• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* MN10300 Kernel probes implementation
2  *
3  * Copyright (C) 2005 Red Hat, Inc. All Rights Reserved.
4  * Written by Mark Salter (msalter@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public Licence as published by
8  * the Free Software Foundation; either version 2 of the Licence, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public Licence for more details.
15  *
16  * You should have received a copy of the GNU General Public Licence
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 #include <linux/kprobes.h>
21 #include <linux/ptrace.h>
22 #include <linux/spinlock.h>
23 #include <linux/preempt.h>
24 #include <linux/kdebug.h>
25 #include <asm/cacheflush.h>
26 
27 struct kretprobe_blackpoint kretprobe_blacklist[] = { { NULL, NULL } };
28 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
29 
30 /* kprobe_status settings */
31 #define KPROBE_HIT_ACTIVE	0x00000001
32 #define KPROBE_HIT_SS		0x00000002
33 
34 static struct kprobe *current_kprobe;
35 static unsigned long current_kprobe_orig_pc;
36 static unsigned long current_kprobe_next_pc;
37 static int current_kprobe_ss_flags;
38 static unsigned long kprobe_status;
39 static kprobe_opcode_t current_kprobe_ss_buf[MAX_INSN_SIZE + 2];
40 static unsigned long current_kprobe_bp_addr;
41 
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43 
44 
45 /* singlestep flag bits */
46 #define SINGLESTEP_BRANCH 1
47 #define SINGLESTEP_PCREL  2
48 
49 #define READ_BYTE(p, valp) \
50 	do { *(u8 *)(valp) = *(u8 *)(p); } while (0)
51 
52 #define READ_WORD16(p, valp)					\
53 	do {							\
54 		READ_BYTE((p), (valp));				\
55 		READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\
56 	} while (0)
57 
58 #define READ_WORD32(p, valp)					\
59 	do {							\
60 		READ_BYTE((p), (valp));				\
61 		READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\
62 		READ_BYTE((u8 *)(p) + 2, (u8 *)(valp) + 2);	\
63 		READ_BYTE((u8 *)(p) + 3, (u8 *)(valp) + 3);	\
64 	} while (0)
65 
66 
67 static const u8 mn10300_insn_sizes[256] =
68 {
69 	/* 1  2  3  4  5  6  7  8  9  a  b  c  d  e  f */
70 	1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3,	/* 0 */
71 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */
72 	2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */
73 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */
74 	1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */
75 	1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */
76 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */
77 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */
78 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */
79 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */
80 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */
81 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */
82 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */
83 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */
84 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */
85 	0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1  /* f */
86 };
87 
88 #define LT (1 << 0)
89 #define GT (1 << 1)
