1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36
37 /*
38 * The per-CPU workqueue (if single thread, we always use the first
39 * possible cpu).
40 */
41 struct cpu_workqueue_struct {
42
43 spinlock_t lock;
44
45 struct list_head worklist;
46 wait_queue_head_t more_work;
47 struct work_struct *current_work;
48
49 struct workqueue_struct *wq;
50 struct task_struct *thread;
51
52 int run_depth; /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54
55 /*
56 * The externally visible workqueue abstraction is an array of
57 * per-CPU workqueues:
58 */
59 struct workqueue_struct {
60 struct cpu_workqueue_struct *cpu_wq;
61 struct list_head list;
62 const char *name;
63 int singlethread;
64 int freezeable; /* Freeze threads during suspend */
65 int rt;
66 #ifdef CONFIG_LOCKDEP
67 struct lockdep_map lockdep_map;
68 #endif
69 };
70
71 /* Serializes the accesses to the list of workqueues. */
72 static DEFINE_SPINLOCK(workqueue_lock);
73 static LIST_HEAD(workqueues);
74
75 static int singlethread_cpu __read_mostly;
76 static const struct cpumask *cpu_singlethread_map __read_mostly;
77 /*
78 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
79 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
80 * which comes in between can't use for_each_online_cpu(). We could
81 * use cpu_possible_map, the cpumask below is more a documentation
82 * than optimization.
83 */
84 static cpumask_var_t cpu_populated_map __read_mostly;
85
86 /* If it's single threaded, it isn't in the list of workqueues. */
is_wq_single_threaded(struct workqueue_struct * wq)87 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
88 {
89 return wq->singlethread;
90 }
91
wq_cpu_map(struct workqueue_struct * wq)92 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
93 {
94 return is_wq_single_threaded(wq)
95 ? cpu_singlethread_map : cpu_populated_map;
96 }
97
98 static
wq_per_cpu(struct workqueue_struct * wq,int cpu)99 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
100 {
101 if (unlikely(is_wq_single_threaded(wq)))
102 cpu = singlethread_cpu;
103 return per_cpu_ptr(wq->cpu_wq, cpu);
104 }
105
106 /*
107 * Set the workqueue on which a work item is to be run
108 * - Must *only* be called if the pending flag is set
109 */
set_wq_data(struct work_struct * work,struct cpu_workqueue_struct * cwq)110 static inline void set_wq_data(struct work_struct *work,
111 struct cpu_workqueue_struct *cwq)
112 {
113 unsigned long new;
114
115 BUG_ON(!work_pending(work));
116
117 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
118 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
119 atomic_long_set(&work->data, new);
120 }
121
122 static inline
get_wq_data(struct work_struct * work)123 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
124 {
125 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
126 }
127
insert_work(struct cpu_workqueue_struct * cwq,struct work_struct * work,struct list_head * head)128 static void insert_work(struct cpu_workqueue_struct *cwq,
129 struct work_struct *work, struct list_head *head)
130 {
131 set_wq_data(work, cwq);
132 /*
133 * Ensure that we get the right work->data if we see the
134 * result of list_add() below, see try_to_grab_pending().
135 */
136 smp_wmb();
137 list_add_tail(&work->entry, head);
138 wake_up(&cwq->more_work);
139 }
140
__queue_work(struct cpu_workqueue_struct * cwq,struct work_struct * work)141 static void __queue_work(struct cpu_workqueue_struct *cwq,
142 struct work_struct *work)
143 {
144 unsigned long flags;
145
146 spin_lock_irqsave(&cwq->lock, flags);
147 insert_work(cwq, work, &cwq->worklist);
148 spin_unlock_irqrestore(&cwq->lock, flags);
149 }
150
151 /**
152 * queue_work - queue work on a workqueue
153 * @wq: workqueue to use
154 * @work: work to queue
155 *
156 * Returns 0 if @work was already on a queue, non-zero otherwise.
157 *
158 * We queue the work to the CPU on which it was submitted, but if the CPU dies
159 * it can be processed by another CPU.
