• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33 
34 #include <linux/netdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/delay.h>
37 #include <linux/pci.h>
38 
39 #include "e1000.h"
40 
41 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
42 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02
43 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10
44 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE	 0x1F
45 
46 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008
47 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800
48 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010
49 
50 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
51 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000
52 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE		 0x2000
53 
54 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
55 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000
56 
57 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8
58 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9
59 
60 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
61 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */
62 #define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060
63 #define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */
64 #define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */
65 #define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */
66 
67 /* PHY Specific Control Register 2 (Page 0, Register 26) */
68 #define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000
69 						/* 1=Reverse Auto-Negotiation */
70 
71 /* MAC Specific Control Register (Page 2, Register 21) */
72 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
73 #define GG82563_MSCR_TX_CLK_MASK		 0x0007
74 #define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004
75 #define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005
76 #define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007
77 
78 #define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */
79 
80 /* DSP Distance Register (Page 5, Register 26) */
81 #define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M
82 							   1 = 50-80M
83 							   2 = 80-110M
84 							   3 = 110-140M
85 							   4 = >140M */
86 
87 /* Kumeran Mode Control Register (Page 193, Register 16) */
88 #define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800
89 
90 /* Max number of times Kumeran read/write should be validated */
91 #define GG82563_MAX_KMRN_RETRY  0x5
92 
93 /* Power Management Control Register (Page 193, Register 20) */
94 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001
95 					   /* 1=Enable SERDES Electrical Idle */
96 
97 /* In-Band Control Register (Page 194, Register 18) */
98 #define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */
99 
100 /*
101  * A table for the GG82563 cable length where the range is defined
102  * with a lower bound at "index" and the upper bound at
103  * "index + 5".
104  */
105 static const u16 e1000_gg82563_cable_length_table[] =
106 	 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
107 
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117                                             u16 *data);
118 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119                                              u16 data);
120 
121 /**
122  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
123  *  @hw: pointer to the HW structure
124  *
125  *  This is a function pointer entry point called by the api module.
126  **/
e1000_init_phy_params_80003es2lan(struct e1000_hw * hw)127 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
128 {
129 	struct e1000_phy_info *phy = &hw->phy;
130 	s32 ret_val;
131 
132 	if (hw->phy.media_type != e1000_media_type_copper) {
133 		phy->type	= e1000_phy_none;
134 		return 0;
135 	}
136 
137 	phy->addr		= 1;
138 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
139 	phy->reset_delay_us      = 100;
140 	phy->type		= e1000_phy_gg82563;
141 
142 	/* This can only be done after all function pointers are setup. */
143 	ret_val = e1000e_get_phy_id(hw);
144 
145 	/* Verify phy id */
146 	if (phy->id != GG82563_E_PHY_ID)
147 		return -E1000_ERR_PHY;
148 
149 	return ret_val;
150 }
151 
152 /**
153  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
154  *  @hw: pointer to the HW structure
155  *
156  *  This is a function pointer entry point called by the api module.
157  **/
e1000_init_nvm_params_80003es2lan(struct e1000_hw * hw)158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
159 {
160 	struct e1000_nvm_info *nvm = &hw->nvm;
161 	u32 eecd = er32(EECD);
162 	u16 size;
163 
164 	nvm->opcode_bits	= 8;
165 	nvm->delay_usec	 = 1;
166 	switch (nvm->override) {
167 	case e1000_nvm_override_spi_large:
168 		nvm->page_size    = 32;
169 		nvm->address_bits = 16;
170 		break;
171 	case e1000_nvm_override_spi_small:
172 		nvm->page_size    = 8;
173 		nvm->address_bits = 8;
174 		break;
175 	default:
176 		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178 		break;
179 	}
180 
181 	nvm->type = e1000_nvm_eeprom_spi;
182 
183 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184 			  E1000_EECD_SIZE_EX_SHIFT);
185 
186 	/*
187 	 * Added to a constant, "size" becomes the left-shift value
188 	 * for setting word_size.
189 	 */
190 	size += NVM_WORD_SIZE_BASE_SHIFT;
191 
192 	/* EEPROM access above 16k is unsupported */
193 	if (size > 14)
194 		size = 14;
195 	nvm->word_size	= 1 << size;
196 
197 	return 0;
198 }
199 
200 /**
201  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202  *  @hw: pointer to the HW structure
203  *
204  *  This is a function pointer entry point called by the api module.