90 #define GE (1 << 2)
91 #define LE (1 << 3)
92 #define CS (1 << 4)
93 #define HI (1 << 5)
94 #define CC (1 << 6)
95 #define LS (1 << 7)
96 #define EQ (1 << 8)
97 #define NE (1 << 9)
98 #define RA (1 << 10)
99 #define VC (1 << 11)
100 #define VS (1 << 12)
101 #define NC (1 << 13)
102 #define NS (1 << 14)
103 
104 static const u16 cond_table[] = {
105 	/*  V  C  N  Z  */
106 	/*  0  0  0  0  */ (NE | NC | CC | VC | GE | GT | HI),
107 	/*  0  0  0  1  */ (EQ | NC | CC | VC | GE | LE | LS),
108 	/*  0  0  1  0  */ (NE | NS | CC | VC | LT | LE | HI),
109 	/*  0  0  1  1  */ (EQ | NS | CC | VC | LT | LE | LS),
110 	/*  0  1  0  0  */ (NE | NC | CS | VC | GE | GT | LS),
111 	/*  0  1  0  1  */ (EQ | NC | CS | VC | GE | LE | LS),
112 	/*  0  1  1  0  */ (NE | NS | CS | VC | LT | LE | LS),
113 	/*  0  1  1  1  */ (EQ | NS | CS | VC | LT | LE | LS),
114 	/*  1  0  0  0  */ (NE | NC | CC | VS | LT | LE | HI),
115 	/*  1  0  0  1  */ (EQ | NC | CC | VS | LT | LE | LS),
116 	/*  1  0  1  0  */ (NE | NS | CC | VS | GE | GT | HI),
117 	/*  1  0  1  1  */ (EQ | NS | CC | VS | GE | LE | LS),
118 	/*  1  1  0  0  */ (NE | NC | CS | VS | LT | LE | LS),
119 	/*  1  1  0  1  */ (EQ | NC | CS | VS | LT | LE | LS),
120 	/*  1  1  1  0  */ (NE | NS | CS | VS | GE | GT | LS),
121 	/*  1  1  1  1  */ (EQ | NS | CS | VS | GE | LE | LS),
122 };
123 
124 /*
125  * Calculate what the PC will be after executing next instruction
126  */
find_nextpc(struct pt_regs * regs,int * flags)127 static unsigned find_nextpc(struct pt_regs *regs, int *flags)
128 {
129 	unsigned size;
130 	s8  x8;
131 	s16 x16;
132 	s32 x32;
133 	u8 opc, *pc, *sp, *next;
134 
135 	next = 0;
136 	*flags = SINGLESTEP_PCREL;
137 
138 	pc = (u8 *) regs->pc;
139 	sp = (u8 *) (regs + 1);
140 	opc = *pc;
141 
142 	size = mn10300_insn_sizes[opc];
143 	if (size > 0) {
144 		next = pc + size;
145 	} else {
146 		switch (opc) {
147 			/* Bxx (d8,PC) */
148 		case 0xc0 ... 0xca:
149 			x8 = 2;
150 			if (cond_table[regs->epsw & 0xf] & (1 << (opc & 0xf)))
151 				x8 = (s8)pc[1];
152 			next = pc + x8;
153 			*flags |= SINGLESTEP_BRANCH;
154 			break;
155 
156 			/* JMP (d16,PC) or CALL (d16,PC) */
157 		case 0xcc:
158 		case 0xcd:
159 			READ_WORD16(pc + 1, &x16);
160 			next = pc + x16;
161 			*flags |= SINGLESTEP_BRANCH;
162 			break;
163 
164 			/* JMP (d32,PC) or CALL (d32,PC) */
165 		case 0xdc:
166 		case 0xdd:
167 			READ_WORD32(pc + 1, &x32);
168 			next = pc + x32;
169 			*flags |= SINGLESTEP_BRANCH;
170 			break;
171 
172 			/* RETF */
173 		case 0xde:
174 			next = (u8 *)regs->mdr;
175 			*flags &= ~SINGLESTEP_PCREL;
176 			*flags |= SINGLESTEP_BRANCH;
177 			break;
178 
179 			/* RET */
180 		case 0xdf:
181 			sp += pc[2];
182 			READ_WORD32(sp, &x32);
183 			next = (u8 *)x32;
184 			*flags &= ~SINGLESTEP_PCREL;
185 			*flags |= SINGLESTEP_BRANCH;
186 			break;
187 
188 		case 0xf0:
189 			next = pc + 2;
190 			opc = pc[1];
191 			if (opc >= 0xf0 && opc <= 0xf7) {
192 				/* JMP (An) / CALLS (An) */
193 				switch (opc & 3) {
194 				case 0:
195 					next = (u8 *)regs->a0;
196 					break;
197 				case 1:
198 					next = (u8 *)regs->a1;
199 					break;
200 				case 2:
201 					next = (u8 *)regs->a2;
202 					break;
203 				case 3:
204 					next = (u8 *)regs->a3;
205 					break;
206 				}
207 				*flags &= ~SINGLESTEP_PCREL;
208 				*flags |= SINGLESTEP_BRANCH;
209 			} else if (opc == 0xfc) {
210 				/* RETS */
211 				READ_WORD32(sp, &x32);
212 				next = (u8 *)x32;
213 				*flags &= ~SINGLESTEP_PCREL;
214 				*flags |= SINGLESTEP_BRANCH;
215 			} else if (opc == 0xfd) {
216 				/* RTI */
217 				READ_WORD32(sp + 4, &x32);
218 				next = (u8 *)x32;
219 				*flags &= ~SINGLESTEP_PCREL;
220 				*flags |= SINGLESTEP_BRANCH;
221 			}
222 			break;
223 
224 			/* potential 3-byte conditional branches */
225 		case 0xf8:
226 			next = pc + 3;
227 			opc = pc[1];
228 			if (opc >= 0xe8 && opc <= 0xeb &&
229 			    (cond_table[regs->epsw & 0xf] &
230 			     (1 << ((opc & 0xf) + 3)))
231 			    ) {
232 				READ_BYTE(pc+2, &x8);
233 				next = pc + x8;
234 				*flags |= SINGLESTEP_BRANCH;
235 			}
236 			break;
237 
238 		case 0xfa:
239 			if (pc[1] == 0xff) {
240 				/* CALLS (d16,PC) */
241 				READ_WORD16(pc + 2, &x16);
242 				next = pc + x16;
243 			} else
244 				next = pc + 4;
245 			*flags |= SINGLESTEP_BRANCH;
246 			break;
247 
248 		case 0xfc:
249 			x32 = 6;
250 			if (pc[1] == 0xff) {
251 				/* CALLS (d32,PC) */
252 				READ_WORD32(pc + 2, &x32);
253 			}
254 			next = pc + x32;
255 			*flags |= SINGLESTEP_BRANCH;
256 			break;
257 			/* LXX (d8,PC) */
258 			/* SETLB - loads the next four bytes into the LIR reg */
259 		case 0xd0 ... 0xda:
260 		case 0xdb:
261 			panic("Can't singlestep Lxx/SETLB\n");
262 			break;
263 		}
264 	}
265 	return (unsigned)next;
266 
267 }
268 
269 /*
270  * set up out of place singlestep of some branching instructions
271  */
singlestep_branch_setup(struct pt_regs * regs)272 static unsigned __kprobes singlestep_branch_setup(struct pt_regs *regs)
273 {
274 	u8 opc, *pc, *sp, *next;
275 
276 	next = NULL;
277 	pc = (u8 *) regs->pc;
278 	sp = (u8 *) (regs + 1);
279 
280 	switch (pc[0]) {
281 	case 0xc0 ... 0xca:	/* Bxx (d8,PC) */
282 	case 0xcc:		/* JMP (d16,PC) */
283 	case 0xdc:		/* JMP (d32,PC) */
284 	case 0xf8:              /* Bxx (d8,PC)  3-byte version */
285 		/* don't really need to do anything except cause trap  */
286 		next = pc;
287 		break;
288 
289 	case 0xcd:		/* CALL (d16,PC) */
290 		pc[1] = 5;
291 		pc[2] = 0;
292 		next = pc + 5;
293 		break;
294 
295 	case 0xdd:		/* CALL (d32,PC) */
296 		pc[1] = 7;
297 		pc[2] = 0;
298 		pc[3] = 0;
299 		pc[4] = 0;
300 		next = pc + 7;
301 		break;
302 
303 	case 0xde:		/* RETF */
304 		next = pc + 3;
305 		regs->mdr = (unsigned) next;
306 		break;
307 
308 	case 0xdf:		/* RET */
309 		sp += pc[2];
310 		next = pc + 3;
311 		*(unsigned *)sp = (unsigned) next;
312 		break;
313 
314 	case 0xf0:
315 		next = pc + 2;
316 		opc = pc[1];
317 		if (opc >= 0xf0 && opc <= 0xf3) {
318 			/* CALLS (An) */
319 			/* use CALLS (d16,PC) to avoid mucking with An */
320 			pc[0] = 0xfa;
321 			pc[1] = 0xff;
322 			pc[2] = 4;
323 			pc[3] = 0;
324 			next = pc + 4;
325 		} else if (opc >= 0xf4 && opc <= 0xf7) {
326 			/* JMP (An) */
327 			next = pc;
328 		} else if (opc == 0xfc) {
329 			/* RETS */
