1 /*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21
22 #include "internal.h"
23
can_do_mlock(void)24 int can_do_mlock(void)
25 {
26 if (capable(CAP_IPC_LOCK))
27 return 1;
28 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
29 return 1;
30 return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33
34 #ifdef CONFIG_UNEVICTABLE_LRU
35 /*
36 * Mlocked pages are marked with PageMlocked() flag for efficient testing
37 * in vmscan and, possibly, the fault path; and to support semi-accurate
38 * statistics.
39 *
40 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
41 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
42 * The unevictable list is an LRU sibling list to the [in]active lists.
43 * PageUnevictable is set to indicate the unevictable state.
44 *
45 * When lazy mlocking via vmscan, it is important to ensure that the
46 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
47 * may have mlocked a page that is being munlocked. So lazy mlock must take
48 * the mmap_sem for read, and verify that the vma really is locked
49 * (see mm/rmap.c).
50 */
51
52 /*
53 * LRU accounting for clear_page_mlock()
54 */
__clear_page_mlock(struct page * page)55 void __clear_page_mlock(struct page *page)
56 {
57 VM_BUG_ON(!PageLocked(page));
58
59 if (!page->mapping) { /* truncated ? */
60 return;
61 }
62
63 dec_zone_page_state(page, NR_MLOCK);
64 count_vm_event(UNEVICTABLE_PGCLEARED);
65 if (!isolate_lru_page(page)) {
66 putback_lru_page(page);
67 } else {
68 /*
69 * We lost the race. the page already moved to evictable list.
70 */
71 if (PageUnevictable(page))
72 count_vm_event(UNEVICTABLE_PGSTRANDED);
73 }
74 }
75
76 /*
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
79 */
mlock_vma_page(struct page * page)80 void mlock_vma_page(struct page *page)
81 {
82 BUG_ON(!PageLocked(page));
83
84 if (!TestSetPageMlocked(page)) {
85 inc_zone_page_state(page, NR_MLOCK);
86 count_vm_event(UNEVICTABLE_PGMLOCKED);
87 if (!isolate_lru_page(page))
88 putback_lru_page(page);
89 }
90 }
91
92 /*
93 * called from munlock()/munmap() path with page supposedly on the LRU.
94 *
95 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
96 * [in try_to_munlock()] and then attempt to isolate the page. We must
97 * isolate the page to keep others from messing with its unevictable
98 * and mlocked state while trying to munlock. However, we pre-clear the
99 * mlocked state anyway as we might lose the isolation race and we might
100 * not get another chance to clear PageMlocked. If we successfully
101 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
102 * mapping the page, it will restore the PageMlocked state, unless the page
103 * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
104 * perhaps redundantly.
105 * If we lose the isolation race, and the page is mapped by other VM_LOCKED
106 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
107 * either of which will restore the PageMlocked state by calling
108 * mlock_vma_page() above, if it can grab the vma's mmap sem.
109 */
munlock_vma_page(struct page * page)110 static void munlock_vma_page(struct page *page)
111 {
112 BUG_ON(!PageLocked(page));
113
114 if (TestClearPageMlocked(page)) {
115 dec_zone_page_state(page, NR_MLOCK);
116 if (!isolate_lru_page(page)) {
117 int ret = try_to_munlock(page);
118 /*
119 * did try_to_unlock() succeed or punt?
120 */
121 if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
122 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
123
124 putback_lru_page(page);
125 } else {
126 /*
127 * We lost the race. let try_to_unmap() deal
128 * with it. At least we get the page state and
129 * mlock stats right. However, page is still on
130 * the noreclaim list. We'll fix that up when
131 * the page is eventually freed or we scan the
132 * noreclaim list.
133 */
134 if (PageUnevictable(page))
135 count_vm_event(UNEVICTABLE_PGSTRANDED);
136 else
137 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
138 }
139 }
140 }
141
142 /**
143 * __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma.
144 * @vma: target vma
145 * @start: start address
146 * @end: end address
147 * @mlock: 0 indicate munlock, otherwise mlock.
