• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 
55 #include <linux/filter.h>
56 #include <linux/rculist_nulls.h>
57 
58 #include <asm/atomic.h>
59 #include <net/dst.h>
60 #include <net/checksum.h>
61 
62 /*
63  * This structure really needs to be cleaned up.
64  * Most of it is for TCP, and not used by any of
65  * the other protocols.
66  */
67 
68 /* Define this to get the SOCK_DBG debugging facility. */
69 #define SOCK_DEBUGGING
70 #ifdef SOCK_DEBUGGING
71 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
72 					printk(KERN_DEBUG msg); } while (0)
73 #else
74 /* Validate arguments and do nothing */
75 static void inline int __attribute__ ((format (printf, 2, 3)))
SOCK_DEBUG(struct sock * sk,const char * msg,...)76 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
77 {
78 }
79 #endif
80 
81 /* This is the per-socket lock.  The spinlock provides a synchronization
82  * between user contexts and software interrupt processing, whereas the
83  * mini-semaphore synchronizes multiple users amongst themselves.
84  */
85 typedef struct {
86 	spinlock_t		slock;
87 	int			owned;
88 	wait_queue_head_t	wq;
89 	/*
90 	 * We express the mutex-alike socket_lock semantics
91 	 * to the lock validator by explicitly managing
92 	 * the slock as a lock variant (in addition to
93 	 * the slock itself):
94 	 */
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 	struct lockdep_map dep_map;
97 #endif
98 } socket_lock_t;
99 
100 struct sock;
101 struct proto;
102 struct net;
103 
104 /**
105  *	struct sock_common - minimal network layer representation of sockets
106  *	@skc_family: network address family
107  *	@skc_state: Connection state
108  *	@skc_reuse: %SO_REUSEADDR setting
109  *	@skc_bound_dev_if: bound device index if != 0
110  *	@skc_node: main hash linkage for various protocol lookup tables
111  *	@skc_nulls_node: main hash linkage for UDP/UDP-Lite protocol
112  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
113  *	@skc_refcnt: reference count
114  *	@skc_hash: hash value used with various protocol lookup tables
115  *	@skc_prot: protocol handlers inside a network family
116  *	@skc_net: reference to the network namespace of this socket
117  *
118  *	This is the minimal network layer representation of sockets, the header
119  *	for struct sock and struct inet_timewait_sock.
120  */
121 struct sock_common {
122 	unsigned short		skc_family;
123 	volatile unsigned char	skc_state;
124 	unsigned char		skc_reuse;
125 	int			skc_bound_dev_if;
126 	union {
127 		struct hlist_node	skc_node;
128 		struct hlist_nulls_node skc_nulls_node;
129 	};
130 	struct hlist_node	skc_bind_node;
131 	atomic_t		skc_refcnt;
132 	unsigned int		skc_hash;
133 	struct proto		*skc_prot;
134 #ifdef CONFIG_NET_NS
135 	struct net	 	*skc_net;
136 #endif
137 };
138 
139 /**
140   *	struct sock - network layer representation of sockets
141   *	@__sk_common: shared layout with inet_timewait_sock
142   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
143   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
144   *	@sk_lock:	synchronizer
145   *	@sk_rcvbuf: size of receive buffer in bytes
146   *	@sk_sleep: sock wait queue
147   *	@sk_dst_cache: destination cache
148   *	@sk_dst_lock: destination cache lock
149   *	@sk_policy: flow policy
150   *	@sk_rmem_alloc: receive queue bytes committed
151   *	@sk_receive_queue: incoming packets
152   *	@sk_wmem_alloc: transmit queue bytes committed
153   *	@sk_write_queue: Packet sending queue
154   *	@sk_async_wait_queue: DMA copied packets
155   *	@sk_omem_alloc: "o" is "option" or "other"
156   *	@sk_wmem_queued: persistent queue size
157   *	@sk_forward_alloc: space allocated forward
158   *	@sk_allocation: allocation mode
159   *	@sk_sndbuf: size of send buffer in bytes
160   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
161   *		   %SO_OOBINLINE settings
162   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
163   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
164   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
165   *	@sk_gso_max_size: Maximum GSO segment size to build
166   *	@sk_lingertime: %SO_LINGER l_linger setting
167   *	@sk_backlog: always used with the per-socket spinlock held
168   *	@sk_callback_lock: used with the callbacks in the end of this struct
169   *	@sk_error_queue: rarely used
170   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
171   *			  IPV6_ADDRFORM for instance)
172   *	@sk_err: last error
173   *	@sk_err_soft: errors that don't cause failure but are the cause of a
174   *		      persistent failure not just 'timed out'
175   *	@sk_drops: raw/udp drops counter
176   *	@sk_ack_backlog: current listen backlog
177   *	@sk_max_ack_backlog: listen backlog set in listen()
178   *	@sk_priority: %SO_PRIORITY setting
179   *	@sk_type: socket type (%SOCK_STREAM, etc)
180   *	@sk_protocol: which protocol this socket belongs in this network family
181   *	@sk_peercred: %SO_PEERCRED setting
182   *	@sk_rcvlowat: %SO_RCVLOWAT setting
183   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
184   *	@sk_sndtimeo: %SO_SNDTIMEO setting
185   *	@sk_filter: socket filtering instructions
186   *	@sk_protinfo: private area, net family specific, when not using slab
187   *	@sk_timer: sock cleanup timer
188   *	@sk_stamp: time stamp of last packet received
189   *	@sk_socket: Identd and reporting IO signals
190   *	@sk_user_data: RPC layer private data
191   *	@sk_sndmsg_page: cached page for sendmsg
192   *	@sk_sndmsg_off: cached offset for sendmsg
193   *	@sk_send_head: front of stuff to transmit
194   *	@sk_security: used by security modules
195   *	@sk_mark: generic packet mark
196   *	@sk_write_pending: a write to stream socket waits to start
197   *	@sk_state_change: callback to indicate change in the state of the sock
198   *	@sk_data_ready: callback to indicate there is data to be processed
199   *	@sk_write_space: callback to indicate there is bf sending space available
200   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
201   *	@sk_backlog_rcv: callback to process the backlog
202   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
203  */
204 struct sock {
205 	/*
206 	 * Now struct inet_timewait_sock also uses sock_common, so please just
207 	 * don't add nothing before this first member (__sk_common) --acme
208 	 */
209 	struct sock_common	__sk_common;
210 #define sk_family		__sk_common.skc_family
211 #define sk_state		__sk_common.skc_state
212 #define sk_reuse		__sk_common.skc_reuse
213 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
214 #define sk_node			__sk_common.skc_node
215 #define sk_nulls_node		__sk_common.skc_nulls_node
216 #define sk_bind_node		__sk_common.skc_bind_node
217 #define sk_refcnt		__sk_common.skc_refcnt
218 #define sk_hash			__sk_common.skc_hash
219 #define sk_prot			__sk_common.skc_prot
220 #define sk_net			__sk_common.skc_net
221 	unsigned char		sk_shutdown : 2,
222 				sk_no_check : 2,
223 				sk_userlocks : 4;
224 	unsigned char		sk_protocol;
225 	unsigned short		sk_type;
226 	int			sk_rcvbuf;
227 	socket_lock_t		sk_lock;
228 	/*
229 	 * The backlog queue is special, it is always used with
230 	 * the per-socket spinlock held and requires low latency
231 	 * access. Therefore we special case it's implementation.
