• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53 
54 /*
55  * Array of node states.
56  */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 	[N_POSSIBLE] = NODE_MASK_ALL,
59 	[N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 	[N_CPU] = { { [0] = 1UL } },
66 #endif	/* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69 
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 unsigned long highest_memmap_pfn __read_mostly;
73 int percpu_pagelist_fraction;
74 
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78 
79 static void __free_pages_ok(struct page *page, unsigned int order);
80 
81 /*
82  * results with 256, 32 in the lowmem_reserve sysctl:
83  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84  *	1G machine -> (16M dma, 784M normal, 224M high)
85  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88  *
89  * TBD: should special case ZONE_DMA32 machines here - in those we normally
90  * don't need any ZONE_NORMAL reservation
91  */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 	 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 	 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 	 32,
101 #endif
102 	 32,
103 };
104 
105 EXPORT_SYMBOL(totalram_pages);
106 
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 	 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 	 "DMA32",
113 #endif
114 	 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 	 "HighMem",
117 #endif
118 	 "Movable",
119 };
120 
121 int min_free_kbytes = 1024;
122 int min_free_order_shift = 1;
123 
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
127 
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129   /*
130    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131    * ranges of memory (RAM) that may be registered with add_active_range().
132    * Ranges passed to add_active_range() will be merged if possible
133    * so the number of times add_active_range() can be called is
134    * related to the number of nodes and the number of holes
135    */
136   #ifdef CONFIG_MAX_ACTIVE_REGIONS
137     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139   #else
140     #if MAX_NUMNODES >= 32
141       /* If there can be many nodes, allow up to 50 holes per node */
142       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143     #else
144       /* By default, allow up to 256 distinct regions */
145       #define MAX_ACTIVE_REGIONS 256
146     #endif
147   #endif
148 
149   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150   static int __meminitdata nr_nodemap_entries;
151   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
154   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
155   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
156 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
157   static unsigned long __initdata required_kernelcore;
158   static unsigned long __initdata required_movablecore;
159   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 
161   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162   int movable_zone;
163   EXPORT_SYMBOL(movable_zone);
164 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 
166 #if MAX_NUMNODES > 1
167 int nr_node_ids __read_mostly = MAX_NUMNODES;
168 EXPORT_SYMBOL(nr_node_ids);
169 #endif
170 
171 int page_group_by_mobility_disabled __read_mostly;
172 
set_pageblock_migratetype(struct page * page,int migratetype)173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175 	set_pageblock_flags_group(page, (unsigned long)migratetype,
176 					PB_migrate, PB_migrate_end);
177 }
178 
179 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)180 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
181 {
182 	int ret = 0;
183 	unsigned seq;
184 	unsigned long pfn = page_to_pfn(page);
185 
186 	do {
187 		seq = zone_span_seqbegin(zone);
188 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 			ret = 1;
190 		else if (pfn < zone->zone_start_pfn)
191 			ret = 1;
192 	} while (zone_span_seqretry(zone, seq));
193 
194 	return ret;
195 }
196 
page_is_consistent(struct zone * zone,struct page * page)197 static int page_is_consistent(struct zone *zone, struct page *page)
198 {
199 	if (!pfn_valid_within(page_to_pfn(page)))
200 		return 0;
201 	if (zone != page_zone(page))
202 		return 0;
203 
204 	return 1;
205 }
206 /*
207  * Temporary debugging check for pages not lying within a given zone.
208  */
bad_range(struct zone * zone,struct page * page)209 static int bad_range(struct zone *zone, struct page *page)
210 {
211 	if (page_outside_zone_boundaries(zone, page))
212 		return 1;
213 	if (!page_is_consistent(zone, page))
214 		return 1;
215 
216 	return 0;
217 }
218 #else
bad_range(struct zone * zone,struct page * page)219 static inline int bad_range(struct zone *zone, struct page *page)
220 {
221 	return 0;
222 }
223 #endif
224 
bad_page(struct page * page)225 static void bad_page(struct page *page)
226 {
227 	static unsigned long resume;
228 	static unsigned long nr_shown;
229 	static unsigned long nr_unshown;
230 
231 	/*
232 	 * Allow a burst of 60 reports, then keep quiet for that minute;
233 	 * or allow a steady drip of one report per second.
234 	 */
235 	if (nr_shown == 60) {
236 		if (time_before(jiffies, resume)) {
237 			nr_unshown++;
238 			goto out;
239 		}
240 		if (nr_unshown) {
241 			printk(KERN_ALERT
242 			      "BUG: Bad page state: %lu messages suppressed\n",
243 				nr_unshown);
244 			nr_unshown = 0;
245 		}
246 		nr_shown = 0;
247 	}
248 	if (nr_shown++ == 0)
249 		resume = jiffies + 60 * HZ;
250 
251 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
252 		current->comm, page_to_pfn(page));
253 	printk(KERN_ALERT
254 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 		page, (void *)page->flags, page_count(page),
256 		page_mapcount(page), page->mapping, page->index);
257 
258 	dump_stack();
259 out:
260 	/* Leave bad fields for debug, except PageBuddy could make trouble */
261 	__ClearPageBuddy(page);
262 	add_taint(TAINT_BAD_PAGE);
263 }
264 
265 /*
266  * Higher-order pages are called "compound pages".  They are structured thusly:
267  *
268  * The first PAGE_SIZE page is called the "head page".
269  *
270  * The remaining PAGE_SIZE pages are called "tail pages".
271  *
272  * All pages have PG_compound set.  All pages have their ->private pointing at
273  * the head page (even the head page has this).
274  *
275  * The first tail page's ->lru.next holds the address of the compound page's
276  * put_page() function.  Its ->lru.prev holds the order of allocation.
277  * This usage means that zero-order pages may not be compound.
278  */
279 
free_compound_page(struct page * page)280 static void free_compound_page(struct page *page)
281 {
282 	__free_pages_ok(page, compound_order(page));
283 }
284 
prep_compound_page(struct page * page,unsigned long order)285 void prep_compound_page(struct page *page, unsigned long order)
286 {
287 	int i;
288 	int nr_pages = 1 << order;
289 
290 	set_compound_page_dtor(page, free_compound_page);
291 	set_compound_order(page, order);
292 	__SetPageHead(page);
293 	for (i = 1; i < nr_pages; i++) {
294 		struct page *p = page + i;
295 
296 		__SetPageTail(p);
297 		p->first_page = page;
298 	}
299 }
300 
301 #ifdef CONFIG_HUGETLBFS
prep_compound_gigantic_page(struct page * page,unsigned long order)302 void prep_compound_gigantic_page(struct page *page, unsigned long order)
303 {
304 	int i;
305 	int nr_pages = 1 << order;
306 	struct page *p = page + 1;
307 
308 	set_compound_page_dtor(page, free_compound_page);
309 	set_compound_order(page, order);
310 	__SetPageHead(page);
311 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
312 		__SetPageTail(p);
313 		p->first_page = page;
314 	}
315 }
316 #endif
317 
destroy_compound_page(struct page * page,unsigned long order)318 static int destroy_compound_page(struct page *page, unsigned long order)
319 {
320 	int i;
321 	int nr_pages = 1 << order;
322 	int bad = 0;
323 
324 	if (unlikely(compound_order(page) != order) ||
325 	    unlikely(!PageHead(page))) {
326 		bad_page(page);
327 		bad++;
328 	}
329 
330 	__ClearPageHead(page);
331 
332 	for (i = 1; i < nr_pages; i++) {
333 		struct page *p = page + i;
334 
335 		if (unlikely(!PageTail(p) | (p->first_page != page))) {
336 			bad_page(page);
337 			bad++;
338 		}
339 		__ClearPageTail(p);
340 	}
341 
342 	return bad;
343 }
344 
prep_zero_page(struct page * page,int order,gfp_t gfp_flags)345 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346 {
347 	int i;
348 
349 	/*
350 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 	 */
353 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
354 	for (i = 0; i < (1 << order); i++)
355 		clear_highpage(page + i);
356 }
357 
set_page_order(struct page * page,int order)358 static inline void set_page_order(struct page *page, int order)
359 {
360 	set_page_private(page, order);
361 	__SetPageBuddy(page);
362 }
363 
rmv_page_order(struct page * page)364 static inline void rmv_page_order(struct page *page)
365 {
366 	__ClearPageBuddy(page);
367 	set_page_private(page, 0);
368 }
369 
370 /*
371  * Locate the struct page for both the matching buddy in our
372  * pair (buddy1) and the combined O(n+1) page they form (page).
373  *
374  * 1) Any buddy B1 will have an order O twin B2 which satisfies
375  * the following equation:
376  *     B2 = B1 ^ (1 << O)
377  * For example, if the starting buddy (buddy2) is #8 its order
378  * 1 buddy is #10:
379  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380  *
381  * 2) Any buddy B will have an order O+1 parent P which
382  * satisfies the following equation:
383  *     P = B & ~(1 << O)
384  *
385  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
386  */
387 static inline struct page *
__page_find_buddy(struct page * page,unsigned long page_idx,unsigned int order)388 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389 {
390 	unsigned long buddy_idx = page_idx ^ (1 << order);
391 
392 	return page + (buddy_idx - page_idx);
393 }
394 
395 static inline unsigned long
__find_combined_index(unsigned long page_idx,unsigned int order)396 __find_combined_index(unsigned long page_idx, unsigned int order)
397 {
398 	return (page_idx & ~(1 << order));
399 }
400 
401 /*
402  * This function checks whether a page is free && is the buddy
403  * we can do coalesce a page and its buddy if
404  * (a) the buddy is not in a hole &&
405  * (b) the buddy is in the buddy system &&
406  * (c) a page and its buddy have the same order &&
407  * (d) a page and its buddy are in the same zone.
408  *
409  * For recording whether a page is in the buddy system, we use PG_buddy.
410  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
411  *
412  * For recording page's order, we use page_private(page).
413  */
page_is_buddy(struct page * page,struct page * buddy,int order)414 static inline int page_is_buddy(struct page *page, struct page *buddy,
415 								int order)
416 {
417 	if (!pfn_valid_within(page_to_pfn(buddy)))
418 		return 0;
419 
420 	if (page_zone_id(page) != page_zone_id(buddy))
421 		return 0;
422 
423 	if (PageBuddy(buddy) && page_order(buddy) == order) {
424 		BUG_ON(page_count(buddy) != 0);
425 		return 1;
426 	}
427 	return 0;
428 }
429 
430 /*
431  * Freeing function for a buddy system allocator.
432  *
433  * The concept of a buddy system is to maintain direct-mapped table
434  * (containing bit values) for memory blocks of various "orders".
435  * The bottom level table contains the map for the smallest allocatable
436  * units of memory (here, pages), and each level above it describes
437  * pairs of units from the levels below, hence, "buddies".
438  * At a high level, all that happens here is marking the table entry
439  * at the bottom level available, and propagating the changes upward
440  * as necessary, plus some accounting needed to play nicely with other
441  * parts of the VM system.
442  * At each level, we keep a list of pages, which are heads of continuous
443  * free pages of length of (1 << order) and marked with PG_buddy. Page's
444  * order is recorded in page_private(page) field.
445  * So when we are allocating or freeing one, we can derive the state of the
446  * other.  That is, if we allocate a small block, and both were
447  * free, the remainder of the region must be split into blocks.
448  * If a block is freed, and its buddy is also free, then this
449  * triggers coalescing into a block of larger size.
450  *
451  * -- wli
452  */
453 
__free_one_page(struct page * page,struct zone * zone,unsigned int order)454 static inline void __free_one_page(struct page *page,
455 		struct zone *zone, unsigned int order)
456 {
457 	unsigned long page_idx;
458 	int order_size = 1 << order;
459 	int migratetype = get_pageblock_migratetype(page);
460 
461 	if (unlikely(PageCompound(page)))
462 		if (unlikely(destroy_compound_page(page, order)))
463 			return;
464 
465 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
466 
467 	VM_BUG_ON(page_idx & (order_size - 1));
468 	VM_BUG_ON(bad_range(zone, page));
469 
470 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
471 	while (order < MAX_ORDER-1) {
472 		unsigned long combined_idx;
473 		struct page *buddy;
474 
475 		buddy = __page_find_buddy(page, page_idx, order);
476 		if (!page_is_buddy(page, buddy, order))
477 			break;
478 
479 		/* Our buddy is free, merge with it and move up one order. */
480 		list_del(&buddy->lru);
481 		zone->free_area[order].nr_free--;
482 		rmv_page_order(buddy);
483 		combined_idx = __find_combined_index(page_idx, order);
484 		page = page + (combined_idx - page_idx);
485 		page_idx = combined_idx;
486 		order++;
487 	}
488 	set_page_order(page, order);
489 	list_add(&page->lru,
490 		&zone->free_area[order].free_list[migratetype]);
491 	zone->free_area[order].nr_free++;
492 }
493 
free_pages_check(struct page * page)494 static inline int free_pages_check(struct page *page)
495 {
496 	free_page_mlock(page);
497 	if (unlikely(page_mapcount(page) |
498 		(page->mapping != NULL)  |
499 		(page_count(page) != 0)  |
500 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
501 		bad_page(page);
502 		return 1;
503 	}
504 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 	return 0;
507 }
508 
509 /*
510  * Frees a list of pages.
511  * Assumes all pages on list are in same zone, and of same order.
512  * count is the number of pages to free.
513  *
514  * If the zone was previously in an "all pages pinned" state then look to
515  * see if this freeing clears that state.
516  *
517  * And clear the zone's pages_scanned counter, to hold off the "all pages are
518  * pinned" detection logic.
519  */
free_pages_bulk(struct zone * zone,int count,struct list_head * list,int order)520 static void free_pages_bulk(struct zone *zone, int count,
521 					struct list_head *list, int order)
522 {
523 	spin_lock(&zone->lock);
524 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
525 	zone->pages_scanned = 0;
526 	while (count--) {
527 		struct page *page;
528 
529 		VM_BUG_ON(list_empty(list));
530 		page = list_entry(list->prev, struct page, lru);
531 		/* have to delete it as __free_one_page list manipulates */
532 		list_del(&page->lru);
533 		__free_one_page(page, zone, order);
534 	}
535 	spin_unlock(&zone->lock);
536 }
537 
free_one_page(struct zone * zone,struct page * page,int order)538 static void free_one_page(struct zone *zone, struct page *page, int order)
539 {
540 	spin_lock(&zone->lock);
541 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
542 	zone->pages_scanned = 0;
543 	__free_one_page(page, zone, order);
544 	spin_unlock(&zone->lock);
545 }
546 
__free_pages_ok(struct page * page,unsigned int order)547 static void __free_pages_ok(struct page *page, unsigned int order)
548 {
549 	unsigned long flags;
550 	int i;
551 	int bad = 0;
552 
553 	for (i = 0 ; i < (1 << order) ; ++i)
554 		bad += free_pages_check(page + i);
555 	if (bad)
556 		return;
557 
558 	if (!PageHighMem(page)) {
559 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
560 		debug_check_no_obj_freed(page_address(page),
561 					   PAGE_SIZE << order);
562 	}
563 	arch_free_page(page, order);
564 	kernel_map_pages(page, 1 << order, 0);
565 
566 	local_irq_save(flags);
567 	__count_vm_events(PGFREE, 1 << order);
568 	free_one_page(page_zone(page), page, order);
569 	local_irq_restore(flags);
570 }
571 
572 /*
573  * permit the bootmem allocator to evade page validation on high-order frees
574  */
__free_pages_bootmem(struct page * page,unsigned int order)575 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
576 {
577 	if (order == 0) {
578 		__ClearPageReserved(page);
579 		set_page_count(page, 0);
580 		set_page_refcounted(page);
581 		__free_page(page);
582 	} else {
583 		int loop;
584 
585 		prefetchw(page);
586 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
587 			struct page *p = &page[loop];
588 
589 			if (loop + 1 < BITS_PER_LONG)
590 				prefetchw(p + 1);
591 			__ClearPageReserved(p);
592 			set_page_count(p, 0);
593 		}
594 
595 		set_page_refcounted(page);
596 		__free_pages(page, order);
597 	}
598 }
599 
600 
601 /*
602  * The order of subdivision here is critical for the IO subsystem.
603  * Please do not alter this order without good reasons and regression
604  * testing. Specifically, as large blocks of memory are subdivided,
605  * the order in which smaller blocks are delivered depends on the order
606  * they're subdivided in this function. This is the primary factor
607  * influencing the order in which pages are delivered to the IO
608  * subsystem according to empirical testing, and this is also justified
609  * by considering the behavior of a buddy system containing a single
610  * large block of memory acted on by a series of small allocations.
611  * This behavior is a critical factor in sglist merging's success.
612  *
613  * -- wli
614  */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)615 static inline void expand(struct zone *zone, struct page *page,
616 	int low, int high, struct free_area *area,
617 	int migratetype)
618 {
619 	unsigned long size = 1 << high;
620 
621 	while (high > low) {
622 		area--;
623 		high--;
624 		size >>= 1;
625 		VM_BUG_ON(bad_range(zone, &page[size]));
626 		list_add(&page[size].lru, &area->free_list[migratetype]);
627 		area->nr_free++;
628 		set_page_order(&page[size], high);
629 	}
630 }
631 
632 /*
633  * This page is about to be returned from the page allocator
634  */
prep_new_page(struct page * page,int order,gfp_t gfp_flags)635 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
636 {
637 	if (unlikely(page_mapcount(page) |
638 		(page->mapping != NULL)  |
639 		(page_count(page) != 0)  |
640 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
641 		bad_page(page);
642 		return 1;
643 	}
644 
645 	set_page_private(page, 0);
646 	set_page_refcounted(page);
647 
648 	arch_alloc_page(page, order);
649 	kernel_map_pages(page, 1 << order, 1);
650 
651 	if (gfp_flags & __GFP_ZERO)
652 		prep_zero_page(page, order, gfp_flags);
653 
654 	if (order && (gfp_flags & __GFP_COMP))
655 		prep_compound_page(page, order);
656 
657 	return 0;
658 }
659 
660 /*
661  * Go through the free lists for the given migratetype and remove
662  * the smallest available page from the freelists
663  */
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)664 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
665 						int migratetype)
666 {
667 	unsigned int current_order;
668 	struct free_area * area;
669 	struct page *page;
670 
671 	/* Find a page of the appropriate size in the preferred list */
672 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
673 		area = &(zone->free_area[current_order]);
674 		if (list_empty(&area->free_list[migratetype]))
675 			continue;
676 
677 		page = list_entry(area->free_list[migratetype].next,
678 							struct page, lru);
679 		list_del(&page->lru);
680 		rmv_page_order(page);
681 		area->nr_free--;
682 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
683 		expand(zone, page, order, current_order, area, migratetype);
684 		return page;
685 	}
686 
687 	return NULL;
688 }
689 
690 
691 /*
692  * This array describes the order lists are fallen back to when
693  * the free lists for the desirable migrate type are depleted
694  */
695 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
696 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
697 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
698 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
699 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
700 };
701 
702 /*
703  * Move the free pages in a range to the free lists of the requested type.
704  * Note that start_page and end_pages are not aligned on a pageblock
705  * boundary. If alignment is required, use move_freepages_block()
706  */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype)707 static int move_freepages(struct zone *zone,
708 			  struct page *start_page, struct page *end_page,
709 			  int migratetype)
710 {
711 	struct page *page;
712 	unsigned long order;
713 	int pages_moved = 0;
714 
715 #ifndef CONFIG_HOLES_IN_ZONE
716 	/*
717 	 * page_zone is not safe to call in this context when
718 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719 	 * anyway as we check zone boundaries in move_freepages_block().
