1 /*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
7 *
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14 */
15
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30
31 struct profile_hit {
32 u32 pc, hits;
33 };
34 #define PROFILE_GRPSHIFT 3
35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
38
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
41
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47
48 static cpumask_var_t prof_cpu_mask;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54
profile_setup(char * str)55 int profile_setup(char *str)
56 {
57 static char schedstr[] = "schedule";
58 static char sleepstr[] = "sleep";
59 static char kvmstr[] = "kvm";
60 int par;
61
62 if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 prof_on = SLEEP_PROFILING;
65 if (str[strlen(sleepstr)] == ',')
66 str += strlen(sleepstr) + 1;
67 if (get_option(&str, &par))
68 prof_shift = par;
69 printk(KERN_INFO
70 "kernel sleep profiling enabled (shift: %ld)\n",
71 prof_shift);
72 #else
73 printk(KERN_WARNING
74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 } else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 prof_on = SCHED_PROFILING;
78 if (str[strlen(schedstr)] == ',')
79 str += strlen(schedstr) + 1;
80 if (get_option(&str, &par))
81 prof_shift = par;
82 printk(KERN_INFO
83 "kernel schedule profiling enabled (shift: %ld)\n",
84 prof_shift);
85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 prof_on = KVM_PROFILING;
87 if (str[strlen(kvmstr)] == ',')
88 str += strlen(kvmstr) + 1;
89 if (get_option(&str, &par))
90 prof_shift = par;
91 printk(KERN_INFO
92 "kernel KVM profiling enabled (shift: %ld)\n",
93 prof_shift);
94 } else if (get_option(&str, &par)) {
95 prof_shift = par;
96 prof_on = CPU_PROFILING;
97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 prof_shift);
99 }
100 return 1;
101 }
102 __setup("profile=", profile_setup);
103
104
profile_init(void)105 int __ref profile_init(void)
106 {
107 int buffer_bytes;
108 if (!prof_on)
109 return 0;
110
111 /* only text is profiled */
112 prof_len = (_etext - _stext) >> prof_shift;
113 buffer_bytes = prof_len*sizeof(atomic_t);
114 if (!slab_is_available()) {
115 prof_buffer = alloc_bootmem(buffer_bytes);
116 alloc_bootmem_cpumask_var(&prof_cpu_mask);
117 cpumask_copy(prof_cpu_mask, cpu_possible_mask);
118 return 0;
119 }
120
121 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
122 return -ENOMEM;
123
124 cpumask_copy(prof_cpu_mask, cpu_possible_mask);
125
126 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL);
127 if (prof_buffer)
128 return 0;
129
130 prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO);
131 if (prof_buffer)
132 return 0;
133
134 prof_buffer = vmalloc(buffer_bytes);
135 if (prof_buffer)
136 return 0;
137
138 free_cpumask_var(prof_cpu_mask);
139 return -ENOMEM;
140 }
141
142 /* Profile event notifications */
143
144 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
145 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
146 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
147
profile_task_exit(struct task_struct * task)148 void profile_task_exit(struct task_struct *task)
149 {
150 blocking_notifier_call_chain(&task_exit_notifier, 0, task);
151 }
152
profile_handoff_task(struct task_struct * task)153 int profile_handoff_task(struct task_struct *task)
154 {
155 int ret;
156 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
157 return (ret == NOTIFY_OK) ? 1 : 0;
158 }
159
profile_munmap(unsigned long addr)160 void profile_munmap(unsigned long addr)
161 {
162 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
163 }
164
task_handoff_register(struct notifier_block * n)165 int task_handoff_register(struct notifier_block *n)
166 {
167 return atomic_notifier_chain_register(&task_free_notifier, n);
168 }
169 EXPORT_SYMBOL_GPL(task_handoff_register);
170
task_handoff_unregister(struct notifier_block * n)171 int task_handoff_unregister(struct notifier_block *n)
172 {
173 return atomic_notifier_chain_unregister(&task_free_notifier, n);
174 }
175 EXPORT_SYMBOL_GPL(task_handoff_unregister);
176
profile_event_register(enum profile_type type,struct notifier_block * n)177 int profile_event_register(enum profile_type type, struct notifier_block *n)
178 {
179 int err = -EINVAL;
180
181 switch (type) {
182 case PROFILE_TASK_EXIT:
183 err = blocking_notifier_chain_register(
184 &task_exit_notifier, n);
185 break;
186 case PROFILE_MUNMAP:
187 err = blocking_notifier_chain_register(
188 &munmap_notifier, n);
189 break;
190 }
191
192 return err;
193 }
194 EXPORT_SYMBOL_GPL(profile_event_register);
195
profile_event_unregister(enum profile_type type,struct notifier_block * n)196 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
197 {
198 int err = -EINVAL;
199
200 switch (type) {
201 case PROFILE_TASK_EXIT:
202 err = blocking_notifier_chain_unregister(
203 &task_exit_notifier, n);
204 break;
205 case PROFILE_MUNMAP:
206 err = blocking_notifier_chain_unregister(
207 &munmap_notifier, n);
208 break;
209 }
210
211 return err;
212 }
213 EXPORT_SYMBOL_GPL(profile_event_unregister);
214
register_timer_hook(int (* hook)(struct pt_regs *))215 int register_timer_hook(int (*hook)(struct pt_regs *))
216 {
217 if (timer_hook)
218 return -EBUSY;
219 timer_hook = hook;
220 return 0;
221 }
222 EXPORT_SYMBOL_GPL(register_timer_hook);
223
unregister_timer_hook(int (* hook)(struct pt_regs *))224 void unregister_timer_hook(int (*hook)(struct pt_regs *))
225 {
226 WARN_ON(hook != timer_hook);
227 timer_hook = NULL;
228 /* make sure all CPUs see the NULL hook */
229 synchronize_sched(); /* Allow ongoing interrupts to complete. */
230 }
231 EXPORT_SYMBOL_GPL(unregister_timer_hook);
232
233
234 #ifdef CONFIG_SMP
235 /*
236 * Each cpu has a pair of open-addressed hashtables for pending
237 * profile hits. read_profile() IPI's all cpus to request them
238 * to flip buffers and flushes their contents to prof_buffer itself.