148 *
149 * If @mlock == 0, unlock an mlocked range;
150 * else mlock the range of pages. This takes care of making the pages present ,
151 * too.
152 *
153 * return 0 on success, negative error code on error.
154 *
155 * vma->vm_mm->mmap_sem must be held for at least read.
156 */
__mlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int mlock)157 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
158 unsigned long start, unsigned long end,
159 int mlock)
160 {
161 struct mm_struct *mm = vma->vm_mm;
162 unsigned long addr = start;
163 struct page *pages[16]; /* 16 gives a reasonable batch */
164 int nr_pages = (end - start) / PAGE_SIZE;
165 int ret = 0;
166 int gup_flags = 0;
167
168 VM_BUG_ON(start & ~PAGE_MASK);
169 VM_BUG_ON(end & ~PAGE_MASK);
170 VM_BUG_ON(start < vma->vm_start);
171 VM_BUG_ON(end > vma->vm_end);
172 VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
173 (atomic_read(&mm->mm_users) != 0));
174
175 /*
176 * mlock: don't page populate if vma has PROT_NONE permission.
177 * munlock: always do munlock although the vma has PROT_NONE
178 * permission, or SIGKILL is pending.
179 */
180 if (!mlock)
181 gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS |
182 GUP_FLAGS_IGNORE_SIGKILL;
183
184 if (vma->vm_flags & VM_WRITE)
185 gup_flags |= GUP_FLAGS_WRITE;
186
187 while (nr_pages > 0) {
188 int i;
189
190 cond_resched();
191
192 /*
193 * get_user_pages makes pages present if we are
194 * setting mlock. and this extra reference count will
195 * disable migration of this page. However, page may
196 * still be truncated out from under us.
197 */
198 ret = __get_user_pages(current, mm, addr,
199 min_t(int, nr_pages, ARRAY_SIZE(pages)),
200 gup_flags, pages, NULL);
201 /*
202 * This can happen for, e.g., VM_NONLINEAR regions before
203 * a page has been allocated and mapped at a given offset,
204 * or for addresses that map beyond end of a file.
205 * We'll mlock the the pages if/when they get faulted in.
206 */
207 if (ret < 0)
208 break;
209 if (ret == 0) {
210 /*
211 * We know the vma is there, so the only time
212 * we cannot get a single page should be an
213 * error (ret < 0) case.
214 */
215 WARN_ON(1);
216 break;
217 }
218
219 lru_add_drain(); /* push cached pages to LRU */
220
221 for (i = 0; i < ret; i++) {
222 struct page *page = pages[i];
223
224 lock_page(page);
225 /*
226 * Because we lock page here and migration is blocked
227 * by the elevated reference, we need only check for
228 * page truncation (file-cache only).
229 */
230 if (page->mapping) {
231 if (mlock)
232 mlock_vma_page(page);
233 else
234 munlock_vma_page(page);
235 }
236 unlock_page(page);
237 put_page(page); /* ref from get_user_pages() */
238
239 /*
240 * here we assume that get_user_pages() has given us
241 * a list of virtually contiguous pages.
242 */
243 addr += PAGE_SIZE; /* for next get_user_pages() */
244 nr_pages--;
245 }
246 ret = 0;
247 }
248
249 return ret; /* count entire vma as locked_vm */
250 }
251
252 /*
253 * convert get_user_pages() return value to posix mlock() error
254 */
__mlock_posix_error_return(long retval)255 static int __mlock_posix_error_return(long retval)
256 {
257 if (retval == -EFAULT)
258 retval = -ENOMEM;
259 else if (retval == -ENOMEM)
260 retval = -EAGAIN;
261 return retval;
262 }
263
264 #else /* CONFIG_UNEVICTABLE_LRU */
265
266 /*
267 * Just make pages present if VM_LOCKED. No-op if unlocking.