720 	 * Remove at a later date when no bug reports exist related to
721 	 * grouping pages by mobility
722 	 */
723 	BUG_ON(page_zone(start_page) != page_zone(end_page));
724 #endif
725 
726 	for (page = start_page; page <= end_page;) {
727 		/* Make sure we are not inadvertently changing nodes */
728 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
729 
730 		if (!pfn_valid_within(page_to_pfn(page))) {
731 			page++;
732 			continue;
733 		}
734 
735 		if (!PageBuddy(page)) {
736 			page++;
737 			continue;
738 		}
739 
740 		order = page_order(page);
741 		list_del(&page->lru);
742 		list_add(&page->lru,
743 			&zone->free_area[order].free_list[migratetype]);
744 		page += 1 << order;
745 		pages_moved += 1 << order;
746 	}
747 
748 	return pages_moved;
749 }
750 
move_freepages_block(struct zone * zone,struct page * page,int migratetype)751 static int move_freepages_block(struct zone *zone, struct page *page,
752 				int migratetype)
753 {
754 	unsigned long start_pfn, end_pfn;
755 	struct page *start_page, *end_page;
756 
757 	start_pfn = page_to_pfn(page);
758 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
759 	start_page = pfn_to_page(start_pfn);
760 	end_page = start_page + pageblock_nr_pages - 1;
761 	end_pfn = start_pfn + pageblock_nr_pages - 1;
762 
763 	/* Do not cross zone boundaries */
764 	if (start_pfn < zone->zone_start_pfn)
765 		start_page = page;
766 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
767 		return 0;
768 
769 	return move_freepages(zone, start_page, end_page, migratetype);
770 }
771 
772 /* Remove an element from the buddy allocator from the fallback list */
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype)773 static struct page *__rmqueue_fallback(struct zone *zone, int order,
774 						int start_migratetype)
775 {
776 	struct free_area * area;
777 	int current_order;
778 	struct page *page;
779 	int migratetype, i;
780 
781 	/* Find the largest possible block of pages in the other list */
782 	for (current_order = MAX_ORDER-1; current_order >= order;
783 						--current_order) {
784 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
785 			migratetype = fallbacks[start_migratetype][i];
786 
787 			/* MIGRATE_RESERVE handled later if necessary */
788 			if (migratetype == MIGRATE_RESERVE)
789 				continue;
790 
791 			area = &(zone->free_area[current_order]);
792 			if (list_empty(&area->free_list[migratetype]))
793 				continue;
794 
795 			page = list_entry(area->free_list[migratetype].next,
796 					struct page, lru);
797 			area->nr_free--;
798 
799 			/*
800 			 * If breaking a large block of pages, move all free
801 			 * pages to the preferred allocation list. If falling
802 			 * back for a reclaimable kernel allocation, be more
803 			 * agressive about taking ownership of free pages
804 			 */
805 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
806 					start_migratetype == MIGRATE_RECLAIMABLE) {
807 				unsigned long pages;
808 				pages = move_freepages_block(zone, page,
809 								start_migratetype);
810 
811 				/* Claim the whole block if over half of it is free */
812 				if (pages >= (1 << (pageblock_order-1)))
813 					set_pageblock_migratetype(page,
814 								start_migratetype);
815 
816 				migratetype = start_migratetype;
817 			}
818 
819 			/* Remove the page from the freelists */
820 			list_del(&page->lru);
821 			rmv_page_order(page);
822 			__mod_zone_page_state(zone, NR_FREE_PAGES,
823 							-(1UL << order));
824 
825 			if (current_order == pageblock_order)
826 				set_pageblock_migratetype(page,
827 							start_migratetype);
828 
829 			expand(zone, page, order, current_order, area, migratetype);
830 			return page;
831 		}
832 	}
833 
834 	/* Use MIGRATE_RESERVE rather than fail an allocation */
835 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
836 }
837 
838 /*
839  * Do the hard work of removing an element from the buddy allocator.
840  * Call me with the zone->lock already held.
841  */
__rmqueue(struct zone * zone,unsigned int order,int migratetype)842 static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 						int migratetype)
844 {
845 	struct page *page;
846 
847 	page = __rmqueue_smallest(zone, order, migratetype);
848 
849 	if (unlikely(!page))
850 		page = __rmqueue_fallback(zone, order, migratetype);
851 
852 	return page;
853 }
854 
855 /*
856  * Obtain a specified number of elements from the buddy allocator, all under
857  * a single hold of the lock, for efficiency.  Add them to the supplied list.
858  * Returns the number of new pages which were placed at *list.
859  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype)860 static int rmqueue_bulk(struct zone *zone, unsigned int order,
861 			unsigned long count, struct list_head *list,
862 			int migratetype)
863 {
864 	int i;
865 
866 	spin_lock(&zone->lock);
867 	for (i = 0; i < count; ++i) {
868 		struct page *page = __rmqueue(zone, order, migratetype);
869 		if (unlikely(page == NULL))
870 			break;
871 
872 		/*
873 		 * Split buddy pages returned by expand() are received here
874 		 * in physical page order. The page is added to the callers and
875 		 * list and the list head then moves forward. From the callers
876 		 * perspective, the linked list is ordered by page number in
877 		 * some conditions. This is useful for IO devices that can
878 		 * merge IO requests if the physical pages are ordered
879 		 * properly.
880 		 */
881 		list_add(&page->lru, list);
882 		set_page_private(page, migratetype);
883 		list = &page->lru;
884 	}
885 	spin_unlock(&zone->lock);
886 	return i;
887 }
888 
889 #ifdef CONFIG_NUMA
890 /*
891  * Called from the vmstat counter updater to drain pagesets of this
892  * currently executing processor on remote nodes after they have
893  * expired.
894  *
895  * Note that this function must be called with the thread pinned to
896  * a single processor.
897  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)898 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
899 {
900 	unsigned long flags;
901 	int to_drain;
902 
903 	local_irq_save(flags);
904 	if (pcp->count >= pcp->batch)
905 		to_drain = pcp->batch;
906 	else
907 		to_drain = pcp->count;
908 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
909 	pcp->count -= to_drain;
910 	local_irq_restore(flags);
911 }
912 #endif
913 
914 /*
915  * Drain pages of the indicated processor.
916  *
917  * The processor must either be the current processor and the
918  * thread pinned to the current processor or a processor that
919  * is not online.
920  */
drain_pages(unsigned int cpu)921 static void drain_pages(unsigned int cpu)
922 {
923 	unsigned long flags;
924 	struct zone *zone;
925 
926 	for_each_zone(zone) {
927 		struct per_cpu_pageset *pset;
928 		struct per_cpu_pages *pcp;
929 
930 		if (!populated_zone(zone))
931 			continue;
932 
933 		pset = zone_pcp(zone, cpu);
934 
935 		pcp = &pset->pcp;
936 		local_irq_save(flags);
937 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
938 		pcp->count = 0;
939 		local_irq_restore(flags);
940 	}
941 }
942 
943 /*
944  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
945  */
drain_local_pages(void * arg)946 void drain_local_pages(void *arg)
947 {
948 	drain_pages(smp_processor_id());
949 }
950 
951 /*
952  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
953  */
drain_all_pages(void)954 void drain_all_pages(void)
955 {
956 	on_each_cpu(drain_local_pages, NULL, 1);
957 }
958 
959 #ifdef CONFIG_HIBERNATION
960 
mark_free_pages(struct zone * zone)961 void mark_free_pages(struct zone *zone)
962 {
963 	unsigned long pfn, max_zone_pfn;
964 	unsigned long flags;
965 	int order, t;
966 	struct list_head *curr;
967 
968 	if (!zone->spanned_pages)
969 		return;
970 
971 	spin_lock_irqsave(&zone->lock, flags);
972 
973 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
974 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
975 		if (pfn_valid(pfn)) {
976 			struct page *page = pfn_to_page(pfn);
977 
978 			if (!swsusp_page_is_forbidden(page))
979 				swsusp_unset_page_free(page);
980 		}
981 
982 	for_each_migratetype_order(order, t) {
983 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
984 			unsigned long i;
985 
986 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
987 			for (i = 0; i < (1UL << order); i++)
988 				swsusp_set_page_free(pfn_to_page(pfn + i));
989 		}
990 	}
991 	spin_unlock_irqrestore(&zone->lock, flags);
992 }
993 #endif /* CONFIG_PM */
994 
995 /*
996  * Free a 0-order page
997  */
free_hot_cold_page(struct page * page,int cold)998 static void free_hot_cold_page(struct page *page, int cold)
999 {
1000 	struct zone *zone = page_zone(page);
1001 	struct per_cpu_pages *pcp;
1002 	unsigned long flags;
1003 
1004 	if (PageAnon(page))
1005 		page->mapping = NULL;
1006 	if (free_pages_check(page))
1007 		return;
1008 
1009 	if (!PageHighMem(page)) {
1010 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1011 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1012 	}
1013 	arch_free_page(page, 0);
1014 	kernel_map_pages(page, 1, 0);
1015 
1016 	pcp = &zone_pcp(zone, get_cpu())->pcp;
1017 	local_irq_save(flags);
1018 	__count_vm_event(PGFREE);
1019 	if (cold)
1020 		list_add_tail(&page->lru, &pcp->list);
1021 	else
1022 		list_add(&page->lru, &pcp->list);
1023 	set_page_private(page, get_pageblock_migratetype(page));
1024 	pcp->count++;
1025 	if (pcp->count >= pcp->high) {
1026 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1027 		pcp->count -= pcp->batch;
1028 	}
1029 	local_irq_restore(flags);
1030 	put_cpu();
1031 }
1032 
free_hot_page(struct page * page)1033 void free_hot_page(struct page *page)
1034 {
1035 	free_hot_cold_page(page, 0);
1036 }
1037 
free_cold_page(struct page * page)1038 void free_cold_page(struct page *page)
1039 {
1040 	free_hot_cold_page(page, 1);
1041 }
1042 
1043 /*
1044  * split_page takes a non-compound higher-order page, and splits it into
1045  * n (1<<order) sub-pages: page[0..n]
1046  * Each sub-page must be freed individually.
1047  *
1048  * Note: this is probably too low level an operation for use in drivers.
1049  * Please consult with lkml before using this in your driver.
1050  */
split_page(struct page * page,unsigned int order)1051 void split_page(struct page *page, unsigned int order)
1052 {
1053 	int i;
1054 
1055 	VM_BUG_ON(PageCompound(page));
1056 	VM_BUG_ON(!page_count(page));
1057 	for (i = 1; i < (1 << order); i++)
1058 		set_page_refcounted(page + i);
1059 }
1060 
1061 /*
1062  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1063  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1064  * or two.
1065  */
buffered_rmqueue(struct zone * preferred_zone,struct zone * zone,int order,gfp_t gfp_flags)1066 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1067 			struct zone *zone, int order, gfp_t gfp_flags)
1068 {
1069 	unsigned long flags;
1070 	struct page *page;
1071 	int cold = !!(gfp_flags & __GFP_COLD);
1072 	int cpu;
1073 	int migratetype = allocflags_to_migratetype(gfp_flags);
1074 
1075 again:
1076 	cpu  = get_cpu();
1077 	if (likely(order == 0)) {
1078 		struct per_cpu_pages *pcp;
1079 
1080 		pcp = &zone_pcp(zone, cpu)->pcp;
1081 		local_irq_save(flags);
1082 		if (!pcp->count) {
1083 			pcp->count = rmqueue_bulk(zone, 0,
1084 					pcp->batch, &pcp->list, migratetype);
1085 			if (unlikely(!pcp->count))
1086 				goto failed;
1087 		}
1088 
1089 		/* Find a page of the appropriate migrate type */
1090 		if (cold) {
1091 			list_for_each_entry_reverse(page, &pcp->list, lru)
1092 				if (page_private(page) == migratetype)
1093 					break;
1094 		} else {
1095 			list_for_each_entry(page, &pcp->list, lru)
1096 				if (page_private(page) == migratetype)
1097 					break;
1098 		}
1099 
1100 		/* Allocate more to the pcp list if necessary */
1101 		if (unlikely(&page->lru == &pcp->list)) {
1102 			pcp->count += rmqueue_bulk(zone, 0,
1103 					pcp->batch, &pcp->list, migratetype);
1104 			page = list_entry(pcp->list.next, struct page, lru);
1105 		}
1106 
1107 		list_del(&page->lru);
1108 		pcp->count--;
1109 	} else {
1110 		spin_lock_irqsave(&zone->lock, flags);
1111 		page = __rmqueue(zone, order, migratetype);
1112 		spin_unlock(&zone->lock);
1113 		if (!page)
1114 			goto failed;
1115 	}
1116 
1117 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1118 	zone_statistics(preferred_zone, zone);
1119 	local_irq_restore(flags);
1120 	put_cpu();
1121 
1122 	VM_BUG_ON(bad_range(zone, page));
1123 	if (prep_new_page(page, order, gfp_flags))
1124 		goto again;
1125 	return page;
1126 
1127 failed:
1128 	local_irq_restore(flags);
1129 	put_cpu();
1130 	return NULL;
1131 }
1132 
1133 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1134 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1135 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1136 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1137 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1138 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1139 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1140 
1141 #ifdef CONFIG_FAIL_PAGE_ALLOC
1142 
1143 static struct fail_page_alloc_attr {
1144 	struct fault_attr attr;
1145 
1146 	u32 ignore_gfp_highmem;
1147 	u32 ignore_gfp_wait;
1148 	u32 min_order;
1149 
1150 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1151 
1152 	struct dentry *ignore_gfp_highmem_file;
1153 	struct dentry *ignore_gfp_wait_file;
1154 	struct dentry *min_order_file;
1155 
1156 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1157 
1158 } fail_page_alloc = {
1159 	.attr = FAULT_ATTR_INITIALIZER,
1160 	.ignore_gfp_wait = 1,
1161 	.ignore_gfp_highmem = 1,
1162 	.min_order = 1,
1163 };
1164 
setup_fail_page_alloc(char * str)1165 static int __init setup_fail_page_alloc(char *str)
1166 {
1167 	return setup_fault_attr(&fail_page_alloc.attr, str);
1168 }
1169 __setup("fail_page_alloc=", setup_fail_page_alloc);
1170 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)1171 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1172 {
1173 	if (order < fail_page_alloc.min_order)
1174 		return 0;
1175 	if (gfp_mask & __GFP_NOFAIL)
1176 		return 0;
1177 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1178 		return 0;
1179 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1180 		return 0;
1181 
1182 	return should_fail(&fail_page_alloc.attr, 1 << order);
1183 }
1184 
1185 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1186 
fail_page_alloc_debugfs(void)1187 static int __init fail_page_alloc_debugfs(void)
1188 {
1189 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1190 	struct dentry *dir;
1191 	int err;
1192 
1193 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1194 				       "fail_page_alloc");
1195 	if (err)
1196 		return err;
1197 	dir = fail_page_alloc.attr.dentries.dir;
1198 
1199 	fail_page_alloc.ignore_gfp_wait_file =
1200 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1201 				      &fail_page_alloc.ignore_gfp_wait);
1202 
1203 	fail_page_alloc.ignore_gfp_highmem_file =
1204 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1205 				      &fail_page_alloc.ignore_gfp_highmem);
1206 	fail_page_alloc.min_order_file =
1207 		debugfs_create_u32("min-order", mode, dir,
1208 				   &fail_page_alloc.min_order);
1209 
1210 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1211             !fail_page_alloc.ignore_gfp_highmem_file ||
1212             !fail_page_alloc.min_order_file) {
1213 		err = -ENOMEM;
1214 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1215 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1216 		debugfs_remove(fail_page_alloc.min_order_file);
1217 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1218 	}
1219 
1220 	return err;
1221 }
1222 
1223 late_initcall(fail_page_alloc_debugfs);
1224 
1225 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1226 
1227 #else /* CONFIG_FAIL_PAGE_ALLOC */
1228 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)1229 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1230 {
1231 	return 0;
1232 }
1233 
1234 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1235 
1236 /*
1237  * Return 1 if free pages are above 'mark'. This takes into account the order
1238  * of the allocation.
1239  */
zone_watermark_ok(struct zone * z,int order,unsigned long mark,int classzone_idx,int alloc_flags)1240 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1241 		      int classzone_idx, int alloc_flags)
1242 {
1243 	/* free_pages my go negative - that's OK */
1244 	long min = mark;
1245 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1246 	int o;
1247 
1248 	if (alloc_flags & ALLOC_HIGH)
1249 		min -= min / 2;
1250 	if (alloc_flags & ALLOC_HARDER)
1251 		min -= min / 4;
1252 
1253 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1254 		return 0;
1255 	for (o = 0; o < order; o++) {
1256 		/* At the next order, this order's pages become unavailable */
1257 		free_pages -= z->free_area[o].nr_free << o;
1258 
1259 		/* Require fewer higher order pages to be free */
1260 		min >>= min_free_order_shift;
1261 
1262 		if (free_pages <= min)
1263 			return 0;
1264 	}
1265 	return 1;
1266 }
1267 
1268 #ifdef CONFIG_NUMA
1269 /*
1270  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1271  * skip over zones that are not allowed by the cpuset, or that have
1272  * been recently (in last second) found to be nearly full.  See further
1273  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1274  * that have to skip over a lot of full or unallowed zones.
1275  *
1276  * If the zonelist cache is present in the passed in zonelist, then
1277  * returns a pointer to the allowed node mask (either the current
1278  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1279  *
1280  * If the zonelist cache is not available for this zonelist, does
1281  * nothing and returns NULL.
1282  *
1283  * If the fullzones BITMAP in the zonelist cache is stale (more than
1284  * a second since last zap'd) then we zap it out (clear its bits.)
1285  *
1286  * We hold off even calling zlc_setup, until after we've checked the
1287  * first zone in the zonelist, on the theory that most allocations will
1288  * be satisfied from that first zone, so best to examine that zone as
1289  * quickly as we can.
1290  */
zlc_setup(struct zonelist * zonelist,int alloc_flags)1291 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1292 {
1293 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1294 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1295 
1296 	zlc = zonelist->zlcache_ptr;
1297 	if (!zlc)
1298 		return NULL;
1299 
1300 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1301 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1302 		zlc->last_full_zap = jiffies;
1303 	}
1304 
1305 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1306 					&cpuset_current_mems_allowed :
1307 					&node_states[N_HIGH_MEMORY];
1308 	return allowednodes;
1309 }
1310 
1311 /*
1312  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1313  * if it is worth looking at further for free memory:
1314  *  1) Check that the zone isn't thought to be full (doesn't have its
1315  *     bit set in the zonelist_cache fullzones BITMAP).
1316  *  2) Check that the zones node (obtained from the zonelist_cache
1317  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1318  * Return true (non-zero) if zone is worth looking at further, or
1319  * else return false (zero) if it is not.
1320  *
1321  * This check -ignores- the distinction between various watermarks,
1322  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1323  * found to be full for any variation of these watermarks, it will
1324  * be considered full for up to one second by all requests, unless
1325  * we are so low on memory on all allowed nodes that we are forced
1326  * into the second scan of the zonelist.
1327  *
1328  * In the second scan we ignore this zonelist cache and exactly
1329  * apply the watermarks to all zones, even it is slower to do so.
1330  * We are low on memory in the second scan, and should leave no stone
1331  * unturned looking for a free page.
