1 /*
2 * linux/arch/alpha/kernel/process.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 */
6
7 /*
8 * This file handles the architecture-dependent parts of process handling.
9 */
10
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/slab.h>
21 #include <linux/user.h>
22 #include <linux/utsname.h>
23 #include <linux/time.h>
24 #include <linux/major.h>
25 #include <linux/stat.h>
26 #include <linux/vt.h>
27 #include <linux/mman.h>
28 #include <linux/elfcore.h>
29 #include <linux/reboot.h>
30 #include <linux/tty.h>
31 #include <linux/console.h>
32
33 #include <asm/reg.h>
34 #include <asm/uaccess.h>
35 #include <asm/system.h>
36 #include <asm/io.h>
37 #include <asm/pgtable.h>
38 #include <asm/hwrpb.h>
39 #include <asm/fpu.h>
40
41 #include "proto.h"
42 #include "pci_impl.h"
43
44 /*
45 * Power off function, if any
46 */
47 void (*pm_power_off)(void) = machine_power_off;
48 EXPORT_SYMBOL(pm_power_off);
49
50 void
cpu_idle(void)51 cpu_idle(void)
52 {
53 set_thread_flag(TIF_POLLING_NRFLAG);
54
55 while (1) {
56 /* FIXME -- EV6 and LCA45 know how to power down
57 the CPU. */
58
59 while (!need_resched())
60 cpu_relax();
61 schedule();
62 }
63 }
64
65
66 struct halt_info {
67 int mode;
68 char *restart_cmd;
69 };
70
71 static void
common_shutdown_1(void * generic_ptr)72 common_shutdown_1(void *generic_ptr)
73 {
74 struct halt_info *how = (struct halt_info *)generic_ptr;
75 struct percpu_struct *cpup;
76 unsigned long *pflags, flags;
77 int cpuid = smp_processor_id();
78
79 /* No point in taking interrupts anymore. */
80 local_irq_disable();
81
82 cpup = (struct percpu_struct *)
83 ((unsigned long)hwrpb + hwrpb->processor_offset
84 + hwrpb->processor_size * cpuid);
85 pflags = &cpup->flags;
86 flags = *pflags;
87
88 /* Clear reason to "default"; clear "bootstrap in progress". */
89 flags &= ~0x00ff0001UL;
90
91 #ifdef CONFIG_SMP
92 /* Secondaries halt here. */
93 if (cpuid != boot_cpuid) {
94 flags |= 0x00040000UL; /* "remain halted" */
95 *pflags = flags;
96 set_cpu_present(cpuid, false);
97 set_cpu_possible(cpuid, false);
98 halt();
99 }
100 #endif
101
102 if (how->mode == LINUX_REBOOT_CMD_RESTART) {
103 if (!how->restart_cmd) {
104 flags |= 0x00020000UL; /* "cold bootstrap" */
105 } else {
106 /* For SRM, we could probably set environment
107 variables to get this to work. We'd have to
108 delay this until after srm_paging_stop unless
109 we ever got srm_fixup working.
110
111 At the moment, SRM will use the last boot device,
112 but the file and flags will be the defaults, when
113 doing a "warm" bootstrap. */
114 flags |= 0x00030000UL; /* "warm bootstrap" */
115 }
116 } else {
117 flags |= 0x00040000UL; /* "remain halted" */
118 }
119 *pflags = flags;
120
121 #ifdef CONFIG_SMP
122 /* Wait for the secondaries to halt. */
123 set_cpu_present(boot_cpuid, false);
124 set_cpu_possible(boot_cpuid, false);
125 while (cpus_weight(cpu_present_map))
126 barrier();
127 #endif
128
129 /* If booted from SRM, reset some of the original environment. */
130 if (alpha_using_srm) {
131 #ifdef CONFIG_DUMMY_CONSOLE
132 /* If we've gotten here after SysRq-b, leave interrupt
133 context before taking over the console. */
134 if (in_interrupt())
135 irq_exit();
136 /* This has the effect of resetting the VGA video origin. */
137 take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
138 #endif
139 pci_restore_srm_config();
140 set_hae(srm_hae);
141 }
142
143 if (alpha_mv.kill_arch)
144 alpha_mv.kill_arch(how->mode);
145
146 if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
147 /* Unfortunately, since MILO doesn't currently understand
148 the hwrpb bits above, we can't reliably halt the
149 processor and keep it halted. So just loop. */
150 return;
151 }
152
153 if (alpha_using_srm)
154 srm_paging_stop();
155
156 halt();
157 }
158
159 static void
common_shutdown(int mode,char * restart_cmd)160 common_shutdown(int mode, char *restart_cmd)
161 {
162 struct halt_info args;
163 args.mode = mode;
164 args.restart_cmd = restart_cmd;
165 on_each_cpu(common_shutdown_1, &args, 0);
166 }
167
168 void
machine_restart(char * restart_cmd)169 machine_restart(char *restart_cmd)
170 {
171 common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
172 }
173
174
175 void
machine_halt(void)176 machine_halt(void)
177 {
178 common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
179 }
180
181
182 void
machine_power_off(void)183 machine_power_off(void)
184 {
185 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
186 }
187
188
189 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever
190 saved in the context it's used. */
191
192 void
show_regs(struct pt_regs * regs)193 show_regs(struct pt_regs *regs)
194 {
195 dik_show_regs(regs, NULL);
196 }
197
198 /*
199 * Re-start a thread when doing execve()
200 */
201 void
start_thread(struct pt_regs * regs,unsigned long pc,unsigned long sp)202 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
203 {
204 set_fs(USER_DS);
205 regs->pc = pc;
206 regs->ps = 8;
207 wrusp(sp);
208 }
209 EXPORT_SYMBOL(start_thread);
210
211 /*
212 * Free current thread data structures etc..