239 * Flip requests are serialized by the profile_flip_mutex. The sole
240 * use of having a second hashtable is for avoiding cacheline
241 * contention that would otherwise happen during flushes of pending
242 * profile hits required for the accuracy of reported profile hits
243 * and so resurrect the interrupt livelock issue.
244 *
245 * The open-addressed hashtables are indexed by profile buffer slot
246 * and hold the number of pending hits to that profile buffer slot on
247 * a cpu in an entry. When the hashtable overflows, all pending hits
248 * are accounted to their corresponding profile buffer slots with
249 * atomic_add() and the hashtable emptied. As numerous pending hits
250 * may be accounted to a profile buffer slot in a hashtable entry,
251 * this amortizes a number of atomic profile buffer increments likely
252 * to be far larger than the number of entries in the hashtable,
253 * particularly given that the number of distinct profile buffer
254 * positions to which hits are accounted during short intervals (e.g.
255 * several seconds) is usually very small. Exclusion from buffer
256 * flipping is provided by interrupt disablement (note that for
257 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
258 * process context).
259 * The hash function is meant to be lightweight as opposed to strong,
260 * and was vaguely inspired by ppc64 firmware-supported inverted
261 * pagetable hash functions, but uses a full hashtable full of finite
262 * collision chains, not just pairs of them.
263 *
264 * -- wli
265 */
__profile_flip_buffers(void * unused)266 static void __profile_flip_buffers(void *unused)
267 {
268 int cpu = smp_processor_id();
269
270 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
271 }
272
profile_flip_buffers(void)273 static void profile_flip_buffers(void)
274 {
275 int i, j, cpu;
276
277 mutex_lock(&profile_flip_mutex);
278 j = per_cpu(cpu_profile_flip, get_cpu());
279 put_cpu();
280 on_each_cpu(__profile_flip_buffers, NULL, 1);
281 for_each_online_cpu(cpu) {
282 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
283 for (i = 0; i < NR_PROFILE_HIT; ++i) {
284 if (!hits[i].hits) {
285 if (hits[i].pc)
286 hits[i].pc = 0;
287 continue;
288 }
289 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
290 hits[i].hits = hits[i].pc = 0;
291 }
292 }
293 mutex_unlock(&profile_flip_mutex);
294 }
295
profile_discard_flip_buffers(void)296 static void profile_discard_flip_buffers(void)
297 {
298 int i, cpu;
299
300 mutex_lock(&profile_flip_mutex);
301 i = per_cpu(cpu_profile_flip, get_cpu());
302 put_cpu();
303 on_each_cpu(__profile_flip_buffers, NULL, 1);
304 for_each_online_cpu(cpu) {
305 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
306 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
307 }
308 mutex_unlock(&profile_flip_mutex);
309 }
310
profile_hits(int type,void * __pc,unsigned int nr_hits)311 void profile_hits(int type, void *__pc, unsigned int nr_hits)
312 {
313 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
314 int i, j, cpu;
315 struct profile_hit *hits;
316
317 if (prof_on != type || !prof_buffer)
318 return;
319 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
320 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
321 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
322 cpu = get_cpu();
323 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
324 if (!hits) {
325 put_cpu();
326 return;
327 }
328 /*
329 * We buffer the global profiler buffer into a per-CPU
330 * queue and thus reduce the number of global (and possibly
331 * NUMA-alien) accesses. The write-queue is self-coalescing:
332 */
333 local_irq_save(flags);
334 do {
335 for (j = 0; j < PROFILE_GRPSZ; ++j) {
336 if (hits[i + j].pc == pc) {
337 hits[i + j].hits += nr_hits;
338 goto out;
339 } else if (!hits[i + j].hits) {
340 hits[i + j].pc = pc;
341 hits[i + j].hits = nr_hits;
342 goto out;
343 }
344 }
345 i = (i + secondary) & (NR_PROFILE_HIT - 1);
346 } while (i != primary);
347
348 /*
349 * Add the current hit(s) and flush the write-queue out
350 * to the global buffer:
351 */
352 atomic_add(nr_hits, &prof_buffer[pc]);
353 for (i = 0; i < NR_PROFILE_HIT; ++i) {
354 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
355 hits[i].pc = hits[i].hits = 0;
356 }
357 out:
358 local_irq_restore(flags);
359 put_cpu();
360 }
361