232 	 */
233 	struct {
234 		struct sk_buff *head;
235 		struct sk_buff *tail;
236 	} sk_backlog;
237 	wait_queue_head_t	*sk_sleep;
238 	struct dst_entry	*sk_dst_cache;
239 #ifdef CONFIG_XFRM
240 	struct xfrm_policy	*sk_policy[2];
241 #endif
242 	rwlock_t		sk_dst_lock;
243 	atomic_t		sk_rmem_alloc;
244 	atomic_t		sk_wmem_alloc;
245 	atomic_t		sk_omem_alloc;
246 	int			sk_sndbuf;
247 	struct sk_buff_head	sk_receive_queue;
248 	struct sk_buff_head	sk_write_queue;
249 #ifdef CONFIG_NET_DMA
250 	struct sk_buff_head	sk_async_wait_queue;
251 #endif
252 	int			sk_wmem_queued;
253 	int			sk_forward_alloc;
254 	gfp_t			sk_allocation;
255 	int			sk_route_caps;
256 	int			sk_gso_type;
257 	unsigned int		sk_gso_max_size;
258 	int			sk_rcvlowat;
259 	unsigned long 		sk_flags;
260 	unsigned long	        sk_lingertime;
261 	struct sk_buff_head	sk_error_queue;
262 	struct proto		*sk_prot_creator;
263 	rwlock_t		sk_callback_lock;
264 	int			sk_err,
265 				sk_err_soft;
266 	atomic_t		sk_drops;
267 	unsigned short		sk_ack_backlog;
268 	unsigned short		sk_max_ack_backlog;
269 	__u32			sk_priority;
270 	struct ucred		sk_peercred;
271 	long			sk_rcvtimeo;
272 	long			sk_sndtimeo;
273 	struct sk_filter      	*sk_filter;
274 	void			*sk_protinfo;
275 	struct timer_list	sk_timer;
276 	ktime_t			sk_stamp;
277 	struct socket		*sk_socket;
278 	void			*sk_user_data;
279 	struct page		*sk_sndmsg_page;
280 	struct sk_buff		*sk_send_head;
281 	__u32			sk_sndmsg_off;
282 	int			sk_write_pending;
283 #ifdef CONFIG_SECURITY
284 	void			*sk_security;
285 #endif
286 	__u32			sk_mark;
287 	/* XXX 4 bytes hole on 64 bit */
288 	void			(*sk_state_change)(struct sock *sk);
289 	void			(*sk_data_ready)(struct sock *sk, int bytes);
290 	void			(*sk_write_space)(struct sock *sk);
291 	void			(*sk_error_report)(struct sock *sk);
292   	int			(*sk_backlog_rcv)(struct sock *sk,
293 						  struct sk_buff *skb);
294 	void                    (*sk_destruct)(struct sock *sk);
295 };
296 
297 /*
298  * Hashed lists helper routines
299  */
__sk_head(const struct hlist_head * head)300 static inline struct sock *__sk_head(const struct hlist_head *head)
301 {
302 	return hlist_entry(head->first, struct sock, sk_node);
303 }
304 
sk_head(const struct hlist_head * head)305 static inline struct sock *sk_head(const struct hlist_head *head)
306 {
307 	return hlist_empty(head) ? NULL : __sk_head(head);
308 }
309 
__sk_nulls_head(const struct hlist_nulls_head * head)310 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
311 {
312 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
313 }
314 
sk_nulls_head(const struct hlist_nulls_head * head)315 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
316 {
317 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
318 }
319 
sk_next(const struct sock * sk)320 static inline struct sock *sk_next(const struct sock *sk)
321 {
322 	return sk->sk_node.next ?
323 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
324 }
325 
sk_nulls_next(const struct sock * sk)326 static inline struct sock *sk_nulls_next(const struct sock *sk)
327 {
328 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
329 		hlist_nulls_entry(sk->sk_nulls_node.next,
330 				  struct sock, sk_nulls_node) :
331 		NULL;
332 }
333 
sk_unhashed(const struct sock * sk)334 static inline int sk_unhashed(const struct sock *sk)
335 {
336 	return hlist_unhashed(&sk->sk_node);
337 }
338 
sk_hashed(const struct sock * sk)339 static inline int sk_hashed(const struct sock *sk)
340 {
341 	return !sk_unhashed(sk);
342 }
343 
sk_node_init(struct hlist_node * node)344 static __inline__ void sk_node_init(struct hlist_node *node)
345 {
346 	node->pprev = NULL;
347 }
348 
sk_nulls_node_init(struct hlist_nulls_node * node)349 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
350 {
351 	node->pprev = NULL;
352 }
353 
__sk_del_node(struct sock * sk)354 static __inline__ void __sk_del_node(struct sock *sk)
355 {
356 	__hlist_del(&sk->sk_node);
357 }
358 
__sk_del_node_init(struct sock * sk)359 static __inline__ int __sk_del_node_init(struct sock *sk)
360 {
361 	if (sk_hashed(sk)) {
362 		__sk_del_node(sk);
363 		sk_node_init(&sk->sk_node);
364 		return 1;
365 	}
366 	return 0;
367 }
368 
369 /* Grab socket reference count. This operation is valid only
370    when sk is ALREADY grabbed f.e. it is found in hash table
371    or a list and the lookup is made under lock preventing hash table
372    modifications.