160 */
queue_work(struct workqueue_struct * wq,struct work_struct * work)161 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
162 {
163 int ret;
164
165 ret = queue_work_on(get_cpu(), wq, work);
166 put_cpu();
167
168 return ret;
169 }
170 EXPORT_SYMBOL_GPL(queue_work);
171
172 /**
173 * queue_work_on - queue work on specific cpu
174 * @cpu: CPU number to execute work on
175 * @wq: workqueue to use
176 * @work: work to queue
177 *
178 * Returns 0 if @work was already on a queue, non-zero otherwise.
179 *
180 * We queue the work to a specific CPU, the caller must ensure it
181 * can't go away.
182 */
183 int
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)184 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
185 {
186 int ret = 0;
187
188 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
189 BUG_ON(!list_empty(&work->entry));
190 __queue_work(wq_per_cpu(wq, cpu), work);
191 ret = 1;
192 }
193 return ret;
194 }
195 EXPORT_SYMBOL_GPL(queue_work_on);
196
delayed_work_timer_fn(unsigned long __data)197 static void delayed_work_timer_fn(unsigned long __data)
198 {
199 struct delayed_work *dwork = (struct delayed_work *)__data;
200 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
201 struct workqueue_struct *wq = cwq->wq;
202
203 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
204 }
205
206 /**
207 * queue_delayed_work - queue work on a workqueue after delay
208 * @wq: workqueue to use
209 * @dwork: delayable work to queue
210 * @delay: number of jiffies to wait before queueing
211 *
212 * Returns 0 if @work was already on a queue, non-zero otherwise.
213 */
queue_delayed_work(struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)214 int queue_delayed_work(struct workqueue_struct *wq,
215 struct delayed_work *dwork, unsigned long delay)
216 {
217 if (delay == 0)
218 return queue_work(wq, &dwork->work);
219
220 return queue_delayed_work_on(-1, wq, dwork, delay);
221 }
222 EXPORT_SYMBOL_GPL(queue_delayed_work);
223
224 /**
225 * queue_delayed_work_on - queue work on specific CPU after delay
226 * @cpu: CPU number to execute work on
227 * @wq: workqueue to use
228 * @dwork: work to queue
229 * @delay: number of jiffies to wait before queueing
230 *
231 * Returns 0 if @work was already on a queue, non-zero otherwise.
232 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)233 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
234 struct delayed_work *dwork, unsigned long delay)
235 {
236 int ret = 0;
237 struct timer_list *timer = &dwork->timer;
238 struct work_struct *work = &dwork->work;
239
240 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
241 BUG_ON(timer_pending(timer));
242 BUG_ON(!list_empty(&work->entry));
243
244 timer_stats_timer_set_start_info(&dwork->timer);
245
246 /* This stores cwq for the moment, for the timer_fn */
247 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
248 timer->expires = jiffies + delay;
249 timer->data = (unsigned long)dwork;
250 timer->function = delayed_work_timer_fn;
251
252 if (unlikely(cpu >= 0))
253 add_timer_on(timer, cpu);
254 else
255 add_timer(timer);
256 ret = 1;
257 }
258 return ret;
259 }
260 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
261
run_workqueue(struct cpu_workqueue_struct * cwq)262 static void run_workqueue(struct cpu_workqueue_struct *cwq)
263 {
264 spin_lock_irq(&cwq->lock);
265 cwq->run_depth++;
266 if (cwq->run_depth > 3) {
267 /* morton gets to eat his hat */
268 printk("%s: recursion depth exceeded: %d\n",
269 __func__, cwq->run_depth);
270 dump_stack();
271 }
272 while (!list_empty(&cwq->worklist)) {
273 struct work_struct *work = list_entry(cwq->worklist.next,
274 struct work_struct, entry);
275 work_func_t f = work->func;
276 #ifdef CONFIG_LOCKDEP
277 /*
278 * It is permissible to free the struct work_struct
279 * from inside the function that is called from it,
280 * this we need to take into account for lockdep too.
