1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include "internal.h"
37
38 static inline __attribute__((format(printf, 1, 2)))
no_printk(const char * fmt,...)39 void no_printk(const char *fmt, ...)
40 {
41 }
42
43 #if 0
44 #define kenter(FMT, ...) \
45 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46 #define kleave(FMT, ...) \
47 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48 #define kdebug(FMT, ...) \
49 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50 #else
51 #define kenter(FMT, ...) \
52 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53 #define kleave(FMT, ...) \
54 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55 #define kdebug(FMT, ...) \
56 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 #endif
58
59 #include "internal.h"
60
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long num_physpages;
65 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = 1; /* page trimming behaviour */
70 int heap_stack_gap = 0;
71
72 atomic_t mmap_pages_allocated;
73
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81
82 struct vm_operations_struct generic_file_vm_ops = {
83 };
84
85 /*
86 * Handle all mappings that got truncated by a "truncate()"
87 * system call.
88 *
89 * NOTE! We have to be ready to update the memory sharing
90 * between the file and the memory map for a potential last
91 * incomplete page. Ugly, but necessary.
92 */
vmtruncate(struct inode * inode,loff_t offset)93 int vmtruncate(struct inode *inode, loff_t offset)
94 {
95 struct address_space *mapping = inode->i_mapping;
96 unsigned long limit;
97
98 if (inode->i_size < offset)
99 goto do_expand;
100 i_size_write(inode, offset);
101
102 truncate_inode_pages(mapping, offset);
103 goto out_truncate;
104
105 do_expand:
106 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
107 if (limit != RLIM_INFINITY && offset > limit)
108 goto out_sig;
109 if (offset > inode->i_sb->s_maxbytes)
110 goto out;
111 i_size_write(inode, offset);
112
113 out_truncate:
114 if (inode->i_op->truncate)
115 inode->i_op->truncate(inode);
116 return 0;
117 out_sig:
118 send_sig(SIGXFSZ, current, 0);
119 out:
120 return -EFBIG;
121 }
122
123 EXPORT_SYMBOL(vmtruncate);
124
125 /*
126 * Return the total memory allocated for this pointer, not
127 * just what the caller asked for.
128 *
129 * Doesn't have to be accurate, i.e. may have races.
130 */
kobjsize(const void * objp)131 unsigned int kobjsize(const void *objp)
132 {
133 struct page *page;
134
135 /*
136 * If the object we have should not have ksize performed on it,
137 * return size of 0
138 */
139 if (!objp || !virt_addr_valid(objp))
140 return 0;
141
142 page = virt_to_head_page(objp);
143
144 /*
145 * If the allocator sets PageSlab, we know the pointer came from
146 * kmalloc().
147 */
148 if (PageSlab(page))
149 return ksize(objp);
150
151 /*
152 * If it's not a compound page, see if we have a matching VMA
153 * region. This test is intentionally done in reverse order,
154 * so if there's no VMA, we still fall through and hand back
155 * PAGE_SIZE for 0-order pages.
156 */
157 if (!PageCompound(page)) {
158 struct vm_area_struct *vma;
159
160 vma = find_vma(current->mm, (unsigned long)objp);
161 if (vma)
162 return vma->vm_end - vma->vm_start;
163 }
164
165 /*
166 * The ksize() function is only guaranteed to work for pointers
167 * returned by kmalloc(). So handle arbitrary pointers here.
168 */
169 return PAGE_SIZE << compound_order(page);
170 }
171
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int len,int flags,struct page ** pages,struct vm_area_struct ** vmas)172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
173 unsigned long start, int len, int flags,
174 struct page **pages, struct vm_area_struct **vmas)
175 {
176 struct vm_area_struct *vma;
177 unsigned long vm_flags;
178 int i;
179 int write = !!(flags & GUP_FLAGS_WRITE);
180 int force = !!(flags & GUP_FLAGS_FORCE);
181 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
182
183 /* calculate required read or write permissions.
184 * - if 'force' is set, we only require the "MAY" flags.
185 */
186 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
187 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
188
189 for (i = 0; i < len; i++) {
190 vma = find_vma(mm, start);
191 if (!vma)
192 goto finish_or_fault;
193
194 /* protect what we can, including chardevs */
195 if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
196 (!ignore && !(vm_flags & vma->vm_flags)))
197 goto finish_or_fault;
198
199 if (pages) {
200 pages[i] = virt_to_page(start);
201 if (pages[i])
202 page_cache_get(pages[i]);
203 }
204 if (vmas)
205 vmas[i] = vma;
206 start += PAGE_SIZE;
207 }
208
209 return i;
210
211 finish_or_fault:
212 return i ? : -EFAULT;
213 }
214
215
216 /*
217 * get a list of pages in an address range belonging to the specified process
218 * and indicate the VMA that covers each page
219 * - this is potentially dodgy as we may end incrementing the page count of a
220 * slab page or a secondary page from a compound page
221 * - don't permit access to VMAs that don't support it, such as I/O mappings
222 */
get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int len,int write,int force,struct page ** pages,struct vm_area_struct ** vmas)223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
224 unsigned long start, int len, int write, int force,
225 struct page **pages, struct vm_area_struct **vmas)
226 {
227 int flags = 0;
228
229 if (write)
230 flags |= GUP_FLAGS_WRITE;
231 if (force)
232 flags |= GUP_FLAGS_FORCE;
233
234 return __get_user_pages(tsk, mm,
235 start, len, flags,
236 pages, vmas);
237 }
238 EXPORT_SYMBOL(get_user_pages);
239
240 DEFINE_RWLOCK(vmlist_lock);
241 struct vm_struct *vmlist;
242
vfree(const void * addr)243 void vfree(const void *addr)
244 {
245 kfree(addr);
246 }
247 EXPORT_SYMBOL(vfree);
248
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)249 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
250 {
251 /*
252 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
253 * returns only a logical address.
254 */
255 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
256 }
257 EXPORT_SYMBOL(__vmalloc);
258
vmalloc_user(unsigned long size)259 void *vmalloc_user(unsigned long size)
260 {
261 void *ret;
262
263 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
264 PAGE_KERNEL);
265 if (ret) {
266 struct vm_area_struct *vma;
267
268 down_write(¤t->mm->mmap_sem);
269 vma = find_vma(current->mm, (unsigned long)ret);
270 if (vma)
271 vma->vm_flags |= VM_USERMAP;
272 up_write(¤t->mm->mmap_sem);
273 }
274
275 return ret;
276 }
277 EXPORT_SYMBOL(vmalloc_user);
278
vmalloc_to_page(const void * addr)279 struct page *vmalloc_to_page(const void *addr)
280 {
281 return virt_to_page(addr);
282 }
283 EXPORT_SYMBOL(vmalloc_to_page);
284
vmalloc_to_pfn(const void * addr)285 unsigned long vmalloc_to_pfn(const void *addr)
286 {
287 return page_to_pfn(virt_to_page(addr));
288 }
289 EXPORT_SYMBOL(vmalloc_to_pfn);
290
vread(char * buf,char * addr,unsigned long count)291 long vread(char *buf, char *addr, unsigned long count)
292 {
293 memcpy(buf, addr, count);
294 return count;
295 }
296
vwrite(char * buf,char * addr,unsigned long count)297 long vwrite(char *buf, char *addr, unsigned long count)
298 {
299 /* Don't allow overflow */
300 if ((unsigned long) addr + count < count)
301 count = -(unsigned long) addr;
302
303 memcpy(addr, buf, count);
304 return(count);
305 }
306
307 /*
308 * vmalloc - allocate virtually continguos memory
309 *
310 * @size: allocation size
311 *
312 * Allocate enough pages to cover @size from the page level
313 * allocator and map them into continguos kernel virtual space.