268 */
__mlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int mlock)269 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
270 unsigned long start, unsigned long end,
271 int mlock)
272 {
273 if (mlock && (vma->vm_flags & VM_LOCKED))
274 return make_pages_present(start, end);
275 return 0;
276 }
277
__mlock_posix_error_return(long retval)278 static inline int __mlock_posix_error_return(long retval)
279 {
280 return 0;
281 }
282
283 #endif /* CONFIG_UNEVICTABLE_LRU */
284
285 /**
286 * mlock_vma_pages_range() - mlock pages in specified vma range.
287 * @vma - the vma containing the specfied address range
288 * @start - starting address in @vma to mlock
289 * @end - end address [+1] in @vma to mlock
290 *
291 * For mmap()/mremap()/expansion of mlocked vma.
292 *
293 * return 0 on success for "normal" vmas.
294 *
295 * return number of pages [> 0] to be removed from locked_vm on success
296 * of "special" vmas.
297 */
mlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)298 long mlock_vma_pages_range(struct vm_area_struct *vma,
299 unsigned long start, unsigned long end)
300 {
301 int nr_pages = (end - start) / PAGE_SIZE;
302 BUG_ON(!(vma->vm_flags & VM_LOCKED));
303
304 /*
305 * filter unlockable vmas
306 */
307 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
308 goto no_mlock;
309
310 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
311 is_vm_hugetlb_page(vma) ||
312 vma == get_gate_vma(current))) {
313
314 __mlock_vma_pages_range(vma, start, end, 1);
315
316 /* Hide errors from mmap() and other callers */
317 return 0;
318 }
319
320 /*
321 * User mapped kernel pages or huge pages:
322 * make these pages present to populate the ptes, but
323 * fall thru' to reset VM_LOCKED--no need to unlock, and
324 * return nr_pages so these don't get counted against task's
325 * locked limit. huge pages are already counted against
326 * locked vm limit.
327 */
328 make_pages_present(start, end);
329
330 no_mlock:
331 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
332 return nr_pages; /* error or pages NOT mlocked */
333 }
334
335
336 /*
337 * munlock_vma_pages_range() - munlock all pages in the vma range.'
338 * @vma - vma containing range to be munlock()ed.
339 * @start - start address in @vma of the range
340 * @end - end of range in @vma.
341 *
342 * For mremap(), munmap() and exit().
343 *
344 * Called with @vma VM_LOCKED.
345 *
346 * Returns with VM_LOCKED cleared. Callers must be prepared to
347 * deal with this.
348 *
349 * We don't save and restore VM_LOCKED here because pages are
350 * still on lru. In unmap path, pages might be scanned by reclaim
351 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
352 * free them. This will result in freeing mlocked pages.
353 */
munlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)354 void munlock_vma_pages_range(struct vm_area_struct *vma,
355 unsigned long start, unsigned long end)
356 {
357 vma->vm_flags &= ~VM_LOCKED;
358 __mlock_vma_pages_range(vma, start, end, 0);
359 }
360
361 /*
362 * mlock_fixup - handle mlock[all]/munlock[all] requests.
363 *
364 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
365 * munlock is a no-op. However, for some special vmas, we go ahead and
366 * populate the ptes via make_pages_present().
367 *
368 * For vmas that pass the filters, merge/split as appropriate.
369 */
mlock_fixup(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned int newflags)370 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
371 unsigned long start, unsigned long end, unsigned int newflags)
372 {
373 struct mm_struct *mm = vma->vm_mm;
374 pgoff_t pgoff;
375 int nr_pages;
376 int ret = 0;
377 int lock = newflags & VM_LOCKED;
378
379 if (newflags == vma->vm_flags ||
380 (vma->vm_flags & (VM_IO | VM_PFNMAP)))
381 goto out; /* don't set VM_LOCKED, don't count */
382
383 if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
384 is_vm_hugetlb_page(vma) ||
385 vma == get_gate_vma(current)) {
386 if (lock)
387 make_pages_present(start, end);
388 goto out; /* don't set VM_LOCKED, don't count */
389 }
390
391 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
392 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
393 vma->vm_file, pgoff, vma_policy(vma));
394 if (*prev) {
395 vma = *prev;
396 goto success;
397 }
398
399 if (start != vma->vm_start) {
400 ret = split_vma(mm, vma, start, 1);
401 if (ret)
402 goto out;
403 }
404
405 if (end != vma->vm_end) {
406 ret = split_vma(mm, vma, end, 0);
407 if (ret)
408 goto out;
409 }
410
411 success:
412 /*
413 * Keep track of amount of locked VM.
