• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_PIPE_FS_I_H
2 #define _LINUX_PIPE_FS_I_H
3 
4 #define PIPEFS_MAGIC 0x50495045
5 
6 #define PIPE_BUFFERS (16)
7 
8 #define PIPE_BUF_FLAG_LRU	0x01	/* page is on the LRU */
9 #define PIPE_BUF_FLAG_ATOMIC	0x02	/* was atomically mapped */
10 #define PIPE_BUF_FLAG_GIFT	0x04	/* page is a gift */
11 
12 /**
13  *	struct pipe_buffer - a linux kernel pipe buffer
14  *	@page: the page containing the data for the pipe buffer
15  *	@offset: offset of data inside the @page
16  *	@len: length of data inside the @page
17  *	@ops: operations associated with this buffer. See @pipe_buf_operations.
18  *	@flags: pipe buffer flags. See above.
19  *	@private: private data owned by the ops.
20  **/
21 struct pipe_buffer {
22 	struct page *page;
23 	unsigned int offset, len;
24 	const struct pipe_buf_operations *ops;
25 	unsigned int flags;
26 	unsigned long private;
27 };
28 
29 /**
30  *	struct pipe_inode_info - a linux kernel pipe
31  *	@wait: reader/writer wait point in case of empty/full pipe
32  *	@nrbufs: the number of non-empty pipe buffers in this pipe
33  *	@curbuf: the current pipe buffer entry
34  *	@tmp_page: cached released page
35  *	@readers: number of current readers of this pipe
36  *	@writers: number of current writers of this pipe
37  *	@waiting_writers: number of writers blocked waiting for room
38  *	@r_counter: reader counter
39  *	@w_counter: writer counter
40  *	@fasync_readers: reader side fasync
41  *	@fasync_writers: writer side fasync
42  *	@inode: inode this pipe is attached to
43  *	@bufs: the circular array of pipe buffers
44  **/
45 struct pipe_inode_info {
46 	wait_queue_head_t wait;
47 	unsigned int nrbufs, curbuf;
48 	struct page *tmp_page;
49 	unsigned int readers;
50 	unsigned int writers;
51 	unsigned int waiting_writers;
52 	unsigned int r_counter;
53 	unsigned int w_counter;
54 	struct fasync_struct *fasync_readers;
55 	struct fasync_struct *fasync_writers;
56 	struct inode *inode;
57 	struct pipe_buffer bufs[PIPE_BUFFERS];
58 };
59 
60 /*
61  * Note on the nesting of these functions:
62  *
63  * ->confirm()
64  *	->steal()
65  *	...
66  *	->map()
67  *	...
68  *	->unmap()
69  *
70  * That is, ->map() must be called on a confirmed buffer,
71  * same goes for ->steal(). See below for the meaning of each
72  * operation. Also see kerneldoc in fs/pipe.c for the pipe
73  * and generic variants of these hooks.
74  */
75 struct pipe_buf_operations {
76 	/*
77 	 * This is set to 1, if the generic pipe read/write may coalesce
78 	 * data into an existing buffer. If this is set to 0, a new pipe
79 	 * page segment is always used for new data.
80 	 */
81 	int can_merge;
82 
83 	/*
84 	 * ->map() returns a virtual address mapping of the pipe buffer.
85 	 * The last integer flag reflects whether this should be an atomic
86 	 * mapping or not. The atomic map is faster, however you can't take
87 	 * page faults before calling ->unmap() again. So if you need to eg
88 	 * access user data through copy_to/from_user(), then you must get
89 	 * a non-atomic map. ->map() uses the KM_USER0 atomic slot for
90 	 * atomic maps, so you can't map more than one pipe_buffer at once
91 	 * and you have to be careful if mapping another page as source
92 	 * or destination for a copy (IOW, it has to use something else
93 	 * than KM_USER0).
94 	 */
95 	void * (*map)(struct pipe_inode_info *, struct pipe_buffer *, int);
96 
97 	/*
98 	 * Undoes ->map(), finishes the virtual mapping of the pipe buffer.
99 	 */
100 	void (*unmap)(struct pipe_inode_info *, struct pipe_buffer *, void *);
101 
102 	/*
103 	 * ->confirm() verifies that the data in the pipe buffer is there
104 	 * and that the contents are good. If the pages in the pipe belong
105 	 * to a file system, we may need to wait for IO completion in this
106 	 * hook. Returns 0 for good, or a negative error value in case of
107 	 * error.
108 	 */
109 	int (*confirm)(struct pipe_inode_info *, struct pipe_buffer *);
110 
111 	/*
112 	 * When the contents of this pipe buffer has been completely
113 	 * consumed by a reader, ->release() is called.
114 	 */
115 	void (*release)(struct pipe_inode_info *, struct pipe_buffer *);
116 
117 	/*
118 	 * Attempt to take ownership of the pipe buffer and its contents.
119 	 * ->steal() returns 0 for success, in which case the contents
120 	 * of the pipe (the buf->page) is locked and now completely owned
121 	 * by the caller. The page may then be transferred to a different
122 	 * mapping, the most often used case is insertion into different
123 	 * file address space cache.
124 	 */
125 	int (*steal)(struct pipe_inode_info *, struct pipe_buffer *);
126 
127 	/*
128 	 * Get a reference to the pipe buffer.
129 	 */
130 	void (*get)(struct pipe_inode_info *, struct pipe_buffer *);
131 };
132 
133 /* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual
134    memory allocation, whereas PIPE_BUF makes atomicity guarantees.  */
135 #define PIPE_SIZE		PAGE_SIZE
136 
137 /* Drop the inode semaphore and wait for a pipe event, atomically */
138 void pipe_wait(struct pipe_inode_info *pipe);
139 
140 struct pipe_inode_info * alloc_pipe_info(struct inode * inode);
141 void free_pipe_info(struct inode * inode);
142 void __free_pipe_info(struct pipe_inode_info *);
143 
144 /* Generic pipe buffer ops functions */
145 void *generic_pipe_buf_map(struct pipe_inode_info *, struct pipe_buffer *, int);
146 void generic_pipe_buf_unmap(struct pipe_inode_info *, struct pipe_buffer *, void *);
147 void generic_pipe_buf_get(struct pipe_inode_info *, struct pipe_buffer *);
148 int generic_pipe_buf_confirm(struct pipe_inode_info *, struct pipe_buffer *);
149 int generic_pipe_buf_steal(struct pipe_inode_info *, struct pipe_buffer *);
150 
151 #endif
152