314 *
315 * For tight control over page level allocator and protection flags
316 * use __vmalloc() instead.
317 */
vmalloc(unsigned long size)318 void *vmalloc(unsigned long size)
319 {
320 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
321 }
322 EXPORT_SYMBOL(vmalloc);
323
vmalloc_node(unsigned long size,int node)324 void *vmalloc_node(unsigned long size, int node)
325 {
326 return vmalloc(size);
327 }
328 EXPORT_SYMBOL(vmalloc_node);
329
330 #ifndef PAGE_KERNEL_EXEC
331 # define PAGE_KERNEL_EXEC PAGE_KERNEL
332 #endif
333
334 /**
335 * vmalloc_exec - allocate virtually contiguous, executable memory
336 * @size: allocation size
337 *
338 * Kernel-internal function to allocate enough pages to cover @size
339 * the page level allocator and map them into contiguous and
340 * executable kernel virtual space.
341 *
342 * For tight control over page level allocator and protection flags
343 * use __vmalloc() instead.
344 */
345
vmalloc_exec(unsigned long size)346 void *vmalloc_exec(unsigned long size)
347 {
348 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
349 }
350
351 /**
352 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
353 * @size: allocation size
354 *
355 * Allocate enough 32bit PA addressable pages to cover @size from the
356 * page level allocator and map them into continguos kernel virtual space.
357 */
vmalloc_32(unsigned long size)358 void *vmalloc_32(unsigned long size)
359 {
360 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
361 }
362 EXPORT_SYMBOL(vmalloc_32);
363
364 /**
365 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
366 * @size: allocation size
367 *
368 * The resulting memory area is 32bit addressable and zeroed so it can be
369 * mapped to userspace without leaking data.
370 *
371 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
372 * remap_vmalloc_range() are permissible.
373 */
vmalloc_32_user(unsigned long size)374 void *vmalloc_32_user(unsigned long size)
375 {
376 /*
377 * We'll have to sort out the ZONE_DMA bits for 64-bit,
378 * but for now this can simply use vmalloc_user() directly.
379 */
380 return vmalloc_user(size);
381 }
382 EXPORT_SYMBOL(vmalloc_32_user);
383
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)384 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
385 {
386 BUG();
387 return NULL;
388 }
389 EXPORT_SYMBOL(vmap);
390
vunmap(const void * addr)391 void vunmap(const void *addr)
392 {
393 BUG();
394 }
395 EXPORT_SYMBOL(vunmap);
396
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)397 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
398 {
399 BUG();
400 return NULL;
401 }
402 EXPORT_SYMBOL(vm_map_ram);
403
vm_unmap_ram(const void * mem,unsigned int count)404 void vm_unmap_ram(const void *mem, unsigned int count)
405 {
406 BUG();
407 }
408 EXPORT_SYMBOL(vm_unmap_ram);
409
vm_unmap_aliases(void)410 void vm_unmap_aliases(void)
411 {
412 }
413 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
414
415 /*
416 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
417 * have one.
418 */
vmalloc_sync_all(void)419 void __attribute__((weak)) vmalloc_sync_all(void)
420 {
421 }
422
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)423 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
424 struct page *page)
425 {
426 return -EINVAL;
427 }
428 EXPORT_SYMBOL(vm_insert_page);
429
430 /*
431 * sys_brk() for the most part doesn't need the global kernel
432 * lock, except when an application is doing something nasty
433 * like trying to un-brk an area that has already been mapped
434 * to a regular file. in this case, the unmapping will need
435 * to invoke file system routines that need the global lock.
436 */
SYSCALL_DEFINE1(brk,unsigned long,brk)437 SYSCALL_DEFINE1(brk, unsigned long, brk)
438 {
439 struct mm_struct *mm = current->mm;
440
441 if (brk < mm->start_brk || brk > mm->context.end_brk)
442 return mm->brk;
443
444 if (mm->brk == brk)
445 return mm->brk;
446
447 /*
448 * Always allow shrinking brk
449 */
450 if (brk <= mm->brk) {
451 mm->brk = brk;
452 return brk;
453 }
454
455 /*
456 * Ok, looks good - let it rip.
457 */
458 return mm->brk = brk;
459 }
460
461 /*
462 * initialise the VMA and region record slabs
463 */
mmap_init(void)464 void __init mmap_init(void)
465 {
466 vm_region_jar = kmem_cache_create("vm_region_jar",
467 sizeof(struct vm_region), 0,
468 SLAB_PANIC, NULL);
469 vm_area_cachep = kmem_cache_create("vm_area_struct",
470 sizeof(struct vm_area_struct), 0,
471 SLAB_PANIC, NULL);
472 }
473
474 /*
475 * validate the region tree
476 * - the caller must hold the region lock
477 */
478 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)479 static noinline void validate_nommu_regions(void)
480 {
481 struct vm_region *region, *last;
482 struct rb_node *p, *lastp;
483
484 lastp = rb_first(&nommu_region_tree);
485 if (!lastp)
486 return;
487
488 last = rb_entry(lastp, struct vm_region, vm_rb);
489 if (unlikely(last->vm_end <= last->vm_start))
490 BUG();
491 if (unlikely(last->vm_top < last->vm_end))
492 BUG();
493
494 while ((p = rb_next(lastp))) {
495 region = rb_entry(p, struct vm_region, vm_rb);
496 last = rb_entry(lastp, struct vm_region, vm_rb);
497
498 if (unlikely(region->vm_end <= region->vm_start))
499 BUG();
500 if (unlikely(region->vm_top < region->vm_end))
501 BUG();
502 if (unlikely(region->vm_start < last->vm_top))
503 BUG();
504
505 lastp = p;
506 }
507 }
508 #else
509 #define validate_nommu_regions() do {} while(0)
510 #endif
511
512 /*
513 * add a region into the global tree
514 */
add_nommu_region(struct vm_region * region)515 static void add_nommu_region(struct vm_region *region)
516 {
517 struct vm_region *pregion;
518 struct rb_node **p, *parent;
519
520 validate_nommu_regions();
521
522 BUG_ON(region->vm_start & ~PAGE_MASK);
523
524 parent = NULL;
525 p = &nommu_region_tree.rb_node;
526 while (*p) {
527 parent = *p;
528 pregion = rb_entry(parent, struct vm_region, vm_rb);
529 if (region->vm_start < pregion->vm_start)
530 p = &(*p)->rb_left;
531 else if (region->vm_start > pregion->vm_start)
532 p = &(*p)->rb_right;
533 else if (pregion == region)
534 return;
535 else
536 BUG();
537 }
538
539 rb_link_node(®ion->vm_rb, parent, p);
540 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
541
542 validate_nommu_regions();
