• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
can_do_mlock(void)24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 #ifdef CONFIG_UNEVICTABLE_LRU
35 /*
36  * Mlocked pages are marked with PageMlocked() flag for efficient testing
37  * in vmscan and, possibly, the fault path; and to support semi-accurate
38  * statistics.
39  *
40  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
41  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
42  * The unevictable list is an LRU sibling list to the [in]active lists.
43  * PageUnevictable is set to indicate the unevictable state.
44  *
45  * When lazy mlocking via vmscan, it is important to ensure that the
46  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
47  * may have mlocked a page that is being munlocked. So lazy mlock must take
48  * the mmap_sem for read, and verify that the vma really is locked
49  * (see mm/rmap.c).
50  */
51 
52 /*
53  *  LRU accounting for clear_page_mlock()
54  */
__clear_page_mlock(struct page * page)55 void __clear_page_mlock(struct page *page)
56 {
57 	VM_BUG_ON(!PageLocked(page));
58 
59 	if (!page->mapping) {	/* truncated ? */
60 		return;
61 	}
62 
63 	dec_zone_page_state(page, NR_MLOCK);
64 	count_vm_event(UNEVICTABLE_PGCLEARED);
65 	if (!isolate_lru_page(page)) {
66 		putback_lru_page(page);
67 	} else {
68 		/*
69 		 * We lost the race. the page already moved to evictable list.
70 		 */
71 		if (PageUnevictable(page))
72 			count_vm_event(UNEVICTABLE_PGSTRANDED);
73 	}
74 }
75 
76 /*
77  * Mark page as mlocked if not already.
78  * If page on LRU, isolate and putback to move to unevictable list.
79  */
mlock_vma_page(struct page * page)80 void mlock_vma_page(struct page *page)
81 {
82 	BUG_ON(!PageLocked(page));
83 
84 	if (!TestSetPageMlocked(page)) {
85 		inc_zone_page_state(page, NR_MLOCK);
86 		count_vm_event(UNEVICTABLE_PGMLOCKED);
87 		if (!isolate_lru_page(page))
88 			putback_lru_page(page);
89 	}
90 }
91 
92 /*
93  * called from munlock()/munmap() path with page supposedly on the LRU.
94  *
95  * Note:  unlike mlock_vma_page(), we can't just clear the PageMlocked
96  * [in try_to_munlock()] and then attempt to isolate the page.  We must
97  * isolate the page to keep others from messing with its unevictable
98  * and mlocked state while trying to munlock.  However, we pre-clear the
99  * mlocked state anyway as we might lose the isolation race and we might
100  * not get another chance to clear PageMlocked.  If we successfully
101  * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
102  * mapping the page, it will restore the PageMlocked state, unless the page
103  * is mapped in a non-linear vma.  So, we go ahead and SetPageMlocked(),
104  * perhaps redundantly.
105  * If we lose the isolation race, and the page is mapped by other VM_LOCKED
106  * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
107  * either of which will restore the PageMlocked state by calling
108  * mlock_vma_page() above, if it can grab the vma's mmap sem.
109  */
munlock_vma_page(struct page * page)110 static void munlock_vma_page(struct page *page)
111 {
112 	BUG_ON(!PageLocked(page));
113 
114 	if (TestClearPageMlocked(page)) {
115 		dec_zone_page_state(page, NR_MLOCK);
116 		if (!isolate_lru_page(page)) {
117 			int ret = try_to_munlock(page);
118 			/*
119 			 * did try_to_unlock() succeed or punt?
120 			 */
121 			if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
122 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
123 
124 			putback_lru_page(page);
125 		} else {
126 			/*
127 			 * We lost the race.  let try_to_unmap() deal
128 			 * with it.  At least we get the page state and
129 			 * mlock stats right.  However, page is still on
130 			 * the noreclaim list.  We'll fix that up when
131 			 * the page is eventually freed or we scan the
132 			 * noreclaim list.
133 			 */
134 			if (PageUnevictable(page))
135 				count_vm_event(UNEVICTABLE_PGSTRANDED);
136 			else
137 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
138 		}
139 	}
140 }
141 
142 /**
143  * __mlock_vma_pages_range() -  mlock/munlock a range of pages in the vma.
