• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 #include <asm/uaccess.h>
31 #include <linux/module.h>
32 
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35 
36 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
37 
arch_prepare_kprobe(struct kprobe * p)38 int __kprobes arch_prepare_kprobe(struct kprobe *p)
39 {
40 	/* Make sure the probe isn't going on a difficult instruction */
41 	if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
42 		return -EINVAL;
43 
44 	if ((unsigned long)p->addr & 0x01)
45 		return -EINVAL;
46 
47 	/* Use the get_insn_slot() facility for correctness */
48 	if (!(p->ainsn.insn = get_insn_slot()))
49 		return -ENOMEM;
50 
51 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
52 
53 	get_instruction_type(&p->ainsn);
54 	p->opcode = *p->addr;
55 	return 0;
56 }
57 
is_prohibited_opcode(kprobe_opcode_t * instruction)58 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
59 {
60 	switch (*(__u8 *) instruction) {
61 	case 0x0c:	/* bassm */
62 	case 0x0b:	/* bsm	 */
63 	case 0x83:	/* diag  */
64 	case 0x44:	/* ex	 */
65 		return -EINVAL;
66 	}
67 	switch (*(__u16 *) instruction) {
68 	case 0x0101:	/* pr	 */
69 	case 0xb25a:	/* bsa	 */
70 	case 0xb240:	/* bakr  */
71 	case 0xb258:	/* bsg	 */
72 	case 0xb218:	/* pc	 */
73 	case 0xb228:	/* pt	 */
74 		return -EINVAL;
75 	}
76 	return 0;
77 }
78 
get_instruction_type(struct arch_specific_insn * ainsn)79 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
80 {
81 	/* default fixup method */
82 	ainsn->fixup = FIXUP_PSW_NORMAL;
83 
84 	/* save r1 operand */
85 	ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
86 
87 	/* save the instruction length (pop 5-5) in bytes */
88 	switch (*(__u8 *) (ainsn->insn) >> 6) {
89 	case 0:
90 		ainsn->ilen = 2;
91 		break;
92 	case 1:
93 	case 2:
94 		ainsn->ilen = 4;
95 		break;
96 	case 3:
97 		ainsn->ilen = 6;
98 		break;
99 	}
100 
101 	switch (*(__u8 *) ainsn->insn) {
102 	case 0x05:	/* balr	*/
103 	case 0x0d:	/* basr */
104 		ainsn->fixup = FIXUP_RETURN_REGISTER;
105 		/* if r2 = 0, no branch will be taken */
106 		if ((*ainsn->insn & 0x0f) == 0)
107 			ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
108 		break;
109 	case 0x06:	/* bctr	*/
110 	case 0x07:	/* bcr	*/
111 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
112 		break;
113 	case 0x45:	/* bal	*/
114 	case 0x4d:	/* bas	*/
115 		ainsn->fixup = FIXUP_RETURN_REGISTER;
116 		break;
117 	case 0x47:	/* bc	*/
118 	case 0x46:	/* bct	*/
119 	case 0x86:	/* bxh	*/
120 	case 0x87:	/* bxle	*/
121 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
122 		break;
123 	case 0x82:	/* lpsw	*/
124 		ainsn->fixup = FIXUP_NOT_REQUIRED;
125 		break;
126 	case 0xb2:	/* lpswe */
127 		if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
128 			ainsn->fixup = FIXUP_NOT_REQUIRED;
129 		}
130 		break;
131 	case 0xa7:	/* bras	*/
132 		if ((*ainsn->insn & 0x0f) == 0x05) {
133 			ainsn->fixup |= FIXUP_RETURN_REGISTER;
134 		}
135 		break;
136 	case 0xc0:
137 		if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
138 			|| (*ainsn->insn & 0x0f) == 0x05) /* brasl */
139 		ainsn->fixup |= FIXUP_RETURN_REGISTER;
140 		break;
141 	case 0xeb:
142 		if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||	/* bxhg  */
143 			*(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
144 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
145 		}
146 		break;
147 	case 0xe3:	/* bctg	*/
148 		if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
149 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
150 		}
151 		break;
152 	}
153 }
154 
swap_instruction(void * aref)155 static int __kprobes swap_instruction(void *aref)
156 {
157 	struct ins_replace_args *args = aref;
158 	u32 *addr;
159 	u32 instr;
160 	int err = -EFAULT;
161 
162 	/*
163 	 * Text segment is read-only, hence we use stura to bypass dynamic
164 	 * address translation to exchange the instruction. Since stura
165 	 * always operates on four bytes, but we only want to exchange two
166 	 * bytes do some calculations to get things right. In addition we
167 	 * shall not cross any page boundaries (vmalloc area!) when writing
168 	 * the new instruction.