543 }
544
545 /*
546 * delete a region from the global tree
547 */
delete_nommu_region(struct vm_region * region)548 static void delete_nommu_region(struct vm_region *region)
549 {
550 BUG_ON(!nommu_region_tree.rb_node);
551
552 validate_nommu_regions();
553 rb_erase(®ion->vm_rb, &nommu_region_tree);
554 validate_nommu_regions();
555 }
556
557 /*
558 * free a contiguous series of pages
559 */
free_page_series(unsigned long from,unsigned long to)560 static void free_page_series(unsigned long from, unsigned long to)
561 {
562 for (; from < to; from += PAGE_SIZE) {
563 struct page *page = virt_to_page(from);
564
565 kdebug("- free %lx", from);
566 atomic_dec(&mmap_pages_allocated);
567 if (page_count(page) != 1)
568 kdebug("free page %p [%d]", page, page_count(page));
569 put_page(page);
570 }
571 }
572
573 /*
574 * release a reference to a region
575 * - the caller must hold the region semaphore, which this releases
576 * - the region may not have been added to the tree yet, in which case vm_top
577 * will equal vm_start
578 */
__put_nommu_region(struct vm_region * region)579 static void __put_nommu_region(struct vm_region *region)
580 __releases(nommu_region_sem)
581 {
582 kenter("%p{%d}", region, atomic_read(®ion->vm_usage));
583
584 BUG_ON(!nommu_region_tree.rb_node);
585
586 if (atomic_dec_and_test(®ion->vm_usage)) {
587 if (region->vm_top > region->vm_start)
588 delete_nommu_region(region);
589 up_write(&nommu_region_sem);
590
591 if (region->vm_file)
592 fput(region->vm_file);
593
594 /* IO memory and memory shared directly out of the pagecache
595 * from ramfs/tmpfs mustn't be released here */
596 if (region->vm_flags & VM_MAPPED_COPY) {
597 kdebug("free series");
598 free_page_series(region->vm_start, region->vm_top);
599 }
600 kmem_cache_free(vm_region_jar, region);
601 } else {
602 up_write(&nommu_region_sem);
603 }
604 }
605
606 /*
607 * release a reference to a region
608 */
put_nommu_region(struct vm_region * region)609 static void put_nommu_region(struct vm_region *region)
610 {
611 down_write(&nommu_region_sem);
612 __put_nommu_region(region);
613 }
614
615 /*
616 * add a VMA into a process's mm_struct in the appropriate place in the list
617 * and tree and add to the address space's page tree also if not an anonymous
618 * page
619 * - should be called with mm->mmap_sem held writelocked
620 */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)621 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
622 {
623 struct vm_area_struct *pvma, **pp;
624 struct address_space *mapping;
625 struct rb_node **p, *parent;
626
627 kenter(",%p", vma);
628
629 BUG_ON(!vma->vm_region);
630
631 mm->map_count++;
632 vma->vm_mm = mm;
633
634 /* add the VMA to the mapping */
635 if (vma->vm_file) {
636 mapping = vma->vm_file->f_mapping;
637
638 flush_dcache_mmap_lock(mapping);
639 vma_prio_tree_insert(vma, &mapping->i_mmap);
640 flush_dcache_mmap_unlock(mapping);
641 }
642
643 /* add the VMA to the tree */
644 parent = NULL;
645 p = &mm->mm_rb.rb_node;
646 while (*p) {
647 parent = *p;
648 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
649
650 /* sort by: start addr, end addr, VMA struct addr in that order
651 * (the latter is necessary as we may get identical VMAs) */
652 if (vma->vm_start < pvma->vm_start)
653 p = &(*p)->rb_left;
654 else if (vma->vm_start > pvma->vm_start)
655 p = &(*p)->rb_right;
656 else if (vma->vm_end < pvma->vm_end)
657 p = &(*p)->rb_left;
658 else if (vma->vm_end > pvma->vm_end)
659 p = &(*p)->rb_right;
660 else if (vma < pvma)
661 p = &(*p)->rb_left;
662 else if (vma > pvma)
663 p = &(*p)->rb_right;
664 else
665 BUG();
666 }
667
668 rb_link_node(&vma->vm_rb, parent, p);
669 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
670
671 /* add VMA to the VMA list also */
672 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
673 if (pvma->vm_start > vma->vm_start)
674 break;
675 if (pvma->vm_start < vma->vm_start)
676 continue;
677 if (pvma->vm_end < vma->vm_end)
678 break;
679 }
680
681 vma->vm_next = *pp;
682 *pp = vma;
683 }
684
685 /*
686 * delete a VMA from its owning mm_struct and address space
687 */
delete_vma_from_mm(struct vm_area_struct * vma)688 static void delete_vma_from_mm(struct vm_area_struct *vma)
689 {
690 struct vm_area_struct **pp;
691 struct address_space *mapping;
692 struct mm_struct *mm = vma->vm_mm;
693
694 kenter("%p", vma);
695
696 mm->map_count--;
697 if (mm->mmap_cache == vma)
698 mm->mmap_cache = NULL;
699
700 /* remove the VMA from the mapping */
701 if (vma->vm_file) {
702 mapping = vma->vm_file->f_mapping;
703
704 flush_dcache_mmap_lock(mapping);
705 vma_prio_tree_remove(vma, &mapping->i_mmap);
706 flush_dcache_mmap_unlock(mapping);
707 }
708
709 /* remove from the MM's tree and list */
710 rb_erase(&vma->vm_rb, &mm->mm_rb);
711 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
712 if (*pp == vma) {
713 *pp = vma->vm_next;
714 break;
715 }
716 }
717
718 vma->vm_mm = NULL;
719 }
720
721 /*
722 * destroy a VMA record
723 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)724 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
725 {
726 kenter("%p", vma);
727 if (vma->vm_ops && vma->vm_ops->close)
728 vma->vm_ops->close(vma);
729 if (vma->vm_file) {
730 fput(vma->vm_file);
731 if (vma->vm_flags & VM_EXECUTABLE)
732 removed_exe_file_vma(mm);
733 }
734 put_nommu_region(vma->vm_region);
735 kmem_cache_free(vm_area_cachep, vma);
736 }
737
738 /*
739 * look up the first VMA in which addr resides, NULL if none
740 * - should be called with mm->mmap_sem at least held readlocked
741 */
find_vma(struct mm_struct * mm,unsigned long addr)742 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
743 {
744 struct vm_area_struct *vma;
745 struct rb_node *n = mm->mm_rb.rb_node;
746
747 /* check the cache first */
748 vma = mm->mmap_cache;
749 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
750 return vma;
751
752 /* trawl the tree (there may be multiple mappings in which addr
753 * resides) */
754 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
755 vma = rb_entry(n, struct vm_area_struct, vm_rb);
756 if (vma->vm_start > addr)
757 return NULL;
758 if (vma->vm_end > addr) {
759 mm->mmap_cache = vma;
760 return vma;
761 }
762 }
763
764 return NULL;
765 }
766 EXPORT_SYMBOL(find_vma);
767