373  */
374 
sock_hold(struct sock * sk)375 static inline void sock_hold(struct sock *sk)
376 {
377 	atomic_inc(&sk->sk_refcnt);
378 }
379 
380 /* Ungrab socket in the context, which assumes that socket refcnt
381    cannot hit zero, f.e. it is true in context of any socketcall.
382  */
__sock_put(struct sock * sk)383 static inline void __sock_put(struct sock *sk)
384 {
385 	atomic_dec(&sk->sk_refcnt);
386 }
387 
sk_del_node_init(struct sock * sk)388 static __inline__ int sk_del_node_init(struct sock *sk)
389 {
390 	int rc = __sk_del_node_init(sk);
391 
392 	if (rc) {
393 		/* paranoid for a while -acme */
394 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
395 		__sock_put(sk);
396 	}
397 	return rc;
398 }
399 
__sk_nulls_del_node_init_rcu(struct sock * sk)400 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
401 {
402 	if (sk_hashed(sk)) {
403 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
404 		return 1;
405 	}
406 	return 0;
407 }
408 
sk_nulls_del_node_init_rcu(struct sock * sk)409 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
410 {
411 	int rc = __sk_nulls_del_node_init_rcu(sk);
412 
413 	if (rc) {
414 		/* paranoid for a while -acme */
415 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
416 		__sock_put(sk);
417 	}
418 	return rc;
419 }
420 
__sk_add_node(struct sock * sk,struct hlist_head * list)421 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
422 {
423 	hlist_add_head(&sk->sk_node, list);
424 }
425 
sk_add_node(struct sock * sk,struct hlist_head * list)426 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
427 {
428 	sock_hold(sk);
429 	__sk_add_node(sk, list);
430 }
431 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)432 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
433 {
434 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
435 }
436 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)437 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
438 {
439 	sock_hold(sk);
440 	__sk_nulls_add_node_rcu(sk, list);
441 }
442 
__sk_del_bind_node(struct sock * sk)443 static __inline__ void __sk_del_bind_node(struct sock *sk)
444 {
445 	__hlist_del(&sk->sk_bind_node);
446 }
447 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)448 static __inline__ void sk_add_bind_node(struct sock *sk,
449 					struct hlist_head *list)
450 {
451 	hlist_add_head(&sk->sk_bind_node, list);
452 }
453 
454 #define sk_for_each(__sk, node, list) \
455 	hlist_for_each_entry(__sk, node, list, sk_node)
456 #define sk_nulls_for_each(__sk, node, list) \
457 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
458 #define sk_nulls_for_each_rcu(__sk, node, list) \
459 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
460 #define sk_for_each_from(__sk, node) \
461 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
462 		hlist_for_each_entry_from(__sk, node, sk_node)
463 #define sk_nulls_for_each_from(__sk, node) \
464 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
465 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
466 #define sk_for_each_continue(__sk, node) \
467 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
468 		hlist_for_each_entry_continue(__sk, node, sk_node)
469 #define sk_for_each_safe(__sk, node, tmp, list) \
470 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
471 #define sk_for_each_bound(__sk, node, list) \
472 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
473 
474 /* Sock flags */
475 enum sock_flags {
476 	SOCK_DEAD,
477 	SOCK_DONE,
478 	SOCK_URGINLINE,
479 	SOCK_KEEPOPEN,
480 	SOCK_LINGER,
481 	SOCK_DESTROY,
482 	SOCK_BROADCAST,
483 	SOCK_TIMESTAMP,
484 	SOCK_ZAPPED,
485 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
486 	SOCK_DBG, /* %SO_DEBUG setting */
487 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
488 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
489 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
490 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
491 };
492 
sock_copy_flags(struct sock * nsk,struct sock * osk)493 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
494 {
495 	nsk->sk_flags = osk->sk_flags;
496 }
497 
sock_set_flag(struct sock * sk,enum sock_flags flag)498 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
499 {
500 	__set_bit(flag, &sk->sk_flags);
501 }
502 
sock_reset_flag(struct sock * sk,enum sock_flags flag)503 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
504 {
505 	__clear_bit(flag, &sk->sk_flags);
506 }
507 
sock_flag(struct sock * sk,enum sock_flags flag)508 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
509 {
510 	return test_bit(flag, &sk->sk_flags);
511 }
512 
sk_acceptq_removed(struct sock * sk)513 static inline void sk_acceptq_removed(struct sock *sk)
514 {
515 	sk->sk_ack_backlog--;
516 }
517 
sk_acceptq_added(struct sock * sk)518 static inline void sk_acceptq_added(struct sock *sk)
519 {
520 	sk->sk_ack_backlog++;
521 }
522 
sk_acceptq_is_full(struct sock * sk)523 static inline int sk_acceptq_is_full(struct sock *sk)
524 {
525 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
526 }
527 
528 /*
529  * Compute minimal free write space needed to queue new packets.