205  **/
e1000_init_mac_params_80003es2lan(struct e1000_adapter * adapter)206 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
207 {
208 	struct e1000_hw *hw = &adapter->hw;
209 	struct e1000_mac_info *mac = &hw->mac;
210 	struct e1000_mac_operations *func = &mac->ops;
211 
212 	/* Set media type */
213 	switch (adapter->pdev->device) {
214 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
215 		hw->phy.media_type = e1000_media_type_internal_serdes;
216 		break;
217 	default:
218 		hw->phy.media_type = e1000_media_type_copper;
219 		break;
220 	}
221 
222 	/* Set mta register count */
223 	mac->mta_reg_count = 128;
224 	/* Set rar entry count */
225 	mac->rar_entry_count = E1000_RAR_ENTRIES;
226 	/* Set if manageability features are enabled. */
227 	mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
228 
229 	/* check for link */
230 	switch (hw->phy.media_type) {
231 	case e1000_media_type_copper:
232 		func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
233 		func->check_for_link = e1000e_check_for_copper_link;
234 		break;
235 	case e1000_media_type_fiber:
236 		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
237 		func->check_for_link = e1000e_check_for_fiber_link;
238 		break;
239 	case e1000_media_type_internal_serdes:
240 		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
241 		func->check_for_link = e1000e_check_for_serdes_link;
242 		break;
243 	default:
244 		return -E1000_ERR_CONFIG;
245 		break;
246 	}
247 
248 	return 0;
249 }
250 
e1000_get_variants_80003es2lan(struct e1000_adapter * adapter)251 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
252 {
253 	struct e1000_hw *hw = &adapter->hw;
254 	s32 rc;
255 
256 	rc = e1000_init_mac_params_80003es2lan(adapter);
257 	if (rc)
258 		return rc;
259 
260 	rc = e1000_init_nvm_params_80003es2lan(hw);
261 	if (rc)
262 		return rc;
263 
264 	rc = e1000_init_phy_params_80003es2lan(hw);
265 	if (rc)
266 		return rc;
267 
268 	return 0;
269 }
270 
271 /**
272  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
273  *  @hw: pointer to the HW structure
274  *
275  *  A wrapper to acquire access rights to the correct PHY.  This is a
276  *  function pointer entry point called by the api module.
277  **/
e1000_acquire_phy_80003es2lan(struct e1000_hw * hw)278 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
279 {
280 	u16 mask;
281 
282 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
283 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
284 }
285 
286 /**
287  *  e1000_release_phy_80003es2lan - Release rights to access PHY
288  *  @hw: pointer to the HW structure
289  *
290  *  A wrapper to release access rights to the correct PHY.  This is a
291  *  function pointer entry point called by the api module.
292  **/
e1000_release_phy_80003es2lan(struct e1000_hw * hw)293 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
294 {
295 	u16 mask;
296 
297 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
298 	e1000_release_swfw_sync_80003es2lan(hw, mask);
299 }
300 
301 /**
302  *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
303  *  @hw: pointer to the HW structure
304  *
305  *  Acquire the semaphore to access the Kumeran interface.
306  *
307  **/
e1000_acquire_mac_csr_80003es2lan(struct e1000_hw * hw)308 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
309 {
310 	u16 mask;
311 
312 	mask = E1000_SWFW_CSR_SM;
313 
314 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
315 }
316 
317 /**
318  *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
319  *  @hw: pointer to the HW structure
320  *
321  *  Release the semaphore used to access the Kumeran interface
322  **/
e1000_release_mac_csr_80003es2lan(struct e1000_hw * hw)323 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
324 {
325 	u16 mask;
326 
327 	mask = E1000_SWFW_CSR_SM;
328 
329 	e1000_release_swfw_sync_80003es2lan(hw, mask);
330 }
331 
332 /**
333  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
334  *  @hw: pointer to the HW structure
335  *
336  *  Acquire the semaphore to access the EEPROM.  This is a function
337  *  pointer entry point called by the api module.
338  **/
e1000_acquire_nvm_80003es2lan(struct e1000_hw * hw)339 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
340 {
341 	s32 ret_val;
342 
343 	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
344 	if (ret_val)
345 		return ret_val;
346 
347 	ret_val = e1000e_acquire_nvm(hw);
348 
349 	if (ret_val)
350 		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
351 
352 	return ret_val;
353 }
354 
355 /**
356  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
357  *  @hw: pointer to the HW structure
358  *
359  *  Release the semaphore used to access the EEPROM.  This is a
360  *  function pointer entry point called by the api module.
361  **/
e1000_release_nvm_80003es2lan(struct e1000_hw * hw)362 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
363 {
364 	e1000e_release_nvm(hw);
365 	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
366 }
367 
368 /**
369  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
370  *  @hw: pointer to the HW structure
371  *  @mask: specifies which semaphore to acquire
372  *
373  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
374  *  will also specify which port we're acquiring the lock for.
375  **/
e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw * hw,u16 mask)376 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
377 {
378 	u32 swfw_sync;
379 	u32 swmask = mask;
380 	u32 fwmask = mask << 16;
381 	s32 i = 0;
382 	s32 timeout = 50;
383 
384 	while (i < timeout) {
385 		if (e1000e_get_hw_semaphore(hw))
386 			return -E1000_ERR_SWFW_SYNC;
387 
388 		swfw_sync = er32(SW_FW_SYNC);
389 		if (!(swfw_sync & (fwmask | swmask)))
390 			break;
391 
392 		/*
393 		 * Firmware currently using resource (fwmask)
394 		 * or other software thread using resource (swmask)
395 		 */
396 		e1000e_put_hw_semaphore(hw);
397 		mdelay(5);
398 		i++;
399 	}
400 
401 	if (i == timeout) {
402 		hw_dbg(hw,
403 		       "Driver can't access resource, SW_FW_SYNC timeout.\n");
404 		return -E1000_ERR_SWFW_SYNC;
405 	}
406 
407 	swfw_sync |= swmask;
408 	ew32(SW_FW_SYNC, swfw_sync);
409 
410 	e1000e_put_hw_semaphore(hw);
411 
412 	return 0;
413 }
414 
415 /**
416  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
417  *  @hw: pointer to the HW structure
418  *  @mask: specifies which semaphore to acquire
419  *
420  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
421  *  will also specify which port we're releasing the lock for.