144  * @vma:   target vma
145  * @start: start address
146  * @end:   end address
147  * @mlock: 0 indicate munlock, otherwise mlock.
148  *
149  * If @mlock == 0, unlock an mlocked range;
150  * else mlock the range of pages.  This takes care of making the pages present ,
151  * too.
152  *
153  * return 0 on success, negative error code on error.
154  *
155  * vma->vm_mm->mmap_sem must be held for at least read.
156  */
__mlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int mlock)157 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
158 				   unsigned long start, unsigned long end,
159 				   int mlock)
160 {
161 	struct mm_struct *mm = vma->vm_mm;
162 	unsigned long addr = start;
163 	struct page *pages[16]; /* 16 gives a reasonable batch */
164 	int nr_pages = (end - start) / PAGE_SIZE;
165 	int ret = 0;
166 	int gup_flags = 0;
167 
168 	VM_BUG_ON(start & ~PAGE_MASK);
169 	VM_BUG_ON(end   & ~PAGE_MASK);
170 	VM_BUG_ON(start < vma->vm_start);
171 	VM_BUG_ON(end   > vma->vm_end);
172 	VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
173 		  (atomic_read(&mm->mm_users) != 0));
174 
175 	/*
176 	 * mlock:   don't page populate if vma has PROT_NONE permission.
177 	 * munlock: always do munlock although the vma has PROT_NONE
178 	 *          permission, or SIGKILL is pending.
179 	 */
180 	if (!mlock)
181 		gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS |
182 			     GUP_FLAGS_IGNORE_SIGKILL;
183 
184 	if (vma->vm_flags & VM_WRITE)
185 		gup_flags |= GUP_FLAGS_WRITE;
186 
187 	while (nr_pages > 0) {
188 		int i;
189 
190 		cond_resched();
191 
192 		/*
193 		 * get_user_pages makes pages present if we are
194 		 * setting mlock. and this extra reference count will
195 		 * disable migration of this page.  However, page may
196 		 * still be truncated out from under us.
197 		 */
198 		ret = __get_user_pages(current, mm, addr,
199 				min_t(int, nr_pages, ARRAY_SIZE(pages)),
200 				gup_flags, pages, NULL);
201 		/*
202 		 * This can happen for, e.g., VM_NONLINEAR regions before
203 		 * a page has been allocated and mapped at a given offset,
204 		 * or for addresses that map beyond end of a file.
205 		 * We'll mlock the the pages if/when they get faulted in.
206 		 */
207 		if (ret < 0)
208 			break;
209 		if (ret == 0) {
210 			/*
211 			 * We know the vma is there, so the only time
212 			 * we cannot get a single page should be an
213 			 * error (ret < 0) case.
214 			 */
215 			WARN_ON(1);
216 			break;
217 		}
218 
219 		lru_add_drain();	/* push cached pages to LRU */
220 
221 		for (i = 0; i < ret; i++) {
222 			struct page *page = pages[i];
223 
224 			lock_page(page);
225 			/*
226 			 * Because we lock page here and migration is blocked
227 			 * by the elevated reference, we need only check for
228 			 * page truncation (file-cache only).
229 			 */
230 			if (page->mapping) {
231 				if (mlock)
232 					mlock_vma_page(page);
233 				else
234 					munlock_vma_page(page);
235 			}
236 			unlock_page(page);
237 			put_page(page);		/* ref from get_user_pages() */
238 
239 			/*
240 			 * here we assume that get_user_pages() has given us
241 			 * a list of virtually contiguous pages.
242 			 */
243 			addr += PAGE_SIZE;	/* for next get_user_pages() */
244 			nr_pages--;
245 		}
246 		ret = 0;
247 	}
248 
249 	return ret;	/* count entire vma as locked_vm */
250 }
251 
252 /*
253  * convert get_user_pages() return value to posix mlock() error
254  */
__mlock_posix_error_return(long retval)255 static int __mlock_posix_error_return(long retval)
256 {
257 	if (retval == -EFAULT)
258 		retval = -ENOMEM;
259 	else if (retval == -ENOMEM)
260 		retval = -EAGAIN;
261 	return retval;
262 }
263 
264 #else /* CONFIG_UNEVICTABLE_LRU */
265 
266 /*
267  * Just make pages present if VM_LOCKED.  No-op if unlocking.