1332  */
zlc_zone_worth_trying(struct zonelist * zonelist,struct zoneref * z,nodemask_t * allowednodes)1333 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1334 						nodemask_t *allowednodes)
1335 {
1336 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1337 	int i;				/* index of *z in zonelist zones */
1338 	int n;				/* node that zone *z is on */
1339 
1340 	zlc = zonelist->zlcache_ptr;
1341 	if (!zlc)
1342 		return 1;
1343 
1344 	i = z - zonelist->_zonerefs;
1345 	n = zlc->z_to_n[i];
1346 
1347 	/* This zone is worth trying if it is allowed but not full */
1348 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1349 }
1350 
1351 /*
1352  * Given 'z' scanning a zonelist, set the corresponding bit in
1353  * zlc->fullzones, so that subsequent attempts to allocate a page
1354  * from that zone don't waste time re-examining it.
1355  */
zlc_mark_zone_full(struct zonelist * zonelist,struct zoneref * z)1356 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1357 {
1358 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1359 	int i;				/* index of *z in zonelist zones */
1360 
1361 	zlc = zonelist->zlcache_ptr;
1362 	if (!zlc)
1363 		return;
1364 
1365 	i = z - zonelist->_zonerefs;
1366 
1367 	set_bit(i, zlc->fullzones);
1368 }
1369 
1370 #else	/* CONFIG_NUMA */
1371 
zlc_setup(struct zonelist * zonelist,int alloc_flags)1372 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1373 {
1374 	return NULL;
1375 }
1376 
zlc_zone_worth_trying(struct zonelist * zonelist,struct zoneref * z,nodemask_t * allowednodes)1377 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1378 				nodemask_t *allowednodes)
1379 {
1380 	return 1;
1381 }
1382 
zlc_mark_zone_full(struct zonelist * zonelist,struct zoneref * z)1383 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1384 {
1385 }
1386 #endif	/* CONFIG_NUMA */
1387 
1388 /*
1389  * get_page_from_freelist goes through the zonelist trying to allocate
1390  * a page.
1391  */
1392 static struct page *
get_page_from_freelist(gfp_t gfp_mask,nodemask_t * nodemask,unsigned int order,struct zonelist * zonelist,int high_zoneidx,int alloc_flags)1393 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1394 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1395 {
1396 	struct zoneref *z;
1397 	struct page *page = NULL;
1398 	int classzone_idx;
1399 	struct zone *zone, *preferred_zone;
1400 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1401 	int zlc_active = 0;		/* set if using zonelist_cache */
1402 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1403 
1404 	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1405 							&preferred_zone);
1406 	if (!preferred_zone)
1407 		return NULL;
1408 
1409 	classzone_idx = zone_idx(preferred_zone);
1410 
1411 zonelist_scan:
1412 	/*
1413 	 * Scan zonelist, looking for a zone with enough free.
1414 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1415 	 */
1416 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1417 						high_zoneidx, nodemask) {
1418 		if (NUMA_BUILD && zlc_active &&
1419 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1420 				continue;
1421 		if ((alloc_flags & ALLOC_CPUSET) &&
1422 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1423 				goto try_next_zone;
1424 
1425 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1426 			unsigned long mark;
1427 			if (alloc_flags & ALLOC_WMARK_MIN)
1428 				mark = zone->pages_min;
1429 			else if (alloc_flags & ALLOC_WMARK_LOW)
1430 				mark = zone->pages_low;
1431 			else
1432 				mark = zone->pages_high;
1433 			if (!zone_watermark_ok(zone, order, mark,
1434 				    classzone_idx, alloc_flags)) {
1435 				if (!zone_reclaim_mode ||
1436 				    !zone_reclaim(zone, gfp_mask, order))
1437 					goto this_zone_full;
1438 			}
1439 		}
1440 
1441 		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1442 		if (page)
1443 			break;
1444 this_zone_full:
1445 		if (NUMA_BUILD)
1446 			zlc_mark_zone_full(zonelist, z);
1447 try_next_zone:
1448 		if (NUMA_BUILD && !did_zlc_setup) {
1449 			/* we do zlc_setup after the first zone is tried */
1450 			allowednodes = zlc_setup(zonelist, alloc_flags);
1451 			zlc_active = 1;
1452 			did_zlc_setup = 1;
1453 		}
1454 	}
1455 
1456 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1457 		/* Disable zlc cache for second zonelist scan */
1458 		zlc_active = 0;
1459 		goto zonelist_scan;
1460 	}
1461 	return page;
1462 }
1463 
1464 /*
1465  * This is the 'heart' of the zoned buddy allocator.
1466  */
1467 struct page *
__alloc_pages_internal(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,nodemask_t * nodemask)1468 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1469 			struct zonelist *zonelist, nodemask_t *nodemask)
1470 {
1471 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1472 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1473 	struct zoneref *z;
1474 	struct zone *zone;
1475 	struct page *page;
1476 	struct reclaim_state reclaim_state;
1477 	struct task_struct *p = current;
1478 	int do_retry;
1479 	int alloc_flags;
1480 	unsigned long did_some_progress;
1481 	unsigned long pages_reclaimed = 0;
1482 
1483 	might_sleep_if(wait);
1484 
1485 	if (should_fail_alloc_page(gfp_mask, order))
1486 		return NULL;
1487 
1488 restart:
1489 	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1490 
1491 	if (unlikely(!z->zone)) {
1492 		/*
1493 		 * Happens if we have an empty zonelist as a result of
1494 		 * GFP_THISNODE being used on a memoryless node
1495 		 */
1496 		return NULL;
1497 	}
1498 
1499 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1500 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1501 	if (page)
1502 		goto got_pg;
1503 
1504 	/*
1505 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1506 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1507 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1508 	 * using a larger set of nodes after it has established that the
1509 	 * allowed per node queues are empty and that nodes are
1510 	 * over allocated.
1511 	 */
1512 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1513 		goto nopage;
1514 
1515 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1516 		wakeup_kswapd(zone, order);
1517 
1518 	/*
1519 	 * OK, we're below the kswapd watermark and have kicked background
1520 	 * reclaim. Now things get more complex, so set up alloc_flags according
1521 	 * to how we want to proceed.
1522 	 *
1523 	 * The caller may dip into page reserves a bit more if the caller
1524 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1525 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1526 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1527 	 */
1528 	alloc_flags = ALLOC_WMARK_MIN;
1529 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1530 		alloc_flags |= ALLOC_HARDER;
1531 	if (gfp_mask & __GFP_HIGH)
1532 		alloc_flags |= ALLOC_HIGH;
1533 	if (wait)
1534 		alloc_flags |= ALLOC_CPUSET;
1535 
1536 	/*
1537 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1538 	 * coming from realtime tasks go deeper into reserves.
1539 	 *
1540 	 * This is the last chance, in general, before the goto nopage.
1541 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1542 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1543 	 */
1544 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1545 						high_zoneidx, alloc_flags);
1546 	if (page)
1547 		goto got_pg;
1548 
1549 	/* This allocation should allow future memory freeing. */
1550 
1551 rebalance:
1552 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1553 			&& !in_interrupt()) {
1554 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1555 nofail_alloc:
1556 			/* go through the zonelist yet again, ignoring mins */
1557 			page = get_page_from_freelist(gfp_mask, nodemask, order,
1558 				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1559 			if (page)
1560 				goto got_pg;
1561 			if (gfp_mask & __GFP_NOFAIL) {
1562 				congestion_wait(WRITE, HZ/50);
1563 				goto nofail_alloc;
1564 			}
1565 		}
1566 		goto nopage;
1567 	}
1568 
1569 	/* Atomic allocations - we can't balance anything */
1570 	if (!wait)
1571 		goto nopage;
1572 
1573 	cond_resched();
1574 
1575 	/* We now go into synchronous reclaim */
1576 	cpuset_memory_pressure_bump();
1577 	/*
1578 	 * The task's cpuset might have expanded its set of allowable nodes
1579 	 */
1580 	cpuset_update_task_memory_state();
1581 	p->flags |= PF_MEMALLOC;
1582 	reclaim_state.reclaimed_slab = 0;
1583 	p->reclaim_state = &reclaim_state;
1584 
1585 	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1586 
1587 	p->reclaim_state = NULL;
1588 	p->flags &= ~PF_MEMALLOC;
1589 
1590 	cond_resched();
1591 
1592 	if (order != 0)
1593 		drain_all_pages();
1594 
1595 	if (likely(did_some_progress)) {
1596 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1597 					zonelist, high_zoneidx, alloc_flags);
1598 		if (page)
1599 			goto got_pg;
1600 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1601 		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1602 			schedule_timeout_uninterruptible(1);
1603 			goto restart;
1604 		}
1605 
1606 		/*
1607 		 * Go through the zonelist yet one more time, keep
1608 		 * very high watermark here, this is only to catch
1609 		 * a parallel oom killing, we must fail if we're still
1610 		 * under heavy pressure.
1611 		 */
1612 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1613 			order, zonelist, high_zoneidx,
1614 			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1615 		if (page) {
1616 			clear_zonelist_oom(zonelist, gfp_mask);
1617 			goto got_pg;
1618 		}
1619 
1620 		/* The OOM killer will not help higher order allocs so fail */
1621 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1622 			clear_zonelist_oom(zonelist, gfp_mask);
1623 			goto nopage;
1624 		}
1625 
1626 		out_of_memory(zonelist, gfp_mask, order);
1627 		clear_zonelist_oom(zonelist, gfp_mask);
1628 		goto restart;
1629 	}
1630 
1631 	/*
1632 	 * Don't let big-order allocations loop unless the caller explicitly
1633 	 * requests that.  Wait for some write requests to complete then retry.
1634 	 *
1635 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1636 	 * means __GFP_NOFAIL, but that may not be true in other
1637 	 * implementations.
1638 	 *
1639 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1640 	 * specified, then we retry until we no longer reclaim any pages
1641 	 * (above), or we've reclaimed an order of pages at least as
1642 	 * large as the allocation's order. In both cases, if the
1643 	 * allocation still fails, we stop retrying.
1644 	 */
1645 	pages_reclaimed += did_some_progress;
1646 	do_retry = 0;
1647 	if (!(gfp_mask & __GFP_NORETRY)) {
1648 		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1649 			do_retry = 1;
1650 		} else {
1651 			if (gfp_mask & __GFP_REPEAT &&
1652 				pages_reclaimed < (1 << order))
1653 					do_retry = 1;
1654 		}
1655 		if (gfp_mask & __GFP_NOFAIL)
1656 			do_retry = 1;
1657 	}
1658 	if (do_retry) {
1659 		congestion_wait(WRITE, HZ/50);
1660 		goto rebalance;
1661 	}
1662 
1663 nopage:
1664 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1665 		printk(KERN_WARNING "%s: page allocation failure."
1666 			" order:%d, mode:0x%x\n",
1667 			p->comm, order, gfp_mask);
1668 		dump_stack();
1669 		show_mem();
1670 	}
1671 got_pg:
1672 	return page;
1673 }
1674 EXPORT_SYMBOL(__alloc_pages_internal);
1675 
1676 /*
1677  * Common helper functions.
1678  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)1679 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1680 {
1681 	struct page * page;
1682 	page = alloc_pages(gfp_mask, order);
1683 	if (!page)
1684 		return 0;
1685 	return (unsigned long) page_address(page);
1686 }
1687 
1688 EXPORT_SYMBOL(__get_free_pages);
1689 
get_zeroed_page(gfp_t gfp_mask)1690 unsigned long get_zeroed_page(gfp_t gfp_mask)
1691 {
1692 	struct page * page;
1693 
1694 	/*
1695 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1696 	 * a highmem page
1697 	 */
1698 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1699 
1700 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1701 	if (page)
1702 		return (unsigned long) page_address(page);
1703 	return 0;
1704 }
1705 
1706 EXPORT_SYMBOL(get_zeroed_page);
1707 
__pagevec_free(struct pagevec * pvec)1708 void __pagevec_free(struct pagevec *pvec)
1709 {
1710 	int i = pagevec_count(pvec);
1711 
1712 	while (--i >= 0)
1713 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1714 }
1715 
__free_pages(struct page * page,unsigned int order)1716 void __free_pages(struct page *page, unsigned int order)
1717 {
1718 	if (put_page_testzero(page)) {
1719 		if (order == 0)
1720 			free_hot_page(page);
1721 		else
1722 			__free_pages_ok(page, order);
1723 	}
1724 }
1725 
1726 EXPORT_SYMBOL(__free_pages);
1727 
free_pages(unsigned long addr,unsigned int order)1728 void free_pages(unsigned long addr, unsigned int order)
1729 {
1730 	if (addr != 0) {
1731 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1732 		__free_pages(virt_to_page((void *)addr), order);
1733 	}
1734 }
1735 
1736 EXPORT_SYMBOL(free_pages);
1737 
1738 /**
1739  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1740  * @size: the number of bytes to allocate
1741  * @gfp_mask: GFP flags for the allocation
1742  *
1743  * This function is similar to alloc_pages(), except that it allocates the
1744  * minimum number of pages to satisfy the request.  alloc_pages() can only
1745  * allocate memory in power-of-two pages.
1746  *
1747  * This function is also limited by MAX_ORDER.
1748  *
1749  * Memory allocated by this function must be released by free_pages_exact().
1750  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)1751 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1752 {
1753 	unsigned int order = get_order(size);
1754 	unsigned long addr;
1755 
1756 	addr = __get_free_pages(gfp_mask, order);
1757 	if (addr) {
1758 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1759 		unsigned long used = addr + PAGE_ALIGN(size);
1760 
1761 		split_page(virt_to_page(addr), order);
1762 		while (used < alloc_end) {
1763 			free_page(used);
1764 			used += PAGE_SIZE;
1765 		}
1766 	}
1767 
1768 	return (void *)addr;
1769 }
1770 EXPORT_SYMBOL(alloc_pages_exact);
1771 
1772 /**
1773  * free_pages_exact - release memory allocated via alloc_pages_exact()
1774  * @virt: the value returned by alloc_pages_exact.
1775  * @size: size of allocation, same value as passed to alloc_pages_exact().
1776  *
1777  * Release the memory allocated by a previous call to alloc_pages_exact.
1778  */
free_pages_exact(void * virt,size_t size)1779 void free_pages_exact(void *virt, size_t size)
1780 {
1781 	unsigned long addr = (unsigned long)virt;
1782 	unsigned long end = addr + PAGE_ALIGN(size);
1783 
1784 	while (addr < end) {
1785 		free_page(addr);
1786 		addr += PAGE_SIZE;
1787 	}
1788 }
1789 EXPORT_SYMBOL(free_pages_exact);
1790 
nr_free_zone_pages(int offset)1791 static unsigned int nr_free_zone_pages(int offset)
1792 {
1793 	struct zoneref *z;
1794 	struct zone *zone;
1795 
1796 	/* Just pick one node, since fallback list is circular */
1797 	unsigned int sum = 0;
1798 
1799 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1800 
1801 	for_each_zone_zonelist(zone, z, zonelist, offset) {
1802 		unsigned long size = zone->present_pages;
1803 		unsigned long high = zone->pages_high;
1804 		if (size > high)
1805 			sum += size - high;
1806 	}
1807 
1808 	return sum;
1809 }
1810 
1811 /*
1812  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1813  */
nr_free_buffer_pages(void)1814 unsigned int nr_free_buffer_pages(void)
1815 {
1816 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1817 }
1818 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1819 
1820 /*
1821  * Amount of free RAM allocatable within all zones
1822  */
nr_free_pagecache_pages(void)1823 unsigned int nr_free_pagecache_pages(void)
1824 {
1825 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1826 }
1827 
show_node(struct zone * zone)1828 static inline void show_node(struct zone *zone)
1829 {
1830 	if (NUMA_BUILD)
1831 		printk("Node %d ", zone_to_nid(zone));
1832 }
1833 
si_meminfo(struct sysinfo * val)1834 void si_meminfo(struct sysinfo *val)
1835 {
1836 	val->totalram = totalram_pages;
1837 	val->sharedram = 0;
1838 	val->freeram = global_page_state(NR_FREE_PAGES);
1839 	val->bufferram = nr_blockdev_pages();
1840 	val->totalhigh = totalhigh_pages;
1841 	val->freehigh = nr_free_highpages();
1842 	val->mem_unit = PAGE_SIZE;
1843 }
1844 
1845 EXPORT_SYMBOL(si_meminfo);
1846 
1847 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)1848 void si_meminfo_node(struct sysinfo *val, int nid)
1849 {
1850 	pg_data_t *pgdat = NODE_DATA(nid);
1851 
1852 	val->totalram = pgdat->node_present_pages;
1853 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1854 #ifdef CONFIG_HIGHMEM
1855 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1856 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1857 			NR_FREE_PAGES);
1858 #else
1859 	val->totalhigh = 0;
1860 	val->freehigh = 0;
1861 #endif
1862 	val->mem_unit = PAGE_SIZE;
1863 }
1864 #endif
1865 
1866 #define K(x) ((x) << (PAGE_SHIFT-10))
1867 
1868 /*
1869  * Show free area list (used inside shift_scroll-lock stuff)
1870  * We also calculate the percentage fragmentation. We do this by counting the
1871  * memory on each free list with the exception of the first item on the list.
1872  */
show_free_areas(void)1873 void show_free_areas(void)
1874 {
1875 	int cpu;
1876 	struct zone *zone;
1877 
1878 	for_each_zone(zone) {
1879 		if (!populated_zone(zone))
1880 			continue;
1881 
1882 		show_node(zone);
1883 		printk("%s per-cpu:\n", zone->name);
1884 
1885 		for_each_online_cpu(cpu) {
1886 			struct per_cpu_pageset *pageset;
1887 
1888 			pageset = zone_pcp(zone, cpu);
1889 
1890 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1891 			       cpu, pageset->pcp.high,
1892 			       pageset->pcp.batch, pageset->pcp.count);
1893 		}
1894 	}
1895 
1896 	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1897 		" inactive_file:%lu"
1898 //TODO:  check/adjust line lengths
1899 #ifdef CONFIG_UNEVICTABLE_LRU
1900 		" unevictable:%lu"
1901 #endif
1902 		" dirty:%lu writeback:%lu unstable:%lu\n"
1903 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1904 		global_page_state(NR_ACTIVE_ANON),
1905 		global_page_state(NR_ACTIVE_FILE),
1906 		global_page_state(NR_INACTIVE_ANON),
1907 		global_page_state(NR_INACTIVE_FILE),
1908 #ifdef CONFIG_UNEVICTABLE_LRU
1909 		global_page_state(NR_UNEVICTABLE),
1910 #endif
1911 		global_page_state(NR_FILE_DIRTY),
1912 		global_page_state(NR_WRITEBACK),
1913 		global_page_state(NR_UNSTABLE_NFS),
1914 		global_page_state(NR_FREE_PAGES),
1915 		global_page_state(NR_SLAB_RECLAIMABLE) +
1916 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1917 		global_page_state(NR_FILE_MAPPED),
1918 		global_page_state(NR_PAGETABLE),
1919 		global_page_state(NR_BOUNCE));
1920 
1921 	for_each_zone(zone) {
1922 		int i;
1923 
1924 		if (!populated_zone(zone))
1925 			continue;
1926 
1927 		show_node(zone);
1928 		printk("%s"
1929 			" free:%lukB"
1930 			" min:%lukB"
1931 			" low:%lukB"
1932 			" high:%lukB"
1933 			" active_anon:%lukB"
1934 			" inactive_anon:%lukB"
1935 			" active_file:%lukB"
1936 			" inactive_file:%lukB"
1937 #ifdef CONFIG_UNEVICTABLE_LRU
1938 			" unevictable:%lukB"
1939 #endif
1940 			" present:%lukB"
1941 			" pages_scanned:%lu"
1942 			" all_unreclaimable? %s"
1943 			"\n",
1944 			zone->name,
1945 			K(zone_page_state(zone, NR_FREE_PAGES)),
1946 			K(zone->pages_min),
1947 			K(zone->pages_low),
1948 			K(zone->pages_high),
1949 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
1950 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
1951 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
1952 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
1953 #ifdef CONFIG_UNEVICTABLE_LRU
1954 			K(zone_page_state(zone, NR_UNEVICTABLE)),
1955 #endif
1956 			K(zone->present_pages),
1957 			zone->pages_scanned,
1958 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1959 			);
1960 		printk("lowmem_reserve[]:");
1961 		for (i = 0; i < MAX_NR_ZONES; i++)
1962 			printk(" %lu", zone->lowmem_reserve[i]);
1963 		printk("\n");
1964 	}
1965 
1966 	for_each_zone(zone) {
1967  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1968 
1969 		if (!populated_zone(zone))
1970 			continue;
1971 
1972 		show_node(zone);
1973 		printk("%s: ", zone->name);
1974 
1975 		spin_lock_irqsave(&zone->lock, flags);
1976 		for (order = 0; order < MAX_ORDER; order++) {
1977 			nr[order] = zone->free_area[order].nr_free;
1978 			total += nr[order] << order;
1979 		}
1980 		spin_unlock_irqrestore(&zone->lock, flags);
1981 		for (order = 0; order < MAX_ORDER; order++)
1982 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1983 		printk("= %lukB\n", K(total));
1984 	}
1985 
1986 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1987 
1988 	show_swap_cache_info();
1989 }
1990 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)1991 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1992 {
1993 	zoneref->zone = zone;
1994 	zoneref->zone_idx = zone_idx(zone);
1995 }
1996 
1997 /*
1998  * Builds allocation fallback zone lists.