169 	 */
170 	addr = (u32 *)((unsigned long)args->ptr & -4UL);
171 	if ((unsigned long)args->ptr & 2)
172 		instr = ((*addr) & 0xffff0000) | args->new;
173 	else
174 		instr = ((*addr) & 0x0000ffff) | args->new << 16;
175 
176 	asm volatile(
177 		"	lra	%1,0(%1)\n"
178 		"0:	stura	%2,%1\n"
179 		"1:	la	%0,0\n"
180 		"2:\n"
181 		EX_TABLE(0b,2b)
182 		: "+d" (err)
183 		: "a" (addr), "d" (instr)
184 		: "memory", "cc");
185 
186 	return err;
187 }
188 
arch_arm_kprobe(struct kprobe * p)189 void __kprobes arch_arm_kprobe(struct kprobe *p)
190 {
191 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
192 	unsigned long status = kcb->kprobe_status;
193 	struct ins_replace_args args;
194 
195 	args.ptr = p->addr;
196 	args.old = p->opcode;
197 	args.new = BREAKPOINT_INSTRUCTION;
198 
199 	kcb->kprobe_status = KPROBE_SWAP_INST;
200 	stop_machine(swap_instruction, &args, NULL);
201 	kcb->kprobe_status = status;
202 }
203 
arch_disarm_kprobe(struct kprobe * p)204 void __kprobes arch_disarm_kprobe(struct kprobe *p)
205 {
206 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
207 	unsigned long status = kcb->kprobe_status;
208 	struct ins_replace_args args;
209 
210 	args.ptr = p->addr;
211 	args.old = BREAKPOINT_INSTRUCTION;
212 	args.new = p->opcode;
213 
214 	kcb->kprobe_status = KPROBE_SWAP_INST;
215 	stop_machine(swap_instruction, &args, NULL);
216 	kcb->kprobe_status = status;
217 }
218 
arch_remove_kprobe(struct kprobe * p)219 void __kprobes arch_remove_kprobe(struct kprobe *p)
220 {
221 	if (p->ainsn.insn) {
222 		free_insn_slot(p->ainsn.insn, 0);
223 		p->ainsn.insn = NULL;
224 	}
225 }
226 
prepare_singlestep(struct kprobe * p,struct pt_regs * regs)227 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
228 {
229 	per_cr_bits kprobe_per_regs[1];
230 
231 	memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
232 	regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
233 
234 	/* Set up the per control reg info, will pass to lctl */
235 	kprobe_per_regs[0].em_instruction_fetch = 1;
236 	kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
237 	kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
238 
239 	/* Set the PER control regs, turns on single step for this address */
240 	__ctl_load(kprobe_per_regs, 9, 11);
241 	regs->psw.mask |= PSW_MASK_PER;
242 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
243 }
244 
save_previous_kprobe(struct kprobe_ctlblk * kcb)245 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
246 {
247 	kcb->prev_kprobe.kp = kprobe_running();
248 	kcb->prev_kprobe.status = kcb->kprobe_status;
249 	kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
250 	memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
251 					sizeof(kcb->kprobe_saved_ctl));
252 }
253 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)254 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
255 {
256 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
257 	kcb->kprobe_status = kcb->prev_kprobe.status;
258 	kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
259 	memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
260 					sizeof(kcb->kprobe_saved_ctl));
261 }
262 
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)263 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
264 						struct kprobe_ctlblk *kcb)
265 {
266 	__get_cpu_var(current_kprobe) = p;
267 	/* Save the interrupt and per flags */
268 	kcb->kprobe_saved_imask = regs->psw.mask &
269 	    (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
270 	/* Save the control regs that govern PER */
271 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
272 }
273 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)274 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
275 					struct pt_regs *regs)
276 {
277 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
278 
279 	/* Replace the return addr with trampoline addr */
280 	regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
281 }
282 
kprobe_handler(struct pt_regs * regs)283 static int __kprobes kprobe_handler(struct pt_regs *regs)
284 {
285 	struct kprobe *p;
286 	int ret = 0;
287 	unsigned long *addr = (unsigned long *)
288 		((regs->psw.addr & PSW_ADDR_INSN) - 2);
289 	struct kprobe_ctlblk *kcb;
290 
291 	/*
292 	 * We don't want to be preempted for the entire
293 	 * duration of kprobe processing
294 	 */
295 	preempt_disable();
296 	kcb = get_kprobe_ctlblk();
297 
298 	/* Check we're not actually recursing */
299 	if (kprobe_running()) {
300 		p = get_kprobe(addr);
301 		if (p) {
302 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
303 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
304 				regs->psw.mask &= ~PSW_MASK_PER;
305 				regs->psw.mask |= kcb->kprobe_saved_imask;
306 				goto no_kprobe;
307 			}
308 			/* We have reentered the kprobe_handler(), since
309 			 * another probe was hit while within the handler.