414 */
415 nr_pages = (end - start) >> PAGE_SHIFT;
416 if (!lock)
417 nr_pages = -nr_pages;
418 mm->locked_vm += nr_pages;
419
420 /*
421 * vm_flags is protected by the mmap_sem held in write mode.
422 * It's okay if try_to_unmap_one unmaps a page just after we
423 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
424 */
425 vma->vm_flags = newflags;
426
427 if (lock) {
428 ret = __mlock_vma_pages_range(vma, start, end, 1);
429
430 if (ret > 0) {
431 mm->locked_vm -= ret;
432 ret = 0;
433 } else
434 ret = __mlock_posix_error_return(ret); /* translate if needed */
435 } else {
436 __mlock_vma_pages_range(vma, start, end, 0);
437 }
438
439 out:
440 *prev = vma;
441 return ret;
442 }
443
do_mlock(unsigned long start,size_t len,int on)444 static int do_mlock(unsigned long start, size_t len, int on)
445 {
446 unsigned long nstart, end, tmp;
447 struct vm_area_struct * vma, * prev;
448 int error;
449
450 len = PAGE_ALIGN(len);
451 end = start + len;
452 if (end < start)
453 return -EINVAL;
454 if (end == start)
455 return 0;
456 vma = find_vma_prev(current->mm, start, &prev);
457 if (!vma || vma->vm_start > start)
458 return -ENOMEM;
459
460 if (start > vma->vm_start)
461 prev = vma;
462
463 for (nstart = start ; ; ) {
464 unsigned int newflags;
465
466 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
467
468 newflags = vma->vm_flags | VM_LOCKED;
469 if (!on)
470 newflags &= ~VM_LOCKED;
471
472 tmp = vma->vm_end;
473 if (tmp > end)
474 tmp = end;
475 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
476 if (error)
477 break;
478 nstart = tmp;
479 if (nstart < prev->vm_end)
480 nstart = prev->vm_end;
481 if (nstart >= end)
482 break;
483
484 vma = prev->vm_next;
485 if (!vma || vma->vm_start != nstart) {
486 error = -ENOMEM;
487 break;
488 }
489 }
490 return error;
491 }
492
SYSCALL_DEFINE2(mlock,unsigned long,start,size_t,len)493 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
494 {
495 unsigned long locked;
496 unsigned long lock_limit;
497 int error = -ENOMEM;
498
499 if (!can_do_mlock())
500 return -EPERM;
501
502 lru_add_drain_all(); /* flush pagevec */
503
504 down_write(¤t->mm->mmap_sem);
505 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
506 start &= PAGE_MASK;
507
508 locked = len >> PAGE_SHIFT;
509 locked += current->mm->locked_vm;
510
511 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
512 lock_limit >>= PAGE_SHIFT;
513
514 /* check against resource limits */
515 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
516 error = do_mlock(start, len, 1);
517 up_write(¤t->mm->mmap_sem);
518 return error;
519 }
520
SYSCALL_DEFINE2(munlock,unsigned long,start,size_t,len)521 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
522 {
523 int ret;
524
525 down_write(¤t->mm->mmap_sem);
526 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
527 start &= PAGE_MASK;
528 ret = do_mlock(start, len, 0);
529 up_write(¤t->mm->mmap_sem);
530 return ret;
531 }
532
do_mlockall(int flags)533 static int do_mlockall(int flags)
534 {
535 struct vm_area_struct * vma, * prev = NULL;
536 unsigned int def_flags = 0;
537
538 if (flags & MCL_FUTURE)
539 def_flags = VM_LOCKED;
540 current->mm->def_flags = def_flags;
541 if (flags == MCL_FUTURE)
542 goto out;
543
544 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
545 unsigned int newflags;
546
547 newflags = vma->vm_flags | VM_LOCKED;
548 if (!(flags & MCL_CURRENT))