268  */
__mlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int mlock)269 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
270 				   unsigned long start, unsigned long end,
271 				   int mlock)
272 {
273 	if (mlock && (vma->vm_flags & VM_LOCKED))
274 		return make_pages_present(start, end);
275 	return 0;
276 }
277 
__mlock_posix_error_return(long retval)278 static inline int __mlock_posix_error_return(long retval)
279 {
280 	return 0;
281 }
282 
283 #endif /* CONFIG_UNEVICTABLE_LRU */
284 
285 /**
286  * mlock_vma_pages_range() - mlock pages in specified vma range.
287  * @vma - the vma containing the specfied address range
288  * @start - starting address in @vma to mlock
289  * @end   - end address [+1] in @vma to mlock
290  *
291  * For mmap()/mremap()/expansion of mlocked vma.
292  *
293  * return 0 on success for "normal" vmas.
294  *
295  * return number of pages [> 0] to be removed from locked_vm on success
296  * of "special" vmas.
297  */
mlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)298 long mlock_vma_pages_range(struct vm_area_struct *vma,
299 			unsigned long start, unsigned long end)
300 {
301 	int nr_pages = (end - start) / PAGE_SIZE;
302 	BUG_ON(!(vma->vm_flags & VM_LOCKED));
303 
304 	/*
305 	 * filter unlockable vmas
306 	 */
307 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
308 		goto no_mlock;
309 
310 	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
311 			is_vm_hugetlb_page(vma) ||
312 			vma == get_gate_vma(current))) {
313 
314 		__mlock_vma_pages_range(vma, start, end, 1);
315 
316 		/* Hide errors from mmap() and other callers */
317 		return 0;
318 	}
319 
320 	/*
321 	 * User mapped kernel pages or huge pages:
322 	 * make these pages present to populate the ptes, but
323 	 * fall thru' to reset VM_LOCKED--no need to unlock, and
324 	 * return nr_pages so these don't get counted against task's
325 	 * locked limit.  huge pages are already counted against
326 	 * locked vm limit.
327 	 */
328 	make_pages_present(start, end);
329 
330 no_mlock:
331 	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
332 	return nr_pages;		/* error or pages NOT mlocked */
333 }
334 
335 
336 /*
337  * munlock_vma_pages_range() - munlock all pages in the vma range.'
338  * @vma - vma containing range to be munlock()ed.
339  * @start - start address in @vma of the range
340  * @end - end of range in @vma.
341  *
342  *  For mremap(), munmap() and exit().
343  *
344  * Called with @vma VM_LOCKED.
345  *
346  * Returns with VM_LOCKED cleared.  Callers must be prepared to
347  * deal with this.
348  *
349  * We don't save and restore VM_LOCKED here because pages are
350  * still on lru.  In unmap path, pages might be scanned by reclaim
351  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
352  * free them.  This will result in freeing mlocked pages.
353  */
munlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)354 void munlock_vma_pages_range(struct vm_area_struct *vma,
355 			   unsigned long start, unsigned long end)
356 {
357 	vma->vm_flags &= ~VM_LOCKED;
358 	__mlock_vma_pages_range(vma, start, end, 0);
359 }
360 
361 /*
362  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
363  *
364  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
365  * munlock is a no-op.  However, for some special vmas, we go ahead and
366  * populate the ptes via make_pages_present().
367  *
368  * For vmas that pass the filters, merge/split as appropriate.
369  */
mlock_fixup(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned int newflags)370 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
371 	unsigned long start, unsigned long end, unsigned int newflags)
372 {
373 	struct mm_struct *mm = vma->vm_mm;
374 	pgoff_t pgoff;
375 	int nr_pages;
376 	int ret = 0;
377 	int lock = newflags & VM_LOCKED;
378 
379 	if (newflags == vma->vm_flags ||
380 			(vma->vm_flags & (VM_IO | VM_PFNMAP)))
381 		goto out;	/* don't set VM_LOCKED,  don't count */
382 
383 	if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
384 			is_vm_hugetlb_page(vma) ||
385 			vma == get_gate_vma(current)) {
386 		if (lock)
387 			make_pages_present(start, end);
388 		goto out;	/* don't set VM_LOCKED,  don't count */
389 	}
390 
391 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
392 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
393 			  vma->vm_file, pgoff, vma_policy(vma));
394 	if (*prev) {
395 		vma = *prev;
396 		goto success;
397 	}
398 
399 	if (start != vma->vm_start) {
400 		ret = split_vma(mm, vma, start, 1);
401 		if (ret)
402 			goto out;
403 	}
404 
405 	if (end != vma->vm_end) {
406 		ret = split_vma(mm, vma, end, 0);
407 		if (ret)
408 			goto out;
409 	}
410 
411 success:
412 	/*
413 	 * Keep track of amount of locked VM.