768 /*
769 * find a VMA
770 * - we don't extend stack VMAs under NOMMU conditions
771 */
find_extend_vma(struct mm_struct * mm,unsigned long addr)772 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
773 {
774 return find_vma(mm, addr);
775 }
776
777 /*
778 * expand a stack to a given address
779 * - not supported under NOMMU conditions
780 */
expand_stack(struct vm_area_struct * vma,unsigned long address)781 int expand_stack(struct vm_area_struct *vma, unsigned long address)
782 {
783 return -ENOMEM;
784 }
785
786 /*
787 * look up the first VMA exactly that exactly matches addr
788 * - should be called with mm->mmap_sem at least held readlocked
789 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)790 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
791 unsigned long addr,
792 unsigned long len)
793 {
794 struct vm_area_struct *vma;
795 struct rb_node *n = mm->mm_rb.rb_node;
796 unsigned long end = addr + len;
797
798 /* check the cache first */
799 vma = mm->mmap_cache;
800 if (vma && vma->vm_start == addr && vma->vm_end == end)
801 return vma;
802
803 /* trawl the tree (there may be multiple mappings in which addr
804 * resides) */
805 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
806 vma = rb_entry(n, struct vm_area_struct, vm_rb);
807 if (vma->vm_start < addr)
808 continue;
809 if (vma->vm_start > addr)
810 return NULL;
811 if (vma->vm_end == end) {
812 mm->mmap_cache = vma;
813 return vma;
814 }
815 }
816
817 return NULL;
818 }
819
820 /*
821 * determine whether a mapping should be permitted and, if so, what sort of
822 * mapping we're capable of supporting
823 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)824 static int validate_mmap_request(struct file *file,
825 unsigned long addr,
826 unsigned long len,
827 unsigned long prot,
828 unsigned long flags,
829 unsigned long pgoff,
830 unsigned long *_capabilities)
831 {
832 unsigned long capabilities, rlen;
833 unsigned long reqprot = prot;
834 int ret;
835
836 /* do the simple checks first */
837 if (flags & MAP_FIXED || addr) {
838 printk(KERN_DEBUG
839 "%d: Can't do fixed-address/overlay mmap of RAM\n",
840 current->pid);
841 return -EINVAL;
842 }
843
844 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
845 (flags & MAP_TYPE) != MAP_SHARED)
846 return -EINVAL;
847
848 if (!len)
849 return -EINVAL;
850
851 /* Careful about overflows.. */
852 rlen = PAGE_ALIGN(len);
853 if (!rlen || rlen > TASK_SIZE)
854 return -ENOMEM;
855
856 /* offset overflow? */
857 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
858 return -EOVERFLOW;
859
860 if (file) {
861 /* validate file mapping requests */
862 struct address_space *mapping;
863
864 /* files must support mmap */
865 if (!file->f_op || !file->f_op->mmap)
866 return -ENODEV;
867
868 /* work out if what we've got could possibly be shared
869 * - we support chardevs that provide their own "memory"
870 * - we support files/blockdevs that are memory backed
871 */
872 mapping = file->f_mapping;
873 if (!mapping)
874 mapping = file->f_path.dentry->d_inode->i_mapping;
875
876 capabilities = 0;
877 if (mapping && mapping->backing_dev_info)
878 capabilities = mapping->backing_dev_info->capabilities;
879
880 if (!capabilities) {
881 /* no explicit capabilities set, so assume some
882 * defaults */
883 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
884 case S_IFREG:
885 case S_IFBLK:
886 capabilities = BDI_CAP_MAP_COPY;
887 break;
888
889 case S_IFCHR:
890 capabilities =
891 BDI_CAP_MAP_DIRECT |
892 BDI_CAP_READ_MAP |
893 BDI_CAP_WRITE_MAP;
894 break;
895
896 default:
897 return -EINVAL;
898 }
899 }
900
901 /* eliminate any capabilities that we can't support on this
902 * device */
903 if (!file->f_op->get_unmapped_area)
904 capabilities &= ~BDI_CAP_MAP_DIRECT;
905 if (!file->f_op->read)
906 capabilities &= ~BDI_CAP_MAP_COPY;
907
908 if (flags & MAP_SHARED) {
909 /* do checks for writing, appending and locking */
910 if ((prot & PROT_WRITE) &&
911 !(file->f_mode & FMODE_WRITE))
912 return -EACCES;
913
914 if (IS_APPEND(file->f_path.dentry->d_inode) &&
915 (file->f_mode & FMODE_WRITE))
916 return -EACCES;
917
918 if (locks_verify_locked(file->f_path.dentry->d_inode))
919 return -EAGAIN;
920
921 if (!(capabilities & BDI_CAP_MAP_DIRECT))
922 return -ENODEV;
923
924 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
925 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
926 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
927 ) {
928 printk("MAP_SHARED not completely supported on !MMU\n");
929 return -EINVAL;
930 }
931
932 /* we mustn't privatise shared mappings */
933 capabilities &= ~BDI_CAP_MAP_COPY;
934 }
935 else {
936 /* we're going to read the file into private memory we
937 * allocate */
938 if (!(capabilities & BDI_CAP_MAP_COPY))
939 return -ENODEV;
940
941 /* we don't permit a private writable mapping to be
942 * shared with the backing device */
943 if (prot & PROT_WRITE)
944 capabilities &= ~BDI_CAP_MAP_DIRECT;
945 }
946
947 /* handle executable mappings and implied executable
948 * mappings */
949 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
950 if (prot & PROT_EXEC)
951 return -EPERM;
952 }
953 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
954 /* handle implication of PROT_EXEC by PROT_READ */
955 if (current->personality & READ_IMPLIES_EXEC) {
956 if (capabilities & BDI_CAP_EXEC_MAP)
957 prot |= PROT_EXEC;
958 }
959 }
960 else if ((prot & PROT_READ) &&
961 (prot & PROT_EXEC) &&
962 !(capabilities & BDI_CAP_EXEC_MAP)
963 ) {
964 /* backing file is not executable, try to copy */
965 capabilities &= ~BDI_CAP_MAP_DIRECT;
966 }
967 }
968 else {
969 /* anonymous mappings are always memory backed and can be
970 * privately mapped
971 */
972 capabilities = BDI_CAP_MAP_COPY;
973
974 /* handle PROT_EXEC implication by PROT_READ */
975 if ((prot & PROT_READ) &&
976 (current->personality & READ_IMPLIES_EXEC))
977 prot |= PROT_EXEC;
978 }
979
980 /* allow the security API to have its say */
981 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
982 if (ret < 0)
983 return ret;
984
985 /* looks okay */
986 *_capabilities = capabilities;
987 return 0;
988 }
989
990 /*
991 * we've determined that we can make the mapping, now translate what we
992 * now know into VMA flags