422  **/
e1000_release_swfw_sync_80003es2lan(struct e1000_hw * hw,u16 mask)423 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
424 {
425 	u32 swfw_sync;
426 
427 	while (e1000e_get_hw_semaphore(hw) != 0);
428 	/* Empty */
429 
430 	swfw_sync = er32(SW_FW_SYNC);
431 	swfw_sync &= ~mask;
432 	ew32(SW_FW_SYNC, swfw_sync);
433 
434 	e1000e_put_hw_semaphore(hw);
435 }
436 
437 /**
438  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
439  *  @hw: pointer to the HW structure
440  *  @offset: offset of the register to read
441  *  @data: pointer to the data returned from the operation
442  *
443  *  Read the GG82563 PHY register.  This is a function pointer entry
444  *  point called by the api module.
445  **/
e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw * hw,u32 offset,u16 * data)446 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
447 						  u32 offset, u16 *data)
448 {
449 	s32 ret_val;
450 	u32 page_select;
451 	u16 temp;
452 
453 	ret_val = e1000_acquire_phy_80003es2lan(hw);
454 	if (ret_val)
455 		return ret_val;
456 
457 	/* Select Configuration Page */
458 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
459 		page_select = GG82563_PHY_PAGE_SELECT;
460 	} else {
461 		/*
462 		 * Use Alternative Page Select register to access
463 		 * registers 30 and 31
464 		 */
465 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
466 	}
467 
468 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
469 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
470 	if (ret_val) {
471 		e1000_release_phy_80003es2lan(hw);
472 		return ret_val;
473 	}
474 
475 	/*
476 	 * The "ready" bit in the MDIC register may be incorrectly set
477 	 * before the device has completed the "Page Select" MDI
478 	 * transaction.  So we wait 200us after each MDI command...
479 	 */
480 	udelay(200);
481 
482 	/* ...and verify the command was successful. */
483 	ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
484 
485 	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
486 		ret_val = -E1000_ERR_PHY;
487 		e1000_release_phy_80003es2lan(hw);
488 		return ret_val;
489 	}
490 
491 	udelay(200);
492 
493 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
494 					   data);
495 
496 	udelay(200);
497 	e1000_release_phy_80003es2lan(hw);
498 
499 	return ret_val;
500 }
501 
502 /**
503  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
504  *  @hw: pointer to the HW structure
505  *  @offset: offset of the register to read
506  *  @data: value to write to the register
507  *
508  *  Write to the GG82563 PHY register.  This is a function pointer entry
509  *  point called by the api module.
510  **/
e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw * hw,u32 offset,u16 data)511 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
512 						   u32 offset, u16 data)
513 {
514 	s32 ret_val;
515 	u32 page_select;
516 	u16 temp;
517 
518 	ret_val = e1000_acquire_phy_80003es2lan(hw);
519 	if (ret_val)
520 		return ret_val;
521 
522 	/* Select Configuration Page */
523 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
524 		page_select = GG82563_PHY_PAGE_SELECT;
525 	} else {
526 		/*
527 		 * Use Alternative Page Select register to access
528 		 * registers 30 and 31
529 		 */
530 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
531 	}
532 
533 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
534 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
535 	if (ret_val) {
536 		e1000_release_phy_80003es2lan(hw);
537 		return ret_val;
538 	}
539 
540 
541 	/*
542 	 * The "ready" bit in the MDIC register may be incorrectly set
543 	 * before the device has completed the "Page Select" MDI
544 	 * transaction.  So we wait 200us after each MDI command...
545 	 */
546 	udelay(200);
547 
548 	/* ...and verify the command was successful. */
549 	ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
550 
551 	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
552 		e1000_release_phy_80003es2lan(hw);
553 		return -E1000_ERR_PHY;
554 	}
555 
556 	udelay(200);
557 
558 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
559 					    data);
560 
561 	udelay(200);
562 	e1000_release_phy_80003es2lan(hw);
563 
564 	return ret_val;
565 }
566 
567 /**
568  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
569  *  @hw: pointer to the HW structure
570  *  @offset: offset of the register to read
571  *  @words: number of words to write
572  *  @data: buffer of data to write to the NVM
573  *
574  *  Write "words" of data to the ESB2 NVM.  This is a function
575  *  pointer entry point called by the api module.