281 * To avoid bogus "held lock freed" warnings as well
282 * as problems when looking into work->lockdep_map,
283 * make a copy and use that here.
284 */
285 struct lockdep_map lockdep_map = work->lockdep_map;
286 #endif
287
288 cwq->current_work = work;
289 list_del_init(cwq->worklist.next);
290 spin_unlock_irq(&cwq->lock);
291
292 BUG_ON(get_wq_data(work) != cwq);
293 work_clear_pending(work);
294 lock_map_acquire(&cwq->wq->lockdep_map);
295 lock_map_acquire(&lockdep_map);
296 f(work);
297 lock_map_release(&lockdep_map);
298 lock_map_release(&cwq->wq->lockdep_map);
299
300 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
301 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
302 "%s/0x%08x/%d\n",
303 current->comm, preempt_count(),
304 task_pid_nr(current));
305 printk(KERN_ERR " last function: ");
306 print_symbol("%s\n", (unsigned long)f);
307 debug_show_held_locks(current);
308 dump_stack();
309 }
310
311 spin_lock_irq(&cwq->lock);
312 cwq->current_work = NULL;
313 }
314 cwq->run_depth--;
315 spin_unlock_irq(&cwq->lock);
316 }
317
worker_thread(void * __cwq)318 static int worker_thread(void *__cwq)
319 {
320 struct cpu_workqueue_struct *cwq = __cwq;
321 DEFINE_WAIT(wait);
322
323 if (cwq->wq->freezeable)
324 set_freezable();
325
326 set_user_nice(current, -5);
327
328 for (;;) {
329 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
330 if (!freezing(current) &&
331 !kthread_should_stop() &&
332 list_empty(&cwq->worklist))
333 schedule();
334 finish_wait(&cwq->more_work, &wait);
335
336 try_to_freeze();
337
338 if (kthread_should_stop())
339 break;
340
341 run_workqueue(cwq);
342 }
343
344 return 0;
345 }
346
347 struct wq_barrier {
348 struct work_struct work;
349 struct completion done;
350 };
351
wq_barrier_func(struct work_struct * work)352 static void wq_barrier_func(struct work_struct *work)
353 {
354 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
355 complete(&barr->done);
356 }
357
insert_wq_barrier(struct cpu_workqueue_struct * cwq,struct wq_barrier * barr,struct list_head * head)358 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
359 struct wq_barrier *barr, struct list_head *head)
360 {
361 INIT_WORK(&barr->work, wq_barrier_func);
362 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
363
364 init_completion(&barr->done);
365
366 insert_work(cwq, &barr->work, head);
367 }
368
flush_cpu_workqueue(struct cpu_workqueue_struct * cwq)369 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
370 {
371 int active;
372
373 if (cwq->thread == current) {
374 /*
375 * Probably keventd trying to flush its own queue. So simply run
376 * it by hand rather than deadlocking.
377 */
378 run_workqueue(cwq);
379 active = 1;
380 } else {
381 struct wq_barrier barr;
382
383 active = 0;
384 spin_lock_irq(&cwq->lock);
385 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
386 insert_wq_barrier(cwq, &barr, &cwq->worklist);
387 active = 1;
388 }
389 spin_unlock_irq(&cwq->lock);
390
391 if (active)
392 wait_for_completion(&barr.done);
393 }
394
395 return active;
396 }
397
398 /**
399 * flush_workqueue - ensure that any scheduled work has run to completion.
400 * @wq: workqueue to flush
401 *
402 * Forces execution of the workqueue and blocks until its completion.
403 * This is typically used in driver shutdown handlers.
404 *
405 * We sleep until all works which were queued on entry have been handled,
406 * but we are not livelocked by new incoming ones.
407 *
408 * This function used to run the workqueues itself. Now we just wait for the
409 * helper threads to do it.