213 */
214 void
exit_thread(void)215 exit_thread(void)
216 {
217 }
218
219 void
flush_thread(void)220 flush_thread(void)
221 {
222 /* Arrange for each exec'ed process to start off with a clean slate
223 with respect to the FPU. This is all exceptions disabled. */
224 current_thread_info()->ieee_state = 0;
225 wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
226
227 /* Clean slate for TLS. */
228 current_thread_info()->pcb.unique = 0;
229 }
230
231 void
release_thread(struct task_struct * dead_task)232 release_thread(struct task_struct *dead_task)
233 {
234 }
235
236 /*
237 * "alpha_clone()".. By the time we get here, the
238 * non-volatile registers have also been saved on the
239 * stack. We do some ugly pointer stuff here.. (see
240 * also copy_thread)
241 *
242 * Notice that "fork()" is implemented in terms of clone,
243 * with parameters (SIGCHLD, 0).
244 */
245 int
alpha_clone(unsigned long clone_flags,unsigned long usp,int __user * parent_tid,int __user * child_tid,unsigned long tls_value,struct pt_regs * regs)246 alpha_clone(unsigned long clone_flags, unsigned long usp,
247 int __user *parent_tid, int __user *child_tid,
248 unsigned long tls_value, struct pt_regs *regs)
249 {
250 if (!usp)
251 usp = rdusp();
252
253 return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
254 }
255
256 int
alpha_vfork(struct pt_regs * regs)257 alpha_vfork(struct pt_regs *regs)
258 {
259 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
260 regs, 0, NULL, NULL);
261 }
262
263 /*
264 * Copy an alpha thread..
265 *
266 * Note the "stack_offset" stuff: when returning to kernel mode, we need
267 * to have some extra stack-space for the kernel stack that still exists
268 * after the "ret_from_fork". When returning to user mode, we only want
269 * the space needed by the syscall stack frame (ie "struct pt_regs").
270 * Use the passed "regs" pointer to determine how much space we need
271 * for a kernel fork().
272 */
273
274 int
copy_thread(int nr,unsigned long clone_flags,unsigned long usp,unsigned long unused,struct task_struct * p,struct pt_regs * regs)275 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
276 unsigned long unused,
277 struct task_struct * p, struct pt_regs * regs)
278 {
279 extern void ret_from_fork(void);
280
281 struct thread_info *childti = task_thread_info(p);
282 struct pt_regs * childregs;
283 struct switch_stack * childstack, *stack;
284 unsigned long stack_offset, settls;
285
286 stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
287 if (!(regs->ps & 8))
288 stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
289 childregs = (struct pt_regs *)
290 (stack_offset + PAGE_SIZE + task_stack_page(p));
291
292 *childregs = *regs;
293 settls = regs->r20;
294 childregs->r0 = 0;
295 childregs->r19 = 0;
296 childregs->r20 = 1; /* OSF/1 has some strange fork() semantics. */
297 regs->r20 = 0;
298 stack = ((struct switch_stack *) regs) - 1;
299 childstack = ((struct switch_stack *) childregs) - 1;
300 *childstack = *stack;
301 childstack->r26 = (unsigned long) ret_from_fork;
302 childti->pcb.usp = usp;
303 childti->pcb.ksp = (unsigned long) childstack;
304 childti->pcb.flags = 1; /* set FEN, clear everything else */
305
306 /* Set a new TLS for the child thread? Peek back into the
307 syscall arguments that we saved on syscall entry. Oops,
308 except we'd have clobbered it with the parent/child set
309 of r20. Read the saved copy. */
310 /* Note: if CLONE_SETTLS is not set, then we must inherit the
311 value from the parent, which will have been set by the block
312 copy in dup_task_struct. This is non-intuitive, but is
313 required for proper operation in the case of a threaded
314 application calling fork. */
315 if (clone_flags & CLONE_SETTLS)
316 childti->pcb.unique = settls;
317
318 return 0;
319 }
320
321 /*
322 * Fill in the user structure for a ELF core dump.