profile_cpu_callback(struct notifier_block * info,unsigned long action,void * __cpu)362 static int __cpuinit profile_cpu_callback(struct notifier_block *info,
363 unsigned long action, void *__cpu)
364 {
365 int node, cpu = (unsigned long)__cpu;
366 struct page *page;
367
368 switch (action) {
369 case CPU_UP_PREPARE:
370 case CPU_UP_PREPARE_FROZEN:
371 node = cpu_to_node(cpu);
372 per_cpu(cpu_profile_flip, cpu) = 0;
373 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
374 page = alloc_pages_node(node,
375 GFP_KERNEL | __GFP_ZERO,
376 0);
377 if (!page)
378 return NOTIFY_BAD;
379 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
380 }
381 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
382 page = alloc_pages_node(node,
383 GFP_KERNEL | __GFP_ZERO,
384 0);
385 if (!page)
386 goto out_free;
387 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
388 }
389 break;
390 out_free:
391 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
392 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
393 __free_page(page);
394 return NOTIFY_BAD;
395 case CPU_ONLINE:
396 case CPU_ONLINE_FROZEN:
397 if (prof_cpu_mask != NULL)
398 cpumask_set_cpu(cpu, prof_cpu_mask);
399 break;
400 case CPU_UP_CANCELED:
401 case CPU_UP_CANCELED_FROZEN:
402 case CPU_DEAD:
403 case CPU_DEAD_FROZEN:
404 if (prof_cpu_mask != NULL)
405 cpumask_clear_cpu(cpu, prof_cpu_mask);
406 if (per_cpu(cpu_profile_hits, cpu)[0]) {
407 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
408 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
409 __free_page(page);
410 }
411 if (per_cpu(cpu_profile_hits, cpu)[1]) {
412 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
413 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
414 __free_page(page);
415 }
416 break;
417 }
418 return NOTIFY_OK;
419 }
420 #else /* !CONFIG_SMP */
421 #define profile_flip_buffers() do { } while (0)
422 #define profile_discard_flip_buffers() do { } while (0)
423 #define profile_cpu_callback NULL
424
profile_hits(int type,void * __pc,unsigned int nr_hits)425 void profile_hits(int type, void *__pc, unsigned int nr_hits)
426 {
427 unsigned long pc;
428
429 if (prof_on != type || !prof_buffer)
430 return;
431 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
432 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
433 }
434 #endif /* !CONFIG_SMP */
435 EXPORT_SYMBOL_GPL(profile_hits);
436
profile_tick(int type)437 void profile_tick(int type)
438 {
439 struct pt_regs *regs = get_irq_regs();
440
441 if (type == CPU_PROFILING && timer_hook)
442 timer_hook(regs);
443 if (!user_mode(regs) && prof_cpu_mask != NULL &&
444 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
445 profile_hit(type, (void *)profile_pc(regs));
446 }
447
448 #ifdef CONFIG_PROC_FS
449 #include <linux/proc_fs.h>
450 #include <asm/uaccess.h>
451
prof_cpu_mask_read_proc(char * page,char ** start,off_t off,int count,int * eof,void * data)452 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
453 int count, int *eof, void *data)
454 {
455 int len = cpumask_scnprintf(page, count, data);
456 if (count - len < 2)
457 return -EINVAL;
458 len += sprintf(page + len, "\n");
459 return len;
460 }
461
prof_cpu_mask_write_proc(struct file * file,const char __user * buffer,unsigned long count,void * data)462 static int prof_cpu_mask_write_proc(struct file *file,
463 const char __user *buffer, unsigned long count, void *data)
464 {
465 struct cpumask *mask = data;
466 unsigned long full_count = count, err;
467 cpumask_var_t new_value;
468
469 if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
470 return -ENOMEM;
471
472 err = cpumask_parse_user(buffer, count, new_value);
473 if (!err) {
474 cpumask_copy(mask, new_value);
475 err = full_count;
476 }
477 free_cpumask_var(new_value);
478 return err;
479 }
480
create_prof_cpu_mask(struct proc_dir_entry * root_irq_dir)481 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
482 {
483 struct proc_dir_entry *entry;
484
485 /* create /proc/irq/prof_cpu_mask */
486 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
487 if (!entry)
488 return;
489 entry->data = prof_cpu_mask;
490 entry->read_proc = prof_cpu_mask_read_proc;
491 entry->write_proc = prof_cpu_mask_write_proc;
492 }
493
494 /*
495 * This function accesses profiling information. The returned data is
496 * binary: the sampling step and the actual contents of the profile
497 * buffer. Use of the program readprofile is recommended in order to
498 * get meaningful info out of these data.
