1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46
47 #include <asm-generic/sections.h>
48 #include <asm/cacheflush.h>
49 #include <asm/errno.h>
50 #include <asm/uaccess.h>
51
52 #define KPROBE_HASH_BITS 6
53 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
54
55
56 /*
57 * Some oddball architectures like 64bit powerpc have function descriptors
58 * so this must be overridable.
59 */
60 #ifndef kprobe_lookup_name
61 #define kprobe_lookup_name(name, addr) \
62 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
63 #endif
64
65 static int kprobes_initialized;
66 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
67 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
68
69 /* NOTE: change this value only with kprobe_mutex held */
70 static bool kprobe_enabled;
71
72 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
73 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
74 static struct {
75 spinlock_t lock ____cacheline_aligned_in_smp;
76 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
77
kretprobe_table_lock_ptr(unsigned long hash)78 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
79 {
80 return &(kretprobe_table_locks[hash].lock);
81 }
82
83 /*
84 * Normally, functions that we'd want to prohibit kprobes in, are marked
85 * __kprobes. But, there are cases where such functions already belong to
86 * a different section (__sched for preempt_schedule)
87 *
88 * For such cases, we now have a blacklist
89 */
90 static struct kprobe_blackpoint kprobe_blacklist[] = {
91 {"preempt_schedule",},
92 {NULL} /* Terminator */
93 };
94
95 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
96 /*
97 * kprobe->ainsn.insn points to the copy of the instruction to be
98 * single-stepped. x86_64, POWER4 and above have no-exec support and
99 * stepping on the instruction on a vmalloced/kmalloced/data page
100 * is a recipe for disaster
101 */
102 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
103
104 struct kprobe_insn_page {
105 struct hlist_node hlist;
106 kprobe_opcode_t *insns; /* Page of instruction slots */
107 char slot_used[INSNS_PER_PAGE];
108 int nused;
109 int ngarbage;
110 };
111
112 enum kprobe_slot_state {
113 SLOT_CLEAN = 0,
114 SLOT_DIRTY = 1,
115 SLOT_USED = 2,
116 };
117
118 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
119 static struct hlist_head kprobe_insn_pages;
120 static int kprobe_garbage_slots;
121 static int collect_garbage_slots(void);
122
check_safety(void)123 static int __kprobes check_safety(void)
124 {
125 int ret = 0;
126 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
127 ret = freeze_processes();
128 if (ret == 0) {
129 struct task_struct *p, *q;
130 do_each_thread(p, q) {
131 if (p != current && p->state == TASK_RUNNING &&
132 p->pid != 0) {
133 printk("Check failed: %s is running\n",p->comm);
134 ret = -1;
135 goto loop_end;
136 }
137 } while_each_thread(p, q);
138 }
139 loop_end:
140 thaw_processes();
141 #else
142 synchronize_sched();
143 #endif
144 return ret;
145 }
146
147 /**
148 * __get_insn_slot() - Find a slot on an executable page for an instruction.
149 * We allocate an executable page if there's no room on existing ones.
150 */
__get_insn_slot(void)151 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
152 {
153 struct kprobe_insn_page *kip;
154 struct hlist_node *pos;
155
156 retry:
157 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
158 if (kip->nused < INSNS_PER_PAGE) {
159 int i;
160 for (i = 0; i < INSNS_PER_PAGE; i++) {
161 if (kip->slot_used[i] == SLOT_CLEAN) {
162 kip->slot_used[i] = SLOT_USED;
163 kip->nused++;
164 return kip->insns + (i * MAX_INSN_SIZE);
165 }
166 }
167 /* Surprise! No unused slots. Fix kip->nused. */
168 kip->nused = INSNS_PER_PAGE;
169 }
170 }
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
174 goto retry;
175 }
176 /* All out of space. Need to allocate a new page. Use slot 0. */
177 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
178 if (!kip)
179 return NULL;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = module_alloc(PAGE_SIZE);
187 if (!kip->insns) {
188 kfree(kip);
189 return NULL;
190 }
191 INIT_HLIST_NODE(&kip->hlist);
192 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
193 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
194 kip->slot_used[0] = SLOT_USED;
195 kip->nused = 1;
196 kip->ngarbage = 0;
197 return kip->insns;
198 }
199
get_insn_slot(void)200 kprobe_opcode_t __kprobes *get_insn_slot(void)
201 {
202 kprobe_opcode_t *ret;
203 mutex_lock(&kprobe_insn_mutex);
204 ret = __get_insn_slot();
205 mutex_unlock(&kprobe_insn_mutex);
206 return ret;
207 }
208
209 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)210 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
211 {
212 kip->slot_used[idx] = SLOT_CLEAN;
213 kip->nused--;
214 if (kip->nused == 0) {
215 /*
216 * Page is no longer in use. Free it unless
217 * it's the last one. We keep the last one
218 * so as not to have to set it up again the
219 * next time somebody inserts a probe.
