• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/bitops.h>
16 #include <linux/lmb.h>
17 
18 #define LMB_ALLOC_ANYWHERE	0
19 
20 struct lmb lmb;
21 
22 static int lmb_debug;
23 
early_lmb(char * p)24 static int __init early_lmb(char *p)
25 {
26 	if (p && strstr(p, "debug"))
27 		lmb_debug = 1;
28 	return 0;
29 }
30 early_param("lmb", early_lmb);
31 
lmb_dump_all(void)32 void lmb_dump_all(void)
33 {
34 	unsigned long i;
35 
36 	if (!lmb_debug)
37 		return;
38 
39 	pr_info("lmb_dump_all:\n");
40 	pr_info("    memory.cnt		  = 0x%lx\n", lmb.memory.cnt);
41 	pr_info("    memory.size		  = 0x%llx\n",
42 	    (unsigned long long)lmb.memory.size);
43 	for (i=0; i < lmb.memory.cnt ;i++) {
44 		pr_info("    memory.region[0x%lx].base       = 0x%llx\n",
45 		    i, (unsigned long long)lmb.memory.region[i].base);
46 		pr_info("		      .size     = 0x%llx\n",
47 		    (unsigned long long)lmb.memory.region[i].size);
48 	}
49 
50 	pr_info("    reserved.cnt	  = 0x%lx\n", lmb.reserved.cnt);
51 	pr_info("    reserved.size	  = 0x%llx\n",
52 	    (unsigned long long)lmb.memory.size);
53 	for (i=0; i < lmb.reserved.cnt ;i++) {
54 		pr_info("    reserved.region[0x%lx].base       = 0x%llx\n",
55 		    i, (unsigned long long)lmb.reserved.region[i].base);
56 		pr_info("		      .size     = 0x%llx\n",
57 		    (unsigned long long)lmb.reserved.region[i].size);
58 	}
59 }
60 
lmb_addrs_overlap(u64 base1,u64 size1,u64 base2,u64 size2)61 static unsigned long lmb_addrs_overlap(u64 base1, u64 size1, u64 base2,
62 					u64 size2)
63 {
64 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65 }
66 
lmb_addrs_adjacent(u64 base1,u64 size1,u64 base2,u64 size2)67 static long lmb_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
68 {
69 	if (base2 == base1 + size1)
70 		return 1;
71 	else if (base1 == base2 + size2)
72 		return -1;
73 
74 	return 0;
75 }
76 
lmb_regions_adjacent(struct lmb_region * rgn,unsigned long r1,unsigned long r2)77 static long lmb_regions_adjacent(struct lmb_region *rgn,
78 		unsigned long r1, unsigned long r2)
79 {
80 	u64 base1 = rgn->region[r1].base;
81 	u64 size1 = rgn->region[r1].size;
82 	u64 base2 = rgn->region[r2].base;
83 	u64 size2 = rgn->region[r2].size;
84 
85 	return lmb_addrs_adjacent(base1, size1, base2, size2);
86 }
87 
lmb_remove_region(struct lmb_region * rgn,unsigned long r)88 static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
89 {
90 	unsigned long i;
91 
92 	for (i = r; i < rgn->cnt - 1; i++) {
93 		rgn->region[i].base = rgn->region[i + 1].base;
94 		rgn->region[i].size = rgn->region[i + 1].size;
95 	}
96 	rgn->cnt--;
97 }
98 
99 /* Assumption: base addr of region 1 < base addr of region 2 */
lmb_coalesce_regions(struct lmb_region * rgn,unsigned long r1,unsigned long r2)100 static void lmb_coalesce_regions(struct lmb_region *rgn,
101 		unsigned long r1, unsigned long r2)
102 {
103 	rgn->region[r1].size += rgn->region[r2].size;
104 	lmb_remove_region(rgn, r2);
105 }
106 
lmb_init(void)107 void __init lmb_init(void)
108 {
109 	/* Create a dummy zero size LMB which will get coalesced away later.
110 	 * This simplifies the lmb_add() code below...