1999  *
2000  * Add all populated zones of a node to the zonelist.
2001  */
build_zonelists_node(pg_data_t * pgdat,struct zonelist * zonelist,int nr_zones,enum zone_type zone_type)2002 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2003 				int nr_zones, enum zone_type zone_type)
2004 {
2005 	struct zone *zone;
2006 
2007 	BUG_ON(zone_type >= MAX_NR_ZONES);
2008 	zone_type++;
2009 
2010 	do {
2011 		zone_type--;
2012 		zone = pgdat->node_zones + zone_type;
2013 		if (populated_zone(zone)) {
2014 			zoneref_set_zone(zone,
2015 				&zonelist->_zonerefs[nr_zones++]);
2016 			check_highest_zone(zone_type);
2017 		}
2018 
2019 	} while (zone_type);
2020 	return nr_zones;
2021 }
2022 
2023 
2024 /*
2025  *  zonelist_order:
2026  *  0 = automatic detection of better ordering.
2027  *  1 = order by ([node] distance, -zonetype)
2028  *  2 = order by (-zonetype, [node] distance)
2029  *
2030  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2031  *  the same zonelist. So only NUMA can configure this param.
2032  */
2033 #define ZONELIST_ORDER_DEFAULT  0
2034 #define ZONELIST_ORDER_NODE     1
2035 #define ZONELIST_ORDER_ZONE     2
2036 
2037 /* zonelist order in the kernel.
2038  * set_zonelist_order() will set this to NODE or ZONE.
2039  */
2040 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2041 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2042 
2043 
2044 #ifdef CONFIG_NUMA
2045 /* The value user specified ....changed by config */
2046 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2047 /* string for sysctl */
2048 #define NUMA_ZONELIST_ORDER_LEN	16
2049 char numa_zonelist_order[16] = "default";
2050 
2051 /*
2052  * interface for configure zonelist ordering.
2053  * command line option "numa_zonelist_order"
2054  *	= "[dD]efault	- default, automatic configuration.
2055  *	= "[nN]ode 	- order by node locality, then by zone within node
2056  *	= "[zZ]one      - order by zone, then by locality within zone
2057  */
2058 
__parse_numa_zonelist_order(char * s)2059 static int __parse_numa_zonelist_order(char *s)
2060 {
2061 	if (*s == 'd' || *s == 'D') {
2062 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2063 	} else if (*s == 'n' || *s == 'N') {
2064 		user_zonelist_order = ZONELIST_ORDER_NODE;
2065 	} else if (*s == 'z' || *s == 'Z') {
2066 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2067 	} else {
2068 		printk(KERN_WARNING
2069 			"Ignoring invalid numa_zonelist_order value:  "
2070 			"%s\n", s);
2071 		return -EINVAL;
2072 	}
2073 	return 0;
2074 }
2075 
setup_numa_zonelist_order(char * s)2076 static __init int setup_numa_zonelist_order(char *s)
2077 {
2078 	if (s)
2079 		return __parse_numa_zonelist_order(s);
2080 	return 0;
2081 }
2082 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2083 
2084 /*
2085  * sysctl handler for numa_zonelist_order
2086  */
numa_zonelist_order_handler(ctl_table * table,int write,struct file * file,void __user * buffer,size_t * length,loff_t * ppos)2087 int numa_zonelist_order_handler(ctl_table *table, int write,
2088 		struct file *file, void __user *buffer, size_t *length,
2089 		loff_t *ppos)
2090 {
2091 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2092 	int ret;
2093 
2094 	if (write)
2095 		strncpy(saved_string, (char*)table->data,
2096 			NUMA_ZONELIST_ORDER_LEN);
2097 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2098 	if (ret)
2099 		return ret;
2100 	if (write) {
2101 		int oldval = user_zonelist_order;
2102 		if (__parse_numa_zonelist_order((char*)table->data)) {
2103 			/*
2104 			 * bogus value.  restore saved string
2105 			 */
2106 			strncpy((char*)table->data, saved_string,
2107 				NUMA_ZONELIST_ORDER_LEN);
2108 			user_zonelist_order = oldval;
2109 		} else if (oldval != user_zonelist_order)
2110 			build_all_zonelists();
2111 	}
2112 	return 0;
2113 }
2114 
2115 
2116 #define MAX_NODE_LOAD (num_online_nodes())
2117 static int node_load[MAX_NUMNODES];
2118 
2119 /**
2120  * find_next_best_node - find the next node that should appear in a given node's fallback list
2121  * @node: node whose fallback list we're appending
2122  * @used_node_mask: nodemask_t of already used nodes
2123  *
2124  * We use a number of factors to determine which is the next node that should
2125  * appear on a given node's fallback list.  The node should not have appeared
2126  * already in @node's fallback list, and it should be the next closest node
2127  * according to the distance array (which contains arbitrary distance values
2128  * from each node to each node in the system), and should also prefer nodes
2129  * with no CPUs, since presumably they'll have very little allocation pressure
2130  * on them otherwise.
2131  * It returns -1 if no node is found.
2132  */
find_next_best_node(int node,nodemask_t * used_node_mask)2133 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2134 {
2135 	int n, val;
2136 	int min_val = INT_MAX;
2137 	int best_node = -1;
2138 	node_to_cpumask_ptr(tmp, 0);
2139 
2140 	/* Use the local node if we haven't already */
2141 	if (!node_isset(node, *used_node_mask)) {
2142 		node_set(node, *used_node_mask);
2143 		return node;
2144 	}
2145 
2146 	for_each_node_state(n, N_HIGH_MEMORY) {
2147 
2148 		/* Don't want a node to appear more than once */
2149 		if (node_isset(n, *used_node_mask))
2150 			continue;
2151 
2152 		/* Use the distance array to find the distance */
2153 		val = node_distance(node, n);
2154 
2155 		/* Penalize nodes under us ("prefer the next node") */
2156 		val += (n < node);
2157 
2158 		/* Give preference to headless and unused nodes */
2159 		node_to_cpumask_ptr_next(tmp, n);
2160 		if (!cpus_empty(*tmp))
2161 			val += PENALTY_FOR_NODE_WITH_CPUS;
2162 
2163 		/* Slight preference for less loaded node */
2164 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2165 		val += node_load[n];
2166 
2167 		if (val < min_val) {
2168 			min_val = val;
2169 			best_node = n;
2170 		}
2171 	}
2172 
2173 	if (best_node >= 0)
2174 		node_set(best_node, *used_node_mask);
2175 
2176 	return best_node;
2177 }
2178 
2179 
2180 /*
2181  * Build zonelists ordered by node and zones within node.
2182  * This results in maximum locality--normal zone overflows into local
2183  * DMA zone, if any--but risks exhausting DMA zone.
2184  */
build_zonelists_in_node_order(pg_data_t * pgdat,int node)2185 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2186 {
2187 	int j;
2188 	struct zonelist *zonelist;
2189 
2190 	zonelist = &pgdat->node_zonelists[0];
2191 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2192 		;
2193 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2194 							MAX_NR_ZONES - 1);
2195 	zonelist->_zonerefs[j].zone = NULL;
2196 	zonelist->_zonerefs[j].zone_idx = 0;
2197 }
2198 
2199 /*
2200  * Build gfp_thisnode zonelists
2201  */
build_thisnode_zonelists(pg_data_t * pgdat)2202 static void build_thisnode_zonelists(pg_data_t *pgdat)
2203 {
2204 	int j;
2205 	struct zonelist *zonelist;
2206 
2207 	zonelist = &pgdat->node_zonelists[1];
2208 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2209 	zonelist->_zonerefs[j].zone = NULL;
2210 	zonelist->_zonerefs[j].zone_idx = 0;
2211 }
2212 
2213 /*
2214  * Build zonelists ordered by zone and nodes within zones.
2215  * This results in conserving DMA zone[s] until all Normal memory is
2216  * exhausted, but results in overflowing to remote node while memory
2217  * may still exist in local DMA zone.
2218  */
2219 static int node_order[MAX_NUMNODES];
2220 
build_zonelists_in_zone_order(pg_data_t * pgdat,int nr_nodes)2221 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2222 {
2223 	int pos, j, node;
2224 	int zone_type;		/* needs to be signed */
2225 	struct zone *z;
2226 	struct zonelist *zonelist;
2227 
2228 	zonelist = &pgdat->node_zonelists[0];
2229 	pos = 0;
2230 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2231 		for (j = 0; j < nr_nodes; j++) {
2232 			node = node_order[j];
2233 			z = &NODE_DATA(node)->node_zones[zone_type];
2234 			if (populated_zone(z)) {
2235 				zoneref_set_zone(z,
2236 					&zonelist->_zonerefs[pos++]);
2237 				check_highest_zone(zone_type);
2238 			}
2239 		}
2240 	}
2241 	zonelist->_zonerefs[pos].zone = NULL;
2242 	zonelist->_zonerefs[pos].zone_idx = 0;
2243 }
2244 
default_zonelist_order(void)2245 static int default_zonelist_order(void)
2246 {
2247 	int nid, zone_type;
2248 	unsigned long low_kmem_size,total_size;
2249 	struct zone *z;
2250 	int average_size;
2251 	/*
2252          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2253 	 * If they are really small and used heavily, the system can fall
2254 	 * into OOM very easily.
2255 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2256 	 */
2257 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2258 	low_kmem_size = 0;
2259 	total_size = 0;
2260 	for_each_online_node(nid) {
2261 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2262 			z = &NODE_DATA(nid)->node_zones[zone_type];
2263 			if (populated_zone(z)) {
2264 				if (zone_type < ZONE_NORMAL)
2265 					low_kmem_size += z->present_pages;
2266 				total_size += z->present_pages;
2267 			}
2268 		}
2269 	}
2270 	if (!low_kmem_size ||  /* there are no DMA area. */
2271 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2272 		return ZONELIST_ORDER_NODE;
2273 	/*
2274 	 * look into each node's config.
2275   	 * If there is a node whose DMA/DMA32 memory is very big area on
2276  	 * local memory, NODE_ORDER may be suitable.
2277          */
2278 	average_size = total_size /
2279 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2280 	for_each_online_node(nid) {
2281 		low_kmem_size = 0;
2282 		total_size = 0;
2283 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2284 			z = &NODE_DATA(nid)->node_zones[zone_type];
2285 			if (populated_zone(z)) {
2286 				if (zone_type < ZONE_NORMAL)
2287 					low_kmem_size += z->present_pages;
2288 				total_size += z->present_pages;
2289 			}
2290 		}
2291 		if (low_kmem_size &&
2292 		    total_size > average_size && /* ignore small node */
2293 		    low_kmem_size > total_size * 70/100)
2294 			return ZONELIST_ORDER_NODE;
2295 	}
2296 	return ZONELIST_ORDER_ZONE;
2297 }
2298 
set_zonelist_order(void)2299 static void set_zonelist_order(void)
2300 {
2301 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2302 		current_zonelist_order = default_zonelist_order();
2303 	else
2304 		current_zonelist_order = user_zonelist_order;
2305 }
2306 
build_zonelists(pg_data_t * pgdat)2307 static void build_zonelists(pg_data_t *pgdat)
2308 {
2309 	int j, node, load;
2310 	enum zone_type i;
2311 	nodemask_t used_mask;
2312 	int local_node, prev_node;
2313 	struct zonelist *zonelist;
2314 	int order = current_zonelist_order;
2315 
2316 	/* initialize zonelists */
2317 	for (i = 0; i < MAX_ZONELISTS; i++) {
2318 		zonelist = pgdat->node_zonelists + i;
2319 		zonelist->_zonerefs[0].zone = NULL;
2320 		zonelist->_zonerefs[0].zone_idx = 0;
2321 	}
2322 
2323 	/* NUMA-aware ordering of nodes */
2324 	local_node = pgdat->node_id;
2325 	load = num_online_nodes();
2326 	prev_node = local_node;
2327 	nodes_clear(used_mask);
2328 
2329 	memset(node_load, 0, sizeof(node_load));
2330 	memset(node_order, 0, sizeof(node_order));
2331 	j = 0;
2332 
2333 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2334 		int distance = node_distance(local_node, node);
2335 
2336 		/*
2337 		 * If another node is sufficiently far away then it is better
2338 		 * to reclaim pages in a zone before going off node.
2339 		 */
2340 		if (distance > RECLAIM_DISTANCE)
2341 			zone_reclaim_mode = 1;
2342 
2343 		/*
2344 		 * We don't want to pressure a particular node.
2345 		 * So adding penalty to the first node in same
2346 		 * distance group to make it round-robin.
2347 		 */
2348 		if (distance != node_distance(local_node, prev_node))
2349 			node_load[node] = load;
2350 
2351 		prev_node = node;
2352 		load--;
2353 		if (order == ZONELIST_ORDER_NODE)
2354 			build_zonelists_in_node_order(pgdat, node);
2355 		else
2356 			node_order[j++] = node;	/* remember order */
2357 	}
2358 
2359 	if (order == ZONELIST_ORDER_ZONE) {
2360 		/* calculate node order -- i.e., DMA last! */
2361 		build_zonelists_in_zone_order(pgdat, j);
2362 	}
2363 
2364 	build_thisnode_zonelists(pgdat);
2365 }
2366 
2367 /* Construct the zonelist performance cache - see further mmzone.h */
build_zonelist_cache(pg_data_t * pgdat)2368 static void build_zonelist_cache(pg_data_t *pgdat)
2369 {
2370 	struct zonelist *zonelist;
2371 	struct zonelist_cache *zlc;
2372 	struct zoneref *z;
2373 
2374 	zonelist = &pgdat->node_zonelists[0];
2375 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2376 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2377 	for (z = zonelist->_zonerefs; z->zone; z++)
2378 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2379 }
2380 
2381 
2382 #else	/* CONFIG_NUMA */
2383 
set_zonelist_order(void)2384 static void set_zonelist_order(void)
2385 {
2386 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2387 }
2388 
build_zonelists(pg_data_t * pgdat)2389 static void build_zonelists(pg_data_t *pgdat)
2390 {
2391 	int node, local_node;
2392 	enum zone_type j;
2393 	struct zonelist *zonelist;
2394 
2395 	local_node = pgdat->node_id;
2396 
2397 	zonelist = &pgdat->node_zonelists[0];
2398 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2399 
2400 	/*
2401 	 * Now we build the zonelist so that it contains the zones
2402 	 * of all the other nodes.
2403 	 * We don't want to pressure a particular node, so when
2404 	 * building the zones for node N, we make sure that the
2405 	 * zones coming right after the local ones are those from
2406 	 * node N+1 (modulo N)
2407 	 */
2408 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2409 		if (!node_online(node))
2410 			continue;
2411 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2412 							MAX_NR_ZONES - 1);
2413 	}
2414 	for (node = 0; node < local_node; node++) {
2415 		if (!node_online(node))
2416 			continue;
2417 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2418 							MAX_NR_ZONES - 1);
2419 	}
2420 
2421 	zonelist->_zonerefs[j].zone = NULL;
2422 	zonelist->_zonerefs[j].zone_idx = 0;
2423 }
2424 
2425 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
build_zonelist_cache(pg_data_t * pgdat)2426 static void build_zonelist_cache(pg_data_t *pgdat)
2427 {
2428 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2429 }
2430 
2431 #endif	/* CONFIG_NUMA */
2432 
2433 /* return values int ....just for stop_machine() */
__build_all_zonelists(void * dummy)2434 static int __build_all_zonelists(void *dummy)
2435 {
2436 	int nid;
2437 
2438 	for_each_online_node(nid) {
2439 		pg_data_t *pgdat = NODE_DATA(nid);
2440 
2441 		build_zonelists(pgdat);
2442 		build_zonelist_cache(pgdat);
2443 	}
2444 	return 0;
2445 }
2446 
build_all_zonelists(void)2447 void build_all_zonelists(void)
2448 {
2449 	set_zonelist_order();
2450 
2451 	if (system_state == SYSTEM_BOOTING) {
2452 		__build_all_zonelists(NULL);
2453 		mminit_verify_zonelist();
2454 		cpuset_init_current_mems_allowed();
2455 	} else {
2456 		/* we have to stop all cpus to guarantee there is no user
2457 		   of zonelist */
2458 		stop_machine(__build_all_zonelists, NULL, NULL);
2459 		/* cpuset refresh routine should be here */
2460 	}
2461 	vm_total_pages = nr_free_pagecache_pages();
2462 	/*
2463 	 * Disable grouping by mobility if the number of pages in the
2464 	 * system is too low to allow the mechanism to work. It would be
2465 	 * more accurate, but expensive to check per-zone. This check is
2466 	 * made on memory-hotadd so a system can start with mobility
2467 	 * disabled and enable it later
2468 	 */
2469 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2470 		page_group_by_mobility_disabled = 1;
2471 	else
2472 		page_group_by_mobility_disabled = 0;
2473 
2474 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2475 		"Total pages: %ld\n",
2476 			num_online_nodes(),
2477 			zonelist_order_name[current_zonelist_order],
2478 			page_group_by_mobility_disabled ? "off" : "on",
2479 			vm_total_pages);
2480 #ifdef CONFIG_NUMA
2481 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2482 #endif
2483 }
2484 
2485 /*
2486  * Helper functions to size the waitqueue hash table.
2487  * Essentially these want to choose hash table sizes sufficiently
2488  * large so that collisions trying to wait on pages are rare.
2489  * But in fact, the number of active page waitqueues on typical
2490  * systems is ridiculously low, less than 200. So this is even
2491  * conservative, even though it seems large.
2492  *
2493  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2494  * waitqueues, i.e. the size of the waitq table given the number of pages.