499 */
500 static ssize_t
read_profile(struct file * file,char __user * buf,size_t count,loff_t * ppos)501 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
502 {
503 unsigned long p = *ppos;
504 ssize_t read;
505 char *pnt;
506 unsigned int sample_step = 1 << prof_shift;
507
508 profile_flip_buffers();
509 if (p >= (prof_len+1)*sizeof(unsigned int))
510 return 0;
511 if (count > (prof_len+1)*sizeof(unsigned int) - p)
512 count = (prof_len+1)*sizeof(unsigned int) - p;
513 read = 0;
514
515 while (p < sizeof(unsigned int) && count > 0) {
516 if (put_user(*((char *)(&sample_step)+p), buf))
517 return -EFAULT;
518 buf++; p++; count--; read++;
519 }
520 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
521 if (copy_to_user(buf, (void *)pnt, count))
522 return -EFAULT;
523 read += count;
524 *ppos += read;
525 return read;
526 }
527
528 /*
529 * Writing to /proc/profile resets the counters
530 *
531 * Writing a 'profiling multiplier' value into it also re-sets the profiling
532 * interrupt frequency, on architectures that support this.
533 */
write_profile(struct file * file,const char __user * buf,size_t count,loff_t * ppos)534 static ssize_t write_profile(struct file *file, const char __user *buf,
535 size_t count, loff_t *ppos)
536 {
537 #ifdef CONFIG_SMP
538 extern int setup_profiling_timer(unsigned int multiplier);
539
540 if (count == sizeof(int)) {
541 unsigned int multiplier;
542
543 if (copy_from_user(&multiplier, buf, sizeof(int)))
544 return -EFAULT;
545
546 if (setup_profiling_timer(multiplier))
547 return -EINVAL;
548 }
549 #endif
550 profile_discard_flip_buffers();
551 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
552 return count;
553 }
554
555 static const struct file_operations proc_profile_operations = {
556 .read = read_profile,
557 .write = write_profile,
558 };
559
560 #ifdef CONFIG_SMP
profile_nop(void * unused)561 static void profile_nop(void *unused)
562 {
563 }
564
create_hash_tables(void)565 static int create_hash_tables(void)
566 {
567 int cpu;
568
569 for_each_online_cpu(cpu) {
570 int node = cpu_to_node(cpu);
571 struct page *page;
572
573 page = alloc_pages_node(node,
574 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
575 0);
576 if (!page)
577 goto out_cleanup;
578 per_cpu(cpu_profile_hits, cpu)[1]
579 = (struct profile_hit *)page_address(page);
580 page = alloc_pages_node(node,
581 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
582 0);
583 if (!page)
584 goto out_cleanup;
585 per_cpu(cpu_profile_hits, cpu)[0]
586 = (struct profile_hit *)page_address(page);
587 }
588 return 0;
589 out_cleanup:
590 prof_on = 0;
591 smp_mb();
592 on_each_cpu(profile_nop, NULL, 1);
593 for_each_online_cpu(cpu) {
594 struct page *page;
595
596 if (per_cpu(cpu_profile_hits, cpu)[0]) {
597 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
598 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
599 __free_page(page);
600 }
601 if (per_cpu(cpu_profile_hits, cpu)[1]) {
602 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
603 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
604 __free_page(page);
605 }
606 }
607 return -1;
608 }
609 #else
610 #define create_hash_tables() ({ 0; })
611 #endif
612
create_proc_profile(void)613 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
614 {
615 struct proc_dir_entry *entry;
616
617 if (!prof_on)
618 return 0;
619 if (create_hash_tables())
620 return -ENOMEM;
621 entry = proc_create("profile", S_IWUSR | S_IRUGO,
622 NULL, &proc_profile_operations);
623 if (!entry)
624 return 0;
625 entry->size = (1+prof_len) * sizeof(atomic_t);
626 hotcpu_notifier(profile_cpu_callback, 0);
627 return 0;
628 }
629 module_init(create_proc_profile);
630 #endif /* CONFIG_PROC_FS */
631