220 */
221 hlist_del(&kip->hlist);
222 if (hlist_empty(&kprobe_insn_pages)) {
223 INIT_HLIST_NODE(&kip->hlist);
224 hlist_add_head(&kip->hlist,
225 &kprobe_insn_pages);
226 } else {
227 module_free(NULL, kip->insns);
228 kfree(kip);
229 }
230 return 1;
231 }
232 return 0;
233 }
234
collect_garbage_slots(void)235 static int __kprobes collect_garbage_slots(void)
236 {
237 struct kprobe_insn_page *kip;
238 struct hlist_node *pos, *next;
239 int safety;
240
241 /* Ensure no-one is preepmted on the garbages */
242 mutex_unlock(&kprobe_insn_mutex);
243 safety = check_safety();
244 mutex_lock(&kprobe_insn_mutex);
245 if (safety != 0)
246 return -EAGAIN;
247
248 hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
249 int i;
250 if (kip->ngarbage == 0)
251 continue;
252 kip->ngarbage = 0; /* we will collect all garbages */
253 for (i = 0; i < INSNS_PER_PAGE; i++) {
254 if (kip->slot_used[i] == SLOT_DIRTY &&
255 collect_one_slot(kip, i))
256 break;
257 }
258 }
259 kprobe_garbage_slots = 0;
260 return 0;
261 }
262
free_insn_slot(kprobe_opcode_t * slot,int dirty)263 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
264 {
265 struct kprobe_insn_page *kip;
266 struct hlist_node *pos;
267
268 mutex_lock(&kprobe_insn_mutex);
269 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
270 if (kip->insns <= slot &&
271 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
272 int i = (slot - kip->insns) / MAX_INSN_SIZE;
273 if (dirty) {
274 kip->slot_used[i] = SLOT_DIRTY;
275 kip->ngarbage++;
276 } else {
277 collect_one_slot(kip, i);
278 }
279 break;
280 }
281 }
282
283 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
284 collect_garbage_slots();
285
286 mutex_unlock(&kprobe_insn_mutex);
287 }
288 #endif
289
290 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)291 static inline void set_kprobe_instance(struct kprobe *kp)
292 {
293 __get_cpu_var(kprobe_instance) = kp;
294 }
295
reset_kprobe_instance(void)296 static inline void reset_kprobe_instance(void)
297 {
298 __get_cpu_var(kprobe_instance) = NULL;
299 }
300
301 /*
302 * This routine is called either:
303 * - under the kprobe_mutex - during kprobe_[un]register()
304 * OR
305 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
306 */
get_kprobe(void * addr)307 struct kprobe __kprobes *get_kprobe(void *addr)
308 {
309 struct hlist_head *head;
310 struct hlist_node *node;
311 struct kprobe *p;
312
313 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
314 hlist_for_each_entry_rcu(p, node, head, hlist) {
315 if (p->addr == addr)
316 return p;
317 }
318 return NULL;
319 }
320
321 /*
322 * Aggregate handlers for multiple kprobes support - these handlers
323 * take care of invoking the individual kprobe handlers on p->list
324 */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)325 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
326 {
327 struct kprobe *kp;
328
329 list_for_each_entry_rcu(kp, &p->list, list) {
330 if (kp->pre_handler && !kprobe_gone(kp)) {
331 set_kprobe_instance(kp);
332 if (kp->pre_handler(kp, regs))
333 return 1;
334 }
335 reset_kprobe_instance();
336 }
337 return 0;
338 }
339
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)340 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
341 unsigned long flags)
342 {
343 struct kprobe *kp;
344
345 list_for_each_entry_rcu(kp, &p->list, list) {
346 if (kp->post_handler && !kprobe_gone(kp)) {
347 set_kprobe_instance(kp);
348 kp->post_handler(kp, regs, flags);
349 reset_kprobe_instance();
350 }
351 }
352 }
353
aggr_fault_handler(struct kprobe * p,struct pt_regs * regs,int trapnr)354 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
355 int trapnr)
356 {
357 struct kprobe *cur = __get_cpu_var(kprobe_instance);
358
359 /*
360 * if we faulted "during" the execution of a user specified
361 * probe handler, invoke just that probe's fault handler
362 */
363 if (cur && cur->fault_handler) {
364 if (cur->fault_handler(cur, regs, trapnr))
365 return 1;
366 }
367 return 0;
368 }
369
aggr_break_handler(struct kprobe * p,struct pt_regs * regs)370 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372 struct kprobe *cur = __get_cpu_var(kprobe_instance);
373 int ret = 0;
374
375 if (cur && cur->break_handler) {
376 if (cur->break_handler(cur, regs))
377 ret = 1;
378 }
379 reset_kprobe_instance();
380 return ret;
381 }
382
383 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)384 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
385 {
386 struct kprobe *kp;
387 if (p->pre_handler != aggr_pre_handler) {
388 p->nmissed++;
389 } else {
390 list_for_each_entry_rcu(kp, &p->list, list)
391 kp->nmissed++;
392 }
393 return;
394 }
395
recycle_rp_inst(struct kretprobe_instance * ri,struct hlist_head * head)396 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
397 struct hlist_head *head)
398 {
399 struct kretprobe *rp = ri->rp;
400
401 /* remove rp inst off the rprobe_inst_table */
402 hlist_del(&ri->hlist);
403 INIT_HLIST_NODE(&ri->hlist);
404 if (likely(rp)) {
405 spin_lock(&rp->lock);
406 hlist_add_head(&ri->hlist, &rp->free_instances);
407 spin_unlock(&rp->lock);
408 } else
409 /* Unregistering */
410 hlist_add_head(&ri->hlist, head);
411 }
412
kretprobe_hash_lock(struct task_struct * tsk,struct hlist_head ** head,unsigned long * flags)413 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
414 struct hlist_head **head, unsigned long *flags)
415 {
416 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
417 spinlock_t *hlist_lock;
418
419 *head = &kretprobe_inst_table[hash];
420 hlist_lock = kretprobe_table_lock_ptr(hash);
421 spin_lock_irqsave(hlist_lock, *flags);
422 }
423
kretprobe_table_lock(unsigned long hash,unsigned long * flags)424 static void __kprobes kretprobe_table_lock(unsigned long hash,
425 unsigned long *flags)
426 {
427 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
428 spin_lock_irqsave(hlist_lock, *flags);
429 }
430
kretprobe_hash_unlock(struct task_struct * tsk,unsigned long * flags)431 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
432 unsigned long *flags)
433 {
434 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
435 spinlock_t *hlist_lock;
436
437 hlist_lock = kretprobe_table_lock_ptr(hash);
438 spin_unlock_irqrestore(hlist_lock, *flags);
439 }
440
kretprobe_table_unlock(unsigned long hash,unsigned long * flags)441 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
442 {
443 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
444 spin_unlock_irqrestore(hlist_lock, *flags);
445 }
446
447 /*
448 * This function is called from finish_task_switch when task tk becomes dead,
449 * so that we can recycle any function-return probe instances associated
450 * with this task. These left over instances represent probed functions
451 * that have been called but will never return.