2495  */
2496 #define PAGES_PER_WAITQUEUE	256
2497 
2498 #ifndef CONFIG_MEMORY_HOTPLUG
wait_table_hash_nr_entries(unsigned long pages)2499 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2500 {
2501 	unsigned long size = 1;
2502 
2503 	pages /= PAGES_PER_WAITQUEUE;
2504 
2505 	while (size < pages)
2506 		size <<= 1;
2507 
2508 	/*
2509 	 * Once we have dozens or even hundreds of threads sleeping
2510 	 * on IO we've got bigger problems than wait queue collision.
2511 	 * Limit the size of the wait table to a reasonable size.
2512 	 */
2513 	size = min(size, 4096UL);
2514 
2515 	return max(size, 4UL);
2516 }
2517 #else
2518 /*
2519  * A zone's size might be changed by hot-add, so it is not possible to determine
2520  * a suitable size for its wait_table.  So we use the maximum size now.
2521  *
2522  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2523  *
2524  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2525  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2526  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2527  *
2528  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2529  * or more by the traditional way. (See above).  It equals:
2530  *
2531  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2532  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2533  *    powerpc (64K page size)             : =  (32G +16M)byte.
2534  */
wait_table_hash_nr_entries(unsigned long pages)2535 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2536 {
2537 	return 4096UL;
2538 }
2539 #endif
2540 
2541 /*
2542  * This is an integer logarithm so that shifts can be used later
2543  * to extract the more random high bits from the multiplicative
2544  * hash function before the remainder is taken.
2545  */
wait_table_bits(unsigned long size)2546 static inline unsigned long wait_table_bits(unsigned long size)
2547 {
2548 	return ffz(~size);
2549 }
2550 
2551 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2552 
2553 /*
2554  * Check if a pageblock contains reserved pages
2555  */
pageblock_is_reserved(unsigned long start_pfn)2556 static int pageblock_is_reserved(unsigned long start_pfn)
2557 {
2558 	unsigned long end_pfn = start_pfn + pageblock_nr_pages;
2559 	unsigned long pfn;
2560 
2561 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
2562 		if (PageReserved(pfn_to_page(pfn)))
2563 			return 1;
2564 	return 0;
2565 }
2566 
2567 /*
2568  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2569  * of blocks reserved is based on zone->pages_min. The memory within the
2570  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2571  * higher will lead to a bigger reserve which will get freed as contiguous
2572  * blocks as reclaim kicks in
2573  */
setup_zone_migrate_reserve(struct zone * zone)2574 static void setup_zone_migrate_reserve(struct zone *zone)
2575 {
2576 	unsigned long start_pfn, pfn, end_pfn;
2577 	struct page *page;
2578 	unsigned long reserve, block_migratetype;
2579 
2580 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2581 	start_pfn = zone->zone_start_pfn;
2582 	end_pfn = start_pfn + zone->spanned_pages;
2583 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2584 							pageblock_order;
2585 
2586 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2587 		if (!pfn_valid(pfn))
2588 			continue;
2589 		page = pfn_to_page(pfn);
2590 
2591 		/* Watch out for overlapping nodes */
2592 		if (page_to_nid(page) != zone_to_nid(zone))
2593 			continue;
2594 
2595 		/* Blocks with reserved pages will never free, skip them. */
2596 		if (pageblock_is_reserved(pfn))
2597 			continue;
2598 
2599 		block_migratetype = get_pageblock_migratetype(page);
2600 
2601 		/* If this block is reserved, account for it */
2602 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2603 			reserve--;
2604 			continue;
2605 		}
2606 
2607 		/* Suitable for reserving if this block is movable */
2608 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2609 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2610 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2611 			reserve--;
2612 			continue;
2613 		}
2614 
2615 		/*
2616 		 * If the reserve is met and this is a previous reserved block,
2617 		 * take it back
2618 		 */
2619 		if (block_migratetype == MIGRATE_RESERVE) {
2620 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2621 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2622 		}
2623 	}
2624 }
2625 
2626 /*
2627  * Initially all pages are reserved - free ones are freed
2628  * up by free_all_bootmem() once the early boot process is
2629  * done. Non-atomic initialization, single-pass.
2630  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum memmap_context context)2631 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2632 		unsigned long start_pfn, enum memmap_context context)
2633 {
2634 	struct page *page;
2635 	unsigned long end_pfn = start_pfn + size;
2636 	unsigned long pfn;
2637 	struct zone *z;
2638 
2639 	if (highest_memmap_pfn < end_pfn - 1)
2640 		highest_memmap_pfn = end_pfn - 1;
2641 
2642 	z = &NODE_DATA(nid)->node_zones[zone];
2643 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2644 		/*
2645 		 * There can be holes in boot-time mem_map[]s
2646 		 * handed to this function.  They do not
2647 		 * exist on hotplugged memory.
2648 		 */
2649 		if (context == MEMMAP_EARLY) {
2650 			if (!early_pfn_valid(pfn))
2651 				continue;
2652 			if (!early_pfn_in_nid(pfn, nid))
2653 				continue;
2654 		}
2655 		page = pfn_to_page(pfn);
2656 		set_page_links(page, zone, nid, pfn);
2657 		mminit_verify_page_links(page, zone, nid, pfn);
2658 		init_page_count(page);
2659 		reset_page_mapcount(page);
2660 		SetPageReserved(page);
2661 		/*
2662 		 * Mark the block movable so that blocks are reserved for
2663 		 * movable at startup. This will force kernel allocations
2664 		 * to reserve their blocks rather than leaking throughout
2665 		 * the address space during boot when many long-lived
2666 		 * kernel allocations are made. Later some blocks near
2667 		 * the start are marked MIGRATE_RESERVE by
2668 		 * setup_zone_migrate_reserve()
2669 		 *
2670 		 * bitmap is created for zone's valid pfn range. but memmap
2671 		 * can be created for invalid pages (for alignment)
2672 		 * check here not to call set_pageblock_migratetype() against
2673 		 * pfn out of zone.
2674 		 */
2675 		if ((z->zone_start_pfn <= pfn)
2676 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2677 		    && !(pfn & (pageblock_nr_pages - 1)))
2678 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2679 
2680 		INIT_LIST_HEAD(&page->lru);
2681 #ifdef WANT_PAGE_VIRTUAL
2682 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2683 		if (!is_highmem_idx(zone))
2684 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2685 #endif
2686 	}
2687 }
2688 
zone_init_free_lists(struct zone * zone)2689 static void __meminit zone_init_free_lists(struct zone *zone)
2690 {
2691 	int order, t;
2692 	for_each_migratetype_order(order, t) {
2693 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2694 		zone->free_area[order].nr_free = 0;
2695 	}
2696 }
2697 
2698 #ifndef __HAVE_ARCH_MEMMAP_INIT
2699 #define memmap_init(size, nid, zone, start_pfn) \
2700 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2701 #endif
2702 
zone_batchsize(struct zone * zone)2703 static int zone_batchsize(struct zone *zone)
2704 {
2705 	int batch;
2706 
2707 	/*
2708 	 * The per-cpu-pages pools are set to around 1000th of the
2709 	 * size of the zone.  But no more than 1/2 of a meg.
2710 	 *
2711 	 * OK, so we don't know how big the cache is.  So guess.
2712 	 */
2713 	batch = zone->present_pages / 1024;
2714 	if (batch * PAGE_SIZE > 512 * 1024)
2715 		batch = (512 * 1024) / PAGE_SIZE;
2716 	batch /= 4;		/* We effectively *= 4 below */
2717 	if (batch < 1)
2718 		batch = 1;
2719 
2720 	/*
2721 	 * Clamp the batch to a 2^n - 1 value. Having a power
2722 	 * of 2 value was found to be more likely to have
2723 	 * suboptimal cache aliasing properties in some cases.
2724 	 *
2725 	 * For example if 2 tasks are alternately allocating
2726 	 * batches of pages, one task can end up with a lot
2727 	 * of pages of one half of the possible page colors
2728 	 * and the other with pages of the other colors.
2729 	 */
2730 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2731 
2732 	return batch;
2733 }
2734 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)2735 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2736 {
2737 	struct per_cpu_pages *pcp;
2738 
2739 	memset(p, 0, sizeof(*p));
2740 
2741 	pcp = &p->pcp;
2742 	pcp->count = 0;
2743 	pcp->high = 6 * batch;
2744 	pcp->batch = max(1UL, 1 * batch);
2745 	INIT_LIST_HEAD(&pcp->list);
2746 }
2747 
2748 /*
2749  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2750  * to the value high for the pageset p.
2751  */
2752 
setup_pagelist_highmark(struct per_cpu_pageset * p,unsigned long high)2753 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2754 				unsigned long high)
2755 {
2756 	struct per_cpu_pages *pcp;
2757 
2758 	pcp = &p->pcp;
2759 	pcp->high = high;
2760 	pcp->batch = max(1UL, high/4);
2761 	if ((high/4) > (PAGE_SHIFT * 8))
2762 		pcp->batch = PAGE_SHIFT * 8;
2763 }
2764 
2765 
2766 #ifdef CONFIG_NUMA
2767 /*
2768  * Boot pageset table. One per cpu which is going to be used for all
2769  * zones and all nodes. The parameters will be set in such a way
2770  * that an item put on a list will immediately be handed over to
2771  * the buddy list. This is safe since pageset manipulation is done
2772  * with interrupts disabled.
2773  *
2774  * Some NUMA counter updates may also be caught by the boot pagesets.
2775  *
2776  * The boot_pagesets must be kept even after bootup is complete for
2777  * unused processors and/or zones. They do play a role for bootstrapping
2778  * hotplugged processors.
2779  *
2780  * zoneinfo_show() and maybe other functions do
2781  * not check if the processor is online before following the pageset pointer.
2782  * Other parts of the kernel may not check if the zone is available.
2783  */
2784 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2785 
2786 /*
2787  * Dynamically allocate memory for the
2788  * per cpu pageset array in struct zone.
2789  */
process_zones(int cpu)2790 static int __cpuinit process_zones(int cpu)
2791 {
2792 	struct zone *zone, *dzone;
2793 	int node = cpu_to_node(cpu);
2794 
2795 	node_set_state(node, N_CPU);	/* this node has a cpu */
2796 
2797 	for_each_zone(zone) {
2798 
2799 		if (!populated_zone(zone))
2800 			continue;
2801 
2802 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2803 					 GFP_KERNEL, node);
2804 		if (!zone_pcp(zone, cpu))
2805 			goto bad;
2806 
2807 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2808 
2809 		if (percpu_pagelist_fraction)
2810 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2811 			 	(zone->present_pages / percpu_pagelist_fraction));
2812 	}
2813 
2814 	return 0;
2815 bad:
2816 	for_each_zone(dzone) {
2817 		if (!populated_zone(dzone))
2818 			continue;
2819 		if (dzone == zone)
2820 			break;
2821 		kfree(zone_pcp(dzone, cpu));
2822 		zone_pcp(dzone, cpu) = NULL;
2823 	}
2824 	return -ENOMEM;
2825 }
2826 
free_zone_pagesets(int cpu)2827 static inline void free_zone_pagesets(int cpu)
2828 {
2829 	struct zone *zone;
2830 
2831 	for_each_zone(zone) {
2832 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2833 
2834 		/* Free per_cpu_pageset if it is slab allocated */
2835 		if (pset != &boot_pageset[cpu])
2836 			kfree(pset);
2837 		zone_pcp(zone, cpu) = NULL;
2838 	}
2839 }
2840 
pageset_cpuup_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2841 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2842 		unsigned long action,
2843 		void *hcpu)
2844 {
2845 	int cpu = (long)hcpu;
2846 	int ret = NOTIFY_OK;
2847 
2848 	switch (action) {
2849 	case CPU_UP_PREPARE:
2850 	case CPU_UP_PREPARE_FROZEN:
2851 		if (process_zones(cpu))
2852 			ret = NOTIFY_BAD;
2853 		break;
2854 	case CPU_UP_CANCELED:
2855 	case CPU_UP_CANCELED_FROZEN:
2856 	case CPU_DEAD:
2857 	case CPU_DEAD_FROZEN:
2858 		free_zone_pagesets(cpu);
2859 		break;
2860 	default:
2861 		break;
2862 	}
2863 	return ret;
2864 }
2865 
2866 static struct notifier_block __cpuinitdata pageset_notifier =
2867 	{ &pageset_cpuup_callback, NULL, 0 };
2868 
setup_per_cpu_pageset(void)2869 void __init setup_per_cpu_pageset(void)
2870 {
2871 	int err;
2872 
2873 	/* Initialize per_cpu_pageset for cpu 0.
2874 	 * A cpuup callback will do this for every cpu
2875 	 * as it comes online
2876 	 */
2877 	err = process_zones(smp_processor_id());
2878 	BUG_ON(err);
2879 	register_cpu_notifier(&pageset_notifier);
2880 }
2881 
2882 #endif
2883 
2884 static noinline __init_refok
zone_wait_table_init(struct zone * zone,unsigned long zone_size_pages)2885 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2886 {
2887 	int i;
2888 	struct pglist_data *pgdat = zone->zone_pgdat;
2889 	size_t alloc_size;
2890 
2891 	/*
2892 	 * The per-page waitqueue mechanism uses hashed waitqueues
2893 	 * per zone.
2894 	 */
2895 	zone->wait_table_hash_nr_entries =
2896 		 wait_table_hash_nr_entries(zone_size_pages);
2897 	zone->wait_table_bits =
2898 		wait_table_bits(zone->wait_table_hash_nr_entries);
2899 	alloc_size = zone->wait_table_hash_nr_entries
2900 					* sizeof(wait_queue_head_t);
2901 
2902 	if (!slab_is_available()) {
2903 		zone->wait_table = (wait_queue_head_t *)
2904 			alloc_bootmem_node(pgdat, alloc_size);
2905 	} else {
2906 		/*
2907 		 * This case means that a zone whose size was 0 gets new memory
2908 		 * via memory hot-add.
2909 		 * But it may be the case that a new node was hot-added.  In
2910 		 * this case vmalloc() will not be able to use this new node's
2911 		 * memory - this wait_table must be initialized to use this new
2912 		 * node itself as well.
2913 		 * To use this new node's memory, further consideration will be
2914 		 * necessary.
2915 		 */
2916 		zone->wait_table = vmalloc(alloc_size);
2917 	}
2918 	if (!zone->wait_table)
2919 		return -ENOMEM;
2920 
2921 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2922 		init_waitqueue_head(zone->wait_table + i);
2923 
2924 	return 0;
2925 }
2926 
zone_pcp_init(struct zone * zone)2927 static __meminit void zone_pcp_init(struct zone *zone)
2928 {
2929 	int cpu;
2930 	unsigned long batch = zone_batchsize(zone);
2931 
2932 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2933 #ifdef CONFIG_NUMA
2934 		/* Early boot. Slab allocator not functional yet */
2935 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2936 		setup_pageset(&boot_pageset[cpu],0);
2937 #else
2938 		setup_pageset(zone_pcp(zone,cpu), batch);
2939 #endif
2940 	}
2941 	if (zone->present_pages)
2942 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2943 			zone->name, zone->present_pages, batch);
2944 }
2945 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size,enum memmap_context context)2946 __meminit int init_currently_empty_zone(struct zone *zone,
2947 					unsigned long zone_start_pfn,
2948 					unsigned long size,
2949 					enum memmap_context context)
2950 {
2951 	struct pglist_data *pgdat = zone->zone_pgdat;
2952 	int ret;
2953 	ret = zone_wait_table_init(zone, size);
2954 	if (ret)
2955 		return ret;
2956 	pgdat->nr_zones = zone_idx(zone) + 1;
2957 
2958 	zone->zone_start_pfn = zone_start_pfn;
2959 
2960 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2961 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2962 			pgdat->node_id,
2963 			(unsigned long)zone_idx(zone),
2964 			zone_start_pfn, (zone_start_pfn + size));
2965 
2966 	zone_init_free_lists(zone);
2967 
2968 	return 0;
2969 }
2970 
2971 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2972 /*
2973  * Basic iterator support. Return the first range of PFNs for a node
2974  * Note: nid == MAX_NUMNODES returns first region regardless of node
2975  */
first_active_region_index_in_nid(int nid)2976 static int __meminit first_active_region_index_in_nid(int nid)
2977 {
2978 	int i;
2979 
2980 	for (i = 0; i < nr_nodemap_entries; i++)
2981 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2982 			return i;
2983 
2984 	return -1;
2985 }
2986 
2987 /*
2988  * Basic iterator support. Return the next active range of PFNs for a node
2989  * Note: nid == MAX_NUMNODES returns next region regardless of node
2990  */
next_active_region_index_in_nid(int index,int nid)2991 static int __meminit next_active_region_index_in_nid(int index, int nid)
2992 {
2993 	for (index = index + 1; index < nr_nodemap_entries; index++)
2994 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2995 			return index;
2996 
2997 	return -1;
2998 }
2999 
3000 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3001 /*
3002  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3003  * Architectures may implement their own version but if add_active_range()
3004  * was used and there are no special requirements, this is a convenient
3005  * alternative
3006  */
__early_pfn_to_nid(unsigned long pfn)3007 int __meminit __early_pfn_to_nid(unsigned long pfn)
3008 {
3009 	int i;
3010 
3011 	for (i = 0; i < nr_nodemap_entries; i++) {
3012 		unsigned long start_pfn = early_node_map[i].start_pfn;
3013 		unsigned long end_pfn = early_node_map[i].end_pfn;
3014 
3015 		if (start_pfn <= pfn && pfn < end_pfn)
3016 			return early_node_map[i].nid;
3017 	}
3018 	/* This is a memory hole */
3019 	return -1;
3020 }
3021 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3022 
early_pfn_to_nid(unsigned long pfn)3023 int __meminit early_pfn_to_nid(unsigned long pfn)
3024 {
3025 	int nid;
3026 
3027 	nid = __early_pfn_to_nid(pfn);
3028 	if (nid >= 0)
3029 		return nid;
3030 	/* just returns 0 */
3031 	return 0;
3032 }
3033 
3034 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
early_pfn_in_nid(unsigned long pfn,int node)3035 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3036 {
3037 	int nid;
3038 
3039 	nid = __early_pfn_to_nid(pfn);
3040 	if (nid >= 0 && nid != node)
3041 		return false;
3042 	return true;
3043 }
3044 #endif
3045 
3046 /* Basic iterator support to walk early_node_map[] */
3047 #define for_each_active_range_index_in_nid(i, nid) \
3048 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3049 				i = next_active_region_index_in_nid(i, nid))
3050 
3051 /**
3052  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3053  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3054  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3055  *
3056  * If an architecture guarantees that all ranges registered with
3057  * add_active_ranges() contain no holes and may be freed, this
3058  * this function may be used instead of calling free_bootmem() manually.
3059  */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)3060 void __init free_bootmem_with_active_regions(int nid,
3061 						unsigned long max_low_pfn)
3062 {
3063 	int i;
3064 
3065 	for_each_active_range_index_in_nid(i, nid) {
3066 		unsigned long size_pages = 0;
3067 		unsigned long end_pfn = early_node_map[i].end_pfn;
3068 
3069 		if (early_node_map[i].start_pfn >= max_low_pfn)
3070 			continue;
3071 
3072 		if (end_pfn > max_low_pfn)
3073 			end_pfn = max_low_pfn;
3074 
3075 		size_pages = end_pfn - early_node_map[i].start_pfn;
3076 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3077 				PFN_PHYS(early_node_map[i].start_pfn),
3078 				size_pages << PAGE_SHIFT);
3079 	}
3080 }
3081 
work_with_active_regions(int nid,work_fn_t work_fn,void * data)3082 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3083 {
3084 	int i;
3085 	int ret;
3086 
3087 	for_each_active_range_index_in_nid(i, nid) {
3088 		ret = work_fn(early_node_map[i].start_pfn,
3089 			      early_node_map[i].end_pfn, data);
3090 		if (ret)
3091 			break;
3092 	}
3093 }
3094 /**
3095  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3096  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3097  *
3098  * If an architecture guarantees that all ranges registered with
3099  * add_active_ranges() contain no holes and may be freed, this
3100  * function may be used instead of calling memory_present() manually.
