1 Kernel level exception handling in Linux 2.1.8 2 Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com> 3 4When a process runs in kernel mode, it often has to access user 5mode memory whose address has been passed by an untrusted program. 6To protect itself the kernel has to verify this address. 7 8In older versions of Linux this was done with the 9int verify_area(int type, const void * addr, unsigned long size) 10function (which has since been replaced by access_ok()). 11 12This function verified that the memory area starting at address 13'addr' and of size 'size' was accessible for the operation specified 14in type (read or write). To do this, verify_read had to look up the 15virtual memory area (vma) that contained the address addr. In the 16normal case (correctly working program), this test was successful. 17It only failed for a few buggy programs. In some kernel profiling 18tests, this normally unneeded verification used up a considerable 19amount of time. 20 21To overcome this situation, Linus decided to let the virtual memory 22hardware present in every Linux-capable CPU handle this test. 23 24How does this work? 25 26Whenever the kernel tries to access an address that is currently not 27accessible, the CPU generates a page fault exception and calls the 28page fault handler 29 30void do_page_fault(struct pt_regs *regs, unsigned long error_code) 31 32in arch/i386/mm/fault.c. The parameters on the stack are set up by 33the low level assembly glue in arch/i386/kernel/entry.S. The parameter 34regs is a pointer to the saved registers on the stack, error_code 35contains a reason code for the exception. 36 37do_page_fault first obtains the unaccessible address from the CPU 38control register CR2. If the address is within the virtual address 39space of the process, the fault probably occurred, because the page 40was not swapped in, write protected or something similar. However, 41we are interested in the other case: the address is not valid, there 42is no vma that contains this address. In this case, the kernel jumps 43to the bad_area label. 44 45There it uses the address of the instruction that caused the exception 46(i.e. regs->eip) to find an address where the execution can continue 47(fixup). If this search is successful, the fault handler modifies the 48return address (again regs->eip) and returns. The execution will 49continue at the address in fixup. 50 51Where does fixup point to? 52 53Since we jump to the contents of fixup, fixup obviously points 54to executable code. This code is hidden inside the user access macros. 55I have picked the get_user macro defined in include/asm/uaccess.h as an 56example. The definition is somewhat hard to follow, so let's peek at 57the code generated by the preprocessor and the compiler. I selected 58the get_user call in drivers/char/console.c for a detailed examination. 59 60The original code in console.c line 1405: 61 get_user(c, buf); 62 63The preprocessor output (edited to become somewhat readable): 64 65( 66 { 67 long __gu_err = - 14 , __gu_val = 0; 68 const __typeof__(*( ( buf ) )) *__gu_addr = ((buf)); 69 if (((((0 + current_set[0])->tss.segment) == 0x18 ) || 70 (((sizeof(*(buf))) <= 0xC0000000UL) && 71 ((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf))))))) 72 do { 73 __gu_err = 0; 74 switch ((sizeof(*(buf)))) { 75 case 1: 76 __asm__ __volatile__( 77 "1: mov" "b" " %2,%" "b" "1\n" 78 "2:\n" 79 ".section .fixup,\"ax\"\n" 80 "3: movl %3,%0\n" 81 " xor" "b" " %" "b" "1,%" "b" "1\n" 82 " jmp 2b\n" 83 ".section __ex_table,\"a\"\n" 84 " .align 4\n" 85 " .long 1b,3b\n" 86 ".text" : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *) 87 ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )) ; 88 break; 89 case 2: 90 __asm__ __volatile__( 91 "1: mov" "w" " %2,%" "w" "1\n" 92 "2:\n" 93 ".section .fixup,\"ax\"\n" 94 "3: movl %3,%0\n" 95 " xor" "w" " %" "w" "1,%" "w" "1\n" 96 " jmp 2b\n" 97 ".section __ex_table,\"a\"\n" 98 " .align 4\n" 99 " .long 1b,3b\n" 100 ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *) 101 ( __gu_addr )) ), "i"(- 14 ), "0"( __gu_err )); 102 break; 103 case 4: 104 __asm__ __volatile__( 105 "1: mov" "l" " %2,%" "" "1\n" 106 "2:\n" 107 ".section .fixup,\"ax\"\n" 108 "3: movl %3,%0\n" 109 " xor" "l" " %" "" "1,%" "" "1\n" 110 " jmp 2b\n" 111 ".section __ex_table,\"a\"\n" 112 " .align 4\n" " .long 1b,3b\n" 113 ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *) 114 ( __gu_addr )) ), "i"(- 14 ), "0"(__gu_err)); 115 break; 116 default: 117 (__gu_val) = __get_user_bad(); 118 } 119 } while (0) ; 120 ((c)) = (__typeof__(*((buf))))__gu_val; 121 __gu_err; 122 } 123); 124 125WOW! Black GCC/assembly magic. This is impossible to follow, so let's 126see what code gcc generates: 127 128 > xorl %edx,%edx 129 > movl current_set,%eax 130 > cmpl $24,788(%eax) 131 > je .L1424 132 > cmpl $-1073741825,64(%esp) 133 > ja .L1423 134 > .L1424: 135 > movl %edx,%eax 136 > movl 64(%esp),%ebx 137 > #APP 138 > 1: movb (%ebx),%dl /* this is the actual user access */ 139 > 2: 140 > .section .fixup,"ax" 141 > 3: movl $-14,%eax 142 > xorb %dl,%dl 143 > jmp 2b 144 > .section __ex_table,"a" 145 > .align 4 146 > .long 1b,3b 147 > .text 148 > #NO_APP 149 > .L1423: 150 > movzbl %dl,%esi 151 152The optimizer does a good job and gives us something we can actually 153understand. Can we? The actual user access is quite obvious. Thanks 154to the unified address space we can just access the address in user 155memory. But what does the .section stuff do????? 156 157To understand this we have to look at the final kernel: 158 159 > objdump --section-headers vmlinux 160 > 161 > vmlinux: file format elf32-i386 162 > 163 > Sections: 164 > Idx Name Size VMA LMA File off Algn 165 > 0 .text 00098f40 c0100000 c0100000 00001000 2**4 166 > CONTENTS, ALLOC, LOAD, READONLY, CODE 167 > 1 .fixup 000016bc c0198f40 c0198f40 00099f40 2**0 168 > CONTENTS, ALLOC, LOAD, READONLY, CODE 169 > 2 .rodata 0000f127 c019a5fc c019a5fc 0009b5fc 2**2 170 > CONTENTS, ALLOC, LOAD, READONLY, DATA 171 > 3 __ex_table 000015c0 c01a9724 c01a9724 000aa724 2**2 172 > CONTENTS, ALLOC, LOAD, READONLY, DATA 173 > 4 .data 0000ea58 c01abcf0 c01abcf0 000abcf0 2**4 174 > CONTENTS, ALLOC, LOAD, DATA 175 > 5 .bss 00018e21 c01ba748 c01ba748 000ba748 2**2 176 > ALLOC 177 > 6 .comment 00000ec4 00000000 00000000 000ba748 2**0 178 > CONTENTS, READONLY 179 > 7 .note 00001068 00000ec4 00000ec4 000bb60c 2**0 180 > CONTENTS, READONLY 181 182There are obviously 2 non standard ELF sections in the generated object 183file. But first we want to find out what happened to our code in the 184final kernel executable: 185 186 > objdump --disassemble --section=.text vmlinux 187 > 188 > c017e785 <do_con_write+c1> xorl %edx,%edx 189 > c017e787 <do_con_write+c3> movl 0xc01c7bec,%eax 190 > c017e78c <do_con_write+c8> cmpl $0x18,0x314(%eax) 191 > c017e793 <do_con_write+cf> je c017e79f <do_con_write+db> 192 > c017e795 <do_con_write+d1> cmpl $0xbfffffff,0x40(%esp,1) 193 > c017e79d <do_con_write+d9> ja c017e7a7 <do_con_write+e3> 194 > c017e79f <do_con_write+db> movl %edx,%eax 195 > c017e7a1 <do_con_write+dd> movl 0x40(%esp,1),%ebx 196 > c017e7a5 <do_con_write+e1> movb (%ebx),%dl 197 > c017e7a7 <do_con_write+e3> movzbl %dl,%esi 198 199The whole user memory access is reduced to 10 x86 machine instructions. 