576  **/
e1000_write_nvm_80003es2lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)577 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
578 				       u16 words, u16 *data)
579 {
580 	return e1000e_write_nvm_spi(hw, offset, words, data);
581 }
582 
583 /**
584  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
585  *  @hw: pointer to the HW structure
586  *
587  *  Wait a specific amount of time for manageability processes to complete.
588  *  This is a function pointer entry point called by the phy module.
589  **/
e1000_get_cfg_done_80003es2lan(struct e1000_hw * hw)590 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
591 {
592 	s32 timeout = PHY_CFG_TIMEOUT;
593 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
594 
595 	if (hw->bus.func == 1)
596 		mask = E1000_NVM_CFG_DONE_PORT_1;
597 
598 	while (timeout) {
599 		if (er32(EEMNGCTL) & mask)
600 			break;
601 		msleep(1);
602 		timeout--;
603 	}
604 	if (!timeout) {
605 		hw_dbg(hw, "MNG configuration cycle has not completed.\n");
606 		return -E1000_ERR_RESET;
607 	}
608 
609 	return 0;
610 }
611 
612 /**
613  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
614  *  @hw: pointer to the HW structure
615  *
616  *  Force the speed and duplex settings onto the PHY.  This is a
617  *  function pointer entry point called by the phy module.
618  **/
e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw * hw)619 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
620 {
621 	s32 ret_val;
622 	u16 phy_data;
623 	bool link;
624 
625 	/*
626 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
627 	 * forced whenever speed and duplex are forced.
628 	 */
629 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
630 	if (ret_val)
631 		return ret_val;
632 
633 	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
634 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
635 	if (ret_val)
636 		return ret_val;
637 
638 	hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
639 
640 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
641 	if (ret_val)
642 		return ret_val;
643 
644 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
645 
646 	/* Reset the phy to commit changes. */
647 	phy_data |= MII_CR_RESET;
648 
649 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
650 	if (ret_val)
651 		return ret_val;
652 
653 	udelay(1);
654 
655 	if (hw->phy.autoneg_wait_to_complete) {
656 		hw_dbg(hw, "Waiting for forced speed/duplex link "
657 			 "on GG82563 phy.\n");
658 
659 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
660 						     100000, &link);
661 		if (ret_val)
662 			return ret_val;
663 
664 		if (!link) {
665 			/*
666 			 * We didn't get link.
667 			 * Reset the DSP and cross our fingers.
668 			 */
669 			ret_val = e1000e_phy_reset_dsp(hw);
670 			if (ret_val)
671 				return ret_val;
672 		}
673 
674 		/* Try once more */
675 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
676 						     100000, &link);
677 		if (ret_val)
678 			return ret_val;
679 	}
680 
681 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
682 	if (ret_val)
683 		return ret_val;
684 
685 	/*
686 	 * Resetting the phy means we need to verify the TX_CLK corresponds
687 	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
688 	 */
689 	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
690 	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
691 		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
692 	else
693 		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
694 
695 	/*
696 	 * In addition, we must re-enable CRS on Tx for both half and full
697 	 * duplex.
698 	 */
699 	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
700 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
701 
702 	return ret_val;
703 }
704 
705 /**
706  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
707  *  @hw: pointer to the HW structure
708  *
709  *  Find the approximate cable length as measured by the GG82563 PHY.
710  *  This is a function pointer entry point called by the phy module.
711  **/
e1000_get_cable_length_80003es2lan(struct e1000_hw * hw)712 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
713 {
714 	struct e1000_phy_info *phy = &hw->phy;
715 	s32 ret_val;
716 	u16 phy_data;
717 	u16 index;
718 
719 	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
720 	if (ret_val)
721 		return ret_val;
722 
723 	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
724 	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
725 	phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
726 
727 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
728 
729 	return 0;
730 }
731 
732 /**
733  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
734  *  @hw: pointer to the HW structure
735  *  @speed: pointer to speed buffer
736  *  @duplex: pointer to duplex buffer
737  *
738  *  Retrieve the current speed and duplex configuration.
739  *  This is a function pointer entry point called by the api module.
740  **/
e1000_get_link_up_info_80003es2lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)741 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
742 					      u16 *duplex)
743 {
744 	s32 ret_val;
745 
746 	if (hw->phy.media_type == e1000_media_type_copper) {
747 		ret_val = e1000e_get_speed_and_duplex_copper(hw,
748 								    speed,
749 								    duplex);
750 		hw->phy.ops.cfg_on_link_up(hw);
751 	} else {
752 		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
753 								  speed,
754 								  duplex);
755 	}
756 
757 	return ret_val;
758 }
759 
760 /**
761  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
762  *  @hw: pointer to the HW structure
763  *
764  *  Perform a global reset to the ESB2 controller.
765  *  This is a function pointer entry point called by the api module.
766  **/
e1000_reset_hw_80003es2lan(struct e1000_hw * hw)767 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
768 {
769 	u32 ctrl;
770 	u32 icr;
771 	s32 ret_val;
772 
773 	/*
774 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
775 	 * on the last TLP read/write transaction when MAC is reset.