530  */
sk_stream_min_wspace(struct sock * sk)531 static inline int sk_stream_min_wspace(struct sock *sk)
532 {
533 	return sk->sk_wmem_queued >> 1;
534 }
535 
sk_stream_wspace(struct sock * sk)536 static inline int sk_stream_wspace(struct sock *sk)
537 {
538 	return sk->sk_sndbuf - sk->sk_wmem_queued;
539 }
540 
541 extern void sk_stream_write_space(struct sock *sk);
542 
sk_stream_memory_free(struct sock * sk)543 static inline int sk_stream_memory_free(struct sock *sk)
544 {
545 	return sk->sk_wmem_queued < sk->sk_sndbuf;
546 }
547 
548 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb)549 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
550 {
551 	if (!sk->sk_backlog.tail) {
552 		sk->sk_backlog.head = sk->sk_backlog.tail = skb;
553 	} else {
554 		sk->sk_backlog.tail->next = skb;
555 		sk->sk_backlog.tail = skb;
556 	}
557 	skb->next = NULL;
558 }
559 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)560 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
561 {
562 	return sk->sk_backlog_rcv(sk, skb);
563 }
564 
565 #define sk_wait_event(__sk, __timeo, __condition)			\
566 	({	int __rc;						\
567 		release_sock(__sk);					\
568 		__rc = __condition;					\
569 		if (!__rc) {						\
570 			*(__timeo) = schedule_timeout(*(__timeo));	\
571 		}							\
572 		lock_sock(__sk);					\
573 		__rc = __condition;					\
574 		__rc;							\
575 	})
576 
577 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
578 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
579 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
580 extern int sk_stream_error(struct sock *sk, int flags, int err);
581 extern void sk_stream_kill_queues(struct sock *sk);
582 
583 extern int sk_wait_data(struct sock *sk, long *timeo);
584 
585 struct request_sock_ops;
586 struct timewait_sock_ops;
587 struct inet_hashinfo;
588 struct raw_hashinfo;
589 
590 /* Networking protocol blocks we attach to sockets.
591  * socket layer -> transport layer interface
592  * transport -> network interface is defined by struct inet_proto
593  */
594 struct proto {
595 	void			(*close)(struct sock *sk,
596 					long timeout);
597 	int			(*connect)(struct sock *sk,
598 				        struct sockaddr *uaddr,
599 					int addr_len);
600 	int			(*disconnect)(struct sock *sk, int flags);
601 
602 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
603 
604 	int			(*ioctl)(struct sock *sk, int cmd,
605 					 unsigned long arg);
606 	int			(*init)(struct sock *sk);
607 	void			(*destroy)(struct sock *sk);
608 	void			(*shutdown)(struct sock *sk, int how);
609 	int			(*setsockopt)(struct sock *sk, int level,
610 					int optname, char __user *optval,
611 					int optlen);
612 	int			(*getsockopt)(struct sock *sk, int level,
613 					int optname, char __user *optval,
614 					int __user *option);
615 #ifdef CONFIG_COMPAT
616 	int			(*compat_setsockopt)(struct sock *sk,
617 					int level,
618 					int optname, char __user *optval,
619 					int optlen);
620 	int			(*compat_getsockopt)(struct sock *sk,
621 					int level,
622 					int optname, char __user *optval,
623 					int __user *option);
624 #endif
625 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
626 					   struct msghdr *msg, size_t len);
627 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
628 					   struct msghdr *msg,
629 					size_t len, int noblock, int flags,
630 					int *addr_len);
631 	int			(*sendpage)(struct sock *sk, struct page *page,
632 					int offset, size_t size, int flags);
633 	int			(*bind)(struct sock *sk,
634 					struct sockaddr *uaddr, int addr_len);
635 
636 	int			(*backlog_rcv) (struct sock *sk,
637 						struct sk_buff *skb);
638 
639 	/* Keeping track of sk's, looking them up, and port selection methods. */
640 	void			(*hash)(struct sock *sk);
641 	void			(*unhash)(struct sock *sk);
642 	int			(*get_port)(struct sock *sk, unsigned short snum);
643 
644 	/* Keeping track of sockets in use */
645 #ifdef CONFIG_PROC_FS
646 	unsigned int		inuse_idx;
647 #endif
648 
649 	/* Memory pressure */
650 	void			(*enter_memory_pressure)(struct sock *sk);
651 	atomic_t		*memory_allocated;	/* Current allocated memory. */
652 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
653 	/*
654 	 * Pressure flag: try to collapse.
655 	 * Technical note: it is used by multiple contexts non atomically.
656 	 * All the __sk_mem_schedule() is of this nature: accounting
657 	 * is strict, actions are advisory and have some latency.
658 	 */
659 	int			*memory_pressure;
660 	int			*sysctl_mem;
661 	int			*sysctl_wmem;
662 	int			*sysctl_rmem;
663 	int			max_header;
664 
665 	struct kmem_cache	*slab;
666 	unsigned int		obj_size;
667 	int			slab_flags;
668 
669 	struct percpu_counter	*orphan_count;
670 
671 	struct request_sock_ops	*rsk_prot;
672 	struct timewait_sock_ops *twsk_prot;
673 
674 	union {
675 		struct inet_hashinfo	*hashinfo;
676 		struct udp_table	*udp_table;
677 		struct raw_hashinfo	*raw_hash;
678 	} h;
679 
680 	struct module		*owner;
681 
682 	char			name[32];
683 
684 	struct list_head	node;
685 #ifdef SOCK_REFCNT_DEBUG
686 	atomic_t		socks;
687 #endif
688 };
689 
690 extern int proto_register(struct proto *prot, int alloc_slab);
691 extern void proto_unregister(struct proto *prot);
692 
693 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)694 static inline void sk_refcnt_debug_inc(struct sock *sk)
695 {
696 	atomic_inc(&sk->sk_prot->socks);
697 }
698 
sk_refcnt_debug_dec(struct sock * sk)699 static inline void sk_refcnt_debug_dec(struct sock *sk)
700 {
701 	atomic_dec(&sk->sk_prot->socks);
702 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
703 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
704 }
705 
sk_refcnt_debug_release(const struct sock * sk)706 static inline void sk_refcnt_debug_release(const struct sock *sk)
707 {
708 	if (atomic_read(&sk->sk_refcnt) != 1)
709 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
710 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
711 }
712 #else /* SOCK_REFCNT_DEBUG */
713 #define sk_refcnt_debug_inc(sk) do { } while (0)
714 #define sk_refcnt_debug_dec(sk) do { } while (0)
715 #define sk_refcnt_debug_release(sk) do { } while (0)
716 #endif /* SOCK_REFCNT_DEBUG */
717 
718 
719 #ifdef CONFIG_PROC_FS
720 /* Called with local bh disabled */
721 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
722 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
723 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)724 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
725 		int inc)
726 {
727 }
728 #endif
729 
730 
731 /* With per-bucket locks this operation is not-atomic, so that
732  * this version is not worse.