330 			next = pc + 2;
331 			*(unsigned *) sp = (unsigned) next;
332 		} else if (opc == 0xfd) {
333 			/* RTI */
334 			next = pc + 2;
335 			*(unsigned *)(sp + 4) = (unsigned) next;
336 		}
337 		break;
338 
339 	case 0xfa:	/* CALLS (d16,PC) */
340 		pc[2] = 4;
341 		pc[3] = 0;
342 		next = pc + 4;
343 		break;
344 
345 	case 0xfc:	/* CALLS (d32,PC) */
346 		pc[2] = 6;
347 		pc[3] = 0;
348 		pc[4] = 0;
349 		pc[5] = 0;
350 		next = pc + 6;
351 		break;
352 
353 	case 0xd0 ... 0xda:	/* LXX (d8,PC) */
354 	case 0xdb:		/* SETLB */
355 		panic("Can't singlestep Lxx/SETLB\n");
356 	}
357 
358 	return (unsigned) next;
359 }
360 
arch_prepare_kprobe(struct kprobe * p)361 int __kprobes arch_prepare_kprobe(struct kprobe *p)
362 {
363 	return 0;
364 }
365 
arch_copy_kprobe(struct kprobe * p)366 void __kprobes arch_copy_kprobe(struct kprobe *p)
367 {
368 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
369 }
370 
arch_arm_kprobe(struct kprobe * p)371 void __kprobes arch_arm_kprobe(struct kprobe *p)
372 {
373 	*p->addr = BREAKPOINT_INSTRUCTION;
374 	flush_icache_range((unsigned long) p->addr,
375 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
376 }
377 
arch_disarm_kprobe(struct kprobe * p)378 void __kprobes arch_disarm_kprobe(struct kprobe *p)
379 {
380 	mn10300_dcache_flush();
381 	mn10300_icache_inv();
382 }
383 
arch_remove_kprobe(struct kprobe * p)384 void arch_remove_kprobe(struct kprobe *p)
385 {
386 }
387 
388 static inline
disarm_kprobe(struct kprobe * p,struct pt_regs * regs)389 void __kprobes disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
390 {
391 	*p->addr = p->opcode;
392 	regs->pc = (unsigned long) p->addr;
393 	mn10300_dcache_flush();
394 	mn10300_icache_inv();
395 }
396 
397 static inline
prepare_singlestep(struct kprobe * p,struct pt_regs * regs)398 void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
399 {
400 	unsigned long nextpc;
401 
402 	current_kprobe_orig_pc = regs->pc;
403 	memcpy(current_kprobe_ss_buf, &p->ainsn.insn[0], MAX_INSN_SIZE);
404 	regs->pc = (unsigned long) current_kprobe_ss_buf;
405 
406 	nextpc = find_nextpc(regs, &current_kprobe_ss_flags);
407 	if (current_kprobe_ss_flags & SINGLESTEP_PCREL)
408 		current_kprobe_next_pc =
409 			current_kprobe_orig_pc + (nextpc - regs->pc);
410 	else
411 		current_kprobe_next_pc = nextpc;
412 
413 	/* branching instructions need special handling */
414 	if (current_kprobe_ss_flags & SINGLESTEP_BRANCH)
415 		nextpc = singlestep_branch_setup(regs);
416 
417 	current_kprobe_bp_addr = nextpc;
418 
419 	*(u8 *) nextpc = BREAKPOINT_INSTRUCTION;
420 	mn10300_dcache_flush_range2((unsigned) current_kprobe_ss_buf,
421 				    sizeof(current_kprobe_ss_buf));
422 	mn10300_icache_inv();
423 }
424 
kprobe_handler(struct pt_regs * regs)425 static inline int __kprobes kprobe_handler(struct pt_regs *regs)
426 {
427 	struct kprobe *p;
428 	int ret = 0;
429 	unsigned int *addr = (unsigned int *) regs->pc;
430 
431 	/* We're in an interrupt, but this is clear and BUG()-safe. */
432 	preempt_disable();
433 
434 	/* Check we're not actually recursing */
435 	if (kprobe_running()) {
436 		/* We *are* holding lock here, so this is safe.