3101  */
sparse_memory_present_with_active_regions(int nid)3102 void __init sparse_memory_present_with_active_regions(int nid)
3103 {
3104 	int i;
3105 
3106 	for_each_active_range_index_in_nid(i, nid)
3107 		memory_present(early_node_map[i].nid,
3108 				early_node_map[i].start_pfn,
3109 				early_node_map[i].end_pfn);
3110 }
3111 
3112 /**
3113  * push_node_boundaries - Push node boundaries to at least the requested boundary
3114  * @nid: The nid of the node to push the boundary for
3115  * @start_pfn: The start pfn of the node
3116  * @end_pfn: The end pfn of the node
3117  *
3118  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3119  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3120  * be hotplugged even though no physical memory exists. This function allows
3121  * an arch to push out the node boundaries so mem_map is allocated that can
3122  * be used later.
3123  */
3124 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
push_node_boundaries(unsigned int nid,unsigned long start_pfn,unsigned long end_pfn)3125 void __init push_node_boundaries(unsigned int nid,
3126 		unsigned long start_pfn, unsigned long end_pfn)
3127 {
3128 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3129 			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3130 			nid, start_pfn, end_pfn);
3131 
3132 	/* Initialise the boundary for this node if necessary */
3133 	if (node_boundary_end_pfn[nid] == 0)
3134 		node_boundary_start_pfn[nid] = -1UL;
3135 
3136 	/* Update the boundaries */
3137 	if (node_boundary_start_pfn[nid] > start_pfn)
3138 		node_boundary_start_pfn[nid] = start_pfn;
3139 	if (node_boundary_end_pfn[nid] < end_pfn)
3140 		node_boundary_end_pfn[nid] = end_pfn;
3141 }
3142 
3143 /* If necessary, push the node boundary out for reserve hotadd */
account_node_boundary(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)3144 static void __meminit account_node_boundary(unsigned int nid,
3145 		unsigned long *start_pfn, unsigned long *end_pfn)
3146 {
3147 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3148 			"Entering account_node_boundary(%u, %lu, %lu)\n",
3149 			nid, *start_pfn, *end_pfn);
3150 
3151 	/* Return if boundary information has not been provided */
3152 	if (node_boundary_end_pfn[nid] == 0)
3153 		return;
3154 
3155 	/* Check the boundaries and update if necessary */
3156 	if (node_boundary_start_pfn[nid] < *start_pfn)
3157 		*start_pfn = node_boundary_start_pfn[nid];
3158 	if (node_boundary_end_pfn[nid] > *end_pfn)
3159 		*end_pfn = node_boundary_end_pfn[nid];
3160 }
3161 #else
push_node_boundaries(unsigned int nid,unsigned long start_pfn,unsigned long end_pfn)3162 void __init push_node_boundaries(unsigned int nid,
3163 		unsigned long start_pfn, unsigned long end_pfn) {}
3164 
account_node_boundary(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)3165 static void __meminit account_node_boundary(unsigned int nid,
3166 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3167 #endif
3168 
3169 
3170 /**
3171  * get_pfn_range_for_nid - Return the start and end page frames for a node
3172  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3173  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3174  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3175  *
3176  * It returns the start and end page frame of a node based on information
3177  * provided by an arch calling add_active_range(). If called for a node
3178  * with no available memory, a warning is printed and the start and end
3179  * PFNs will be 0.
3180  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)3181 void __meminit get_pfn_range_for_nid(unsigned int nid,
3182 			unsigned long *start_pfn, unsigned long *end_pfn)
3183 {
3184 	int i;
3185 	*start_pfn = -1UL;
3186 	*end_pfn = 0;
3187 
3188 	for_each_active_range_index_in_nid(i, nid) {
3189 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3190 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3191 	}
3192 
3193 	if (*start_pfn == -1UL)
3194 		*start_pfn = 0;
3195 
3196 	/* Push the node boundaries out if requested */
3197 	account_node_boundary(nid, start_pfn, end_pfn);
3198 }
3199 
3200 /*
3201  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3202  * assumption is made that zones within a node are ordered in monotonic
3203  * increasing memory addresses so that the "highest" populated zone is used
3204  */
find_usable_zone_for_movable(void)3205 static void __init find_usable_zone_for_movable(void)
3206 {
3207 	int zone_index;
3208 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3209 		if (zone_index == ZONE_MOVABLE)
3210 			continue;
3211 
3212 		if (arch_zone_highest_possible_pfn[zone_index] >
3213 				arch_zone_lowest_possible_pfn[zone_index])
3214 			break;
3215 	}
3216 
3217 	VM_BUG_ON(zone_index == -1);
3218 	movable_zone = zone_index;
3219 }
3220 
3221 /*
3222  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3223  * because it is sized independant of architecture. Unlike the other zones,
3224  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3225  * in each node depending on the size of each node and how evenly kernelcore
3226  * is distributed. This helper function adjusts the zone ranges
3227  * provided by the architecture for a given node by using the end of the
3228  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3229  * zones within a node are in order of monotonic increases memory addresses
3230  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)3231 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3232 					unsigned long zone_type,
3233 					unsigned long node_start_pfn,
3234 					unsigned long node_end_pfn,
3235 					unsigned long *zone_start_pfn,
3236 					unsigned long *zone_end_pfn)
3237 {
3238 	/* Only adjust if ZONE_MOVABLE is on this node */
3239 	if (zone_movable_pfn[nid]) {
3240 		/* Size ZONE_MOVABLE */
3241 		if (zone_type == ZONE_MOVABLE) {
3242 			*zone_start_pfn = zone_movable_pfn[nid];
3243 			*zone_end_pfn = min(node_end_pfn,
3244 				arch_zone_highest_possible_pfn[movable_zone]);
3245 
3246 		/* Adjust for ZONE_MOVABLE starting within this range */
3247 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3248 				*zone_end_pfn > zone_movable_pfn[nid]) {
3249 			*zone_end_pfn = zone_movable_pfn[nid];
3250 
3251 		/* Check if this whole range is within ZONE_MOVABLE */
3252 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3253 			*zone_start_pfn = *zone_end_pfn;
3254 	}
3255 }
3256 
3257 /*
3258  * Return the number of pages a zone spans in a node, including holes
3259  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3260  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long * ignored)3261 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3262 					unsigned long zone_type,
3263 					unsigned long *ignored)
3264 {
3265 	unsigned long node_start_pfn, node_end_pfn;
3266 	unsigned long zone_start_pfn, zone_end_pfn;
3267 
3268 	/* Get the start and end of the node and zone */
3269 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3270 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3271 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3272 	adjust_zone_range_for_zone_movable(nid, zone_type,
3273 				node_start_pfn, node_end_pfn,
3274 				&zone_start_pfn, &zone_end_pfn);
3275 
3276 	/* Check that this node has pages within the zone's required range */
3277 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3278 		return 0;
3279 
3280 	/* Move the zone boundaries inside the node if necessary */
3281 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3282 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3283 
3284 	/* Return the spanned pages */
3285 	return zone_end_pfn - zone_start_pfn;
3286 }
3287 
3288 /*
3289  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3290  * then all holes in the requested range will be accounted for.
3291  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)3292 static unsigned long __meminit __absent_pages_in_range(int nid,
3293 				unsigned long range_start_pfn,
3294 				unsigned long range_end_pfn)
3295 {
3296 	int i = 0;
3297 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3298 	unsigned long start_pfn;
3299 
3300 	/* Find the end_pfn of the first active range of pfns in the node */
3301 	i = first_active_region_index_in_nid(nid);
3302 	if (i == -1)
3303 		return 0;
3304 
3305 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3306 
3307 	/* Account for ranges before physical memory on this node */
3308 	if (early_node_map[i].start_pfn > range_start_pfn)
3309 		hole_pages = prev_end_pfn - range_start_pfn;
3310 
3311 	/* Find all holes for the zone within the node */
3312 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3313 
3314 		/* No need to continue if prev_end_pfn is outside the zone */
3315 		if (prev_end_pfn >= range_end_pfn)
3316 			break;
3317 
3318 		/* Make sure the end of the zone is not within the hole */
3319 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3320 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3321 
3322 		/* Update the hole size cound and move on */
3323 		if (start_pfn > range_start_pfn) {
3324 			BUG_ON(prev_end_pfn > start_pfn);
3325 			hole_pages += start_pfn - prev_end_pfn;
3326 		}
3327 		prev_end_pfn = early_node_map[i].end_pfn;
3328 	}
3329 
3330 	/* Account for ranges past physical memory on this node */
3331 	if (range_end_pfn > prev_end_pfn)
3332 		hole_pages += range_end_pfn -
3333 				max(range_start_pfn, prev_end_pfn);
3334 
3335 	return hole_pages;
3336 }
3337 
3338 /**
3339  * absent_pages_in_range - Return number of page frames in holes within a range
3340  * @start_pfn: The start PFN to start searching for holes
3341  * @end_pfn: The end PFN to stop searching for holes
3342  *
3343  * It returns the number of pages frames in memory holes within a range.
3344  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)3345 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3346 							unsigned long end_pfn)
3347 {
3348 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3349 }
3350 
3351 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long * ignored)3352 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3353 					unsigned long zone_type,
3354 					unsigned long *ignored)
3355 {
3356 	unsigned long node_start_pfn, node_end_pfn;
3357 	unsigned long zone_start_pfn, zone_end_pfn;
3358 
3359 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3360 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3361 							node_start_pfn);
3362 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3363 							node_end_pfn);
3364 
3365 	adjust_zone_range_for_zone_movable(nid, zone_type,
3366 			node_start_pfn, node_end_pfn,
3367 			&zone_start_pfn, &zone_end_pfn);
3368 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3369 }
3370 
3371 #else
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long * zones_size)3372 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3373 					unsigned long zone_type,
3374 					unsigned long *zones_size)
3375 {
3376 	return zones_size[zone_type];
3377 }
3378 
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long * zholes_size)3379 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3380 						unsigned long zone_type,
3381 						unsigned long *zholes_size)
3382 {
3383 	if (!zholes_size)
3384 		return 0;
3385 
3386 	return zholes_size[zone_type];
3387 }
3388 
3389 #endif
3390 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long * zones_size,unsigned long * zholes_size)3391 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3392 		unsigned long *zones_size, unsigned long *zholes_size)
3393 {
3394 	unsigned long realtotalpages, totalpages = 0;
3395 	enum zone_type i;
3396 
3397 	for (i = 0; i < MAX_NR_ZONES; i++)
3398 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3399 								zones_size);
3400 	pgdat->node_spanned_pages = totalpages;
3401 
3402 	realtotalpages = totalpages;
3403 	for (i = 0; i < MAX_NR_ZONES; i++)
3404 		realtotalpages -=
3405 			zone_absent_pages_in_node(pgdat->node_id, i,
3406 								zholes_size);
3407 	pgdat->node_present_pages = realtotalpages;
3408 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3409 							realtotalpages);
3410 }
3411 
3412 #ifndef CONFIG_SPARSEMEM
3413 /*
3414  * Calculate the size of the zone->blockflags rounded to an unsigned long
3415  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3416  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3417  * round what is now in bits to nearest long in bits, then return it in
3418  * bytes.
3419  */
usemap_size(unsigned long zonesize)3420 static unsigned long __init usemap_size(unsigned long zonesize)
3421 {
3422 	unsigned long usemapsize;
3423 
3424 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3425 	usemapsize = usemapsize >> pageblock_order;
3426 	usemapsize *= NR_PAGEBLOCK_BITS;
3427 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3428 
3429 	return usemapsize / 8;
3430 }
3431 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zonesize)3432 static void __init setup_usemap(struct pglist_data *pgdat,
3433 				struct zone *zone, unsigned long zonesize)
3434 {
3435 	unsigned long usemapsize = usemap_size(zonesize);
3436 	zone->pageblock_flags = NULL;
3437 	if (usemapsize)
3438 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3439 }
3440 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zonesize)3441 static void inline setup_usemap(struct pglist_data *pgdat,
3442 				struct zone *zone, unsigned long zonesize) {}
3443 #endif /* CONFIG_SPARSEMEM */
3444 
3445 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3446 
3447 /* Return a sensible default order for the pageblock size. */
pageblock_default_order(void)3448 static inline int pageblock_default_order(void)
3449 {
3450 	if (HPAGE_SHIFT > PAGE_SHIFT)
3451 		return HUGETLB_PAGE_ORDER;
3452 
3453 	return MAX_ORDER-1;
3454 }
3455 
3456 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(unsigned int order)3457 static inline void __init set_pageblock_order(unsigned int order)
3458 {
3459 	/* Check that pageblock_nr_pages has not already been setup */
3460 	if (pageblock_order)
3461 		return;
3462 
3463 	/*
3464 	 * Assume the largest contiguous order of interest is a huge page.
3465 	 * This value may be variable depending on boot parameters on IA64
3466 	 */
3467 	pageblock_order = order;
3468 }
3469 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3470 
3471 /*
3472  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3473  * and pageblock_default_order() are unused as pageblock_order is set
3474  * at compile-time. See include/linux/pageblock-flags.h for the values of
3475  * pageblock_order based on the kernel config
3476  */
pageblock_default_order(unsigned int order)3477 static inline int pageblock_default_order(unsigned int order)
3478 {
3479 	return MAX_ORDER-1;
3480 }
3481 #define set_pageblock_order(x)	do {} while (0)
3482 
3483 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3484 
3485 /*
3486  * Set up the zone data structures:
3487  *   - mark all pages reserved
3488  *   - mark all memory queues empty
3489  *   - clear the memory bitmaps
3490  */
free_area_init_core(struct pglist_data * pgdat,unsigned long * zones_size,unsigned long * zholes_size)3491 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3492 		unsigned long *zones_size, unsigned long *zholes_size)
3493 {
3494 	enum zone_type j;
3495 	int nid = pgdat->node_id;
3496 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3497 	int ret;
3498 
3499 	pgdat_resize_init(pgdat);
3500 	pgdat->nr_zones = 0;
3501 	init_waitqueue_head(&pgdat->kswapd_wait);
3502 	pgdat->kswapd_max_order = 0;
3503 	pgdat_page_cgroup_init(pgdat);
3504 
3505 	for (j = 0; j < MAX_NR_ZONES; j++) {
3506 		struct zone *zone = pgdat->node_zones + j;
3507 		unsigned long size, realsize, memmap_pages;
3508 		enum lru_list l;
3509 
3510 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3511 		realsize = size - zone_absent_pages_in_node(nid, j,
3512 								zholes_size);
3513 
3514 		/*
3515 		 * Adjust realsize so that it accounts for how much memory
3516 		 * is used by this zone for memmap. This affects the watermark
3517 		 * and per-cpu initialisations
3518 		 */
3519 		memmap_pages =
3520 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3521 		if (realsize >= memmap_pages) {
3522 			realsize -= memmap_pages;
3523 			if (memmap_pages)
3524 				printk(KERN_DEBUG
3525 				       "  %s zone: %lu pages used for memmap\n",
3526 				       zone_names[j], memmap_pages);
3527 		} else
3528 			printk(KERN_WARNING
3529 				"  %s zone: %lu pages exceeds realsize %lu\n",
3530 				zone_names[j], memmap_pages, realsize);
3531 
3532 		/* Account for reserved pages */
3533 		if (j == 0 && realsize > dma_reserve) {
3534 			realsize -= dma_reserve;
3535 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3536 					zone_names[0], dma_reserve);
3537 		}
3538 
3539 		if (!is_highmem_idx(j))
3540 			nr_kernel_pages += realsize;
3541 		nr_all_pages += realsize;
3542 
3543 		zone->spanned_pages = size;
3544 		zone->present_pages = realsize;
3545 #ifdef CONFIG_NUMA
3546 		zone->node = nid;
3547 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3548 						/ 100;
3549 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3550 #endif
3551 		zone->name = zone_names[j];
3552 		spin_lock_init(&zone->lock);
3553 		spin_lock_init(&zone->lru_lock);
3554 		zone_seqlock_init(zone);
3555 		zone->zone_pgdat = pgdat;
3556 
3557 		zone->prev_priority = DEF_PRIORITY;
3558 
3559 		zone_pcp_init(zone);
3560 		for_each_lru(l) {
3561 			INIT_LIST_HEAD(&zone->lru[l].list);
3562 			zone->lru[l].nr_scan = 0;
3563 		}
3564 		zone->reclaim_stat.recent_rotated[0] = 0;
3565 		zone->reclaim_stat.recent_rotated[1] = 0;
3566 		zone->reclaim_stat.recent_scanned[0] = 0;
3567 		zone->reclaim_stat.recent_scanned[1] = 0;
3568 		zap_zone_vm_stats(zone);
3569 		zone->flags = 0;
3570 		if (!size)
3571 			continue;
3572 
3573 		set_pageblock_order(pageblock_default_order());
3574 		setup_usemap(pgdat, zone, size);
3575 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3576 						size, MEMMAP_EARLY);
3577 		BUG_ON(ret);
3578 		memmap_init(size, nid, j, zone_start_pfn);
3579 		zone_start_pfn += size;
3580 	}
3581 }
3582 
alloc_node_mem_map(struct pglist_data * pgdat)3583 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3584 {
3585 	/* Skip empty nodes */
3586 	if (!pgdat->node_spanned_pages)
3587 		return;
3588 
3589 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3590 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3591 	if (!pgdat->node_mem_map) {
3592 		unsigned long size, start, end;
3593 		struct page *map;
3594 
3595 		/*
3596 		 * The zone's endpoints aren't required to be MAX_ORDER
3597 		 * aligned but the node_mem_map endpoints must be in order
3598 		 * for the buddy allocator to function correctly.
3599 		 */
3600 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3601 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3602 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3603 		size =  (end - start) * sizeof(struct page);
3604 		map = alloc_remap(pgdat->node_id, size);
3605 		if (!map)
3606 			map = alloc_bootmem_node(pgdat, size);
3607 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3608 	}
3609 #ifndef CONFIG_NEED_MULTIPLE_NODES
3610 	/*
3611 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3612 	 */
3613 	if (pgdat == NODE_DATA(0)) {
3614 		mem_map = NODE_DATA(0)->node_mem_map;
3615 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3616 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3617 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3618 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3619 	}
3620 #endif
3621 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3622 }
3623 
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)3624 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3625 		unsigned long node_start_pfn, unsigned long *zholes_size)
3626 {
3627 	pg_data_t *pgdat = NODE_DATA(nid);
3628 
3629 	pgdat->node_id = nid;
3630 	pgdat->node_start_pfn = node_start_pfn;
3631 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3632 
3633 	alloc_node_mem_map(pgdat);
3634 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3635 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3636 		nid, (unsigned long)pgdat,
3637 		(unsigned long)pgdat->node_mem_map);
3638 #endif
3639 
3640 	free_area_init_core(pgdat, zones_size, zholes_size);
3641 }
3642 
3643 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3644 
3645 #if MAX_NUMNODES > 1
3646 /*
3647  * Figure out the number of possible node ids.