410 */
flush_workqueue(struct workqueue_struct * wq)411 void flush_workqueue(struct workqueue_struct *wq)
412 {
413 const struct cpumask *cpu_map = wq_cpu_map(wq);
414 int cpu;
415
416 might_sleep();
417 lock_map_acquire(&wq->lockdep_map);
418 lock_map_release(&wq->lockdep_map);
419 for_each_cpu_mask_nr(cpu, *cpu_map)
420 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
421 }
422 EXPORT_SYMBOL_GPL(flush_workqueue);
423
424 /**
425 * flush_work - block until a work_struct's callback has terminated
426 * @work: the work which is to be flushed
427 *
428 * Returns false if @work has already terminated.
429 *
430 * It is expected that, prior to calling flush_work(), the caller has
431 * arranged for the work to not be requeued, otherwise it doesn't make
432 * sense to use this function.
433 */
flush_work(struct work_struct * work)434 int flush_work(struct work_struct *work)
435 {
436 struct cpu_workqueue_struct *cwq;
437 struct list_head *prev;
438 struct wq_barrier barr;
439
440 might_sleep();
441 cwq = get_wq_data(work);
442 if (!cwq)
443 return 0;
444
445 lock_map_acquire(&cwq->wq->lockdep_map);
446 lock_map_release(&cwq->wq->lockdep_map);
447
448 prev = NULL;
449 spin_lock_irq(&cwq->lock);
450 if (!list_empty(&work->entry)) {
451 /*
452 * See the comment near try_to_grab_pending()->smp_rmb().
453 * If it was re-queued under us we are not going to wait.
454 */
455 smp_rmb();
456 if (unlikely(cwq != get_wq_data(work)))
457 goto out;
458 prev = &work->entry;
459 } else {
460 if (cwq->current_work != work)
461 goto out;
462 prev = &cwq->worklist;
463 }
464 insert_wq_barrier(cwq, &barr, prev->next);
465 out:
466 spin_unlock_irq(&cwq->lock);
467 if (!prev)
468 return 0;
469
470 wait_for_completion(&barr.done);
471 return 1;
472 }
473 EXPORT_SYMBOL_GPL(flush_work);
474
475 /*
476 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
477 * so this work can't be re-armed in any way.
478 */
try_to_grab_pending(struct work_struct * work)479 static int try_to_grab_pending(struct work_struct *work)
480 {
481 struct cpu_workqueue_struct *cwq;
482 int ret = -1;
483
484 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
485 return 0;
486
487 /*
488 * The queueing is in progress, or it is already queued. Try to
489 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
490 */
491
492 cwq = get_wq_data(work);
493 if (!cwq)
494 return ret;
495
496 spin_lock_irq(&cwq->lock);
497 if (!list_empty(&work->entry)) {
498 /*
499 * This work is queued, but perhaps we locked the wrong cwq.
500 * In that case we must see the new value after rmb(), see
501 * insert_work()->wmb().
502 */
503 smp_rmb();
504 if (cwq == get_wq_data(work)) {
505 list_del_init(&work->entry);
506 ret = 1;
507 }
508 }
509 spin_unlock_irq(&cwq->lock);
510
511 return ret;
512 }
513
wait_on_cpu_work(struct cpu_workqueue_struct * cwq,struct work_struct * work)514 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
515 struct work_struct *work)
516 {
517 struct wq_barrier barr;
518 int running = 0;
519
520 spin_lock_irq(&cwq->lock);
521 if (unlikely(cwq->current_work == work)) {
522 insert_wq_barrier(cwq, &barr, cwq->worklist.next);
523 running = 1;
524 }
525 spin_unlock_irq(&cwq->lock);
526
527 if (unlikely(running))
528 wait_for_completion(&barr.done);
529 }
530
wait_on_work(struct work_struct * work)531 static void wait_on_work(struct work_struct *work)
532 {
533 struct cpu_workqueue_struct *cwq;
534 struct workqueue_struct *wq;
535 const struct cpumask *cpu_map;
536 int cpu;
537
538 might_sleep();
539
540 lock_map_acquire(&work->lockdep_map);
541 lock_map_release(&work->lockdep_map);
542
543 cwq = get_wq_data(work);
544 if (!cwq)
545 return;
546
547 wq = cwq->wq;
548 cpu_map = wq_cpu_map(wq);
549
550 for_each_cpu_mask_nr(cpu, *cpu_map)
551 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
552 }
553
__cancel_work_timer(struct work_struct * work,struct timer_list * timer)554 static int __cancel_work_timer(struct work_struct *work,
555 struct timer_list* timer)
556 {
557 int ret;
558
559 do {
560 ret = (timer && likely(del_timer(timer)));
561 if (!ret)
562 ret = try_to_grab_pending(work);
563 wait_on_work(work);
564 } while (unlikely(ret < 0));
565
566 work_clear_pending(work);
567 return ret;
568 }
569
570 /**
571 * cancel_work_sync - block until a work_struct's callback has terminated
572 * @work: the work which is to be flushed
573 *
574 * Returns true if @work was pending.
