset_integrity_free(struct bio_set *);
537 extern void bio_integrity_init_slab(void);
538
539 #else /* CONFIG_BLK_DEV_INTEGRITY */
540
541 #define bio_integrity(a) (0)
542 #define bioset_integrity_create(a, b) (0)
543 #define bio_integrity_prep(a) (0)
544 #define bio_integrity_enabled(a) (0)
545 #define bio_integrity_clone(a, b, c,d ) (0)
546 #define bioset_integrity_free(a) do { } while (0)
547 #define bio_integrity_free(a, b) do { } while (0)
548 #define bio_integrity_endio(a, b) do { } while (0)
549 #define bio_integrity_advance(a, b) do { } while (0)
550 #define bio_integrity_trim(a, b, c) do { } while (0)
551 #define bio_integrity_split(a, b, c) do { } while (0)
552 #define bio_integrity_set_tag(a, b, c) do { } while (0)
553 #define bio_integrity_get_tag(a, b, c) do { } while (0)
554 #define bio_integrity_init_slab(a) do { } while (0)
555
556 #endif /* CONFIG_BLK_DEV_INTEGRITY */
557
558 #endif /* CONFIG_BLOCK */
559 #endif /* __LINUX_BIO_H */
560