733  */
__sk_prot_rehash(struct sock * sk)734 static inline void __sk_prot_rehash(struct sock *sk)
735 {
736 	sk->sk_prot->unhash(sk);
737 	sk->sk_prot->hash(sk);
738 }
739 
740 /* About 10 seconds */
741 #define SOCK_DESTROY_TIME (10*HZ)
742 
743 /* Sockets 0-1023 can't be bound to unless you are superuser */
744 #define PROT_SOCK	1024
745 
746 #define SHUTDOWN_MASK	3
747 #define RCV_SHUTDOWN	1
748 #define SEND_SHUTDOWN	2
749 
750 #define SOCK_SNDBUF_LOCK	1
751 #define SOCK_RCVBUF_LOCK	2
752 #define SOCK_BINDADDR_LOCK	4
753 #define SOCK_BINDPORT_LOCK	8
754 
755 /* sock_iocb: used to kick off async processing of socket ios */
756 struct sock_iocb {
757 	struct list_head	list;
758 
759 	int			flags;
760 	int			size;
761 	struct socket		*sock;
762 	struct sock		*sk;
763 	struct scm_cookie	*scm;
764 	struct msghdr		*msg, async_msg;
765 	struct kiocb		*kiocb;
766 };
767 
kiocb_to_siocb(struct kiocb * iocb)768 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
769 {
770 	return (struct sock_iocb *)iocb->private;
771 }
772 
siocb_to_kiocb(struct sock_iocb * si)773 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
774 {
775 	return si->kiocb;
776 }
777 
778 struct socket_alloc {
779 	struct socket socket;
780 	struct inode vfs_inode;
781 };
782 
SOCKET_I(struct inode * inode)783 static inline struct socket *SOCKET_I(struct inode *inode)
784 {
785 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
786 }
787 
SOCK_INODE(struct socket * socket)788 static inline struct inode *SOCK_INODE(struct socket *socket)
789 {
790 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
791 }
792 
793 /*
794  * Functions for memory accounting
795  */
796 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
797 extern void __sk_mem_reclaim(struct sock *sk);
798 
799 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
800 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
801 #define SK_MEM_SEND	0
802 #define SK_MEM_RECV	1
803 
sk_mem_pages(int amt)804 static inline int sk_mem_pages(int amt)
805 {
806 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
807 }
808 
sk_has_account(struct sock * sk)809 static inline int sk_has_account(struct sock *sk)
810 {
811 	/* return true if protocol supports memory accounting */
812 	return !!sk->sk_prot->memory_allocated;
813 }
814 
sk_wmem_schedule(struct sock * sk,int size)815 static inline int sk_wmem_schedule(struct sock *sk, int size)
816 {
817 	if (!sk_has_account(sk))
818 		return 1;
819 	return size <= sk->sk_forward_alloc ||
820 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
821 }
822 
sk_rmem_schedule(struct sock * sk,int size)823 static inline int sk_rmem_schedule(struct sock *sk, int size)
824 {
825 	if (!sk_has_account(sk))
826 		return 1;
827 	return size <= sk->sk_forward_alloc ||
828 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
829 }
830 
sk_mem_reclaim(struct sock * sk)831 static inline void sk_mem_reclaim(struct sock *sk)
832 {
833 	if (!sk_has_account(sk))
834 		return;
835 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
836 		__sk_mem_reclaim(sk);
837 }
838 
sk_mem_reclaim_partial(struct sock * sk)839 static inline void sk_mem_reclaim_partial(struct sock *sk)
840 {
841 	if (!sk_has_account(sk))
842 		return;
843 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
844 		__sk_mem_reclaim(sk);
845 }
846 
sk_mem_charge(struct sock * sk,int size)847 static inline void sk_mem_charge(struct sock *sk, int size)
848 {
849 	if (!sk_has_account(sk))
850 		return;
851 	sk->sk_forward_alloc -= size;
852 }
853 
sk_mem_uncharge(struct sock * sk,int size)854 static inline void sk_mem_uncharge(struct sock *sk, int size)
855 {
856 	if (!sk_has_account(sk))
857 		return;
858 	sk->sk_forward_alloc += size;
859 }
860 
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)861 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
862 {
863 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
864 	sk->sk_wmem_queued -= skb->truesize;
865 	sk_mem_uncharge(sk, skb->truesize);
866 	__kfree_skb(skb);
867 }
868 
869 /* Used by processes to "lock" a socket state, so that
870  * interrupts and bottom half handlers won't change it
871  * from under us. It essentially blocks any incoming
872  * packets, so that we won't get any new data or any
873  * packets that change the state of the socket.
874  *
875  * While locked, BH processing will add new packets to
876  * the backlog queue.  This queue is processed by the
877  * owner of the socket lock right before it is released.
878  *
879  * Since ~2.3.5 it is also exclusive sleep lock serializing
880  * accesses from user process context.
881  */
882 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
883 
884 /*
885  * Macro so as to not evaluate some arguments when
886  * lockdep is not enabled.
887  *
888  * Mark both the sk_lock and the sk_lock.slock as a
889  * per-address-family lock class.