993 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)994 static unsigned long determine_vm_flags(struct file *file,
995 unsigned long prot,
996 unsigned long flags,
997 unsigned long capabilities)
998 {
999 unsigned long vm_flags;
1000
1001 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1002 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1003 /* vm_flags |= mm->def_flags; */
1004
1005 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1006 /* attempt to share read-only copies of mapped file chunks */
1007 if (file && !(prot & PROT_WRITE))
1008 vm_flags |= VM_MAYSHARE;
1009 }
1010 else {
1011 /* overlay a shareable mapping on the backing device or inode
1012 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1013 * romfs/cramfs */
1014 if (flags & MAP_SHARED)
1015 vm_flags |= VM_MAYSHARE | VM_SHARED;
1016 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1017 vm_flags |= VM_MAYSHARE;
1018 }
1019
1020 /* refuse to let anyone share private mappings with this process if
1021 * it's being traced - otherwise breakpoints set in it may interfere
1022 * with another untraced process
1023 */
1024 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1025 vm_flags &= ~VM_MAYSHARE;
1026
1027 return vm_flags;
1028 }
1029
1030 /*
1031 * set up a shared mapping on a file (the driver or filesystem provides and
1032 * pins the storage)
1033 */
do_mmap_shared_file(struct vm_area_struct * vma)1034 static int do_mmap_shared_file(struct vm_area_struct *vma)
1035 {
1036 int ret;
1037
1038 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1039 if (ret == 0) {
1040 vma->vm_region->vm_top = vma->vm_region->vm_end;
1041 return ret;
1042 }
1043 if (ret != -ENOSYS)
1044 return ret;
1045
1046 /* getting an ENOSYS error indicates that direct mmap isn't
1047 * possible (as opposed to tried but failed) so we'll fall
1048 * through to making a private copy of the data and mapping
1049 * that if we can */
1050 return -ENODEV;
1051 }
1052
1053 /*
1054 * set up a private mapping or an anonymous shared mapping
1055 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len)1056 static int do_mmap_private(struct vm_area_struct *vma,
1057 struct vm_region *region,
1058 unsigned long len)
1059 {
1060 struct page *pages;
1061 unsigned long total, point, n, rlen;
1062 void *base;
1063 int ret, order;
1064
1065 /* invoke the file's mapping function so that it can keep track of
1066 * shared mappings on devices or memory
1067 * - VM_MAYSHARE will be set if it may attempt to share
1068 */
1069 if (vma->vm_file) {
1070 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1071 if (ret == 0) {
1072 /* shouldn't return success if we're not sharing */
1073 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1074 vma->vm_region->vm_top = vma->vm_region->vm_end;
1075 return ret;
1076 }
1077 if (ret != -ENOSYS)
1078 return ret;
1079
1080 /* getting an ENOSYS error indicates that direct mmap isn't
1081 * possible (as opposed to tried but failed) so we'll try to
1082 * make a private copy of the data and map that instead */
1083 }
1084
1085 rlen = PAGE_ALIGN(len);
1086
1087 /* allocate some memory to hold the mapping
1088 * - note that this may not return a page-aligned address if the object
1089 * we're allocating is smaller than a page
1090 */
1091 order = get_order(rlen);
1092 kdebug("alloc order %d for %lx", order, len);
1093
1094 pages = alloc_pages(GFP_KERNEL, order);
1095 if (!pages)
1096 goto enomem;
1097
1098 total = 1 << order;
1099 atomic_add(total, &mmap_pages_allocated);
1100
1101 point = rlen >> PAGE_SHIFT;
1102
1103 /* we allocated a power-of-2 sized page set, so we may want to trim off
1104 * the excess */
1105 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1106 while (total > point) {
1107 order = ilog2(total - point);
1108 n = 1 << order;
1109 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1110 atomic_sub(n, &mmap_pages_allocated);
1111 total -= n;
1112 set_page_refcounted(pages + total);
1113 __free_pages(pages + total, order);
1114 }
1115 }
1116
1117 for (point = 1; point < total; point++)
1118 set_page_refcounted(&pages[point]);
1119
1120 base = page_address(pages);
1121 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1122 region->vm_start = (unsigned long) base;
1123 region->vm_end = region->vm_start + rlen;
1124 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1125
1126 vma->vm_start = region->vm_start;
1127 vma->vm_end = region->vm_start + len;
1128
1129 if (vma->vm_file) {
1130 /* read the contents of a file into the copy */
1131 mm_segment_t old_fs;
1132 loff_t fpos;
1133
1134 fpos = vma->vm_pgoff;
1135 fpos <<= PAGE_SHIFT;
1136
1137 old_fs = get_fs();
1138 set_fs(KERNEL_DS);
1139 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1140 set_fs(old_fs);
1141
1142 if (ret < 0)
1143 goto error_free;
1144
1145 /* clear the last little bit */
1146 if (ret < rlen)
1147 memset(base + ret, 0, rlen - ret);
1148
1149 } else {
1150 /* if it's an anonymous mapping, then just clear it */
1151 memset(base, 0, rlen);
1152 }
1153
1154 return 0;
1155
1156 error_free:
1157 free_page_series(region->vm_start, region->vm_end);
1158 region->vm_start = vma->vm_start = 0;
1159 region->vm_end = vma->vm_end = 0;
1160 region->vm_top = 0;
1161 return ret;
1162
1163 enomem:
1164 printk("Allocation of length %lu from process %d (%s) failed\n",
1165 len, current->pid, current->comm);
1166 show_free_areas();
1167 return -ENOMEM;
1168 }
1169
1170 /*
1171 * handle mapping creation for uClinux
1172 */
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff)1173 unsigned long do_mmap_pgoff(struct file *file,
1174 unsigned long addr,
1175 unsigned long len,
1176 unsigned long prot,
1177 unsigned long flags,
1178 unsigned long pgoff)
1179 {
1180 struct vm_area_struct *vma;
1181 struct vm_region *region;
1182 struct rb_node *rb;
1183 unsigned long capabilities, vm_flags, result;
1184 int ret;
1185
1186 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1187
1188 if (!(flags & MAP_FIXED))
1189 addr = round_hint_to_min(addr);
1190
1191 /* decide whether we should attempt the mapping, and if so what sort of
1192 * mapping */
1193 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1194 &capabilities);
1195 if (ret < 0) {
1196 kleave(" = %d [val]", ret);
1197 return ret;
1198 }
1199