200The instructions bracketed in the .section directives are no longer 201in the normal execution path. They are located in a different section 202of the executable file: 203 204 > objdump --disassemble --section=.fixup vmlinux 205 > 206 > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax 207 > c0199ffa <.fixup+10ba> xorb %dl,%dl 208 > c0199ffc <.fixup+10bc> jmp c017e7a7 <do_con_write+e3> 209 210And finally: 211 > objdump --full-contents --section=__ex_table vmlinux 212 > 213 > c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0 ................ 214 > c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0 ................ 215 > c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0 ................ 216 217or in human readable byte order: 218 219 > c01aa7c4 c017c093 c0199fe0 c017c097 c017c099 ................ 220 > c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................ 221 ^^^^^^^^^^^^^^^^^ 222 this is the interesting part! 223 > c01aa7e4 c0180a08 c019a001 c0180a0a c019a004 ................ 224 225What happened? The assembly directives 226 227.section .fixup,"ax" 228.section __ex_table,"a" 229 230told the assembler to move the following code to the specified 231sections in the ELF object file. So the instructions 2323: movl $-14,%eax 233 xorb %dl,%dl 234 jmp 2b 235ended up in the .fixup section of the object file and the addresses 236 .long 1b,3b 237ended up in the __ex_table section of the object file. 1b and 3b 238are local labels. The local label 1b (1b stands for next label 1 239backward) is the address of the instruction that might fault, i.e. 240in our case the address of the label 1 is c017e7a5: 241the original assembly code: > 1: movb (%ebx),%dl 242and linked in vmlinux : > c017e7a5 <do_con_write+e1> movb (%ebx),%dl 243 244The local label 3 (backwards again) is the address of the code to handle 245the fault, in our case the actual value is c0199ff5: 246the original assembly code: > 3: movl $-14,%eax 247and linked in vmlinux : > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax 248 249The assembly code 250 > .section __ex_table,"a" 251 > .align 4 252 > .long 1b,3b 253 254becomes the value pair 255 > c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5 ................ 256 ^this is ^this is 257 1b 3b 258c017e7a5,c0199ff5 in the exception table of the kernel. 259 260So, what actually happens if a fault from kernel mode with no suitable 261vma occurs? 262 2631.) access to invalid address: 264 > c017e7a5 <do_con_write+e1> movb (%ebx),%dl 2652.) MMU generates exception 2663.) CPU calls do_page_fault 2674.) do page fault calls search_exception_table (regs->eip == c017e7a5); 2685.) search_exception_table looks up the address c017e7a5 in the 269 exception table (i.e. the contents of the ELF section __ex_table) 270 and returns the address of the associated fault handle code c0199ff5. 2716.) do_page_fault modifies its own return address to point to the fault 272 handle code and returns. 2737.) execution continues in the fault handling code. 2748.) 8a) EAX becomes -EFAULT (== -14) 275 8b) DL becomes zero (the value we "read" from user space) 276 8c) execution continues at local label 2 (address of the 277 instruction immediately after the faulting user access). 278 279The steps 8a to 8c in a certain way emulate the faulting instruction. 280 281That's it, mostly. If you look at our example, you might ask why 282we set EAX to -EFAULT in the exception handler code. Well, the 283get_user macro actually returns a value: 0, if the user access was 284successful, -EFAULT on failure. Our original code did not test this 285return value, however the inline assembly code in get_user tries to 286return -EFAULT. GCC selected EAX to return this value. 287 288NOTE: 289Due to the way that the exception table is built and needs to be ordered, 290only use exceptions for code in the .text section. Any other section 291will cause the exception table to not be sorted correctly, and the 292exceptions will fail. 293