776 	 */
777 	ret_val = e1000e_disable_pcie_master(hw);
778 	if (ret_val)
779 		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
780 
781 	hw_dbg(hw, "Masking off all interrupts\n");
782 	ew32(IMC, 0xffffffff);
783 
784 	ew32(RCTL, 0);
785 	ew32(TCTL, E1000_TCTL_PSP);
786 	e1e_flush();
787 
788 	msleep(10);
789 
790 	ctrl = er32(CTRL);
791 
792 	ret_val = e1000_acquire_phy_80003es2lan(hw);
793 	hw_dbg(hw, "Issuing a global reset to MAC\n");
794 	ew32(CTRL, ctrl | E1000_CTRL_RST);
795 	e1000_release_phy_80003es2lan(hw);
796 
797 	ret_val = e1000e_get_auto_rd_done(hw);
798 	if (ret_val)
799 		/* We don't want to continue accessing MAC registers. */
800 		return ret_val;
801 
802 	/* Clear any pending interrupt events. */
803 	ew32(IMC, 0xffffffff);
804 	icr = er32(ICR);
805 
806 	return 0;
807 }
808 
809 /**
810  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
811  *  @hw: pointer to the HW structure
812  *
813  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
814  *  This is a function pointer entry point called by the api module.
815  **/
e1000_init_hw_80003es2lan(struct e1000_hw * hw)816 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
817 {
818 	struct e1000_mac_info *mac = &hw->mac;
819 	u32 reg_data;
820 	s32 ret_val;
821 	u16 i;
822 
823 	e1000_initialize_hw_bits_80003es2lan(hw);
824 
825 	/* Initialize identification LED */
826 	ret_val = e1000e_id_led_init(hw);
827 	if (ret_val) {
828 		hw_dbg(hw, "Error initializing identification LED\n");
829 		return ret_val;
830 	}
831 
832 	/* Disabling VLAN filtering */
833 	hw_dbg(hw, "Initializing the IEEE VLAN\n");
834 	e1000e_clear_vfta(hw);
835 
836 	/* Setup the receive address. */
837 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
838 
839 	/* Zero out the Multicast HASH table */
840 	hw_dbg(hw, "Zeroing the MTA\n");
841 	for (i = 0; i < mac->mta_reg_count; i++)
842 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
843 
844 	/* Setup link and flow control */
845 	ret_val = e1000e_setup_link(hw);
846 
847 	/* Set the transmit descriptor write-back policy */
848 	reg_data = er32(TXDCTL(0));
849 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
850 		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
851 	ew32(TXDCTL(0), reg_data);
852 
853 	/* ...for both queues. */
854 	reg_data = er32(TXDCTL(1));
855 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
856 		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
857 	ew32(TXDCTL(1), reg_data);
858 
859 	/* Enable retransmit on late collisions */
860 	reg_data = er32(TCTL);
861 	reg_data |= E1000_TCTL_RTLC;
862 	ew32(TCTL, reg_data);
863 
864 	/* Configure Gigabit Carry Extend Padding */
865 	reg_data = er32(TCTL_EXT);
866 	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
867 	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
868 	ew32(TCTL_EXT, reg_data);
869 
870 	/* Configure Transmit Inter-Packet Gap */
871 	reg_data = er32(TIPG);
872 	reg_data &= ~E1000_TIPG_IPGT_MASK;
873 	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
874 	ew32(TIPG, reg_data);
875 
876 	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
877 	reg_data &= ~0x00100000;
878 	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
879 
880 	/*
881 	 * Clear all of the statistics registers (clear on read).  It is
882 	 * important that we do this after we have tried to establish link
883 	 * because the symbol error count will increment wildly if there
884 	 * is no link.
885 	 */
886 	e1000_clear_hw_cntrs_80003es2lan(hw);
887 
888 	return ret_val;
889 }
890 
891 /**
892  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
893  *  @hw: pointer to the HW structure
894  *
895  *  Initializes required hardware-dependent bits needed for normal operation.