890  */
891 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
892 do {									\
893 	sk->sk_lock.owned = 0;						\
894 	init_waitqueue_head(&sk->sk_lock.wq);				\
895 	spin_lock_init(&(sk)->sk_lock.slock);				\
896 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
897 			sizeof((sk)->sk_lock));				\
898 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
899 		       	(skey), (sname));				\
900 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
901 } while (0)
902 
903 extern void lock_sock_nested(struct sock *sk, int subclass);
904 
lock_sock(struct sock * sk)905 static inline void lock_sock(struct sock *sk)
906 {
907 	lock_sock_nested(sk, 0);
908 }
909 
910 extern void release_sock(struct sock *sk);
911 
912 /* BH context may only use the following locking interface. */
913 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
914 #define bh_lock_sock_nested(__sk) \
915 				spin_lock_nested(&((__sk)->sk_lock.slock), \
916 				SINGLE_DEPTH_NESTING)
917 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
918 
919 extern struct sock		*sk_alloc(struct net *net, int family,
920 					  gfp_t priority,
921 					  struct proto *prot);
922 extern void			sk_free(struct sock *sk);
923 extern void			sk_release_kernel(struct sock *sk);
924 extern struct sock		*sk_clone(const struct sock *sk,
925 					  const gfp_t priority);
926 
927 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
928 					      unsigned long size, int force,
929 					      gfp_t priority);
930 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
931 					      unsigned long size, int force,
932 					      gfp_t priority);
933 extern void			sock_wfree(struct sk_buff *skb);
934 extern void			sock_rfree(struct sk_buff *skb);
935 
936 extern int			sock_setsockopt(struct socket *sock, int level,
937 						int op, char __user *optval,
938 						int optlen);
939 
940 extern int			sock_getsockopt(struct socket *sock, int level,
941 						int op, char __user *optval,
942 						int __user *optlen);
943 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
944 						     unsigned long size,
945 						     int noblock,
946 						     int *errcode);
947 extern void *sock_kmalloc(struct sock *sk, int size,
948 			  gfp_t priority);
949 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
950 extern void sk_send_sigurg(struct sock *sk);
951 
952 /*
953  * Functions to fill in entries in struct proto_ops when a protocol
954  * does not implement a particular function.
955  */
956 extern int                      sock_no_bind(struct socket *,
957 					     struct sockaddr *, int);
958 extern int                      sock_no_connect(struct socket *,
959 						struct sockaddr *, int, int);
960 extern int                      sock_no_socketpair(struct socket *,
961 						   struct socket *);
962 extern int                      sock_no_accept(struct socket *,
963 					       struct socket *, int);
964 extern int                      sock_no_getname(struct socket *,
965 						struct sockaddr *, int *, int);
966 extern unsigned int             sock_no_poll(struct file *, struct socket *,
967 					     struct poll_table_struct *);
968 extern int                      sock_no_ioctl(struct socket *, unsigned int,
969 					      unsigned long);
970 extern int			sock_no_listen(struct socket *, int);
971 extern int                      sock_no_shutdown(struct socket *, int);
972 extern int			sock_no_getsockopt(struct socket *, int , int,
973 						   char __user *, int __user *);
974 extern int			sock_no_setsockopt(struct socket *, int, int,
975 						   char __user *, int);
976 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
977 						struct msghdr *, size_t);
978 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
979 						struct msghdr *, size_t, int);
980 extern int			sock_no_mmap(struct file *file,
981 					     struct socket *sock,
982 					     struct vm_area_struct *vma);
983 extern ssize_t			sock_no_sendpage(struct socket *sock,
984 						struct page *page,
985 						int offset, size_t size,
986 						int flags);
987 
988 /*
989  * Functions to fill in entries in struct proto_ops when a protocol
990  * uses the inet style.
991  */
992 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
993 				  char __user *optval, int __user *optlen);
994 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
995 			       struct msghdr *msg, size_t size, int flags);
996 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
997 				  char __user *optval, int optlen);
998 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
999 		int optname, char __user *optval, int __user *optlen);
1000 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1001 		int optname, char __user *optval, int optlen);
1002 
1003 extern void sk_common_release(struct sock *sk);
1004 
1005 /*
1006  *	Default socket callbacks and setup code
1007  */
1008 
1009 /* Initialise core socket variables */
1010 extern void sock_init_data(struct socket *sock, struct sock *sk);
1011 
1012 /**
1013  *	sk_filter_release: Release a socket filter
1014  *	@fp: filter to remove
1015  *
1016  *	Remove a filter from a socket and release its resources.
1017  */
1018 
sk_filter_release(struct sk_filter * fp)1019 static inline void sk_filter_release(struct sk_filter *fp)
1020 {
1021 	if (atomic_dec_and_test(&fp->refcnt))
1022 		kfree(fp);
1023 }
1024 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1025 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1026 {
1027 	unsigned int size = sk_filter_len(fp);
1028 
1029 	atomic_sub(size, &sk->sk_omem_alloc);
1030 	sk_filter_release(fp);
1031 }
1032 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1033 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1034 {
1035 	atomic_inc(&fp->refcnt);
1036 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1037 }
1038 
1039 /*
1040  * Socket reference counting postulates.
1041  *
1042  * * Each user of socket SHOULD hold a reference count.
1043  * * Each access point to socket (an hash table bucket, reference from a list,
1044  *   running timer, skb in flight MUST hold a reference count.
1045  * * When reference count hits 0, it means it will never increase back.
1046  * * When reference count hits 0, it means that no references from
1047  *   outside exist to this socket and current process on current CPU
1048  *   is last user and may/should destroy this socket.
1049  * * sk_free is called from any context: process, BH, IRQ. When
1050  *   it is called, socket has no references from outside -> sk_free
1051  *   may release descendant resources allocated by the socket, but
1052  *   to the time when it is called, socket is NOT referenced by any
1053  *   hash tables, lists etc.
1054  * * Packets, delivered from outside (from network or from another process)
1055  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1056  *   when they sit in queue. Otherwise, packets will leak to hole, when
1057  *   socket is looked up by one cpu and unhasing is made by another CPU.
1058  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1059  *   (leak to backlog). Packet socket does all the processing inside
1060  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1061  *   use separate SMP lock, so that they are prone too.