3648  */
setup_nr_node_ids(void)3649 static void __init setup_nr_node_ids(void)
3650 {
3651 	unsigned int node;
3652 	unsigned int highest = 0;
3653 
3654 	for_each_node_mask(node, node_possible_map)
3655 		highest = node;
3656 	nr_node_ids = highest + 1;
3657 }
3658 #else
setup_nr_node_ids(void)3659 static inline void setup_nr_node_ids(void)
3660 {
3661 }
3662 #endif
3663 
3664 /**
3665  * add_active_range - Register a range of PFNs backed by physical memory
3666  * @nid: The node ID the range resides on
3667  * @start_pfn: The start PFN of the available physical memory
3668  * @end_pfn: The end PFN of the available physical memory
3669  *
3670  * These ranges are stored in an early_node_map[] and later used by
3671  * free_area_init_nodes() to calculate zone sizes and holes. If the
3672  * range spans a memory hole, it is up to the architecture to ensure
3673  * the memory is not freed by the bootmem allocator. If possible
3674  * the range being registered will be merged with existing ranges.
3675  */
add_active_range(unsigned int nid,unsigned long start_pfn,unsigned long end_pfn)3676 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3677 						unsigned long end_pfn)
3678 {
3679 	int i;
3680 
3681 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3682 			"Entering add_active_range(%d, %#lx, %#lx) "
3683 			"%d entries of %d used\n",
3684 			nid, start_pfn, end_pfn,
3685 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3686 
3687 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3688 
3689 	/* Merge with existing active regions if possible */
3690 	for (i = 0; i < nr_nodemap_entries; i++) {
3691 		if (early_node_map[i].nid != nid)
3692 			continue;
3693 
3694 		/* Skip if an existing region covers this new one */
3695 		if (start_pfn >= early_node_map[i].start_pfn &&
3696 				end_pfn <= early_node_map[i].end_pfn)
3697 			return;
3698 
3699 		/* Merge forward if suitable */
3700 		if (start_pfn <= early_node_map[i].end_pfn &&
3701 				end_pfn > early_node_map[i].end_pfn) {
3702 			early_node_map[i].end_pfn = end_pfn;
3703 			return;
3704 		}
3705 
3706 		/* Merge backward if suitable */
3707 		if (start_pfn < early_node_map[i].end_pfn &&
3708 				end_pfn >= early_node_map[i].start_pfn) {
3709 			early_node_map[i].start_pfn = start_pfn;
3710 			return;
3711 		}
3712 	}
3713 
3714 	/* Check that early_node_map is large enough */
3715 	if (i >= MAX_ACTIVE_REGIONS) {
3716 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3717 							MAX_ACTIVE_REGIONS);
3718 		return;
3719 	}
3720 
3721 	early_node_map[i].nid = nid;
3722 	early_node_map[i].start_pfn = start_pfn;
3723 	early_node_map[i].end_pfn = end_pfn;
3724 	nr_nodemap_entries = i + 1;
3725 }
3726 
3727 /**
3728  * remove_active_range - Shrink an existing registered range of PFNs
3729  * @nid: The node id the range is on that should be shrunk
3730  * @start_pfn: The new PFN of the range
3731  * @end_pfn: The new PFN of the range
3732  *
3733  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3734  * The map is kept near the end physical page range that has already been
3735  * registered. This function allows an arch to shrink an existing registered
3736  * range.
3737  */
remove_active_range(unsigned int nid,unsigned long start_pfn,unsigned long end_pfn)3738 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3739 				unsigned long end_pfn)
3740 {
3741 	int i, j;
3742 	int removed = 0;
3743 
3744 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3745 			  nid, start_pfn, end_pfn);
3746 
3747 	/* Find the old active region end and shrink */
3748 	for_each_active_range_index_in_nid(i, nid) {
3749 		if (early_node_map[i].start_pfn >= start_pfn &&
3750 		    early_node_map[i].end_pfn <= end_pfn) {
3751 			/* clear it */
3752 			early_node_map[i].start_pfn = 0;
3753 			early_node_map[i].end_pfn = 0;
3754 			removed = 1;
3755 			continue;
3756 		}
3757 		if (early_node_map[i].start_pfn < start_pfn &&
3758 		    early_node_map[i].end_pfn > start_pfn) {
3759 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3760 			early_node_map[i].end_pfn = start_pfn;
3761 			if (temp_end_pfn > end_pfn)
3762 				add_active_range(nid, end_pfn, temp_end_pfn);
3763 			continue;
3764 		}
3765 		if (early_node_map[i].start_pfn >= start_pfn &&
3766 		    early_node_map[i].end_pfn > end_pfn &&
3767 		    early_node_map[i].start_pfn < end_pfn) {
3768 			early_node_map[i].start_pfn = end_pfn;
3769 			continue;
3770 		}
3771 	}
3772 
3773 	if (!removed)
3774 		return;
3775 
3776 	/* remove the blank ones */
3777 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3778 		if (early_node_map[i].nid != nid)
3779 			continue;
3780 		if (early_node_map[i].end_pfn)
3781 			continue;
3782 		/* we found it, get rid of it */
3783 		for (j = i; j < nr_nodemap_entries - 1; j++)
3784 			memcpy(&early_node_map[j], &early_node_map[j+1],
3785 				sizeof(early_node_map[j]));
3786 		j = nr_nodemap_entries - 1;
3787 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3788 		nr_nodemap_entries--;
3789 	}
3790 }
3791 
3792 /**
3793  * remove_all_active_ranges - Remove all currently registered regions
3794  *
3795  * During discovery, it may be found that a table like SRAT is invalid
3796  * and an alternative discovery method must be used. This function removes
3797  * all currently registered regions.
3798  */
remove_all_active_ranges(void)3799 void __init remove_all_active_ranges(void)
3800 {
3801 	memset(early_node_map, 0, sizeof(early_node_map));
3802 	nr_nodemap_entries = 0;
3803 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3804 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3805 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3806 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3807 }
3808 
3809 /* Compare two active node_active_regions */
cmp_node_active_region(const void * a,const void * b)3810 static int __init cmp_node_active_region(const void *a, const void *b)
3811 {
3812 	struct node_active_region *arange = (struct node_active_region *)a;
3813 	struct node_active_region *brange = (struct node_active_region *)b;
3814 
3815 	/* Done this way to avoid overflows */
3816 	if (arange->start_pfn > brange->start_pfn)
3817 		return 1;
3818 	if (arange->start_pfn < brange->start_pfn)
3819 		return -1;
3820 
3821 	return 0;
3822 }
3823 
3824 /* sort the node_map by start_pfn */
sort_node_map(void)3825 static void __init sort_node_map(void)
3826 {
3827 	sort(early_node_map, (size_t)nr_nodemap_entries,
3828 			sizeof(struct node_active_region),
3829 			cmp_node_active_region, NULL);
3830 }
3831 
3832 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)3833 static unsigned long __init find_min_pfn_for_node(int nid)
3834 {
3835 	int i;
3836 	unsigned long min_pfn = ULONG_MAX;
3837 
3838 	/* Assuming a sorted map, the first range found has the starting pfn */
3839 	for_each_active_range_index_in_nid(i, nid)
3840 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3841 
3842 	if (min_pfn == ULONG_MAX) {
3843 		printk(KERN_WARNING
3844 			"Could not find start_pfn for node %d\n", nid);
3845 		return 0;
3846 	}
3847 
3848 	return min_pfn;
3849 }
3850 
3851 /**
3852  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3853  *
3854  * It returns the minimum PFN based on information provided via
3855  * add_active_range().
3856  */
find_min_pfn_with_active_regions(void)3857 unsigned long __init find_min_pfn_with_active_regions(void)
3858 {
3859 	return find_min_pfn_for_node(MAX_NUMNODES);
3860 }
3861 
3862 /*
3863  * early_calculate_totalpages()
3864  * Sum pages in active regions for movable zone.
3865  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3866  */
early_calculate_totalpages(void)3867 static unsigned long __init early_calculate_totalpages(void)
3868 {
3869 	int i;
3870 	unsigned long totalpages = 0;
3871 
3872 	for (i = 0; i < nr_nodemap_entries; i++) {
3873 		unsigned long pages = early_node_map[i].end_pfn -
3874 						early_node_map[i].start_pfn;
3875 		totalpages += pages;
3876 		if (pages)
3877 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3878 	}
3879   	return totalpages;
3880 }
3881 
3882 /*
3883  * Find the PFN the Movable zone begins in each node. Kernel memory
3884  * is spread evenly between nodes as long as the nodes have enough
3885  * memory. When they don't, some nodes will have more kernelcore than
3886  * others
3887  */
find_zone_movable_pfns_for_nodes(unsigned long * movable_pfn)3888 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3889 {
3890 	int i, nid;
3891 	unsigned long usable_startpfn;
3892 	unsigned long kernelcore_node, kernelcore_remaining;
3893 	unsigned long totalpages = early_calculate_totalpages();
3894 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3895 
3896 	/*
3897 	 * If movablecore was specified, calculate what size of
3898 	 * kernelcore that corresponds so that memory usable for
3899 	 * any allocation type is evenly spread. If both kernelcore
3900 	 * and movablecore are specified, then the value of kernelcore
3901 	 * will be used for required_kernelcore if it's greater than
3902 	 * what movablecore would have allowed.
3903 	 */
3904 	if (required_movablecore) {
3905 		unsigned long corepages;
3906 
3907 		/*
3908 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3909 		 * was requested by the user
3910 		 */
3911 		required_movablecore =
3912 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3913 		corepages = totalpages - required_movablecore;
3914 
3915 		required_kernelcore = max(required_kernelcore, corepages);
3916 	}
3917 
3918 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3919 	if (!required_kernelcore)
3920 		return;
3921 
3922 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3923 	find_usable_zone_for_movable();
3924 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3925 
3926 restart:
3927 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3928 	kernelcore_node = required_kernelcore / usable_nodes;
3929 	for_each_node_state(nid, N_HIGH_MEMORY) {
3930 		/*
3931 		 * Recalculate kernelcore_node if the division per node
3932 		 * now exceeds what is necessary to satisfy the requested
3933 		 * amount of memory for the kernel
3934 		 */
3935 		if (required_kernelcore < kernelcore_node)
3936 			kernelcore_node = required_kernelcore / usable_nodes;
3937 
3938 		/*
3939 		 * As the map is walked, we track how much memory is usable
3940 		 * by the kernel using kernelcore_remaining. When it is
3941 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3942 		 */
3943 		kernelcore_remaining = kernelcore_node;
3944 
3945 		/* Go through each range of PFNs within this node */
3946 		for_each_active_range_index_in_nid(i, nid) {
3947 			unsigned long start_pfn, end_pfn;
3948 			unsigned long size_pages;
3949 
3950 			start_pfn = max(early_node_map[i].start_pfn,
3951 						zone_movable_pfn[nid]);
3952 			end_pfn = early_node_map[i].end_pfn;
3953 			if (start_pfn >= end_pfn)
3954 				continue;
3955 
3956 			/* Account for what is only usable for kernelcore */
3957 			if (start_pfn < usable_startpfn) {
3958 				unsigned long kernel_pages;
3959 				kernel_pages = min(end_pfn, usable_startpfn)
3960 								- start_pfn;
3961 
3962 				kernelcore_remaining -= min(kernel_pages,
3963 							kernelcore_remaining);
3964 				required_kernelcore -= min(kernel_pages,
3965 							required_kernelcore);
3966 
3967 				/* Continue if range is now fully accounted */
3968 				if (end_pfn <= usable_startpfn) {
3969 
3970 					/*
3971 					 * Push zone_movable_pfn to the end so
3972 					 * that if we have to rebalance
3973 					 * kernelcore across nodes, we will
3974 					 * not double account here
3975 					 */
3976 					zone_movable_pfn[nid] = end_pfn;
3977 					continue;
3978 				}
3979 				start_pfn = usable_startpfn;
3980 			}
3981 
3982 			/*
3983 			 * The usable PFN range for ZONE_MOVABLE is from
3984 			 * start_pfn->end_pfn. Calculate size_pages as the
3985 			 * number of pages used as kernelcore
3986 			 */
3987 			size_pages = end_pfn - start_pfn;
3988 			if (size_pages > kernelcore_remaining)
3989 				size_pages = kernelcore_remaining;
3990 			zone_movable_pfn[nid] = start_pfn + size_pages;
3991 
3992 			/*
3993 			 * Some kernelcore has been met, update counts and
3994 			 * break if the kernelcore for this node has been
3995 			 * satisified
3996 			 */
3997 			required_kernelcore -= min(required_kernelcore,
3998 								size_pages);
3999 			kernelcore_remaining -= size_pages;
4000 			if (!kernelcore_remaining)
4001 				break;
4002 		}
4003 	}
4004 
4005 	/*
4006 	 * If there is still required_kernelcore, we do another pass with one
4007 	 * less node in the count. This will push zone_movable_pfn[nid] further
4008 	 * along on the nodes that still have memory until kernelcore is
4009 	 * satisified
4010 	 */
4011 	usable_nodes--;
4012 	if (usable_nodes && required_kernelcore > usable_nodes)
4013 		goto restart;
4014 
4015 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4016 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4017 		zone_movable_pfn[nid] =
4018 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4019 }
4020 
4021 /* Any regular memory on that node ? */
check_for_regular_memory(pg_data_t * pgdat)4022 static void check_for_regular_memory(pg_data_t *pgdat)
4023 {
4024 #ifdef CONFIG_HIGHMEM
4025 	enum zone_type zone_type;
4026 
4027 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4028 		struct zone *zone = &pgdat->node_zones[zone_type];
4029 		if (zone->present_pages)
4030 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4031 	}
4032 #endif
4033 }
4034 
4035 /**
4036  * free_area_init_nodes - Initialise all pg_data_t and zone data
4037  * @max_zone_pfn: an array of max PFNs for each zone
4038  *
4039  * This will call free_area_init_node() for each active node in the system.
4040  * Using the page ranges provided by add_active_range(), the size of each
4041  * zone in each node and their holes is calculated. If the maximum PFN
4042  * between two adjacent zones match, it is assumed that the zone is empty.
4043  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4044  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4045  * starts where the previous one ended. For example, ZONE_DMA32 starts
4046  * at arch_max_dma_pfn.
4047  */
free_area_init_nodes(unsigned long * max_zone_pfn)4048 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4049 {
4050 	unsigned long nid;
4051 	int i;
4052 
4053 	/* Sort early_node_map as initialisation assumes it is sorted */
4054 	sort_node_map();
4055 
4056 	/* Record where the zone boundaries are */
4057 	memset(arch_zone_lowest_possible_pfn, 0,
4058 				sizeof(arch_zone_lowest_possible_pfn));
4059 	memset(arch_zone_highest_possible_pfn, 0,
4060 				sizeof(arch_zone_highest_possible_pfn));
4061 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4062 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4063 	for (i = 1; i < MAX_NR_ZONES; i++) {
4064 		if (i == ZONE_MOVABLE)
4065 			continue;
4066 		arch_zone_lowest_possible_pfn[i] =
4067 			arch_zone_highest_possible_pfn[i-1];
4068 		arch_zone_highest_possible_pfn[i] =
4069 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4070 	}
4071 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4072 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4073 
4074 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4075 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4076 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4077 
4078 	/* Print out the zone ranges */
4079 	printk("Zone PFN ranges:\n");
4080 	for (i = 0; i < MAX_NR_ZONES; i++) {
4081 		if (i == ZONE_MOVABLE)
4082 			continue;
4083 		printk("  %-8s %0#10lx -> %0#10lx\n",
4084 				zone_names[i],
4085 				arch_zone_lowest_possible_pfn[i],
4086 				arch_zone_highest_possible_pfn[i]);
4087 	}
4088 
4089 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4090 	printk("Movable zone start PFN for each node\n");
4091 	for (i = 0; i < MAX_NUMNODES; i++) {
4092 		if (zone_movable_pfn[i])
4093 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4094 	}
4095 
4096 	/* Print out the early_node_map[] */
4097 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4098 	for (i = 0; i < nr_nodemap_entries; i++)
4099 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4100 						early_node_map[i].start_pfn,
4101 						early_node_map[i].end_pfn);
4102 
4103 	/* Initialise every node */
4104 	mminit_verify_pageflags_layout();
4105 	setup_nr_node_ids();
4106 	for_each_online_node(nid) {
4107 		pg_data_t *pgdat = NODE_DATA(nid);
4108 		free_area_init_node(nid, NULL,
4109 				find_min_pfn_for_node(nid), NULL);
4110 
4111 		/* Any memory on that node */
4112 		if (pgdat->node_present_pages)
4113 			node_set_state(nid, N_HIGH_MEMORY);
4114 		check_for_regular_memory(pgdat);
4115 	}
4116 }
4117 
cmdline_parse_core(char * p,unsigned long * core)4118 static int __init cmdline_parse_core(char *p, unsigned long *core)
4119 {
4120 	unsigned long long coremem;
4121 	if (!p)
4122 		return -EINVAL;
4123 
4124 	coremem = memparse(p, &p);
4125 	*core = coremem >> PAGE_SHIFT;
4126 
4127 	/* Paranoid check that UL is enough for the coremem value */
4128 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4129 
4130 	return 0;
4131 }
4132 
4133 /*
4134  * kernelcore=size sets the amount of memory for use for allocations that
4135  * cannot be reclaimed or migrated.
4136  */
cmdline_parse_kernelcore(char * p)4137 static int __init cmdline_parse_kernelcore(char *p)
4138 {
4139 	return cmdline_parse_core(p, &required_kernelcore);
4140 }
4141 
4142 /*
4143  * movablecore=size sets the amount of memory for use for allocations that
4144  * can be reclaimed or migrated.
4145  */
cmdline_parse_movablecore(char * p)4146 static int __init cmdline_parse_movablecore(char *p)
4147 {
4148 	return cmdline_parse_core(p, &required_movablecore);
4149 }
4150 
4151 early_param("kernelcore", cmdline_parse_kernelcore);
4152 early_param("movablecore", cmdline_parse_movablecore);
4153 
4154 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4155 
4156 /**
4157  * set_dma_reserve - set the specified number of pages reserved in the first zone
4158  * @new_dma_reserve: The number of pages to mark reserved
4159  *
4160  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4161  * In the DMA zone, a significant percentage may be consumed by kernel image
4162  * and other unfreeable allocations which can skew the watermarks badly. This
4163  * function may optionally be used to account for unfreeable pages in the
4164  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4165  * smaller per-cpu batchsize.
4166  */
set_dma_reserve(unsigned long new_dma_reserve)4167 void __init set_dma_reserve(unsigned long new_dma_reserve)
4168 {
4169 	dma_reserve = new_dma_reserve;
4170 }
4171 
4172 #ifndef CONFIG_NEED_MULTIPLE_NODES
4173 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4174 EXPORT_SYMBOL(contig_page_data);
4175 #endif
4176 
free_area_init(unsigned long * zones_size)4177 void __init free_area_init(unsigned long *zones_size)
4178 {
4179 	free_area_init_node(0, zones_size,
4180 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4181 }
4182 
page_alloc_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)4183 static int page_alloc_cpu_notify(struct notifier_block *self,
4184 				 unsigned long action, void *hcpu)
4185 {
4186 	int cpu = (unsigned long)hcpu;
4187 
4188 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4189 		drain_pages(cpu);
4190 
4191 		/*
4192 		 * Spill the event counters of the dead processor
4193 		 * into the current processors event counters.
4194 		 * This artificially elevates the count of the current
4195 		 * processor.
4196 		 */
4197 		vm_events_fold_cpu(cpu);
4198 
4199 		/*
4200 		 * Zero the differential counters of the dead processor
4201 		 * so that the vm statistics are consistent.