452 */
kprobe_flush_task(struct task_struct * tk)453 void __kprobes kprobe_flush_task(struct task_struct *tk)
454 {
455 struct kretprobe_instance *ri;
456 struct hlist_head *head, empty_rp;
457 struct hlist_node *node, *tmp;
458 unsigned long hash, flags = 0;
459
460 if (unlikely(!kprobes_initialized))
461 /* Early boot. kretprobe_table_locks not yet initialized. */
462 return;
463
464 hash = hash_ptr(tk, KPROBE_HASH_BITS);
465 head = &kretprobe_inst_table[hash];
466 kretprobe_table_lock(hash, &flags);
467 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
468 if (ri->task == tk)
469 recycle_rp_inst(ri, &empty_rp);
470 }
471 kretprobe_table_unlock(hash, &flags);
472 INIT_HLIST_HEAD(&empty_rp);
473 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
474 hlist_del(&ri->hlist);
475 kfree(ri);
476 }
477 }
478
free_rp_inst(struct kretprobe * rp)479 static inline void free_rp_inst(struct kretprobe *rp)
480 {
481 struct kretprobe_instance *ri;
482 struct hlist_node *pos, *next;
483
484 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
485 hlist_del(&ri->hlist);
486 kfree(ri);
487 }
488 }
489
cleanup_rp_inst(struct kretprobe * rp)490 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
491 {
492 unsigned long flags, hash;
493 struct kretprobe_instance *ri;
494 struct hlist_node *pos, *next;
495 struct hlist_head *head;
496
497 /* No race here */
498 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
499 kretprobe_table_lock(hash, &flags);
500 head = &kretprobe_inst_table[hash];
501 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
502 if (ri->rp == rp)
503 ri->rp = NULL;
504 }
505 kretprobe_table_unlock(hash, &flags);
506 }
507 free_rp_inst(rp);
508 }
509
510 /*
511 * Keep all fields in the kprobe consistent
512 */
copy_kprobe(struct kprobe * old_p,struct kprobe * p)513 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
514 {
515 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
516 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
517 }
518
519 /*
520 * Add the new probe to old_p->list. Fail if this is the
521 * second jprobe at the address - two jprobes can't coexist
522 */
add_new_kprobe(struct kprobe * old_p,struct kprobe * p)523 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
524 {
525 if (p->break_handler) {
526 if (old_p->break_handler)
527 return -EEXIST;
528 list_add_tail_rcu(&p->list, &old_p->list);
529 old_p->break_handler = aggr_break_handler;
530 } else
531 list_add_rcu(&p->list, &old_p->list);
532 if (p->post_handler && !old_p->post_handler)
533 old_p->post_handler = aggr_post_handler;
534 return 0;
535 }
536
537 /*
538 * Fill in the required fields of the "manager kprobe". Replace the
539 * earlier kprobe in the hlist with the manager kprobe
540 */
add_aggr_kprobe(struct kprobe * ap,struct kprobe * p)541 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
542 {
543 copy_kprobe(p, ap);
544 flush_insn_slot(ap);
545 ap->addr = p->addr;
546 ap->pre_handler = aggr_pre_handler;
547 ap->fault_handler = aggr_fault_handler;
548 /* We don't care the kprobe which has gone. */
549 if (p->post_handler && !kprobe_gone(p))
550 ap->post_handler = aggr_post_handler;
551 if (p->break_handler && !kprobe_gone(p))
552 ap->break_handler = aggr_break_handler;
553
554 INIT_LIST_HEAD(&ap->list);
555 list_add_rcu(&p->list, &ap->list);
556
557 hlist_replace_rcu(&p->hlist, &ap->hlist);
558 }
559
560 /*
561 * This is the second or subsequent kprobe at the address - handle
562 * the intricacies
563 */
register_aggr_kprobe(struct kprobe * old_p,struct kprobe * p)564 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
565 struct kprobe *p)
566 {
567 int ret = 0;
568 struct kprobe *ap;
569
570 if (kprobe_gone(old_p)) {
571 /*
572 * Attempting to insert new probe at the same location that
573 * had a probe in the module vaddr area which already
574 * freed. So, the instruction slot has already been
575 * released. We need a new slot for the new probe.