310 			 * We here save the original kprobes variables and
311 			 * just single step on the instruction of the new probe
312 			 * without calling any user handlers.
313 			 */
314 			save_previous_kprobe(kcb);
315 			set_current_kprobe(p, regs, kcb);
316 			kprobes_inc_nmissed_count(p);
317 			prepare_singlestep(p, regs);
318 			kcb->kprobe_status = KPROBE_REENTER;
319 			return 1;
320 		} else {
321 			p = __get_cpu_var(current_kprobe);
322 			if (p->break_handler && p->break_handler(p, regs)) {
323 				goto ss_probe;
324 			}
325 		}
326 		goto no_kprobe;
327 	}
328 
329 	p = get_kprobe(addr);
330 	if (!p)
331 		/*
332 		 * No kprobe at this address. The fault has not been
333 		 * caused by a kprobe breakpoint. The race of breakpoint
334 		 * vs. kprobe remove does not exist because on s390 we
335 		 * use stop_machine to arm/disarm the breakpoints.
336 		 */
337 		goto no_kprobe;
338 
339 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
340 	set_current_kprobe(p, regs, kcb);
341 	if (p->pre_handler && p->pre_handler(p, regs))
342 		/* handler has already set things up, so skip ss setup */
343 		return 1;
344 
345 ss_probe:
346 	prepare_singlestep(p, regs);
347 	kcb->kprobe_status = KPROBE_HIT_SS;
348 	return 1;
349 
350 no_kprobe:
351 	preempt_enable_no_resched();
352 	return ret;
353 }
354 
355 /*
356  * Function return probe trampoline:
357  *	- init_kprobes() establishes a probepoint here
358  *	- When the probed function returns, this probe
359  *		causes the handlers to fire
360  */
kretprobe_trampoline_holder(void)361 static void __used kretprobe_trampoline_holder(void)
362 {
363 	asm volatile(".global kretprobe_trampoline\n"
364 		     "kretprobe_trampoline: bcr 0,0\n");
365 }
366 
367 /*
368  * Called when the probe at kretprobe trampoline is hit
369  */
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)370 static int __kprobes trampoline_probe_handler(struct kprobe *p,
371 					      struct pt_regs *regs)
372 {
373 	struct kretprobe_instance *ri = NULL;
374 	struct hlist_head *head, empty_rp;
375 	struct hlist_node *node, *tmp;
376 	unsigned long flags, orig_ret_address = 0;
377 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
378 
379 	INIT_HLIST_HEAD(&empty_rp);
380 	kretprobe_hash_lock(current, &head, &flags);
381 
382 	/*
383 	 * It is possible to have multiple instances associated with a given
384 	 * task either because an multiple functions in the call path
385 	 * have a return probe installed on them, and/or more than one return
386 	 * return probe was registered for a target function.