896  **/
e1000_initialize_hw_bits_80003es2lan(struct e1000_hw * hw)897 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
898 {
899 	u32 reg;
900 
901 	/* Transmit Descriptor Control 0 */
902 	reg = er32(TXDCTL(0));
903 	reg |= (1 << 22);
904 	ew32(TXDCTL(0), reg);
905 
906 	/* Transmit Descriptor Control 1 */
907 	reg = er32(TXDCTL(1));
908 	reg |= (1 << 22);
909 	ew32(TXDCTL(1), reg);
910 
911 	/* Transmit Arbitration Control 0 */
912 	reg = er32(TARC(0));
913 	reg &= ~(0xF << 27); /* 30:27 */
914 	if (hw->phy.media_type != e1000_media_type_copper)
915 		reg &= ~(1 << 20);
916 	ew32(TARC(0), reg);
917 
918 	/* Transmit Arbitration Control 1 */
919 	reg = er32(TARC(1));
920 	if (er32(TCTL) & E1000_TCTL_MULR)
921 		reg &= ~(1 << 28);
922 	else
923 		reg |= (1 << 28);
924 	ew32(TARC(1), reg);
925 }
926 
927 /**
928  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
929  *  @hw: pointer to the HW structure
930  *
931  *  Setup some GG82563 PHY registers for obtaining link
932  **/
e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw * hw)933 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
934 {
935 	struct e1000_phy_info *phy = &hw->phy;
936 	s32 ret_val;
937 	u32 ctrl_ext;
938 	u16 data;
939 
940 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
941 	if (ret_val)
942 		return ret_val;
943 
944 	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
945 	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
946 	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
947 
948 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
949 	if (ret_val)
950 		return ret_val;
951 
952 	/*
953 	 * Options:
954 	 *   MDI/MDI-X = 0 (default)
955 	 *   0 - Auto for all speeds
956 	 *   1 - MDI mode
957 	 *   2 - MDI-X mode
958 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
959 	 */
960 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
961 	if (ret_val)
962 		return ret_val;
963 
964 	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
965 
966 	switch (phy->mdix) {
967 	case 1:
968 		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
969 		break;
970 	case 2:
971 		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
972 		break;
973 	case 0:
974 	default:
975 		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
976 		break;
977 	}
978 
979 	/*
980 	 * Options:
981 	 *   disable_polarity_correction = 0 (default)
982 	 *       Automatic Correction for Reversed Cable Polarity
983 	 *   0 - Disabled
984 	 *   1 - Enabled
985 	 */
986 	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
987 	if (phy->disable_polarity_correction)
988 		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
989 
990 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
991 	if (ret_val)
992 		return ret_val;
993 
994 	/* SW Reset the PHY so all changes take effect */
995 	ret_val = e1000e_commit_phy(hw);
996 	if (ret_val) {
997 		hw_dbg(hw, "Error Resetting the PHY\n");
998 		return ret_val;
999 	}
1000 
1001 	/* Bypass Rx and Tx FIFO's */
1002 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1003 					E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1004 					E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1005 					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1006 	if (ret_val)
1007 		return ret_val;
1008 
1009 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1010 				       E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1011 				       &data);
1012 	if (ret_val)
1013 		return ret_val;
1014 	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1015 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1016 					E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1017 					data);
1018 	if (ret_val)
1019 		return ret_val;
1020 
1021 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1022 	if (ret_val)
1023 		return ret_val;
1024 
1025 	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1026 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1027 	if (ret_val)
1028 		return ret_val;
1029 
1030 	ctrl_ext = er32(CTRL_EXT);
1031 	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1032 	ew32(CTRL_EXT, ctrl_ext);
1033 
1034 	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1035 	if (ret_val)
1036 		return ret_val;
1037 
1038 	/*
1039 	 * Do not init these registers when the HW is in IAMT mode, since the
1040 	 * firmware will have already initialized them.  We only initialize
1041 	 * them if the HW is not in IAMT mode.
1042 	 */
1043 	if (!e1000e_check_mng_mode(hw)) {
1044 		/* Enable Electrical Idle on the PHY */
1045 		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1046 		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1047 		if (ret_val)
1048 			return ret_val;
1049 
1050 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1051 		if (ret_val)
1052 			return ret_val;
1053 
1054 		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1055 		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1056 		if (ret_val)
1057 			return ret_val;
1058 	}
1059 
1060 	/*
1061 	 * Workaround: Disable padding in Kumeran interface in the MAC
1062 	 * and in the PHY to avoid CRC errors.
1063 	 */
1064 	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1065 	if (ret_val)
1066 		return ret_val;
1067 
1068 	data |= GG82563_ICR_DIS_PADDING;
1069 	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1070 	if (ret_val)
1071 		return ret_val;
1072 
1073 	return 0;
1074 }
1075 
1076 /**
1077  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1078  *  @hw: pointer to the HW structure
1079  *
1080  *  Essentially a wrapper for setting up all things "copper" related.
1081  *  This is a function pointer entry point called by the mac module.
1082  **/
e1000_setup_copper_link_80003es2lan(struct e1000_hw * hw)1083 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1084 {
1085 	u32 ctrl;
1086 	s32 ret_val;
1087 	u16 reg_data;
1088 
1089 	ctrl = er32(CTRL);
1090 	ctrl |= E1000_CTRL_SLU;
1091 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1092 	ew32(CTRL, ctrl);
1093 
1094 	/*
1095 	 * Set the mac to wait the maximum time between each
1096 	 * iteration and increase the max iterations when
1097 	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1098 	 */
1099 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1100 	                                           0xFFFF);
1101 	if (ret_val)
1102 		return ret_val;
1103 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1104 	                                          &reg_data);
1105 	if (ret_val)
1106 		return ret_val;
1107 	reg_data |= 0x3F;
1108 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1109 	                                           reg_data);
1110 	if (ret_val)
1111 		return ret_val;
1112 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1113 				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1114 				      &reg_data);
1115 	if (ret_val)
1116 		return ret_val;
1117 	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1118 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1119 					E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1120 					reg_data);
1121 	if (ret_val)
1122 		return ret_val;
1123 
1124 	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1125 	if (ret_val)
1126 		return ret_val;
1127 
1128 	ret_val = e1000e_setup_copper_link(hw);
1129 
1130 	return 0;
1131 }
1132 
1133 /**
1134  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1135  *  @hw: pointer to the HW structure
1136  *  @duplex: current duplex setting
1137  *
1138  *  Configure the KMRN interface by applying last minute quirks for
1139  *  10/100 operation.