576 */
577 ret = arch_prepare_kprobe(old_p);
578 if (ret)
579 return ret;
580 }
581 if (old_p->pre_handler == aggr_pre_handler) {
582 copy_kprobe(old_p, p);
583 ret = add_new_kprobe(old_p, p);
584 ap = old_p;
585 } else {
586 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
587 if (!ap) {
588 if (kprobe_gone(old_p))
589 arch_remove_kprobe(old_p);
590 return -ENOMEM;
591 }
592 add_aggr_kprobe(ap, old_p);
593 copy_kprobe(ap, p);
594 ret = add_new_kprobe(ap, p);
595 }
596 if (kprobe_gone(old_p)) {
597 /*
598 * If the old_p has gone, its breakpoint has been disarmed.
599 * We have to arm it again after preparing real kprobes.
600 */
601 ap->flags &= ~KPROBE_FLAG_GONE;
602 if (kprobe_enabled)
603 arch_arm_kprobe(ap);
604 }
605 return ret;
606 }
607
in_kprobes_functions(unsigned long addr)608 static int __kprobes in_kprobes_functions(unsigned long addr)
609 {
610 struct kprobe_blackpoint *kb;
611
612 if (addr >= (unsigned long)__kprobes_text_start &&
613 addr < (unsigned long)__kprobes_text_end)
614 return -EINVAL;
615 /*
616 * If there exists a kprobe_blacklist, verify and
617 * fail any probe registration in the prohibited area
618 */
619 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
620 if (kb->start_addr) {
621 if (addr >= kb->start_addr &&
622 addr < (kb->start_addr + kb->range))
623 return -EINVAL;
624 }
625 }
626 return 0;
627 }
628
629 /*
630 * If we have a symbol_name argument, look it up and add the offset field
631 * to it. This way, we can specify a relative address to a symbol.
632 */
kprobe_addr(struct kprobe * p)633 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
634 {
635 kprobe_opcode_t *addr = p->addr;
636 if (p->symbol_name) {
637 if (addr)
638 return NULL;
639 kprobe_lookup_name(p->symbol_name, addr);
640 }
641
642 if (!addr)
643 return NULL;
644 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
645 }
646
register_kprobe(struct kprobe * p)647 int __kprobes register_kprobe(struct kprobe *p)
648 {
649 int ret = 0;
650 struct kprobe *old_p;
651 struct module *probed_mod;
652 kprobe_opcode_t *addr;
653
654 addr = kprobe_addr(p);
655 if (!addr)
656 return -EINVAL;
657 p->addr = addr;
658
659 preempt_disable();
660 if (!__kernel_text_address((unsigned long) p->addr) ||
661 in_kprobes_functions((unsigned long) p->addr)) {
662 preempt_enable();
663 return -EINVAL;
664 }
665
666 p->flags = 0;
667 /*
668 * Check if are we probing a module.
669 */
670 probed_mod = __module_text_address((unsigned long) p->addr);
671 if (probed_mod) {
672 /*
673 * We must hold a refcount of the probed module while updating
674 * its code to prohibit unexpected unloading.
675 */
676 if (unlikely(!try_module_get(probed_mod))) {
677 preempt_enable();
678 return -EINVAL;
679 }
680 /*
681 * If the module freed .init.text, we couldn't insert
682 * kprobes in there.
683 */
684 if (within_module_init((unsigned long)p->addr, probed_mod) &&
685 probed_mod->state != MODULE_STATE_COMING) {
686 module_put(probed_mod);
687 preempt_enable();
688 return -EINVAL;
689 }
690 }
691 preempt_enable();
692
693 p->nmissed = 0;
694 INIT_LIST_HEAD(&p->list);
695 mutex_lock(&kprobe_mutex);
696 old_p = get_kprobe(p->addr);
697 if (old_p) {
698 ret = register_aggr_kprobe(old_p, p);
699 goto out;
700 }
701
702 ret = arch_prepare_kprobe(p);
703 if (ret)
704 goto out;
705
706 INIT_HLIST_NODE(&p->hlist);
707 hlist_add_head_rcu(&p->hlist,
708 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
709
710 if (kprobe_enabled)
711 arch_arm_kprobe(p);
712
713 out:
714 mutex_unlock(&kprobe_mutex);
715
716 if (probed_mod)
717 module_put(probed_mod);
718
719 return ret;
720 }
721
722 /*
723 * Unregister a kprobe without a scheduler synchronization.
724 */
__unregister_kprobe_top(struct kprobe * p)725 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
726 {
727 struct kprobe *old_p, *list_p;
728
729 old_p = get_kprobe(p->addr);
730 if (unlikely(!old_p))
731 return -EINVAL;
732
733 if (p != old_p) {
734 list_for_each_entry_rcu(list_p, &old_p->list, list)
735 if (list_p == p)
736 /* kprobe p is a valid probe */
737 goto valid_p;
738 return -EINVAL;
739 }
740 valid_p:
741 if (old_p == p ||
742 (old_p->pre_handler == aggr_pre_handler &&
743 list_is_singular(&old_p->list))) {
744 /*
745 * Only probe on the hash list. Disarm only if kprobes are
746 * enabled and not gone - otherwise, the breakpoint would
747 * already have been removed. We save on flushing icache.