387 	 *
388 	 * We can handle this because:
389 	 *     - instances are always inserted at the head of the list
390 	 *     - when multiple return probes are registered for the same
391 	 *	 function, the first instance's ret_addr will point to the
392 	 *	 real return address, and all the rest will point to
393 	 *	 kretprobe_trampoline
394 	 */
395 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
396 		if (ri->task != current)
397 			/* another task is sharing our hash bucket */
398 			continue;
399 
400 		if (ri->rp && ri->rp->handler)
401 			ri->rp->handler(ri, regs);
402 
403 		orig_ret_address = (unsigned long)ri->ret_addr;
404 		recycle_rp_inst(ri, &empty_rp);
405 
406 		if (orig_ret_address != trampoline_address) {
407 			/*
408 			 * This is the real return address. Any other
409 			 * instances associated with this task are for
410 			 * other calls deeper on the call stack
411 			 */
412 			break;
413 		}
414 	}
415 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
416 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
417 
418 	reset_current_kprobe();
419 	kretprobe_hash_unlock(current, &flags);
420 	preempt_enable_no_resched();
421 
422 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
423 		hlist_del(&ri->hlist);
424 		kfree(ri);
425 	}
426 	/*
427 	 * By returning a non-zero value, we are telling
428 	 * kprobe_handler() that we don't want the post_handler
429 	 * to run (and have re-enabled preemption)
430 	 */
431 	return 1;
432 }
433 
434 /*
435  * Called after single-stepping.  p->addr is the address of the
436  * instruction whose first byte has been replaced by the "breakpoint"
437  * instruction.  To avoid the SMP problems that can occur when we
438  * temporarily put back the original opcode to single-step, we
439  * single-stepped a copy of the instruction.  The address of this
440  * copy is p->ainsn.insn.
441  */
resume_execution(struct kprobe * p,struct pt_regs * regs)442 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
443 {
444 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
445 
446 	regs->psw.addr &= PSW_ADDR_INSN;
447 
448 	if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
449 		regs->psw.addr = (unsigned long)p->addr +
450 				((unsigned long)regs->psw.addr -
451 				 (unsigned long)p->ainsn.insn);
452 
453 	if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
454 		if ((unsigned long)regs->psw.addr -
455 		    (unsigned long)p->ainsn.insn == p->ainsn.ilen)
456 			regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
457 
458 	if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
459 		regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
460 						(regs->gprs[p->ainsn.reg] -
461 						(unsigned long)p->ainsn.insn))
462 						| PSW_ADDR_AMODE;
463 
464 	regs->psw.addr |= PSW_ADDR_AMODE;
465 	/* turn off PER mode */
466 	regs->psw.mask &= ~PSW_MASK_PER;
467 	/* Restore the original per control regs */
468 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
469 	regs->psw.mask |= kcb->kprobe_saved_imask;
470 }
471 
post_kprobe_handler(struct pt_regs * regs)472 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
473 {
474 	struct kprobe *cur = kprobe_running();
475 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476 
477 	if (!cur)
478 		return 0;
479 
480 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
481 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
482 		cur->post_handler(cur, regs, 0);
483 	}
484 
485 	resume_execution(cur, regs);
486 
487 	/*Restore back the original saved kprobes variables and continue. */
488 	if (kcb->kprobe_status == KPROBE_REENTER) {
489 		restore_previous_kprobe(kcb);
490 		goto out;
491 	}
492 	reset_current_kprobe();
493 out:
494 	preempt_enable_no_resched();
495 
496 	/*
497 	 * if somebody else is singlestepping across a probe point, psw mask
498 	 * will have PER set, in which case, continue the remaining processing
499 	 * of do_single_step, as if this is not a probe hit.
500 	 */
501 	if (regs->psw.mask & PSW_MASK_PER) {
502 		return 0;
503 	}
504 
505 	return 1;
506 }
507 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)508 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
509 {
510 	struct kprobe *cur = kprobe_running();
511 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
512 	const struct exception_table_entry *entry;
513 
514 	switch(kcb->kprobe_status) {
515 	case KPROBE_SWAP_INST:
516 		/* We are here because the instruction replacement failed */
517 		return 0;
518 	case KPROBE_HIT_SS:
519 	case KPROBE_REENTER:
520 		/*
521 		 * We are here because the instruction being single
522 		 * stepped caused a page fault. We reset the current
523 		 * kprobe and the nip points back to the probe address
524 		 * and allow the page fault handler to continue as a
525 		 * normal page fault.