1200 /* we've determined that we can make the mapping, now translate what we
1201 * now know into VMA flags */
1202 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1203
1204 /* we're going to need to record the mapping */
1205 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1206 if (!region)
1207 goto error_getting_region;
1208
1209 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1210 if (!vma)
1211 goto error_getting_vma;
1212
1213 atomic_set(®ion->vm_usage, 1);
1214 region->vm_flags = vm_flags;
1215 region->vm_pgoff = pgoff;
1216
1217 INIT_LIST_HEAD(&vma->anon_vma_node);
1218 vma->vm_flags = vm_flags;
1219 vma->vm_pgoff = pgoff;
1220
1221 if (file) {
1222 region->vm_file = file;
1223 get_file(file);
1224 vma->vm_file = file;
1225 get_file(file);
1226 if (vm_flags & VM_EXECUTABLE) {
1227 added_exe_file_vma(current->mm);
1228 vma->vm_mm = current->mm;
1229 }
1230 }
1231
1232 down_write(&nommu_region_sem);
1233
1234 /* if we want to share, we need to check for regions created by other
1235 * mmap() calls that overlap with our proposed mapping
1236 * - we can only share with a superset match on most regular files
1237 * - shared mappings on character devices and memory backed files are
1238 * permitted to overlap inexactly as far as we are concerned for in
1239 * these cases, sharing is handled in the driver or filesystem rather
1240 * than here
1241 */
1242 if (vm_flags & VM_MAYSHARE) {
1243 struct vm_region *pregion;
1244 unsigned long pglen, rpglen, pgend, rpgend, start;
1245
1246 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1247 pgend = pgoff + pglen;
1248
1249 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1250 pregion = rb_entry(rb, struct vm_region, vm_rb);
1251
1252 if (!(pregion->vm_flags & VM_MAYSHARE))
1253 continue;
1254
1255 /* search for overlapping mappings on the same file */
1256 if (pregion->vm_file->f_path.dentry->d_inode !=
1257 file->f_path.dentry->d_inode)
1258 continue;
1259
1260 if (pregion->vm_pgoff >= pgend)
1261 continue;
1262
1263 rpglen = pregion->vm_end - pregion->vm_start;
1264 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1265 rpgend = pregion->vm_pgoff + rpglen;
1266 if (pgoff >= rpgend)
1267 continue;
1268
1269 /* handle inexactly overlapping matches between
1270 * mappings */
1271 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1272 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1273 /* new mapping is not a subset of the region */
1274 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1275 goto sharing_violation;
1276 continue;
1277 }
1278
1279 /* we've found a region we can share */
1280 atomic_inc(&pregion->vm_usage);
1281 vma->vm_region = pregion;
1282 start = pregion->vm_start;
1283 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1284 vma->vm_start = start;
1285 vma->vm_end = start + len;
1286
1287 if (pregion->vm_flags & VM_MAPPED_COPY) {
1288 kdebug("share copy");
1289 vma->vm_flags |= VM_MAPPED_COPY;
1290 } else {
1291 kdebug("share mmap");
1292 ret = do_mmap_shared_file(vma);
1293 if (ret < 0) {
1294 vma->vm_region = NULL;
1295 vma->vm_start = 0;
1296 vma->vm_end = 0;
1297 atomic_dec(&pregion->vm_usage);
1298 pregion = NULL;
1299 goto error_just_free;
1300 }
1301 }
1302 fput(region->vm_file);
1303 kmem_cache_free(vm_region_jar, region);
1304 region = pregion;
1305 result = start;
1306 goto share;
1307 }
1308
1309 /* obtain the address at which to make a shared mapping
1310 * - this is the hook for quasi-memory character devices to
1311 * tell us the location of a shared mapping
1312 */
1313 if (file && file->f_op->get_unmapped_area) {
1314 addr = file->f_op->get_unmapped_area(file, addr, len,
1315 pgoff, flags);
1316 if (IS_ERR((void *) addr)) {
1317 ret = addr;
1318 if (ret != (unsigned long) -ENOSYS)
1319 goto error_just_free;
1320
1321 /* the driver refused to tell us where to site
1322 * the mapping so we'll have to attempt to copy
1323 * it */
1324 ret = (unsigned long) -ENODEV;
1325 if (!(capabilities & BDI_CAP_MAP_COPY))
1326 goto error_just_free;
1327
1328 capabilities &= ~BDI_CAP_MAP_DIRECT;
1329 } else {
1330 vma->vm_start = region->vm_start = addr;
1331 vma->vm_end = region->vm_end = addr + len;
1332 }
1333 }
1334 }
1335
1336 vma->vm_region = region;
1337
1338 /* set up the mapping */
1339 if (file && vma->vm_flags & VM_SHARED)
1340 ret = do_mmap_shared_file(vma);
1341 else
1342 ret = do_mmap_private(vma, region, len);
1343 if (ret < 0)
1344 goto error_put_region;
1345
1346 add_nommu_region(region);
1347
1348 /* okay... we have a mapping; now we have to register it */
1349 result = vma->vm_start;
1350
1351 current->mm->total_vm += len >> PAGE_SHIFT;
1352
1353 share:
1354 add_vma_to_mm(current->mm, vma);
1355
1356 up_write(&nommu_region_sem);
1357
1358 if (prot & PROT_EXEC)
1359 flush_icache_range(result, result + len);
1360
1361 kleave(" = %lx", result);
1362 return result;
1363
1364 error_put_region:
1365 __put_nommu_region(region);
1366 if (vma) {
1367 if (vma->vm_file) {
1368 fput(vma->vm_file);
1369 if (vma->vm_flags & VM_EXECUTABLE)
1370 removed_exe_file_vma(vma->vm_mm);
1371 }
1372 kmem_cache_free(vm_area_cachep, vma);
1373 }
1374 kleave(" = %d [pr]", ret);
1375 return ret;
1376
1377 error_just_free:
1378 up_write(&nommu_region_sem);
1379 error:
1380 fput(region->vm_file);
1381 kmem_cache_free(vm_region_jar, region);
1382 fput(vma->vm_file);
1383 if (vma->vm_flags & VM_EXECUTABLE)
1384 removed_exe_file_vma(vma->vm_mm);
1385 kmem_cache_free(vm_area_cachep, vma);
1386 kleave(" = %d", ret);
1387 return ret;
1388
1389 sharing_violation:
1390 up_write(&nommu_region_sem);
1391 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1392 ret = -EINVAL;
1393 goto error;
1394
1395 error_getting_vma:
1396 kmem_cache_free(vm_region_jar, region);
1397 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1398 " from process %d failed\n",
1399 len, current->pid);
1400 show_free_areas();
1401 return -ENOMEM;
1402
1403 error_getting_region:
1404 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1405 " from process %d failed\n",
1406 len, current->pid);
1407 show_free_areas();
1408 return -ENOMEM;
1409 }
1410 EXPORT_SYMBOL(do_mmap_pgoff);
1411
1412 /*
1413 * split a vma into two pieces at address 'addr', a new vma is allocated either
1414 * for the first part or the tail.