748 */
749 if (kprobe_enabled && !kprobe_gone(old_p))
750 arch_disarm_kprobe(p);
751 hlist_del_rcu(&old_p->hlist);
752 } else {
753 if (p->break_handler && !kprobe_gone(p))
754 old_p->break_handler = NULL;
755 if (p->post_handler && !kprobe_gone(p)) {
756 list_for_each_entry_rcu(list_p, &old_p->list, list) {
757 if ((list_p != p) && (list_p->post_handler))
758 goto noclean;
759 }
760 old_p->post_handler = NULL;
761 }
762 noclean:
763 list_del_rcu(&p->list);
764 }
765 return 0;
766 }
767
__unregister_kprobe_bottom(struct kprobe * p)768 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
769 {
770 struct kprobe *old_p;
771
772 if (list_empty(&p->list))
773 arch_remove_kprobe(p);
774 else if (list_is_singular(&p->list)) {
775 /* "p" is the last child of an aggr_kprobe */
776 old_p = list_entry(p->list.next, struct kprobe, list);
777 list_del(&p->list);
778 arch_remove_kprobe(old_p);
779 kfree(old_p);
780 }
781 }
782
register_kprobes(struct kprobe ** kps,int num)783 int __kprobes register_kprobes(struct kprobe **kps, int num)
784 {
785 int i, ret = 0;
786
787 if (num <= 0)
788 return -EINVAL;
789 for (i = 0; i < num; i++) {
790 ret = register_kprobe(kps[i]);
791 if (ret < 0) {
792 if (i > 0)
793 unregister_kprobes(kps, i);
794 break;
795 }
796 }
797 return ret;
798 }
799
unregister_kprobe(struct kprobe * p)800 void __kprobes unregister_kprobe(struct kprobe *p)
801 {
802 unregister_kprobes(&p, 1);
803 }
804
unregister_kprobes(struct kprobe ** kps,int num)805 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
806 {
807 int i;
808
809 if (num <= 0)
810 return;
811 mutex_lock(&kprobe_mutex);
812 for (i = 0; i < num; i++)
813 if (__unregister_kprobe_top(kps[i]) < 0)
814 kps[i]->addr = NULL;
815 mutex_unlock(&kprobe_mutex);
816
817 synchronize_sched();
818 for (i = 0; i < num; i++)
819 if (kps[i]->addr)
820 __unregister_kprobe_bottom(kps[i]);
821 }
822
823 static struct notifier_block kprobe_exceptions_nb = {
824 .notifier_call = kprobe_exceptions_notify,
825 .priority = 0x7fffffff /* we need to be notified first */
826 };
827
arch_deref_entry_point(void * entry)828 unsigned long __weak arch_deref_entry_point(void *entry)
829 {
830 return (unsigned long)entry;
831 }
832
register_jprobes(struct jprobe ** jps,int num)833 int __kprobes register_jprobes(struct jprobe **jps, int num)
834 {
835 struct jprobe *jp;
836 int ret = 0, i;
837
838 if (num <= 0)
839 return -EINVAL;
840 for (i = 0; i < num; i++) {
841 unsigned long addr;
842 jp = jps[i];
843 addr = arch_deref_entry_point(jp->entry);
844
845 if (!kernel_text_address(addr))
846 ret = -EINVAL;
847 else {
848 /* Todo: Verify probepoint is a function entry point */
849 jp->kp.pre_handler = setjmp_pre_handler;
850 jp->kp.break_handler = longjmp_break_handler;
851 ret = register_kprobe(&jp->kp);
852 }
853 if (ret < 0) {
854 if (i > 0)
855 unregister_jprobes(jps, i);
856 break;
857 }
858 }
859 return ret;
860 }
861
register_jprobe(struct jprobe * jp)862 int __kprobes register_jprobe(struct jprobe *jp)
863 {
864 return register_jprobes(&jp, 1);
865 }
866
unregister_jprobe(struct jprobe * jp)867 void __kprobes unregister_jprobe(struct jprobe *jp)
868 {
869 unregister_jprobes(&jp, 1);
870 }
871
unregister_jprobes(struct jprobe ** jps,int num)872 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
873 {
874 int i;
875
876 if (num <= 0)
877 return;
878 mutex_lock(&kprobe_mutex);
879 for (i = 0; i < num; i++)
880 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
881 jps[i]->kp.addr = NULL;
882 mutex_unlock(&kprobe_mutex);
883
884 synchronize_sched();
885 for (i = 0; i < num; i++) {
886 if (jps[i]->kp.addr)
887 __unregister_kprobe_bottom(&jps[i]->kp);
888 }
889 }
890
891 #ifdef CONFIG_KRETPROBES
892 /*
893 * This kprobe pre_handler is registered with every kretprobe. When probe
894 * hits it will set up the return probe.