1140  **/
e1000_cfg_on_link_up_80003es2lan(struct e1000_hw * hw)1141 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1142 {
1143 	s32 ret_val = 0;
1144 	u16 speed;
1145 	u16 duplex;
1146 
1147 	if (hw->phy.media_type == e1000_media_type_copper) {
1148 		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1149 		                                             &duplex);
1150 		if (ret_val)
1151 			return ret_val;
1152 
1153 		if (speed == SPEED_1000)
1154 			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1155 		else
1156 			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1157 	}
1158 
1159 	return ret_val;
1160 }
1161 
1162 /**
1163  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1164  *  @hw: pointer to the HW structure
1165  *  @duplex: current duplex setting
1166  *
1167  *  Configure the KMRN interface by applying last minute quirks for
1168  *  10/100 operation.
1169  **/
e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw * hw,u16 duplex)1170 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1171 {
1172 	s32 ret_val;
1173 	u32 tipg;
1174 	u32 i = 0;
1175 	u16 reg_data, reg_data2;
1176 
1177 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1178 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1179 	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1180 	                               reg_data);
1181 	if (ret_val)
1182 		return ret_val;
1183 
1184 	/* Configure Transmit Inter-Packet Gap */
1185 	tipg = er32(TIPG);
1186 	tipg &= ~E1000_TIPG_IPGT_MASK;
1187 	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1188 	ew32(TIPG, tipg);
1189 
1190 	do {
1191 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1192 		if (ret_val)
1193 			return ret_val;
1194 
1195 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1196 		if (ret_val)
1197 			return ret_val;
1198 		i++;
1199 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1200 
1201 	if (duplex == HALF_DUPLEX)
1202 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1203 	else
1204 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1205 
1206 	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1207 
1208 	return 0;
1209 }
1210 
1211 /**
1212  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1213  *  @hw: pointer to the HW structure
1214  *
1215  *  Configure the KMRN interface by applying last minute quirks for
1216  *  gigabit operation.
1217  **/
e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw * hw)1218 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1219 {
1220 	s32 ret_val;
1221 	u16 reg_data, reg_data2;
1222 	u32 tipg;
1223 	u32 i = 0;
1224 
1225 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1226 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1227 	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1228 	                               reg_data);
1229 	if (ret_val)
1230 		return ret_val;
1231 
1232 	/* Configure Transmit Inter-Packet Gap */
1233 	tipg = er32(TIPG);
1234 	tipg &= ~E1000_TIPG_IPGT_MASK;
1235 	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1236 	ew32(TIPG, tipg);
1237 
1238 	do {
1239 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1240 		if (ret_val)
1241 			return ret_val;
1242 
1243 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1244 		if (ret_val)
1245 			return ret_val;
1246 		i++;
1247 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1248 
1249 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1250 	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1251 
1252 	return ret_val;
1253 }
1254 
1255 /**
1256  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1257  *  @hw: pointer to the HW structure
1258  *  @offset: register offset to be read
1259  *  @data: pointer to the read data
1260  *
1261  *  Acquire semaphore, then read the PHY register at offset
1262  *  using the kumeran interface.  The information retrieved is stored in data.
1263  *  Release the semaphore before exiting.
1264  **/
e1000_read_kmrn_reg_80003es2lan(struct e1000_hw * hw,u32 offset,u16 * data)1265 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1266 					   u16 *data)
1267 {
1268 	u32 kmrnctrlsta;
1269 	s32 ret_val = 0;
1270 
1271 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1272 	if (ret_val)
1273 		return ret_val;
1274 
1275 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1276 	               E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1277 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1278 
1279 	udelay(2);
1280 
1281 	kmrnctrlsta = er32(KMRNCTRLSTA);
1282 	*data = (u16)kmrnctrlsta;
1283 
1284 	e1000_release_mac_csr_80003es2lan(hw);
1285 
1286 	return ret_val;
1287 }
1288 
1289 /**
1290  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1291  *  @hw: pointer to the HW structure
1292  *  @offset: register offset to write to
1293  *  @data: data to write at register offset
1294  *
1295  *  Acquire semaphore, then write the data to PHY register
1296  *  at the offset using the kumeran interface.  Release semaphore
1297  *  before exiting.
1298  **/
e1000_write_kmrn_reg_80003es2lan(struct e1000_hw * hw,u32 offset,u16 data)1299 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1300 					    u16 data)
1301 {
1302 	u32 kmrnctrlsta;
1303 	s32 ret_val = 0;
1304 
1305 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1306 	if (ret_val)
1307 		return ret_val;
1308 
1309 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1310 	               E1000_KMRNCTRLSTA_OFFSET) | data;
1311 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1312 
1313 	udelay(2);
1314 
1315 	e1000_release_mac_csr_80003es2lan(hw);
1316 
1317 	return ret_val;
1318 }
1319 
1320 /**
1321  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1322  *  @hw: pointer to the HW structure
1323  *
1324  *  Clears the hardware counters by reading the counter registers.