414 	 */
415 	nr_pages = (end - start) >> PAGE_SHIFT;
416 	if (!lock)
417 		nr_pages = -nr_pages;
418 	mm->locked_vm += nr_pages;
419 
420 	/*
421 	 * vm_flags is protected by the mmap_sem held in write mode.
422 	 * It's okay if try_to_unmap_one unmaps a page just after we
423 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
424 	 */
425 	vma->vm_flags = newflags;
426 
427 	if (lock) {
428 		ret = __mlock_vma_pages_range(vma, start, end, 1);
429 
430 		if (ret > 0) {
431 			mm->locked_vm -= ret;
432 			ret = 0;
433 		} else
434 			ret = __mlock_posix_error_return(ret); /* translate if needed */
435 	} else {
436 		__mlock_vma_pages_range(vma, start, end, 0);
437 	}
438 
439 out:
440 	*prev = vma;
441 	return ret;
442 }
443 
do_mlock(unsigned long start,size_t len,int on)444 static int do_mlock(unsigned long start, size_t len, int on)
445 {
446 	unsigned long nstart, end, tmp;
447 	struct vm_area_struct * vma, * prev;
448 	int error;
449 
450 	len = PAGE_ALIGN(len);
451 	end = start + len;
452 	if (end < start)
453 		return -EINVAL;
454 	if (end == start)
455 		return 0;
456 	vma = find_vma_prev(current->mm, start, &prev);
457 	if (!vma || vma->vm_start > start)
458 		return -ENOMEM;
459 
460 	if (start > vma->vm_start)
461 		prev = vma;
462 
463 	for (nstart = start ; ; ) {
464 		unsigned int newflags;
465 
466 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
467 
468 		newflags = vma->vm_flags | VM_LOCKED;
469 		if (!on)
470 			newflags &= ~VM_LOCKED;
471 
472 		tmp = vma->vm_end;
473 		if (tmp > end)
474 			tmp = end;
475 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
476 		if (error)
477 			break;
478 		nstart = tmp;
479 		if (nstart < prev->vm_end)
480 			nstart = prev->vm_end;
481 		if (nstart >= end)
482 			break;
483 
484 		vma = prev->vm_next;
485 		if (!vma || vma->vm_start != nstart) {
486 			error = -ENOMEM;
487 			break;
488 		}
489 	}
490 	return error;
491 }
492 
SYSCALL_DEFINE2(mlock,unsigned long,start,size_t,len)493 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
494 {
495 	unsigned long locked;
496 	unsigned long lock_limit;
497 	int error = -ENOMEM;
498 
499 	if (!can_do_mlock())
500 		return -EPERM;
501 
502 	lru_add_drain_all();	/* flush pagevec */
503 
504 	down_write(&current->mm->mmap_sem);
505 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
506 	start &= PAGE_MASK;
507 
508 	locked = len >> PAGE_SHIFT;
509 	locked += current->mm->locked_vm;
510 
511 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
512 	lock_limit >>= PAGE_SHIFT;
513 
514 	/* check against resource limits */
515 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
516 		error = do_mlock(start, len, 1);
517 	up_write(&current->mm->mmap_sem);
518 	return error;
519 }
520 
SYSCALL_DEFINE2(munlock,unsigned long,start,size_t,len)521 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
522 {
523 	int ret;
524 
525 	down_write(&current->mm->mmap_sem);
526 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
527 	start &= PAGE_MASK;
528 	ret = do_mlock(start, len, 0);
529 	up_write(&current->mm->mmap_sem);
530 	return ret;
531 }
532 
do_mlockall(int flags)533 static int do_mlockall(int flags)
534 {
535 	struct vm_area_struct * vma, * prev = NULL;
536 	unsigned int def_flags = 0;
537 
538 	if (flags & MCL_FUTURE)
539 		def_flags = VM_LOCKED;
540 	current->mm->def_flags = def_flags;
541 	if (flags == MCL_FUTURE)
542 		goto out;
543 
544 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
545 		unsigned int newflags;
546 
547 		newflags = vma->vm_flags | VM_LOCKED;
548 		if (!(flags & MCL_CURRENT))