323 */
324 void
dump_elf_thread(elf_greg_t * dest,struct pt_regs * pt,struct thread_info * ti)325 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
326 {
327 /* switch stack follows right below pt_regs: */
328 struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
329
330 dest[ 0] = pt->r0;
331 dest[ 1] = pt->r1;
332 dest[ 2] = pt->r2;
333 dest[ 3] = pt->r3;
334 dest[ 4] = pt->r4;
335 dest[ 5] = pt->r5;
336 dest[ 6] = pt->r6;
337 dest[ 7] = pt->r7;
338 dest[ 8] = pt->r8;
339 dest[ 9] = sw->r9;
340 dest[10] = sw->r10;
341 dest[11] = sw->r11;
342 dest[12] = sw->r12;
343 dest[13] = sw->r13;
344 dest[14] = sw->r14;
345 dest[15] = sw->r15;
346 dest[16] = pt->r16;
347 dest[17] = pt->r17;
348 dest[18] = pt->r18;
349 dest[19] = pt->r19;
350 dest[20] = pt->r20;
351 dest[21] = pt->r21;
352 dest[22] = pt->r22;
353 dest[23] = pt->r23;
354 dest[24] = pt->r24;
355 dest[25] = pt->r25;
356 dest[26] = pt->r26;
357 dest[27] = pt->r27;
358 dest[28] = pt->r28;
359 dest[29] = pt->gp;
360 dest[30] = rdusp();
361 dest[31] = pt->pc;
362
363 /* Once upon a time this was the PS value. Which is stupid
364 since that is always 8 for usermode. Usurped for the more
365 useful value of the thread's UNIQUE field. */
366 dest[32] = ti->pcb.unique;
367 }
368 EXPORT_SYMBOL(dump_elf_thread);
369
370 int
dump_elf_task(elf_greg_t * dest,struct task_struct * task)371 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
372 {
373 dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
374 return 1;
375 }
376 EXPORT_SYMBOL(dump_elf_task);
377
378 int
dump_elf_task_fp(elf_fpreg_t * dest,struct task_struct * task)379 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
380 {
381 struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
382 memcpy(dest, sw->fp, 32 * 8);
383 return 1;
384 }
385 EXPORT_SYMBOL(dump_elf_task_fp);
386
387 /*
388 * sys_execve() executes a new program.
389 */
390 asmlinkage int
do_sys_execve(char __user * ufilename,char __user * __user * argv,char __user * __user * envp,struct pt_regs * regs)391 do_sys_execve(char __user *ufilename, char __user * __user *argv,
392 char __user * __user *envp, struct pt_regs *regs)
393 {
394 int error;
395 char *filename;
396
397 filename = getname(ufilename);
398 error = PTR_ERR(filename);
399 if (IS_ERR(filename))
400 goto out;
401 error = do_execve(filename, argv, envp, regs);
402 putname(filename);
403 out:
404 return error;
405 }
406
407 /*
408 * Return saved PC of a blocked thread. This assumes the frame
409 * pointer is the 6th saved long on the kernel stack and that the
410 * saved return address is the first long in the frame. This all
411 * holds provided the thread blocked through a call to schedule() ($15
412 * is the frame pointer in schedule() and $15 is saved at offset 48 by
413 * entry.S:do_switch_stack).
414 *
415 * Under heavy swap load I've seen this lose in an ugly way. So do
416 * some extra sanity checking on the ranges we expect these pointers
417 * to be in so that we can fail gracefully. This is just for ps after
418 * all. -- r~
419 */
420
421 unsigned long
thread_saved_pc(struct task_struct * t)422 thread_saved_pc(struct task_struct *t)
423 {
424 unsigned long base = (unsigned long)task_stack_page(t);
425 unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
426
427 if (sp > base && sp+6*8 < base + 16*1024) {
428 fp = ((unsigned long*)sp)[6];
429 if (fp > sp && fp < base + 16*1024)
430 return *(unsigned long *)fp;
431 }
432
433 return 0;
434 }
435
436 unsigned long
get_wchan(struct task_struct * p)437 get_wchan(struct task_struct *p)
438 {
439 unsigned long schedule_frame;
440 unsigned long pc;
441 if (!p || p == current || p->state == TASK_RUNNING)
442 return 0;
443 /*
444 * This one depends on the frame size of schedule(). Do a
445 * "disass schedule" in gdb to find the frame size. Also, the
446 * code assumes that sleep_on() follows immediately after
447 * interruptible_sleep_on() and that add_timer() follows
448 * immediately after interruptible_sleep(). Ugly, isn't it?
449 * Maybe adding a wchan field to task_struct would be better,
450 * after all...
451 */
452
453 pc = thread_saved_pc(p);
454 if (in_sched_functions(pc)) {
455 schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
456 return ((unsigned long *)schedule_frame)[12];
457 }
458 return pc;
459 }
460