4202 		 *
4203 		 * This is only okay since the processor is dead and cannot
4204 		 * race with what we are doing.
4205 		 */
4206 		refresh_cpu_vm_stats(cpu);
4207 	}
4208 	return NOTIFY_OK;
4209 }
4210 
page_alloc_init(void)4211 void __init page_alloc_init(void)
4212 {
4213 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4214 }
4215 
4216 /*
4217  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4218  *	or min_free_kbytes changes.
4219  */
calculate_totalreserve_pages(void)4220 static void calculate_totalreserve_pages(void)
4221 {
4222 	struct pglist_data *pgdat;
4223 	unsigned long reserve_pages = 0;
4224 	enum zone_type i, j;
4225 
4226 	for_each_online_pgdat(pgdat) {
4227 		for (i = 0; i < MAX_NR_ZONES; i++) {
4228 			struct zone *zone = pgdat->node_zones + i;
4229 			unsigned long max = 0;
4230 
4231 			/* Find valid and maximum lowmem_reserve in the zone */
4232 			for (j = i; j < MAX_NR_ZONES; j++) {
4233 				if (zone->lowmem_reserve[j] > max)
4234 					max = zone->lowmem_reserve[j];
4235 			}
4236 
4237 			/* we treat pages_high as reserved pages. */
4238 			max += zone->pages_high;
4239 
4240 			if (max > zone->present_pages)
4241 				max = zone->present_pages;
4242 			reserve_pages += max;
4243 		}
4244 	}
4245 	totalreserve_pages = reserve_pages;
4246 }
4247 
4248 /*
4249  * setup_per_zone_lowmem_reserve - called whenever
4250  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4251  *	has a correct pages reserved value, so an adequate number of
4252  *	pages are left in the zone after a successful __alloc_pages().
4253  */
setup_per_zone_lowmem_reserve(void)4254 static void setup_per_zone_lowmem_reserve(void)
4255 {
4256 	struct pglist_data *pgdat;
4257 	enum zone_type j, idx;
4258 
4259 	for_each_online_pgdat(pgdat) {
4260 		for (j = 0; j < MAX_NR_ZONES; j++) {
4261 			struct zone *zone = pgdat->node_zones + j;
4262 			unsigned long present_pages = zone->present_pages;
4263 
4264 			zone->lowmem_reserve[j] = 0;
4265 
4266 			idx = j;
4267 			while (idx) {
4268 				struct zone *lower_zone;
4269 
4270 				idx--;
4271 
4272 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4273 					sysctl_lowmem_reserve_ratio[idx] = 1;
4274 
4275 				lower_zone = pgdat->node_zones + idx;
4276 				lower_zone->lowmem_reserve[j] = present_pages /
4277 					sysctl_lowmem_reserve_ratio[idx];
4278 				present_pages += lower_zone->present_pages;
4279 			}
4280 		}
4281 	}
4282 
4283 	/* update totalreserve_pages */
4284 	calculate_totalreserve_pages();
4285 }
4286 
4287 /**
4288  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4289  *
4290  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4291  * with respect to min_free_kbytes.
4292  */
setup_per_zone_pages_min(void)4293 void setup_per_zone_pages_min(void)
4294 {
4295 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4296 	unsigned long lowmem_pages = 0;
4297 	struct zone *zone;
4298 	unsigned long flags;
4299 
4300 	/* Calculate total number of !ZONE_HIGHMEM pages */
4301 	for_each_zone(zone) {
4302 		if (!is_highmem(zone))
4303 			lowmem_pages += zone->present_pages;
4304 	}
4305 
4306 	for_each_zone(zone) {
4307 		u64 tmp;
4308 
4309 		spin_lock_irqsave(&zone->lock, flags);
4310 		tmp = (u64)pages_min * zone->present_pages;
4311 		do_div(tmp, lowmem_pages);
4312 		if (is_highmem(zone)) {
4313 			/*
4314 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4315 			 * need highmem pages, so cap pages_min to a small
4316 			 * value here.
4317 			 *
4318 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4319 			 * deltas controls asynch page reclaim, and so should
4320 			 * not be capped for highmem.
4321 			 */
4322 			int min_pages;
4323 
4324 			min_pages = zone->present_pages / 1024;
4325 			if (min_pages < SWAP_CLUSTER_MAX)
4326 				min_pages = SWAP_CLUSTER_MAX;
4327 			if (min_pages > 128)
4328 				min_pages = 128;
4329 			zone->pages_min = min_pages;
4330 		} else {
4331 			/*
4332 			 * If it's a lowmem zone, reserve a number of pages
4333 			 * proportionate to the zone's size.
4334 			 */
4335 			zone->pages_min = tmp;
4336 		}
4337 
4338 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4339 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4340 		setup_zone_migrate_reserve(zone);
4341 		spin_unlock_irqrestore(&zone->lock, flags);
4342 	}
4343 
4344 	/* update totalreserve_pages */
4345 	calculate_totalreserve_pages();
4346 }
4347 
4348 /**
4349  * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4350  *
4351  * The inactive anon list should be small enough that the VM never has to
4352  * do too much work, but large enough that each inactive page has a chance
4353  * to be referenced again before it is swapped out.
4354  *
4355  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4356  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4357  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4358  * the anonymous pages are kept on the inactive list.
4359  *
4360  * total     target    max
4361  * memory    ratio     inactive anon
4362  * -------------------------------------
4363  *   10MB       1         5MB
4364  *  100MB       1        50MB
4365  *    1GB       3       250MB
4366  *   10GB      10       0.9GB
4367  *  100GB      31         3GB
4368  *    1TB     101        10GB
4369  *   10TB     320        32GB
4370  */
setup_per_zone_inactive_ratio(void)4371 static void setup_per_zone_inactive_ratio(void)
4372 {
4373 	struct zone *zone;
4374 
4375 	for_each_zone(zone) {
4376 		unsigned int gb, ratio;
4377 
4378 		/* Zone size in gigabytes */
4379 		gb = zone->present_pages >> (30 - PAGE_SHIFT);
4380 		ratio = int_sqrt(10 * gb);
4381 		if (!ratio)
4382 			ratio = 1;
4383 
4384 		zone->inactive_ratio = ratio;
4385 	}
4386 }
4387 
4388 /*
4389  * Initialise min_free_kbytes.
4390  *
4391  * For small machines we want it small (128k min).  For large machines
4392  * we want it large (64MB max).  But it is not linear, because network
4393  * bandwidth does not increase linearly with machine size.  We use
4394  *
4395  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4396  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4397  *
4398  * which yields
4399  *
4400  * 16MB:	512k
4401  * 32MB:	724k
4402  * 64MB:	1024k
4403  * 128MB:	1448k
4404  * 256MB:	2048k
4405  * 512MB:	2896k
4406  * 1024MB:	4096k
4407  * 2048MB:	5792k
4408  * 4096MB:	8192k
4409  * 8192MB:	11584k
4410  * 16384MB:	16384k
4411  */
init_per_zone_pages_min(void)4412 static int __init init_per_zone_pages_min(void)
4413 {
4414 	unsigned long lowmem_kbytes;
4415 
4416 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4417 
4418 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4419 	if (min_free_kbytes < 128)
4420 		min_free_kbytes = 128;
4421 	if (min_free_kbytes > 65536)
4422 		min_free_kbytes = 65536;
4423 	setup_per_zone_pages_min();
4424 	setup_per_zone_lowmem_reserve();
4425 	setup_per_zone_inactive_ratio();
4426 	return 0;
4427 }
module_init(init_per_zone_pages_min)4428 module_init(init_per_zone_pages_min)
4429 
4430 /*
4431  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4432  *	that we can call two helper functions whenever min_free_kbytes
4433  *	changes.
4434  */
4435 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4436 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4437 {
4438 	proc_dointvec(table, write, file, buffer, length, ppos);
4439 	if (write)
4440 		setup_per_zone_pages_min();
4441 	return 0;
4442 }
4443 
4444 #ifdef CONFIG_NUMA
sysctl_min_unmapped_ratio_sysctl_handler(ctl_table * table,int write,struct file * file,void __user * buffer,size_t * length,loff_t * ppos)4445 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4446 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4447 {
4448 	struct zone *zone;
4449 	int rc;
4450 
4451 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4452 	if (rc)
4453 		return rc;
4454 
4455 	for_each_zone(zone)
4456 		zone->min_unmapped_pages = (zone->present_pages *
4457 				sysctl_min_unmapped_ratio) / 100;
4458 	return 0;
4459 }
4460 
sysctl_min_slab_ratio_sysctl_handler(ctl_table * table,int write,struct file * file,void __user * buffer,size_t * length,loff_t * ppos)4461 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4462 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4463 {
4464 	struct zone *zone;
4465 	int rc;
4466 
4467 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4468 	if (rc)
4469 		return rc;
4470 
4471 	for_each_zone(zone)
4472 		zone->min_slab_pages = (zone->present_pages *
4473 				sysctl_min_slab_ratio) / 100;
4474 	return 0;
4475 }
4476 #endif
4477 
4478 /*
4479  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4480  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4481  *	whenever sysctl_lowmem_reserve_ratio changes.
4482  *
4483  * The reserve ratio obviously has absolutely no relation with the
4484  * pages_min watermarks. The lowmem reserve ratio can only make sense
4485  * if in function of the boot time zone sizes.
4486  */
lowmem_reserve_ratio_sysctl_handler(ctl_table * table,int write,struct file * file,void __user * buffer,size_t * length,loff_t * ppos)4487 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4488 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4489 {
4490 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4491 	setup_per_zone_lowmem_reserve();
4492 	return 0;
4493 }
4494 
4495 /*
4496  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4497  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4498  * can have before it gets flushed back to buddy allocator.
4499  */
4500 
percpu_pagelist_fraction_sysctl_handler(ctl_table * table,int write,struct file * file,void __user * buffer,size_t * length,loff_t * ppos)4501 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4502 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4503 {
4504 	struct zone *zone;
4505 	unsigned int cpu;
4506 	int ret;
4507 
4508 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4509 	if (!write || (ret == -EINVAL))
4510 		return ret;
4511 	for_each_zone(zone) {
4512 		for_each_online_cpu(cpu) {
4513 			unsigned long  high;
4514 			high = zone->present_pages / percpu_pagelist_fraction;
4515 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4516 		}
4517 	}
4518 	return 0;
4519 }
4520 
4521 int hashdist = HASHDIST_DEFAULT;
4522 
4523 #ifdef CONFIG_NUMA
set_hashdist(char * str)4524 static int __init set_hashdist(char *str)
4525 {
4526 	if (!str)
4527 		return 0;
4528 	hashdist = simple_strtoul(str, &str, 0);
4529 	return 1;
4530 }
4531 __setup("hashdist=", set_hashdist);
4532 #endif
4533 
4534 /*
4535  * allocate a large system hash table from bootmem
4536  * - it is assumed that the hash table must contain an exact power-of-2
4537  *   quantity of entries
4538  * - limit is the number of hash buckets, not the total allocation size
4539  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long limit)4540 void *__init alloc_large_system_hash(const char *tablename,
4541 				     unsigned long bucketsize,
4542 				     unsigned long numentries,
4543 				     int scale,
4544 				     int flags,
4545 				     unsigned int *_hash_shift,
4546 				     unsigned int *_hash_mask,
4547 				     unsigned long limit)
4548 {
4549 	unsigned long long max = limit;
4550 	unsigned long log2qty, size;
4551 	void *table = NULL;
4552 
4553 	/* allow the kernel cmdline to have a say */
4554 	if (!numentries) {
4555 		/* round applicable memory size up to nearest megabyte */
4556 		numentries = nr_kernel_pages;
4557 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4558 		numentries >>= 20 - PAGE_SHIFT;
4559 		numentries <<= 20 - PAGE_SHIFT;
4560 
4561 		/* limit to 1 bucket per 2^scale bytes of low memory */
4562 		if (scale > PAGE_SHIFT)
4563 			numentries >>= (scale - PAGE_SHIFT);
4564 		else
4565 			numentries <<= (PAGE_SHIFT - scale);
4566 
4567 		/* Make sure we've got at least a 0-order allocation.. */
4568 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4569 			numentries = PAGE_SIZE / bucketsize;
4570 	}
4571 	numentries = roundup_pow_of_two(numentries);
4572 
4573 	/* limit allocation size to 1/16 total memory by default */
4574 	if (max == 0) {
4575 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4576 		do_div(max, bucketsize);
4577 	}
4578 
4579 	if (numentries > max)
4580 		numentries = max;
4581 
4582 	log2qty = ilog2(numentries);
4583 
4584 	do {
4585 		size = bucketsize << log2qty;
4586 		if (flags & HASH_EARLY)
4587 			table = alloc_bootmem_nopanic(size);
4588 		else if (hashdist)
4589 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4590 		else {
4591 			unsigned long order = get_order(size);
4592 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4593 			/*
4594 			 * If bucketsize is not a power-of-two, we may free
4595 			 * some pages at the end of hash table.
4596 			 */
4597 			if (table) {
4598 				unsigned long alloc_end = (unsigned long)table +
4599 						(PAGE_SIZE << order);
4600 				unsigned long used = (unsigned long)table +
4601 						PAGE_ALIGN(size);
4602 				split_page(virt_to_page(table), order);
4603 				while (used < alloc_end) {
4604 					free_page(used);
4605 					used += PAGE_SIZE;
4606 				}
4607 			}
4608 		}
4609 	} while (!table && size > PAGE_SIZE && --log2qty);
4610 
4611 	if (!table)
4612 		panic("Failed to allocate %s hash table\n", tablename);
4613 
4614 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4615 	       tablename,
4616 	       (1U << log2qty),
4617 	       ilog2(size) - PAGE_SHIFT,
4618 	       size);
4619 
4620 	if (_hash_shift)
4621 		*_hash_shift = log2qty;
4622 	if (_hash_mask)
4623 		*_hash_mask = (1 << log2qty) - 1;
4624 
4625 	return table;
4626 }
4627 
4628 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct zone * zone,unsigned long pfn)4629 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4630 							unsigned long pfn)
4631 {
4632 #ifdef CONFIG_SPARSEMEM
4633 	return __pfn_to_section(pfn)->pageblock_flags;
4634 #else
4635 	return zone->pageblock_flags;
4636 #endif /* CONFIG_SPARSEMEM */
4637 }
4638 
pfn_to_bitidx(struct zone * zone,unsigned long pfn)4639 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4640 {
4641 #ifdef CONFIG_SPARSEMEM
4642 	pfn &= (PAGES_PER_SECTION-1);
4643 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4644 #else
4645 	pfn = pfn - zone->zone_start_pfn;
4646 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4647 #endif /* CONFIG_SPARSEMEM */
4648 }
4649 
4650 /**
4651  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4652  * @page: The page within the block of interest
4653  * @start_bitidx: The first bit of interest to retrieve
4654  * @end_bitidx: The last bit of interest
4655  * returns pageblock_bits flags
4656  */
get_pageblock_flags_group(struct page * page,int start_bitidx,int end_bitidx)4657 unsigned long get_pageblock_flags_group(struct page *page,
4658 					int start_bitidx, int end_bitidx)
4659 {
4660 	struct zone *zone;
4661 	unsigned long *bitmap;
4662 	unsigned long pfn, bitidx;
4663 	unsigned long flags = 0;
4664 	unsigned long value = 1;
4665 
4666 	zone = page_zone(page);
4667 	pfn = page_to_pfn(page);
4668 	bitmap = get_pageblock_bitmap(zone, pfn);
4669 	bitidx = pfn_to_bitidx(zone, pfn);
4670 
4671 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4672 		if (test_bit(bitidx + start_bitidx, bitmap))
4673 			flags |= value;
4674 
4675 	return flags;
4676 }
4677 
4678 /**
4679  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4680  * @page: The page within the block of interest
4681  * @start_bitidx: The first bit of interest
4682  * @end_bitidx: The last bit of interest
4683  * @flags: The flags to set
4684  */
set_pageblock_flags_group(struct page * page,unsigned long flags,int start_bitidx,int end_bitidx)4685 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4686 					int start_bitidx, int end_bitidx)
4687 {
4688 	struct zone *zone;
4689 	unsigned long *bitmap;
4690 	unsigned long pfn, bitidx;
4691 	unsigned long value = 1;
4692 
4693 	zone = page_zone(page);
4694 	pfn = page_to_pfn(page);
4695 	bitmap = get_pageblock_bitmap(zone, pfn);
4696 	bitidx = pfn_to_bitidx(zone, pfn);
4697 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4698 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4699 
4700 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4701 		if (flags & value)
4702 			__set_bit(bitidx + start_bitidx, bitmap);
4703 		else
4704 			__clear_bit(bitidx + start_bitidx, bitmap);
4705 }
4706 
4707 /*
4708  * This is designed as sub function...plz see page_isolation.c also.
4709  * set/clear page block's type to be ISOLATE.
4710  * page allocater never alloc memory from ISOLATE block.
4711  */
4712 
set_migratetype_isolate(struct page * page)4713 int set_migratetype_isolate(struct page *page)
4714 {
4715 	struct zone *zone;
4716 	unsigned long flags;
4717 	int ret = -EBUSY;
4718 
4719 	zone = page_zone(page);
4720 	spin_lock_irqsave(&zone->lock, flags);
4721 	/*
4722 	 * In future, more migrate types will be able to be isolation target.
4723 	 */
4724 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4725 		goto out;
4726 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4727 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4728 	ret = 0;
4729 out:
4730 	spin_unlock_irqrestore(&zone->lock, flags);
4731 	if (!ret)
4732 		drain_all_pages();
4733 	return ret;
4734 }
4735 
unset_migratetype_isolate(struct page * page)4736 void unset_migratetype_isolate(struct page *page)
4737 {
4738 	struct zone *zone;
4739 	unsigned long flags;
4740 	zone = page_zone(page);
4741 	spin_lock_irqsave(&zone->lock, flags);
4742 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4743 		goto out;
4744 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4745 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4746 out:
4747 	spin_unlock_irqrestore(&zone->lock, flags);
4748 }
4749 
4750 #ifdef CONFIG_MEMORY_HOTREMOVE
4751 /*
4752  * All pages in the range must be isolated before calling this.
4753  */
4754 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)4755 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4756 {
4757 	struct page *page;
4758 	struct zone *zone;
4759 	int order, i;
4760 	unsigned long pfn;
4761 	unsigned long flags;
4762 	/* find the first valid pfn */
4763 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4764 		if (pfn_valid(pfn))
4765 			break;
4766 	if (pfn == end_pfn)
4767 		return;
4768 	zone = page_zone(pfn_to_page(pfn));
4769 	spin_lock_irqsave(&zone->lock, flags);
4770 	pfn = start_pfn;
4771 	while (pfn < end_pfn) {
4772 		if (!pfn_valid(pfn)) {
4773 			pfn++;
4774 			continue;
4775 		}
4776 		page = pfn_to_page(pfn);
4777 		BUG_ON(page_count(page));
4778 		BUG_ON(!PageBuddy(page));
4779 		order = page_order(page);
4780 #ifdef CONFIG_DEBUG_VM
4781 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4782 		       pfn, 1 << order, end_pfn);
4783 #endif
4784 		list_del(&page->lru);
4785 		rmv_page_order(page);
4786 		zone->free_area[order].nr_free--;
4787 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4788 				      - (1UL << order));
4789 		for (i = 0; i < (1 << order); i++)
4790 			SetPageReserved((page+i));
4791 		pfn += (1 << order);
4792 	}
4793 	spin_unlock_irqrestore(&zone->lock, flags);
4794 }
4795 #endif
4796