549 			newflags &= ~VM_LOCKED;
550 
551 		/* Ignore errors */
552 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
553 	}
554 out:
555 	return 0;
556 }
557 
SYSCALL_DEFINE1(mlockall,int,flags)558 SYSCALL_DEFINE1(mlockall, int, flags)
559 {
560 	unsigned long lock_limit;
561 	int ret = -EINVAL;
562 
563 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
564 		goto out;
565 
566 	ret = -EPERM;
567 	if (!can_do_mlock())
568 		goto out;
569 
570 	lru_add_drain_all();	/* flush pagevec */
571 
572 	down_write(&current->mm->mmap_sem);
573 
574 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
575 	lock_limit >>= PAGE_SHIFT;
576 
577 	ret = -ENOMEM;
578 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
579 	    capable(CAP_IPC_LOCK))
580 		ret = do_mlockall(flags);
581 	up_write(&current->mm->mmap_sem);
582 out:
583 	return ret;
584 }
585 
SYSCALL_DEFINE0(munlockall)586 SYSCALL_DEFINE0(munlockall)
587 {
588 	int ret;
589 
590 	down_write(&current->mm->mmap_sem);
591 	ret = do_mlockall(0);
592 	up_write(&current->mm->mmap_sem);
593 	return ret;
594 }
595 
596 /*
597  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
598  * shm segments) get accounted against the user_struct instead.
599  */
600 static DEFINE_SPINLOCK(shmlock_user_lock);
601 
user_shm_lock(size_t size,struct user_struct * user)602 int user_shm_lock(size_t size, struct user_struct *user)
603 {
604 	unsigned long lock_limit, locked;
605 	int allowed = 0;
606 
607 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
608 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
609 	if (lock_limit == RLIM_INFINITY)
610 		allowed = 1;
611 	lock_limit >>= PAGE_SHIFT;
612 	spin_lock(&shmlock_user_lock);
613 	if (!allowed &&
614 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
615 		goto out;
616 	get_uid(user);
617 	user->locked_shm += locked;
618 	allowed = 1;
619 out:
620 	spin_unlock(&shmlock_user_lock);
621 	return allowed;
622 }
623 
user_shm_unlock(size_t size,struct user_struct * user)624 void user_shm_unlock(size_t size, struct user_struct *user)
625 {
626 	spin_lock(&shmlock_user_lock);
627 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
628 	spin_unlock(&shmlock_user_lock);
629 	free_uid(user);
630 }
631 
alloc_locked_buffer(size_t size)632 void *alloc_locked_buffer(size_t size)
633 {
634 	unsigned long rlim, vm, pgsz;
635 	void *buffer = NULL;
636 
637 	pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
638 
639 	down_write(&current->mm->mmap_sem);
640 
641 	rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
642 	vm   = current->mm->total_vm + pgsz;
643 	if (rlim < vm)
644 		goto out;
645 
646 	rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
647 	vm   = current->mm->locked_vm + pgsz;
648 	if (rlim < vm)
649 		goto out;
650 
651 	buffer = kzalloc(size, GFP_KERNEL);
652 	if (!buffer)
653 		goto out;
654 
655 	current->mm->total_vm  += pgsz;
656 	current->mm->locked_vm += pgsz;
657 
658  out:
659 	up_write(&current->mm->mmap_sem);
660 	return buffer;
661 }
662 
release_locked_buffer(void * buffer,size_t size)663 void release_locked_buffer(void *buffer, size_t size)
664 {
665 	unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
666 
667 	down_write(&current->mm->mmap_sem);
668 
669 	current->mm->total_vm  -= pgsz;
670 	current->mm->locked_vm -= pgsz;
671 
672 	up_write(&current->mm->mmap_sem);
673 }
674 
free_locked_buffer(void * buffer,size_t size)675 void free_locked_buffer(void *buffer, size_t size)
676 {
677 	release_locked_buffer(buffer, size);
678 
679 	kfree(buffer);
680 }
681