1062  */
1063 
1064 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1065 static inline void sock_put(struct sock *sk)
1066 {
1067 	if (atomic_dec_and_test(&sk->sk_refcnt))
1068 		sk_free(sk);
1069 }
1070 
1071 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1072 			  const int nested);
1073 
sk_set_socket(struct sock * sk,struct socket * sock)1074 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1075 {
1076 	sk->sk_socket = sock;
1077 }
1078 
1079 /* Detach socket from process context.
1080  * Announce socket dead, detach it from wait queue and inode.
1081  * Note that parent inode held reference count on this struct sock,
1082  * we do not release it in this function, because protocol
1083  * probably wants some additional cleanups or even continuing
1084  * to work with this socket (TCP).
1085  */
sock_orphan(struct sock * sk)1086 static inline void sock_orphan(struct sock *sk)
1087 {
1088 	write_lock_bh(&sk->sk_callback_lock);
1089 	sock_set_flag(sk, SOCK_DEAD);
1090 	sk_set_socket(sk, NULL);
1091 	sk->sk_sleep  = NULL;
1092 	write_unlock_bh(&sk->sk_callback_lock);
1093 }
1094 
sock_graft(struct sock * sk,struct socket * parent)1095 static inline void sock_graft(struct sock *sk, struct socket *parent)
1096 {
1097 	write_lock_bh(&sk->sk_callback_lock);
1098 	sk->sk_sleep = &parent->wait;
1099 	parent->sk = sk;
1100 	sk_set_socket(sk, parent);
1101 	security_sock_graft(sk, parent);
1102 	write_unlock_bh(&sk->sk_callback_lock);
1103 }
1104 
1105 extern int sock_i_uid(struct sock *sk);
1106 extern unsigned long sock_i_ino(struct sock *sk);
1107 
1108 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1109 __sk_dst_get(struct sock *sk)
1110 {
1111 	return sk->sk_dst_cache;
1112 }
1113 
1114 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1115 sk_dst_get(struct sock *sk)
1116 {
1117 	struct dst_entry *dst;
1118 
1119 	read_lock(&sk->sk_dst_lock);
1120 	dst = sk->sk_dst_cache;
1121 	if (dst)
1122 		dst_hold(dst);
1123 	read_unlock(&sk->sk_dst_lock);
1124 	return dst;
1125 }
1126 
1127 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1128 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1129 {
1130 	struct dst_entry *old_dst;
1131 
1132 	old_dst = sk->sk_dst_cache;
1133 	sk->sk_dst_cache = dst;
1134 	dst_release(old_dst);
1135 }
1136 
1137 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1138 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1139 {
1140 	write_lock(&sk->sk_dst_lock);
1141 	__sk_dst_set(sk, dst);
1142 	write_unlock(&sk->sk_dst_lock);
1143 }
1144 
1145 static inline void
__sk_dst_reset(struct sock * sk)1146 __sk_dst_reset(struct sock *sk)
1147 {
1148 	struct dst_entry *old_dst;
1149 
1150 	old_dst = sk->sk_dst_cache;
1151 	sk->sk_dst_cache = NULL;
1152 	dst_release(old_dst);
1153 }
1154 
1155 static inline void
sk_dst_reset(struct sock * sk)1156 sk_dst_reset(struct sock *sk)
1157 {
1158 	write_lock(&sk->sk_dst_lock);
1159 	__sk_dst_reset(sk);
1160 	write_unlock(&sk->sk_dst_lock);
1161 }
1162 
1163 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1164 
1165 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1166 
sk_can_gso(const struct sock * sk)1167 static inline int sk_can_gso(const struct sock *sk)
1168 {
1169 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1170 }
1171 
1172 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1173 
skb_copy_to_page(struct sock * sk,char __user * from,struct sk_buff * skb,struct page * page,int off,int copy)1174 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1175 				   struct sk_buff *skb, struct page *page,
1176 				   int off, int copy)
1177 {
1178 	if (skb->ip_summed == CHECKSUM_NONE) {
1179 		int err = 0;
1180 		__wsum csum = csum_and_copy_from_user(from,
1181 						     page_address(page) + off,
1182 							    copy, 0, &err);
1183 		if (err)
1184 			return err;
1185 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1186 	} else if (copy_from_user(page_address(page) + off, from, copy))
1187 		return -EFAULT;
1188 
1189 	skb->len	     += copy;
1190 	skb->data_len	     += copy;
1191 	skb->truesize	     += copy;
1192 	sk->sk_wmem_queued   += copy;
1193 	sk_mem_charge(sk, copy);
1194 	return 0;
1195 }
1196 
1197 /*
1198  * 	Queue a received datagram if it will fit. Stream and sequenced
1199  *	protocols can't normally use this as they need to fit buffers in
1200  *	and play with them.
1201  *
1202  * 	Inlined as it's very short and called for pretty much every
1203  *	packet ever received.