575 *
576 * cancel_work_sync() will cancel the work if it is queued. If the work's
577 * callback appears to be running, cancel_work_sync() will block until it
578 * has completed.
579 *
580 * It is possible to use this function if the work re-queues itself. It can
581 * cancel the work even if it migrates to another workqueue, however in that
582 * case it only guarantees that work->func() has completed on the last queued
583 * workqueue.
584 *
585 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
586 * pending, otherwise it goes into a busy-wait loop until the timer expires.
587 *
588 * The caller must ensure that workqueue_struct on which this work was last
589 * queued can't be destroyed before this function returns.
590 */
cancel_work_sync(struct work_struct * work)591 int cancel_work_sync(struct work_struct *work)
592 {
593 return __cancel_work_timer(work, NULL);
594 }
595 EXPORT_SYMBOL_GPL(cancel_work_sync);
596
597 /**
598 * cancel_delayed_work_sync - reliably kill off a delayed work.
599 * @dwork: the delayed work struct
600 *
601 * Returns true if @dwork was pending.
602 *
603 * It is possible to use this function if @dwork rearms itself via queue_work()
604 * or queue_delayed_work(). See also the comment for cancel_work_sync().
605 */
cancel_delayed_work_sync(struct delayed_work * dwork)606 int cancel_delayed_work_sync(struct delayed_work *dwork)
607 {
608 return __cancel_work_timer(&dwork->work, &dwork->timer);
609 }
610 EXPORT_SYMBOL(cancel_delayed_work_sync);
611
612 static struct workqueue_struct *keventd_wq __read_mostly;
613
614 /**
615 * schedule_work - put work task in global workqueue
616 * @work: job to be done
617 *
618 * This puts a job in the kernel-global workqueue.
619 */
schedule_work(struct work_struct * work)620 int schedule_work(struct work_struct *work)
621 {
622 return queue_work(keventd_wq, work);
623 }
624 EXPORT_SYMBOL(schedule_work);
625
626 /*
627 * schedule_work_on - put work task on a specific cpu
628 * @cpu: cpu to put the work task on
629 * @work: job to be done
630 *
631 * This puts a job on a specific cpu
632 */
schedule_work_on(int cpu,struct work_struct * work)633 int schedule_work_on(int cpu, struct work_struct *work)
634 {
635 return queue_work_on(cpu, keventd_wq, work);
636 }
637 EXPORT_SYMBOL(schedule_work_on);
638
639 /**
640 * schedule_delayed_work - put work task in global workqueue after delay
641 * @dwork: job to be done
642 * @delay: number of jiffies to wait or 0 for immediate execution
643 *
644 * After waiting for a given time this puts a job in the kernel-global
645 * workqueue.
646 */
schedule_delayed_work(struct delayed_work * dwork,unsigned long delay)647 int schedule_delayed_work(struct delayed_work *dwork,
648 unsigned long delay)
649 {
650 return queue_delayed_work(keventd_wq, dwork, delay);
651 }
652 EXPORT_SYMBOL(schedule_delayed_work);
653
654 /**
655 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
656 * @cpu: cpu to use
657 * @dwork: job to be done
658 * @delay: number of jiffies to wait
659 *
660 * After waiting for a given time this puts a job in the kernel-global
661 * workqueue on the specified CPU.