1325  **/
e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw * hw)1326 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1327 {
1328 	u32 temp;
1329 
1330 	e1000e_clear_hw_cntrs_base(hw);
1331 
1332 	temp = er32(PRC64);
1333 	temp = er32(PRC127);
1334 	temp = er32(PRC255);
1335 	temp = er32(PRC511);
1336 	temp = er32(PRC1023);
1337 	temp = er32(PRC1522);
1338 	temp = er32(PTC64);
1339 	temp = er32(PTC127);
1340 	temp = er32(PTC255);
1341 	temp = er32(PTC511);
1342 	temp = er32(PTC1023);
1343 	temp = er32(PTC1522);
1344 
1345 	temp = er32(ALGNERRC);
1346 	temp = er32(RXERRC);
1347 	temp = er32(TNCRS);
1348 	temp = er32(CEXTERR);
1349 	temp = er32(TSCTC);
1350 	temp = er32(TSCTFC);
1351 
1352 	temp = er32(MGTPRC);
1353 	temp = er32(MGTPDC);
1354 	temp = er32(MGTPTC);
1355 
1356 	temp = er32(IAC);
1357 	temp = er32(ICRXOC);
1358 
1359 	temp = er32(ICRXPTC);
1360 	temp = er32(ICRXATC);
1361 	temp = er32(ICTXPTC);
1362 	temp = er32(ICTXATC);
1363 	temp = er32(ICTXQEC);
1364 	temp = er32(ICTXQMTC);
1365 	temp = er32(ICRXDMTC);
1366 }
1367 
1368 static struct e1000_mac_operations es2_mac_ops = {
1369 	.check_mng_mode		= e1000e_check_mng_mode_generic,
1370 	/* check_for_link dependent on media type */
1371 	.cleanup_led		= e1000e_cleanup_led_generic,
1372 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1373 	.get_bus_info		= e1000e_get_bus_info_pcie,
1374 	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1375 	.led_on			= e1000e_led_on_generic,
1376 	.led_off		= e1000e_led_off_generic,
1377 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1378 	.reset_hw		= e1000_reset_hw_80003es2lan,
1379 	.init_hw		= e1000_init_hw_80003es2lan,
1380 	.setup_link		= e1000e_setup_link,
1381 	/* setup_physical_interface dependent on media type */
1382 };
1383 
1384 static struct e1000_phy_operations es2_phy_ops = {
1385 	.acquire_phy		= e1000_acquire_phy_80003es2lan,
1386 	.check_reset_block	= e1000e_check_reset_block_generic,
1387 	.commit_phy	 	= e1000e_phy_sw_reset,
1388 	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
1389 	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
1390 	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
1391 	.get_phy_info       	= e1000e_get_phy_info_m88,
1392 	.read_phy_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
1393 	.release_phy		= e1000_release_phy_80003es2lan,
1394 	.reset_phy	  	= e1000e_phy_hw_reset_generic,
1395 	.set_d0_lplu_state  	= NULL,
1396 	.set_d3_lplu_state  	= e1000e_set_d3_lplu_state,
1397 	.write_phy_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
1398 	.cfg_on_link_up      	= e1000_cfg_on_link_up_80003es2lan,
1399 };
1400 
1401 static struct e1000_nvm_operations es2_nvm_ops = {
1402 	.acquire_nvm		= e1000_acquire_nvm_80003es2lan,
1403 	.read_nvm		= e1000e_read_nvm_eerd,
1404 	.release_nvm		= e1000_release_nvm_80003es2lan,
1405 	.update_nvm		= e1000e_update_nvm_checksum_generic,
1406 	.valid_led_default	= e1000e_valid_led_default,
1407 	.validate_nvm		= e1000e_validate_nvm_checksum_generic,
1408 	.write_nvm		= e1000_write_nvm_80003es2lan,
1409 };
1410 
1411 struct e1000_info e1000_es2_info = {
1412 	.mac			= e1000_80003es2lan,
1413 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1414 				  | FLAG_HAS_JUMBO_FRAMES
1415 				  | FLAG_HAS_WOL
1416 				  | FLAG_APME_IN_CTRL3
1417 				  | FLAG_RX_CSUM_ENABLED
1418 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1419 				  | FLAG_RX_NEEDS_RESTART /* errata */
1420 				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1421 				  | FLAG_APME_CHECK_PORT_B
1422 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1423 				  | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1424 	.pba			= 38,
1425 	.get_variants		= e1000_get_variants_80003es2lan,
1426 	.mac_ops		= &es2_mac_ops,
1427 	.phy_ops		= &es2_phy_ops,
1428 	.nvm_ops		= &es2_nvm_ops,
1429 };
1430 
1431