895 */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)896 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
897 struct pt_regs *regs)
898 {
899 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
900 unsigned long hash, flags = 0;
901 struct kretprobe_instance *ri;
902
903 /*TODO: consider to only swap the RA after the last pre_handler fired */
904 hash = hash_ptr(current, KPROBE_HASH_BITS);
905 spin_lock_irqsave(&rp->lock, flags);
906 if (!hlist_empty(&rp->free_instances)) {
907 ri = hlist_entry(rp->free_instances.first,
908 struct kretprobe_instance, hlist);
909 hlist_del(&ri->hlist);
910 spin_unlock_irqrestore(&rp->lock, flags);
911
912 ri->rp = rp;
913 ri->task = current;
914
915 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
916 spin_unlock_irqrestore(&rp->lock, flags);
917 return 0;
918 }
919
920 arch_prepare_kretprobe(ri, regs);
921
922 /* XXX(hch): why is there no hlist_move_head? */
923 INIT_HLIST_NODE(&ri->hlist);
924 kretprobe_table_lock(hash, &flags);
925 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
926 kretprobe_table_unlock(hash, &flags);
927 } else {
928 rp->nmissed++;
929 spin_unlock_irqrestore(&rp->lock, flags);
930 }
931 return 0;
932 }
933
register_kretprobe(struct kretprobe * rp)934 int __kprobes register_kretprobe(struct kretprobe *rp)
935 {
936 int ret = 0;
937 struct kretprobe_instance *inst;
938 int i;
939 void *addr;
940
941 if (kretprobe_blacklist_size) {
942 addr = kprobe_addr(&rp->kp);
943 if (!addr)
944 return -EINVAL;
945
946 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
947 if (kretprobe_blacklist[i].addr == addr)
948 return -EINVAL;
949 }
950 }
951
952 rp->kp.pre_handler = pre_handler_kretprobe;
953 rp->kp.post_handler = NULL;
954 rp->kp.fault_handler = NULL;
955 rp->kp.break_handler = NULL;
956
957 /* Pre-allocate memory for max kretprobe instances */
958 if (rp->maxactive <= 0) {
959 #ifdef CONFIG_PREEMPT
960 rp->maxactive = max(10, 2 * NR_CPUS);
961 #else
962 rp->maxactive = NR_CPUS;
963 #endif
964 }
965 spin_lock_init(&rp->lock);
966 INIT_HLIST_HEAD(&rp->free_instances);
967 for (i = 0; i < rp->maxactive; i++) {
968 inst = kmalloc(sizeof(struct kretprobe_instance) +
969 rp->data_size, GFP_KERNEL);
970 if (inst == NULL) {
971 free_rp_inst(rp);
972 return -ENOMEM;
973 }
974 INIT_HLIST_NODE(&inst->hlist);
975 hlist_add_head(&inst->hlist, &rp->free_instances);
976 }
977
978 rp->nmissed = 0;
979 /* Establish function entry probe point */
980 ret = register_kprobe(&rp->kp);
981 if (ret != 0)
982 free_rp_inst(rp);
983 return ret;
984 }
985
register_kretprobes(struct kretprobe ** rps,int num)986 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
987 {
988 int ret = 0, i;
989
990 if (num <= 0)
991 return -EINVAL;
992 for (i = 0; i < num; i++) {
993 ret = register_kretprobe(rps[i]);
994 if (ret < 0) {
995 if (i > 0)
996 unregister_kretprobes(rps, i);
997 break;
998 }
999 }
1000 return ret;
1001 }
1002
unregister_kretprobe(struct kretprobe * rp)1003 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1004 {
1005 unregister_kretprobes(&rp, 1);
1006 }
1007
unregister_kretprobes(struct kretprobe ** rps,int num)1008 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1009 {
1010 int i;
1011
1012 if (num <= 0)
1013 return;
1014 mutex_lock(&kprobe_mutex);
1015 for (i = 0; i < num; i++)
1016 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1017 rps[i]->kp.addr = NULL;
1018 mutex_unlock(&kprobe_mutex);
1019
1020 synchronize_sched();
1021 for (i = 0; i < num; i++) {
1022 if (rps[i]->kp.addr) {
1023 __unregister_kprobe_bottom(&rps[i]->kp);
1024 cleanup_rp_inst(rps[i]);
1025 }
1026 }
1027 }
1028
1029 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)1030 int __kprobes register_kretprobe(struct kretprobe *rp)
1031 {
1032 return -ENOSYS;
1033 }
1034
register_kretprobes(struct kretprobe ** rps,int num)1035 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1036 {
1037 return -ENOSYS;
1038 }
unregister_kretprobe(struct kretprobe * rp)1039 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1040 {
1041 }
1042
unregister_kretprobes(struct kretprobe ** rps,int num)1043 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1044 {
1045 }
1046
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)1047 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1048 struct pt_regs *regs)
1049 {
1050 return 0;
1051 }
1052
1053 #endif /* CONFIG_KRETPROBES */
1054
1055 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)1056 static void __kprobes kill_kprobe(struct kprobe *p)
1057 {
1058 struct kprobe *kp;
1059 p->flags |= KPROBE_FLAG_GONE;
1060 if (p->pre_handler == aggr_pre_handler) {
1061 /*
1062 * If this is an aggr_kprobe, we have to list all the
1063 * chained probes and mark them GONE.
1064 */
1065 list_for_each_entry_rcu(kp, &p->list, list)
1066 kp->flags |= KPROBE_FLAG_GONE;
1067 p->post_handler = NULL;
1068 p->break_handler = NULL;
1069 }
1070 /*
1071 * Here, we can remove insn_slot safely, because no thread calls
1072 * the original probed function (which will be freed soon) any more.
1073 */
1074 arch_remove_kprobe(p);
1075 }
1076
1077 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)1078 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1079 unsigned long val, void *data)
1080 {
1081 struct module *mod = data;
1082 struct hlist_head *head;
1083 struct hlist_node *node;
1084 struct kprobe *p;
1085 unsigned int i;
1086 int checkcore = (val == MODULE_STATE_GOING);
1087
1088 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1089 return NOTIFY_DONE;
1090
1091 /*
1092 * When MODULE_STATE_GOING was notified, both of module .text and
1093 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1094 * notified, only .init.text section would be freed. We need to
1095 * disable kprobes which have been inserted in the sections.