111 	 */
112 	lmb.memory.region[0].base = 0;
113 	lmb.memory.region[0].size = 0;
114 	lmb.memory.cnt = 1;
115 
116 	/* Ditto. */
117 	lmb.reserved.region[0].base = 0;
118 	lmb.reserved.region[0].size = 0;
119 	lmb.reserved.cnt = 1;
120 }
121 
lmb_analyze(void)122 void __init lmb_analyze(void)
123 {
124 	int i;
125 
126 	lmb.memory.size = 0;
127 
128 	for (i = 0; i < lmb.memory.cnt; i++)
129 		lmb.memory.size += lmb.memory.region[i].size;
130 }
131 
lmb_add_region(struct lmb_region * rgn,u64 base,u64 size)132 static long lmb_add_region(struct lmb_region *rgn, u64 base, u64 size)
133 {
134 	unsigned long coalesced = 0;
135 	long adjacent, i;
136 
137 	if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
138 		rgn->region[0].base = base;
139 		rgn->region[0].size = size;
140 		return 0;
141 	}
142 
143 	/* First try and coalesce this LMB with another. */
144 	for (i = 0; i < rgn->cnt; i++) {
145 		u64 rgnbase = rgn->region[i].base;
146 		u64 rgnsize = rgn->region[i].size;
147 
148 		if ((rgnbase == base) && (rgnsize == size))
149 			/* Already have this region, so we're done */
150 			return 0;
151 
152 		adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
153 		if (adjacent > 0) {
154 			rgn->region[i].base -= size;
155 			rgn->region[i].size += size;
156 			coalesced++;
157 			break;
158 		} else if (adjacent < 0) {
159 			rgn->region[i].size += size;
160 			coalesced++;
161 			break;
162 		}
163 	}
164 
165 	if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i+1)) {
166 		lmb_coalesce_regions(rgn, i, i+1);
167 		coalesced++;
168 	}
169 
170 	if (coalesced)
171 		return coalesced;
172 	if (rgn->cnt >= MAX_LMB_REGIONS)
173 		return -1;
174 
175 	/* Couldn't coalesce the LMB, so add it to the sorted table. */
176 	for (i = rgn->cnt - 1; i >= 0; i--) {
177 		if (base < rgn->region[i].base) {
178 			rgn->region[i+1].base = rgn->region[i].base;
179 			rgn->region[i+1].size = rgn->region[i].size;
180 		} else {
181 			rgn->region[i+1].base = base;
182 			rgn->region[i+1].size = size;
183 			break;
184 		}
185 	}
186 
187 	if (base < rgn->region[0].base) {
188 		rgn->region[0].base = base;
189 		rgn->region[0].size = size;
190 	}
191 	rgn->cnt++;
192 
193 	return 0;
194 }
195 
lmb_add(u64 base,u64 size)196 long lmb_add(u64 base, u64 size)
197 {
198 	struct lmb_region *_rgn = &lmb.memory;
199 
200 	/* On pSeries LPAR systems, the first LMB is our RMO region. */
201 	if (base == 0)
202 		lmb.rmo_size = size;
203 
204 	return lmb_add_region(_rgn, base, size);
205 
206 }
207 
lmb_remove(u64 base,u64 size)208 long lmb_remove(u64 base, u64 size)
209 {
210 	struct lmb_region *rgn = &(lmb.memory);
211 	u64 rgnbegin, rgnend;
212 	u64 end = base + size;
213 	int i;
214 
215 	rgnbegin = rgnend = 0; /* supress gcc warnings */
216 
217 	/* Find the region where (base, size) belongs to */
218 	for (i=0; i < rgn->cnt; i++) {
219 		rgnbegin = rgn->region[i].base;
220 		rgnend = rgnbegin + rgn->region[i].size;
221 
222 		if ((rgnbegin <= base) && (end <= rgnend))
223 			break;
224 	}
225 
226 	/* Didn't find the region */
227 	if (i == rgn->cnt)
228 		return -1;
229 
230 	/* Check to see if we are removing entire region */
231 	if ((rgnbegin == base) && (rgnend == end)) {
232 		lmb_remove_region(rgn, i);
233 		return 0;
234 	}
235 
236 	/* Check to see if region is matching at the front */
237 	if (rgnbegin == base) {
238 		rgn->region[i].base = end;
239 		rgn->region[i].size -= size;
240 		return 0;
241 	}
242 
243 	/* Check to see if the region is matching at the end */
244 	if (rgnend == end) {
245 		rgn->region[i].size -= size;
246 		return 0;
247 	}
248 
249 	/*
250 	 * We need to split the entry -  adjust the current one to the
251 	 * beginging of the hole and add the region after hole.