1415 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1416 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1417 unsigned long addr, int new_below)
1418 {
1419 struct vm_area_struct *new;
1420 struct vm_region *region;
1421 unsigned long npages;
1422
1423 kenter("");
1424
1425 /* we're only permitted to split anonymous regions that have a single
1426 * owner */
1427 if (vma->vm_file ||
1428 atomic_read(&vma->vm_region->vm_usage) != 1)
1429 return -ENOMEM;
1430
1431 if (mm->map_count >= sysctl_max_map_count)
1432 return -ENOMEM;
1433
1434 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1435 if (!region)
1436 return -ENOMEM;
1437
1438 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1439 if (!new) {
1440 kmem_cache_free(vm_region_jar, region);
1441 return -ENOMEM;
1442 }
1443
1444 /* most fields are the same, copy all, and then fixup */
1445 *new = *vma;
1446 *region = *vma->vm_region;
1447 new->vm_region = region;
1448
1449 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1450
1451 if (new_below) {
1452 region->vm_top = region->vm_end = new->vm_end = addr;
1453 } else {
1454 region->vm_start = new->vm_start = addr;
1455 region->vm_pgoff = new->vm_pgoff += npages;
1456 }
1457
1458 if (new->vm_ops && new->vm_ops->open)
1459 new->vm_ops->open(new);
1460
1461 delete_vma_from_mm(vma);
1462 down_write(&nommu_region_sem);
1463 delete_nommu_region(vma->vm_region);
1464 if (new_below) {
1465 vma->vm_region->vm_start = vma->vm_start = addr;
1466 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1467 } else {
1468 vma->vm_region->vm_end = vma->vm_end = addr;
1469 vma->vm_region->vm_top = addr;
1470 }
1471 add_nommu_region(vma->vm_region);
1472 add_nommu_region(new->vm_region);
1473 up_write(&nommu_region_sem);
1474 add_vma_to_mm(mm, vma);
1475 add_vma_to_mm(mm, new);
1476 return 0;
1477 }
1478
1479 /*
1480 * shrink a VMA by removing the specified chunk from either the beginning or
1481 * the end
1482 */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1483 static int shrink_vma(struct mm_struct *mm,
1484 struct vm_area_struct *vma,
1485 unsigned long from, unsigned long to)
1486 {
1487 struct vm_region *region;
1488
1489 kenter("");
1490
1491 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1492 * and list */
1493 delete_vma_from_mm(vma);
1494 if (from > vma->vm_start)
1495 vma->vm_end = from;
1496 else
1497 vma->vm_start = to;
1498 add_vma_to_mm(mm, vma);
1499
1500 /* cut the backing region down to size */
1501 region = vma->vm_region;
1502 BUG_ON(atomic_read(®ion->vm_usage) != 1);
1503
1504 down_write(&nommu_region_sem);
1505 delete_nommu_region(region);
1506 if (from > region->vm_start) {
1507 to = region->vm_top;
1508 region->vm_top = region->vm_end = from;
1509 } else {
1510 region->vm_start = to;
1511 }
1512 add_nommu_region(region);
1513 up_write(&nommu_region_sem);
1514
1515 free_page_series(from, to);
1516 return 0;
1517 }
1518
1519 /*
1520 * release a mapping
1521 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1522 * VMA, though it need not cover the whole VMA
1523 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)1524 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1525 {
1526 struct vm_area_struct *vma;
1527 struct rb_node *rb;
1528 unsigned long end = start + len;
1529 int ret;
1530
1531 kenter(",%lx,%zx", start, len);
1532
1533 if (len == 0)
1534 return -EINVAL;
1535
1536 /* find the first potentially overlapping VMA */
1537 vma = find_vma(mm, start);
1538 if (!vma) {
1539 printk(KERN_WARNING
1540 "munmap of memory not mmapped by process %d (%s):"
1541 " 0x%lx-0x%lx\n",
1542 current->pid, current->comm, start, start + len - 1);
1543 return -EINVAL;
1544 }
1545
1546 /* we're allowed to split an anonymous VMA but not a file-backed one */
1547 if (vma->vm_file) {
1548 do {
1549 if (start > vma->vm_start) {
1550 kleave(" = -EINVAL [miss]");
1551 return -EINVAL;
1552 }
1553 if (end == vma->vm_end)
1554 goto erase_whole_vma;
1555 rb = rb_next(&vma->vm_rb);
1556 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1557 } while (rb);
1558 kleave(" = -EINVAL [split file]");
1559 return -EINVAL;
1560 } else {
1561 /* the chunk must be a subset of the VMA found */
1562 if (start == vma->vm_start && end == vma->vm_end)
1563 goto erase_whole_vma;
1564 if (start < vma->vm_start || end > vma->vm_end) {
1565 kleave(" = -EINVAL [superset]");
1566 return -EINVAL;
1567 }
1568 if (start & ~PAGE_MASK) {
1569 kleave(" = -EINVAL [unaligned start]");
1570 return -EINVAL;
1571 }
1572 if (end != vma->vm_end && end & ~PAGE_MASK) {
1573 kleave(" = -EINVAL [unaligned split]");
1574 return -EINVAL;
1575 }
1576 if (start != vma->vm_start && end != vma->vm_end) {
1577 ret = split_vma(mm, vma, start, 1);
1578 if (ret < 0) {
1579 kleave(" = %d [split]", ret);
1580 return ret;
1581 }
1582 }
1583 return shrink_vma(mm, vma, start, end);
1584 }
1585
1586 erase_whole_vma:
1587 delete_vma_from_mm(vma);
1588 delete_vma(mm, vma);
1589 kleave(" = 0");
1590 return 0;
1591 }
1592 EXPORT_SYMBOL(do_munmap);
1593
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1594 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1595 {
1596 int ret;
1597 struct mm_struct *mm = current->mm;
1598
1599 down_write(&mm->mmap_sem);
1600 ret = do_munmap(mm, addr, len);
1601 up_write(&mm->mmap_sem);
1602 return ret;
1603 }
1604
1605 /*
1606 * release all the mappings made in a process's VM space
1607 */
exit_mmap(struct mm_struct * mm)1608 void exit_mmap(struct mm_struct *mm)
1609 {
1610 struct vm_area_struct *vma;
1611
1612 if (!mm)
1613 return;
1614
1615 kenter("");
1616
1617 mm->total_vm = 0;
1618
1619 while ((vma = mm->mmap)) {
1620 mm->mmap = vma->vm_next;
1621 delete_vma_from_mm(vma);
1622 delete_vma(mm, vma);
1623 }
1624
1625 kleave("");
1626 }
1627
do_brk(unsigned long addr,unsigned long len)1628 unsigned long do_brk(unsigned long addr, unsigned long len)
1629 {
1630 return -ENOMEM;
1631 }
1632
1633 /*
1634 * expand (or shrink) an existing mapping, potentially moving it at the same
1635 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1636 *
1637 * under NOMMU conditions, we only permit changing a mapping's size, and only
1638 * as long as it stays within the region allocated by do_mmap_private() and the
1639 * block is not shareable
1640 *
1641 * MREMAP_FIXED is not supported under NOMMU conditions
1642 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1643 unsigned long do_mremap(unsigned long addr,
1644 unsigned long old_len, unsigned long new_len,
1645 unsigned long flags, unsigned long new_addr)
1646 {
1647 struct vm_area_struct *vma;
1648
1649 /* insanity checks first */
1650 if (old_len == 0 || new_len == 0)
1651 return (unsigned long) -EINVAL;
1652
1653 if (addr & ~PAGE_MASK)
1654 return -EINVAL;
1655
1656 if (flags & MREMAP_FIXED && new_addr != addr)
1657 return (unsigned long) -EINVAL;
1658
1659 vma = find_vma_exact(current->mm, addr, old_len);
1660 if (!vma)
1661 return (unsigned long) -EINVAL;
1662
1663 if (vma->vm_end != vma->vm_start + old_len)
1664 return (unsigned long) -EFAULT;
1665
1666 if (vma->vm_flags & VM_MAYSHARE)
1667 return (unsigned long) -EPERM;
1668