437 		   Disarm the probe we just hit, and ignore it. */
438 		p = get_kprobe(addr);
439 		if (p) {
440 			disarm_kprobe(p, regs);
441 			ret = 1;
442 		} else {
443 			p = current_kprobe;
444 			if (p->break_handler && p->break_handler(p, regs))
445 				goto ss_probe;
446 		}
447 		/* If it's not ours, can't be delete race, (we hold lock). */
448 		goto no_kprobe;
449 	}
450 
451 	p = get_kprobe(addr);
452 	if (!p) {
453 		if (*addr != BREAKPOINT_INSTRUCTION) {
454 			/* The breakpoint instruction was removed right after
455 			 * we hit it.  Another cpu has removed either a
456 			 * probepoint or a debugger breakpoint at this address.
457 			 * In either case, no further handling of this
458 			 * interrupt is appropriate.
459 			 */
460 			ret = 1;
461 		}
462 		/* Not one of ours: let kernel handle it */
463 		goto no_kprobe;
464 	}
465 
466 	kprobe_status = KPROBE_HIT_ACTIVE;
467 	current_kprobe = p;
468 	if (p->pre_handler(p, regs)) {
469 		/* handler has already set things up, so skip ss setup */
470 		return 1;
471 	}
472 
473 ss_probe:
474 	prepare_singlestep(p, regs);
475 	kprobe_status = KPROBE_HIT_SS;
476 	return 1;
477 
478 no_kprobe:
479 	preempt_enable_no_resched();
480 	return ret;
481 }
482 
483 /*
484  * Called after single-stepping.  p->addr is the address of the
485  * instruction whose first byte has been replaced by the "breakpoint"
486  * instruction.  To avoid the SMP problems that can occur when we
487  * temporarily put back the original opcode to single-step, we
488  * single-stepped a copy of the instruction.  The address of this
489  * copy is p->ainsn.insn.
490  */
resume_execution(struct kprobe * p,struct pt_regs * regs)491 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
492 {
493 	/* we may need to fixup regs/stack after singlestepping a call insn */
494 	if (current_kprobe_ss_flags & SINGLESTEP_BRANCH) {
495 		regs->pc = current_kprobe_orig_pc;
496 		switch (p->ainsn.insn[0]) {
497 		case 0xcd:	/* CALL (d16,PC) */
498 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 5;
499 			break;
500 		case 0xdd:	/* CALL (d32,PC) */
501 			/* fixup mdr and return address on stack */
502 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 7;
503 			break;
504 		case 0xf0:
505 			if (p->ainsn.insn[1] >= 0xf0 &&
506 			    p->ainsn.insn[1] <= 0xf3) {
507 				/* CALLS (An) */
508 				/* fixup MDR and return address on stack */
509 				regs->mdr = regs->pc + 2;
510 				*(unsigned *) regs->sp = regs->mdr;
511 			}
512 			break;
513 
514 		case 0xfa:	/* CALLS (d16,PC) */
515 			/* fixup MDR and return address on stack */
516 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 4;
517 			break;
518 
519 		case 0xfc:	/* CALLS (d32,PC) */
520 			/* fixup MDR and return address on stack */
521 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 6;
522 			break;
523 		}
524 	}
525 
526 	regs->pc = current_kprobe_next_pc;
527 	current_kprobe_bp_addr = 0;
528 }
529 
post_kprobe_handler(struct pt_regs * regs)530 static inline int __kprobes post_kprobe_handler(struct pt_regs *regs)
531 {
532 	if (!kprobe_running())
533 		return 0;
534 
535 	if (current_kprobe->post_handler)
536 		current_kprobe->post_handler(current_kprobe, regs, 0);
537 
538 	resume_execution(current_kprobe, regs);
539 	reset_current_kprobe();
540 	preempt_enable_no_resched();
541 	return 1;
542 }
543 
544 /* Interrupts disabled, kprobe_lock held. */
545 static inline
kprobe_fault_handler(struct pt_regs * regs,int trapnr)546 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
547 {
548 	if (current_kprobe->fault_handler &&
549 	    current_kprobe->fault_handler(current_kprobe, regs, trapnr))
550 		return 1;
551 
552 	if (kprobe_status & KPROBE_HIT_SS) {
553 		resume_execution(current_kprobe, regs);
554 		reset_current_kprobe();
555 		preempt_enable_no_resched();
556 	}
557 	return 0;
558 }
559 
560 /*
561  * Wrapper routine to for handling exceptions.