1096 */
1097 mutex_lock(&kprobe_mutex);
1098 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1099 head = &kprobe_table[i];
1100 hlist_for_each_entry_rcu(p, node, head, hlist)
1101 if (within_module_init((unsigned long)p->addr, mod) ||
1102 (checkcore &&
1103 within_module_core((unsigned long)p->addr, mod))) {
1104 /*
1105 * The vaddr this probe is installed will soon
1106 * be vfreed buy not synced to disk. Hence,
1107 * disarming the breakpoint isn't needed.
1108 */
1109 kill_kprobe(p);
1110 }
1111 }
1112 mutex_unlock(&kprobe_mutex);
1113 return NOTIFY_DONE;
1114 }
1115
1116 static struct notifier_block kprobe_module_nb = {
1117 .notifier_call = kprobes_module_callback,
1118 .priority = 0
1119 };
1120
init_kprobes(void)1121 static int __init init_kprobes(void)
1122 {
1123 int i, err = 0;
1124 unsigned long offset = 0, size = 0;
1125 char *modname, namebuf[128];
1126 const char *symbol_name;
1127 void *addr;
1128 struct kprobe_blackpoint *kb;
1129
1130 /* FIXME allocate the probe table, currently defined statically */
1131 /* initialize all list heads */
1132 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1133 INIT_HLIST_HEAD(&kprobe_table[i]);
1134 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1135 spin_lock_init(&(kretprobe_table_locks[i].lock));
1136 }
1137
1138 /*
1139 * Lookup and populate the kprobe_blacklist.
1140 *
1141 * Unlike the kretprobe blacklist, we'll need to determine
1142 * the range of addresses that belong to the said functions,
1143 * since a kprobe need not necessarily be at the beginning
1144 * of a function.
1145 */
1146 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1147 kprobe_lookup_name(kb->name, addr);
1148 if (!addr)
1149 continue;
1150
1151 kb->start_addr = (unsigned long)addr;
1152 symbol_name = kallsyms_lookup(kb->start_addr,
1153 &size, &offset, &modname, namebuf);
1154 if (!symbol_name)
1155 kb->range = 0;
1156 else
1157 kb->range = size;
1158 }
1159
1160 if (kretprobe_blacklist_size) {
1161 /* lookup the function address from its name */
1162 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1163 kprobe_lookup_name(kretprobe_blacklist[i].name,
1164 kretprobe_blacklist[i].addr);
1165 if (!kretprobe_blacklist[i].addr)
1166 printk("kretprobe: lookup failed: %s\n",
1167 kretprobe_blacklist[i].name);
1168 }
1169 }
1170
1171 /* By default, kprobes are enabled */
1172 kprobe_enabled = true;
1173
1174 err = arch_init_kprobes();
1175 if (!err)
1176 err = register_die_notifier(&kprobe_exceptions_nb);
1177 if (!err)
1178 err = register_module_notifier(&kprobe_module_nb);
1179
1180 kprobes_initialized = (err == 0);
1181
1182 if (!err)
1183 init_test_probes();
1184 return err;
1185 }
1186
1187 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname)1188 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1189 const char *sym, int offset,char *modname)
1190 {
1191 char *kprobe_type;
1192
1193 if (p->pre_handler == pre_handler_kretprobe)
1194 kprobe_type = "r";
1195 else if (p->pre_handler == setjmp_pre_handler)
1196 kprobe_type = "j";
1197 else
1198 kprobe_type = "k";
1199 if (sym)
1200 seq_printf(pi, "%p %s %s+0x%x %s %s\n", p->addr, kprobe_type,
1201 sym, offset, (modname ? modname : " "),
1202 (kprobe_gone(p) ? "[GONE]" : ""));
1203 else
1204 seq_printf(pi, "%p %s %p %s\n", p->addr, kprobe_type, p->addr,
1205 (kprobe_gone(p) ? "[GONE]" : ""));
1206 }
1207
kprobe_seq_start(struct seq_file * f,loff_t * pos)1208 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1209 {
1210 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1211 }
1212
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)1213 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1214 {
1215 (*pos)++;
1216 if (*pos >= KPROBE_TABLE_SIZE)
1217 return NULL;
1218 return pos;
1219 }
1220
kprobe_seq_stop(struct seq_file * f,void * v)1221 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1222 {
1223 /* Nothing to do */
1224 }
1225
show_kprobe_addr(struct seq_file * pi,void * v)1226 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1227 {
1228 struct hlist_head *head;
1229 struct hlist_node *node;
1230 struct kprobe *p, *kp;
1231 const char *sym = NULL;
1232 unsigned int i = *(loff_t *) v;
1233 unsigned long offset = 0;
1234 char *modname, namebuf[128];
1235
1236 head = &kprobe_table[i];
1237 preempt_disable();
1238 hlist_for_each_entry_rcu(p, node, head, hlist) {
1239 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1240 &offset, &modname, namebuf);
1241 if (p->pre_handler == aggr_pre_handler) {
1242 list_for_each_entry_rcu(kp, &p->list, list)
1243 report_probe(pi, kp, sym, offset, modname);
1244 } else
1245 report_probe(pi, p, sym, offset, modname);
1246 }
1247 preempt_enable();
1248 return 0;
1249 }
1250