549 newflags &= ~VM_LOCKED;
550
551 /* Ignore errors */
552 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
553 }
554 out:
555 return 0;
556 }
557
SYSCALL_DEFINE1(mlockall,int,flags)558 SYSCALL_DEFINE1(mlockall, int, flags)
559 {
560 unsigned long lock_limit;
561 int ret = -EINVAL;
562
563 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
564 goto out;
565
566 ret = -EPERM;
567 if (!can_do_mlock())
568 goto out;
569
570 lru_add_drain_all(); /* flush pagevec */
571
572 down_write(¤t->mm->mmap_sem);
573
574 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
575 lock_limit >>= PAGE_SHIFT;
576
577 ret = -ENOMEM;
578 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
579 capable(CAP_IPC_LOCK))
580 ret = do_mlockall(flags);
581 up_write(¤t->mm->mmap_sem);
582 out:
583 return ret;
584 }
585
SYSCALL_DEFINE0(munlockall)586 SYSCALL_DEFINE0(munlockall)
587 {
588 int ret;
589
590 down_write(¤t->mm->mmap_sem);
591 ret = do_mlockall(0);
592 up_write(¤t->mm->mmap_sem);
593 return ret;
594 }
595
596 /*
597 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
598 * shm segments) get accounted against the user_struct instead.
599 */
600 static DEFINE_SPINLOCK(shmlock_user_lock);
601
user_shm_lock(size_t size,struct user_struct * user)602 int user_shm_lock(size_t size, struct user_struct *user)
603 {
604 unsigned long lock_limit, locked;
605 int allowed = 0;
606
607 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
608 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
609 if (lock_limit == RLIM_INFINITY)
610 allowed = 1;
611 lock_limit >>= PAGE_SHIFT;
612 spin_lock(&shmlock_user_lock);
613 if (!allowed &&
614 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
615 goto out;
616 get_uid(user);
617 user->locked_shm += locked;
618 allowed = 1;
619 out:
620 spin_unlock(&shmlock_user_lock);
621 return allowed;
622 }
623
user_shm_unlock(size_t size,struct user_struct * user)624 void user_shm_unlock(size_t size, struct user_struct *user)
625 {
626 spin_lock(&shmlock_user_lock);
627 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
628 spin_unlock(&shmlock_user_lock);
629 free_uid(user);
630 }
631
alloc_locked_buffer(size_t size)632 void *alloc_locked_buffer(size_t size)
633 {
634 unsigned long rlim, vm, pgsz;
635 void *buffer = NULL;
636
637 pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
638
639 down_write(¤t->mm->mmap_sem);
640
641 rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
642 vm = current->mm->total_vm + pgsz;
643 if (rlim < vm)
644 goto out;
645
646 rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
647 vm = current->mm->locked_vm + pgsz;
648 if (rlim < vm)
649 goto out;
650
651 buffer = kzalloc(size, GFP_KERNEL);
652 if (!buffer)
653 goto out;
654
655 current->mm->total_vm += pgsz;
656 current->mm->locked_vm += pgsz;
657
658 out:
659 up_write(¤t->mm->mmap_sem);
660 return buffer;
661 }
662
release_locked_buffer(void * buffer,size_t size)663 void release_locked_buffer(void *buffer, size_t size)
664 {
665 unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
666
667 down_write(¤t->mm->mmap_sem);
668
669 current->mm->total_vm -= pgsz;
670 current->mm->locked_vm -= pgsz;
671
672 up_write(¤t->mm->mmap_sem);
673 }
674
free_locked_buffer(void * buffer,size_t size)675 void free_locked_buffer(void *buffer, size_t size)
676 {
677 release_locked_buffer(buffer, size);
678
679 kfree(buffer);
680 }
681