1204  */
1205 
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)1206 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1207 {
1208 	sock_hold(sk);
1209 	skb->sk = sk;
1210 	skb->destructor = sock_wfree;
1211 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1212 }
1213 
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)1214 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1215 {
1216 	skb->sk = sk;
1217 	skb->destructor = sock_rfree;
1218 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1219 	sk_mem_charge(sk, skb->truesize);
1220 }
1221 
1222 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1223 			   unsigned long expires);
1224 
1225 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1226 
1227 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1228 
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)1229 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1230 {
1231 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1232 	   number of warnings when compiling with -W --ANK
1233 	 */
1234 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1235 	    (unsigned)sk->sk_rcvbuf)
1236 		return -ENOMEM;
1237 	skb_set_owner_r(skb, sk);
1238 	skb_queue_tail(&sk->sk_error_queue, skb);
1239 	if (!sock_flag(sk, SOCK_DEAD))
1240 		sk->sk_data_ready(sk, skb->len);
1241 	return 0;
1242 }
1243 
1244 /*
1245  *	Recover an error report and clear atomically
1246  */
1247 
sock_error(struct sock * sk)1248 static inline int sock_error(struct sock *sk)
1249 {
1250 	int err;
1251 	if (likely(!sk->sk_err))
1252 		return 0;
1253 	err = xchg(&sk->sk_err, 0);
1254 	return -err;
1255 }
1256 
sock_wspace(struct sock * sk)1257 static inline unsigned long sock_wspace(struct sock *sk)
1258 {
1259 	int amt = 0;
1260 
1261 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1262 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1263 		if (amt < 0)
1264 			amt = 0;
1265 	}
1266 	return amt;
1267 }
1268 
sk_wake_async(struct sock * sk,int how,int band)1269 static inline void sk_wake_async(struct sock *sk, int how, int band)
1270 {
1271 	if (sk->sk_socket && sk->sk_socket->fasync_list)
1272 		sock_wake_async(sk->sk_socket, how, band);
1273 }
1274 
1275 #define SOCK_MIN_SNDBUF 2048
1276 #define SOCK_MIN_RCVBUF 256
1277 
sk_stream_moderate_sndbuf(struct sock * sk)1278 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1279 {
1280 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1281 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1282 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1283 	}
1284 }
1285 
1286 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1287 
sk_stream_alloc_page(struct sock * sk)1288 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1289 {
1290 	struct page *page = NULL;
1291 
1292 	page = alloc_pages(sk->sk_allocation, 0);
1293 	if (!page) {
1294 		sk->sk_prot->enter_memory_pressure(sk);
1295 		sk_stream_moderate_sndbuf(sk);
1296 	}
1297 	return page;
1298 }
1299 
1300 /*
1301  *	Default write policy as shown to user space via poll/select/SIGIO
1302  */
sock_writeable(const struct sock * sk)1303 static inline int sock_writeable(const struct sock *sk)
1304 {
1305 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1306 }
1307 
gfp_any(void)1308 static inline gfp_t gfp_any(void)
1309 {
1310 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1311 }
1312 
sock_rcvtimeo(const struct sock * sk,int noblock)1313 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1314 {
1315 	return noblock ? 0 : sk->sk_rcvtimeo;
1316 }
1317 
sock_sndtimeo(const struct sock * sk,int noblock)1318 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1319 {
1320 	return noblock ? 0 : sk->sk_sndtimeo;
1321 }
1322 
sock_rcvlowat(const struct sock * sk,int waitall,int len)1323 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1324 {
1325 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1326 }
1327 
1328 /* Alas, with timeout socket operations are not restartable.
1329  * Compare this to poll().
1330  */
sock_intr_errno(long timeo)1331 static inline int sock_intr_errno(long timeo)
1332 {
1333 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1334 }
1335 
1336 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1337 	struct sk_buff *skb);
1338 
1339 static __inline__ void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1340 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1341 {
1342 	ktime_t kt = skb->tstamp;
1343 
1344 	if (sock_flag(sk, SOCK_RCVTSTAMP))
1345 		__sock_recv_timestamp(msg, sk, skb);
1346 	else
1347 		sk->sk_stamp = kt;
1348 }
1349 
1350 /**
1351  * sk_eat_skb - Release a skb if it is no longer needed
1352  * @sk: socket to eat this skb from
1353  * @skb: socket buffer to eat
1354  * @copied_early: flag indicating whether DMA operations copied this data early
1355  *
1356  * This routine must be called with interrupts disabled or with the socket
1357  * locked so that the sk_buff queue operation is ok.
1358 */
1359 #ifdef CONFIG_NET_DMA
sk_eat_skb(struct sock * sk,struct sk_buff * skb,int copied_early)1360 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1361 {
1362 	__skb_unlink(skb, &sk->sk_receive_queue);
1363 	if (!copied_early)
1364 		__kfree_skb(skb);
1365 	else
1366 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1367 }
1368 #else
sk_eat_skb(struct sock * sk,struct sk_buff * skb,int copied_early)1369 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1370 {
1371 	__skb_unlink(skb, &sk->sk_receive_queue);
1372 	__kfree_skb(skb);
1373 }
1374 #endif
1375 
1376 static inline
sock_net(const struct sock * sk)1377 struct net *sock_net(const struct sock *sk)
1378 {
1379 #ifdef CONFIG_NET_NS
1380 	return sk->sk_net;
1381 #else
1382 	return &init_net;
1383 #endif
1384 }
1385 
1386 static inline
sock_net_set(struct sock * sk,struct net * net)1387 void sock_net_set(struct sock *sk, struct net *net)
1388 {
1389 #ifdef CONFIG_NET_NS
1390 	sk->sk_net = net;
1391 #endif
1392 }
1393 
1394 /*
1395  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1396  * They should not hold a referrence to a namespace in order to allow
1397  * to stop it.
1398  * Sockets after sk_change_net should be released using sk_release_kernel
1399  */
sk_change_net(struct sock * sk,struct net * net)1400 static inline void sk_change_net(struct sock *sk, struct net *net)
1401 {
1402 	put_net(sock_net(sk));
1403 	sock_net_set(sk, hold_net(net));
1404 }
1405 
skb_steal_sock(struct sk_buff * skb)1406 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1407 {
1408 	if (unlikely(skb->sk)) {
1409 		struct sock *sk = skb->sk;
1410 
1411 		skb->destructor = NULL;
1412 		skb->sk = NULL;
1413 		return sk;
1414 	}
1415 	return NULL;
1416 }
1417 
1418 extern void sock_enable_timestamp(struct sock *sk);
1419 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1420 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1421 
1422 /*
1423  *	Enable debug/info messages
1424  */
1425 extern int net_msg_warn;
1426 #define NETDEBUG(fmt, args...) \
1427 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1428 
1429 #define LIMIT_NETDEBUG(fmt, args...) \
1430 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1431 
1432 extern __u32 sysctl_wmem_max;
1433 extern __u32 sysctl_rmem_max;
1434 
1435 extern void sk_init(void);
1436 
1437 extern int sysctl_optmem_max;
1438 
1439 extern __u32 sysctl_wmem_default;
1440 extern __u32 sysctl_rmem_default;
1441 
1442 #endif	/* _SOCK_H */
1443