1251 static struct seq_operations kprobes_seq_ops = {
1252 .start = kprobe_seq_start,
1253 .next = kprobe_seq_next,
1254 .stop = kprobe_seq_stop,
1255 .show = show_kprobe_addr
1256 };
1257
kprobes_open(struct inode * inode,struct file * filp)1258 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1259 {
1260 return seq_open(filp, &kprobes_seq_ops);
1261 }
1262
1263 static struct file_operations debugfs_kprobes_operations = {
1264 .open = kprobes_open,
1265 .read = seq_read,
1266 .llseek = seq_lseek,
1267 .release = seq_release,
1268 };
1269
enable_all_kprobes(void)1270 static void __kprobes enable_all_kprobes(void)
1271 {
1272 struct hlist_head *head;
1273 struct hlist_node *node;
1274 struct kprobe *p;
1275 unsigned int i;
1276
1277 mutex_lock(&kprobe_mutex);
1278
1279 /* If kprobes are already enabled, just return */
1280 if (kprobe_enabled)
1281 goto already_enabled;
1282
1283 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1284 head = &kprobe_table[i];
1285 hlist_for_each_entry_rcu(p, node, head, hlist)
1286 if (!kprobe_gone(p))
1287 arch_arm_kprobe(p);
1288 }
1289
1290 kprobe_enabled = true;
1291 printk(KERN_INFO "Kprobes globally enabled\n");
1292
1293 already_enabled:
1294 mutex_unlock(&kprobe_mutex);
1295 return;
1296 }
1297
disable_all_kprobes(void)1298 static void __kprobes disable_all_kprobes(void)
1299 {
1300 struct hlist_head *head;
1301 struct hlist_node *node;
1302 struct kprobe *p;
1303 unsigned int i;
1304
1305 mutex_lock(&kprobe_mutex);
1306
1307 /* If kprobes are already disabled, just return */
1308 if (!kprobe_enabled)
1309 goto already_disabled;
1310
1311 kprobe_enabled = false;
1312 printk(KERN_INFO "Kprobes globally disabled\n");
1313 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1314 head = &kprobe_table[i];
1315 hlist_for_each_entry_rcu(p, node, head, hlist) {
1316 if (!arch_trampoline_kprobe(p) && !kprobe_gone(p))
1317 arch_disarm_kprobe(p);
1318 }
1319 }
1320
1321 mutex_unlock(&kprobe_mutex);
1322 /* Allow all currently running kprobes to complete */
1323 synchronize_sched();
1324 return;
1325
1326 already_disabled:
1327 mutex_unlock(&kprobe_mutex);
1328 return;
1329 }
1330
1331 /*
1332 * XXX: The debugfs bool file interface doesn't allow for callbacks
1333 * when the bool state is switched. We can reuse that facility when
1334 * available
1335 */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1336 static ssize_t read_enabled_file_bool(struct file *file,
1337 char __user *user_buf, size_t count, loff_t *ppos)
1338 {
1339 char buf[3];
1340
1341 if (kprobe_enabled)
1342 buf[0] = '1';
1343 else
1344 buf[0] = '0';
1345 buf[1] = '\n';
1346 buf[2] = 0x00;
1347 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1348 }
1349
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1350 static ssize_t write_enabled_file_bool(struct file *file,
1351 const char __user *user_buf, size_t count, loff_t *ppos)
1352 {
1353 char buf[32];
1354 int buf_size;
1355
1356 buf_size = min(count, (sizeof(buf)-1));
1357 if (copy_from_user(buf, user_buf, buf_size))
1358 return -EFAULT;
1359
1360 switch (buf[0]) {
1361 case 'y':
1362 case 'Y':
1363 case '1':
1364 enable_all_kprobes();
1365 break;
1366 case 'n':
1367 case 'N':
1368 case '0':
1369 disable_all_kprobes();
1370 break;
1371 }
1372
1373 return count;
1374 }
1375
1376 static struct file_operations fops_kp = {
1377 .read = read_enabled_file_bool,
1378 .write = write_enabled_file_bool,
1379 };
1380
debugfs_kprobe_init(void)1381 static int __kprobes debugfs_kprobe_init(void)
1382 {
1383 struct dentry *dir, *file;
1384 unsigned int value = 1;
1385
1386 dir = debugfs_create_dir("kprobes", NULL);
1387 if (!dir)
1388 return -ENOMEM;
1389
1390 file = debugfs_create_file("list", 0444, dir, NULL,
1391 &debugfs_kprobes_operations);
1392 if (!file) {
1393 debugfs_remove(dir);
1394 return -ENOMEM;
1395 }
1396
1397 file = debugfs_create_file("enabled", 0600, dir,
1398 &value, &fops_kp);
1399 if (!file) {
1400 debugfs_remove(dir);
1401 return -ENOMEM;
1402 }
1403
1404 return 0;
1405 }
1406
1407 late_initcall(debugfs_kprobe_init);
1408 #endif /* CONFIG_DEBUG_FS */
1409
1410 module_init(init_kprobes);
1411
1412 EXPORT_SYMBOL_GPL(register_kprobe);
1413 EXPORT_SYMBOL_GPL(unregister_kprobe);
1414 EXPORT_SYMBOL_GPL(register_kprobes);
1415 EXPORT_SYMBOL_GPL(unregister_kprobes);
1416 EXPORT_SYMBOL_GPL(register_jprobe);
1417 EXPORT_SYMBOL_GPL(unregister_jprobe);
1418 EXPORT_SYMBOL_GPL(register_jprobes);
1419 EXPORT_SYMBOL_GPL(unregister_jprobes);
1420 EXPORT_SYMBOL_GPL(jprobe_return);
1421 EXPORT_SYMBOL_GPL(register_kretprobe);
1422 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1423 EXPORT_SYMBOL_GPL(register_kretprobes);
1424 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1425