562  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)563 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
564 				       unsigned long val, void *data)
565 {
566 	struct die_args *args = data;
567 
568 	switch (val) {
569 	case DIE_BREAKPOINT:
570 		if (current_kprobe_bp_addr != args->regs->pc) {
571 			if (kprobe_handler(args->regs))
572 				return NOTIFY_STOP;
573 		} else {
574 			if (post_kprobe_handler(args->regs))
575 				return NOTIFY_STOP;
576 		}
577 		break;
578 	case DIE_GPF:
579 		if (kprobe_running() &&
580 		    kprobe_fault_handler(args->regs, args->trapnr))
581 			return NOTIFY_STOP;
582 		break;
583 	default:
584 		break;
585 	}
586 	return NOTIFY_DONE;
587 }
588 
589 /* Jprobes support.  */
590 static struct pt_regs jprobe_saved_regs;
591 static struct pt_regs *jprobe_saved_regs_location;
592 static kprobe_opcode_t jprobe_saved_stack[MAX_STACK_SIZE];
593 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)594 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
595 {
596 	struct jprobe *jp = container_of(p, struct jprobe, kp);
597 
598 	jprobe_saved_regs_location = regs;
599 	memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs));
600 
601 	/* Save a whole stack frame, this gets arguments
602 	 * pushed onto the stack after using up all the
603 	 * arg registers.
604 	 */
605 	memcpy(&jprobe_saved_stack, regs + 1, sizeof(jprobe_saved_stack));
606 
607 	/* setup return addr to the jprobe handler routine */
608 	regs->pc = (unsigned long) jp->entry;
609 	return 1;
610 }
611 
jprobe_return(void)612 void __kprobes jprobe_return(void)
613 {
614 	void *orig_sp = jprobe_saved_regs_location + 1;
615 
616 	preempt_enable_no_resched();
617 	asm volatile("		mov	%0,sp\n"
618 		     ".globl	jprobe_return_bp_addr\n"
619 		     "jprobe_return_bp_addr:\n\t"
620 		     "		.byte	0xff\n"
621 		     : : "d" (orig_sp));
622 }
623 
624 extern void jprobe_return_bp_addr(void);
625 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)626 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
627 {
628 	u8 *addr = (u8 *) regs->pc;
629 
630 	if (addr == (u8 *) jprobe_return_bp_addr) {
631 		if (jprobe_saved_regs_location != regs) {
632 			printk(KERN_ERR"JPROBE:"
633 			       " Current regs (%p) does not match saved regs"
634 			       " (%p).\n",
635 			       regs, jprobe_saved_regs_location);
636 			BUG();
637 		}
638 
639 		/* Restore old register state.
640 		 */
641 		memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs));
642 
643 		memcpy(regs + 1, &jprobe_saved_stack,
644 		       sizeof(jprobe_saved_stack));
645 		return 1;
646 	}
647 	return 0;
648 }
649 
arch_init_kprobes(void)650 int __init arch_init_kprobes(void)
651 {
652 	return 0;
653 }
654