1669 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1670 return (unsigned long) -ENOMEM;
1671
1672 /* all checks complete - do it */
1673 vma->vm_end = vma->vm_start + new_len;
1674 return vma->vm_start;
1675 }
1676 EXPORT_SYMBOL(do_mremap);
1677
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1678 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1679 unsigned long, new_len, unsigned long, flags,
1680 unsigned long, new_addr)
1681 {
1682 unsigned long ret;
1683
1684 down_write(¤t->mm->mmap_sem);
1685 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1686 up_write(¤t->mm->mmap_sem);
1687 return ret;
1688 }
1689
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1690 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1691 unsigned int foll_flags)
1692 {
1693 return NULL;
1694 }
1695
remap_pfn_range(struct vm_area_struct * vma,unsigned long from,unsigned long to,unsigned long size,pgprot_t prot)1696 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1697 unsigned long to, unsigned long size, pgprot_t prot)
1698 {
1699 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1700 return 0;
1701 }
1702 EXPORT_SYMBOL(remap_pfn_range);
1703
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1704 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1705 unsigned long pgoff)
1706 {
1707 unsigned int size = vma->vm_end - vma->vm_start;
1708
1709 if (!(vma->vm_flags & VM_USERMAP))
1710 return -EINVAL;
1711
1712 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1713 vma->vm_end = vma->vm_start + size;
1714
1715 return 0;
1716 }
1717 EXPORT_SYMBOL(remap_vmalloc_range);
1718
swap_unplug_io_fn(struct backing_dev_info * bdi,struct page * page)1719 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1720 {
1721 }
1722
arch_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1723 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1724 unsigned long len, unsigned long pgoff, unsigned long flags)
1725 {
1726 return -ENOMEM;
1727 }
1728
arch_unmap_area(struct mm_struct * mm,unsigned long addr)1729 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1730 {
1731 }
1732
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1733 void unmap_mapping_range(struct address_space *mapping,
1734 loff_t const holebegin, loff_t const holelen,
1735 int even_cows)
1736 {
1737 }
1738 EXPORT_SYMBOL(unmap_mapping_range);
1739
1740 /*
1741 * ask for an unmapped area at which to create a mapping on a file
1742 */
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1743 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1744 unsigned long len, unsigned long pgoff,
1745 unsigned long flags)
1746 {
1747 unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1748 unsigned long, unsigned long);
1749
1750 get_area = current->mm->get_unmapped_area;
1751 if (file && file->f_op && file->f_op->get_unmapped_area)
1752 get_area = file->f_op->get_unmapped_area;
1753
1754 if (!get_area)
1755 return -ENOSYS;
1756
1757 return get_area(file, addr, len, pgoff, flags);
1758 }
1759 EXPORT_SYMBOL(get_unmapped_area);
1760
1761 /*
1762 * Check that a process has enough memory to allocate a new virtual
1763 * mapping. 0 means there is enough memory for the allocation to
1764 * succeed and -ENOMEM implies there is not.
1765 *
1766 * We currently support three overcommit policies, which are set via the
1767 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1768 *
1769 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1770 * Additional code 2002 Jul 20 by Robert Love.
1771 *
1772 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1773 *
1774 * Note this is a helper function intended to be used by LSMs which
1775 * wish to use this logic.
1776 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)1777 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1778 {
1779 unsigned long free, allowed;
1780
1781 vm_acct_memory(pages);
1782
1783 /*
1784 * Sometimes we want to use more memory than we have
1785 */
1786 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1787 return 0;
1788
1789 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1790 unsigned long n;
1791
1792 free = global_page_state(NR_FILE_PAGES);
1793 free += nr_swap_pages;
1794
1795 /*
1796 * Any slabs which are created with the
1797 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1798 * which are reclaimable, under pressure. The dentry
1799 * cache and most inode caches should fall into this
1800 */
1801 free += global_page_state(NR_SLAB_RECLAIMABLE);
1802
1803 /*
1804 * Leave the last 3% for root
1805 */
1806 if (!cap_sys_admin)
1807 free -= free / 32;
1808
1809 if (free > pages)
1810 return 0;
1811
1812 /*
1813 * nr_free_pages() is very expensive on large systems,
1814 * only call if we're about to fail.
1815 */
1816 n = nr_free_pages();
1817
1818 /*
1819 * Leave reserved pages. The pages are not for anonymous pages.
1820 */
1821 if (n <= totalreserve_pages)
1822 goto error;
1823 else
1824 n -= totalreserve_pages;
1825
1826 /*
1827 * Leave the last 3% for root
1828 */
1829 if (!cap_sys_admin)
1830 n -= n / 32;
1831 free += n;
1832
1833 if (free > pages)
1834 return 0;
1835
1836 goto error;
1837 }
1838
1839 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1840 /*
1841 * Leave the last 3% for root
1842 */
1843 if (!cap_sys_admin)
1844 allowed -= allowed / 32;
1845 allowed += total_swap_pages;
1846
1847 /* Don't let a single process grow too big:
1848 leave 3% of the size of this process for other processes */
1849 if (mm)
1850 allowed -= mm->total_vm / 32;
1851
1852 /*
1853 * cast `allowed' as a signed long because vm_committed_space
1854 * sometimes has a negative value
1855 */
1856 if (atomic_long_read(&vm_committed_space) < (long)allowed)
1857 return 0;
1858 error:
1859 vm_unacct_memory(pages);
1860
1861 return -ENOMEM;
1862 }
1863
in_gate_area_no_task(unsigned long addr)1864 int in_gate_area_no_task(unsigned long addr)
1865 {
1866 return 0;
1867 }
1868
filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1869 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1870 {
1871 BUG();
1872 return 0;
1873 }
1874 EXPORT_SYMBOL(filemap_fault);
1875
1876 /*
1877 * Access another process' address space.
1878 * - source/target buffer must be kernel space
1879 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,int write)1880 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1881 {
1882 struct vm_area_struct *vma;
1883 struct mm_struct *mm;
1884
1885 if (addr + len < addr)
1886 return 0;
1887
1888 mm = get_task_mm(tsk);
1889 if (!mm)
1890 return 0;
1891
1892 down_read(&mm->mmap_sem);
1893
1894 /* the access must start within one of the target process's mappings */
1895 vma = find_vma(mm, addr);
1896 if (vma) {
1897 /* don't overrun this mapping */
1898 if (addr + len >= vma->vm_end)
1899 len = vma->vm_end - addr;
1900
1901 /* only read or write mappings where it is permitted */
1902 if (write && vma->vm_flags & VM_MAYWRITE)
1903 len -= copy_to_user((void *) addr, buf, len);
1904 else if (!write && vma->vm_flags & VM_MAYREAD)
1905 len -= copy_from_user(buf, (void *) addr, len);
1906 else
1907 len = 0;
1908 } else {
1909 len = 0;
1910 }
1911
1912 up_read(&mm->mmap_sem);
1913 mmput(mm);
1914 return len;
1915 }
1916