526 		 */
527 		regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
528 		regs->psw.mask &= ~PSW_MASK_PER;
529 		regs->psw.mask |= kcb->kprobe_saved_imask;
530 		if (kcb->kprobe_status == KPROBE_REENTER)
531 			restore_previous_kprobe(kcb);
532 		else
533 			reset_current_kprobe();
534 		preempt_enable_no_resched();
535 		break;
536 	case KPROBE_HIT_ACTIVE:
537 	case KPROBE_HIT_SSDONE:
538 		/*
539 		 * We increment the nmissed count for accounting,
540 		 * we can also use npre/npostfault count for accouting
541 		 * these specific fault cases.
542 		 */
543 		kprobes_inc_nmissed_count(cur);
544 
545 		/*
546 		 * We come here because instructions in the pre/post
547 		 * handler caused the page_fault, this could happen
548 		 * if handler tries to access user space by
549 		 * copy_from_user(), get_user() etc. Let the
550 		 * user-specified handler try to fix it first.
551 		 */
552 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
553 			return 1;
554 
555 		/*
556 		 * In case the user-specified fault handler returned
557 		 * zero, try to fix up.
558 		 */
559 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
560 		if (entry) {
561 			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
562 			return 1;
563 		}
564 
565 		/*
566 		 * fixup_exception() could not handle it,
567 		 * Let do_page_fault() fix it.
568 		 */
569 		break;
570 	default:
571 		break;
572 	}
573 	return 0;
574 }
575 
576 /*
577  * Wrapper routine to for handling exceptions.
578  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)579 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
580 				       unsigned long val, void *data)
581 {
582 	struct die_args *args = (struct die_args *)data;
583 	int ret = NOTIFY_DONE;
584 
585 	switch (val) {
586 	case DIE_BPT:
587 		if (kprobe_handler(args->regs))
588 			ret = NOTIFY_STOP;
589 		break;
590 	case DIE_SSTEP:
591 		if (post_kprobe_handler(args->regs))
592 			ret = NOTIFY_STOP;
593 		break;
594 	case DIE_TRAP:
595 		/* kprobe_running() needs smp_processor_id() */
596 		preempt_disable();
597 		if (kprobe_running() &&
598 		    kprobe_fault_handler(args->regs, args->trapnr))
599 			ret = NOTIFY_STOP;
600 		preempt_enable();
601 		break;
602 	default:
603 		break;
604 	}
605 	return ret;
606 }
607 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)608 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
609 {
610 	struct jprobe *jp = container_of(p, struct jprobe, kp);
611 	unsigned long addr;
612 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
613 
614 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
615 
616 	/* setup return addr to the jprobe handler routine */
617 	regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
618 
619 	/* r14 is the function return address */
620 	kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
621 	/* r15 is the stack pointer */
622 	kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
623 	addr = (unsigned long)kcb->jprobe_saved_r15;
624 
625 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
626 	       MIN_STACK_SIZE(addr));
627 	return 1;
628 }
629 
jprobe_return(void)630 void __kprobes jprobe_return(void)
631 {
632 	asm volatile(".word 0x0002");
633 }
634 
jprobe_return_end(void)635 void __kprobes jprobe_return_end(void)
636 {
637 	asm volatile("bcr 0,0");
638 }
639 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)640 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
641 {
642 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
643 	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
644 
645 	/* Put the regs back */
646 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
647 	/* put the stack back */
648 	memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
649 	       MIN_STACK_SIZE(stack_addr));
650 	preempt_enable_no_resched();
651 	return 1;
652 }
653 
654 static struct kprobe trampoline_p = {
655 	.addr = (kprobe_opcode_t *) & kretprobe_trampoline,
656 	.pre_handler = trampoline_probe_handler
657 };
658 
arch_init_kprobes(void)659 int __init arch_init_kprobes(void)
660 {
661 	return register_kprobe(&trampoline_p);
662 }
663 
arch_trampoline_kprobe(struct kprobe * p)664 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
665 {
666 	if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
667 		return 1;
668 	return 0;
669 }
670