252 	 */
253 	rgn->region[i].size = base - rgn->region[i].base;
254 	return lmb_add_region(rgn, end, rgnend - end);
255 }
256 
lmb_reserve(u64 base,u64 size)257 long __init lmb_reserve(u64 base, u64 size)
258 {
259 	struct lmb_region *_rgn = &lmb.reserved;
260 
261 	BUG_ON(0 == size);
262 
263 	return lmb_add_region(_rgn, base, size);
264 }
265 
lmb_overlaps_region(struct lmb_region * rgn,u64 base,u64 size)266 long __init lmb_overlaps_region(struct lmb_region *rgn, u64 base, u64 size)
267 {
268 	unsigned long i;
269 
270 	for (i = 0; i < rgn->cnt; i++) {
271 		u64 rgnbase = rgn->region[i].base;
272 		u64 rgnsize = rgn->region[i].size;
273 		if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
274 			break;
275 	}
276 
277 	return (i < rgn->cnt) ? i : -1;
278 }
279 
lmb_align_down(u64 addr,u64 size)280 static u64 lmb_align_down(u64 addr, u64 size)
281 {
282 	return addr & ~(size - 1);
283 }
284 
lmb_align_up(u64 addr,u64 size)285 static u64 lmb_align_up(u64 addr, u64 size)
286 {
287 	return (addr + (size - 1)) & ~(size - 1);
288 }
289 
lmb_alloc_nid_unreserved(u64 start,u64 end,u64 size,u64 align)290 static u64 __init lmb_alloc_nid_unreserved(u64 start, u64 end,
291 					   u64 size, u64 align)
292 {
293 	u64 base, res_base;
294 	long j;
295 
296 	base = lmb_align_down((end - size), align);
297 	while (start <= base) {
298 		j = lmb_overlaps_region(&lmb.reserved, base, size);
299 		if (j < 0) {
300 			/* this area isn't reserved, take it */
301 			if (lmb_add_region(&lmb.reserved, base, size) < 0)
302 				base = ~(u64)0;
303 			return base;
304 		}
305 		res_base = lmb.reserved.region[j].base;
306 		if (res_base < size)
307 			break;
308 		base = lmb_align_down(res_base - size, align);
309 	}
310 
311 	return ~(u64)0;
312 }
313 
lmb_alloc_nid_region(struct lmb_property * mp,u64 (* nid_range)(u64,u64,int *),u64 size,u64 align,int nid)314 static u64 __init lmb_alloc_nid_region(struct lmb_property *mp,
315 				       u64 (*nid_range)(u64, u64, int *),
316 				       u64 size, u64 align, int nid)
317 {
318 	u64 start, end;
319 
320 	start = mp->base;
321 	end = start + mp->size;
322 
323 	start = lmb_align_up(start, align);
324 	while (start < end) {
325 		u64 this_end;
326 		int this_nid;
327 
328 		this_end = nid_range(start, end, &this_nid);
329 		if (this_nid == nid) {
330 			u64 ret = lmb_alloc_nid_unreserved(start, this_end,
331 							   size, align);
332 			if (ret != ~(u64)0)
333 				return ret;
334 		}
335 		start = this_end;
336 	}
337 
338 	return ~(u64)0;
339 }
340 
lmb_alloc_nid(u64 size,u64 align,int nid,u64 (* nid_range)(u64 start,u64 end,int * nid))341 u64 __init lmb_alloc_nid(u64 size, u64 align, int nid,
342 			 u64 (*nid_range)(u64 start, u64 end, int *nid))
343 {
344 	struct lmb_region *mem = &lmb.memory;
345 	int i;
346 
347 	BUG_ON(0 == size);
348 
349 	size = lmb_align_up(size, align);
350 
351 	for (i = 0; i < mem->cnt; i++) {
352 		u64 ret = lmb_alloc_nid_region(&mem->region[i],
353 					       nid_range,
354 					       size, align, nid);
355 		if (ret != ~(u64)0)
356 			return ret;
357 	}
358 
359 	return lmb_alloc(size, align);
360 }
361 
lmb_alloc(u64 size,u64 align)362 u64 __init lmb_alloc(u64 size, u64 align)
363 {
364 	return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
365 }
366 
lmb_alloc_base(u64 size,u64 align,u64 max_addr)367 u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr)
368 {
369 	u64 alloc;
370 
371 	alloc = __lmb_alloc_base(size, align, max_addr);
372 
373 	if (alloc == 0)
374 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
375 		      (unsigned long long) size, (unsigned long long) max_addr);
376 
377 	return alloc;
378 }
379 
__lmb_alloc_base(u64 size,u64 align,u64 max_addr)380 u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr)
381 {
382 	long i, j;
383 	u64 base = 0;
384 	u64 res_base;
385 
386 	BUG_ON(0 == size);
387 
388 	size = lmb_align_up(size, align);
389 
390 	/* On some platforms, make sure we allocate lowmem */
391 	/* Note that LMB_REAL_LIMIT may be LMB_ALLOC_ANYWHERE */
392 	if (max_addr == LMB_ALLOC_ANYWHERE)
393 		max_addr = LMB_REAL_LIMIT;
394 
395 	for (i = lmb.memory.cnt - 1; i >= 0; i--) {
396 		u64 lmbbase = lmb.memory.region[i].base;
397 		u64 lmbsize = lmb.memory.region[i].size;
398 
399 		if (lmbsize < size)
400 			continue;
401 		if (max_addr == LMB_ALLOC_ANYWHERE)
402 			base = lmb_align_down(lmbbase + lmbsize - size, align);
403 		else if (lmbbase < max_addr) {
404 			base = min(lmbbase + lmbsize, max_addr);
405 			base = lmb_align_down(base - size, align);
406 		} else
407 			continue;
408 
409 		while (base && lmbbase <= base) {
410 			j = lmb_overlaps_region(&lmb.reserved, base, size);
411 			if (j < 0) {
412 				/* this area isn't reserved, take it */
413 				if (lmb_add_region(&lmb.reserved, base, size) < 0)
414 					return 0;
415 				return base;
416 			}
417 			res_base = lmb.reserved.region[j].base;
418 			if (res_base < size)
419 				break;
420 			base = lmb_align_down(res_base - size, align);
421 		}
422 	}
423 	return 0;
424 }
425 
426 /* You must call lmb_analyze() before this. */
lmb_phys_mem_size(void)427 u64 __init lmb_phys_mem_size(void)
428 {
429 	return lmb.memory.size;
430 }
431 
lmb_end_of_DRAM(void)432 u64 __init lmb_end_of_DRAM(void)
433 {
434 	int idx = lmb.memory.cnt - 1;
435 
436 	return (lmb.memory.region[idx].base + lmb.memory.region[idx].size);
437 }
438 
439 /* You must call lmb_analyze() after this. */
lmb_enforce_memory_limit(u64 memory_limit)440 void __init lmb_enforce_memory_limit(u64 memory_limit)
441 {
442 	unsigned long i;
443 	u64 limit;
444 	struct lmb_property *p;
445 
446 	if (!memory_limit)
447 		return;
448 
449 	/* Truncate the lmb regions to satisfy the memory limit. */
450 	limit = memory_limit;
451 	for (i = 0; i < lmb.memory.cnt; i++) {
452 		if (limit > lmb.memory.region[i].size) {
453 			limit -= lmb.memory.region[i].size;
454 			continue;
455 		}
456 
457 		lmb.memory.region[i].size = limit;
458 		lmb.memory.cnt = i + 1;
459 		break;
460 	}
461 
462 	if (lmb.memory.region[0].size < lmb.rmo_size)
463 		lmb.rmo_size = lmb.memory.region[0].size;
464 
465 	memory_limit = lmb_end_of_DRAM();
466 
467 	/* And truncate any reserves above the limit also. */
468 	for (i = 0; i < lmb.reserved.cnt; i++) {
469 		p = &lmb.reserved.region[i];
470 
471 		if (p->base > memory_limit)
472 			p->size = 0;
473 		else if ((p->base + p->size) > memory_limit)
474 			p->size = memory_limit - p->base;
475 
476 		if (p->size == 0) {
477 			lmb_remove_region(&lmb.reserved, i);
478 			i--;
479 		}
480 	}
481 }
482 
lmb_is_reserved(u64 addr)483 int __init lmb_is_reserved(u64 addr)
484 {
485 	int i;
486 
487 	for (i = 0; i < lmb.reserved.cnt; i++) {
488 		u64 upper = lmb.reserved.region[i].base +
489 			lmb.reserved.region[i].size - 1;
490 		if ((addr >= lmb.reserved.region[i].base) && (addr <= upper))
491 			return 1;
492 	}
493 	return 0;
494 }
495 
496 /*
497  * Given a <base, len>, find which memory regions belong to this range.
498  * Adjust the request and return a contiguous chunk.
499  */
lmb_find(struct lmb_property * res)500 int lmb_find(struct lmb_property *res)
501 {
502 	int i;
503 	u64 rstart, rend;
504 
505 	rstart = res->base;
506 	rend = rstart + res->size - 1;
507 
508 	for (i = 0; i < lmb.memory.cnt; i++) {
509 		u64 start = lmb.memory.region[i].base;
510 		u64 end = start + lmb.memory.region[i].size - 1;
511 
512 		if (start > rend)
513 			return -1;
514 
515 		if ((end >= rstart) && (start < rend)) {
516 			/* adjust the request */
517 			if (rstart < start)
518 				rstart = start;
519 			if (rend > end)
520 				rend = end;
521 			res->base = rstart;
522 			res->size = rend - rstart + 1;
523 			return 0;
524 		}
525 	}
526 	return -1;
527 }
528