662 */
schedule_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)663 int schedule_delayed_work_on(int cpu,
664 struct delayed_work *dwork, unsigned long delay)
665 {
666 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
667 }
668 EXPORT_SYMBOL(schedule_delayed_work_on);
669
670 /**
671 * schedule_on_each_cpu - call a function on each online CPU from keventd
672 * @func: the function to call
673 *
674 * Returns zero on success.
675 * Returns -ve errno on failure.
676 *
677 * schedule_on_each_cpu() is very slow.
678 */
schedule_on_each_cpu(work_func_t func)679 int schedule_on_each_cpu(work_func_t func)
680 {
681 int cpu;
682 struct work_struct *works;
683
684 works = alloc_percpu(struct work_struct);
685 if (!works)
686 return -ENOMEM;
687
688 get_online_cpus();
689 for_each_online_cpu(cpu) {
690 struct work_struct *work = per_cpu_ptr(works, cpu);
691
692 INIT_WORK(work, func);
693 schedule_work_on(cpu, work);
694 }
695 for_each_online_cpu(cpu)
696 flush_work(per_cpu_ptr(works, cpu));
697 put_online_cpus();
698 free_percpu(works);
699 return 0;
700 }
701
flush_scheduled_work(void)702 void flush_scheduled_work(void)
703 {
704 flush_workqueue(keventd_wq);
705 }
706 EXPORT_SYMBOL(flush_scheduled_work);
707
708 /**
709 * execute_in_process_context - reliably execute the routine with user context
710 * @fn: the function to execute
711 * @ew: guaranteed storage for the execute work structure (must
712 * be available when the work executes)
713 *
714 * Executes the function immediately if process context is available,
715 * otherwise schedules the function for delayed execution.
716 *
717 * Returns: 0 - function was executed
718 * 1 - function was scheduled for execution
719 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)720 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
721 {
722 if (!in_interrupt()) {
723 fn(&ew->work);
724 return 0;
725 }
726
727 INIT_WORK(&ew->work, fn);
728 schedule_work(&ew->work);
729
730 return 1;
731 }
732 EXPORT_SYMBOL_GPL(execute_in_process_context);
733
keventd_up(void)734 int keventd_up(void)
735 {
736 return keventd_wq != NULL;
737 }
738
current_is_keventd(void)739 int current_is_keventd(void)
740 {
741 struct cpu_workqueue_struct *cwq;
742 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
743 int ret = 0;
744
745 BUG_ON(!keventd_wq);
746
747 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
748 if (current == cwq->thread)
749 ret = 1;
750
751 return ret;
752
753 }
754
755 static struct cpu_workqueue_struct *
init_cpu_workqueue(struct workqueue_struct * wq,int cpu)756 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
757 {
758 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
759
760 cwq->wq = wq;
761 spin_lock_init(&cwq->lock);
762 INIT_LIST_HEAD(&cwq->worklist);
763 init_waitqueue_head(&cwq->more_work);
764
765 return cwq;
766 }
767
create_workqueue_thread(struct cpu_workqueue_struct * cwq,int cpu)768 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
769 {
770 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
771 struct workqueue_struct *wq = cwq->wq;
772 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
773 struct task_struct *p;
774
775 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
776 /*
777 * Nobody can add the work_struct to this cwq,
778 * if (caller is __create_workqueue)
779 * nobody should see this wq
780 * else // caller is CPU_UP_PREPARE
781 * cpu is not on cpu_online_map
782 * so we can abort safely.
783 */
784 if (IS_ERR(p))
785 return PTR_ERR(p);
786 if (cwq->wq->rt)
787 sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m);
788 cwq->thread = p;
789
790 return 0;
791 }
792
start_workqueue_thread(struct cpu_workqueue_struct * cwq,int cpu)793 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
794 {
795 struct task_struct *p = cwq->thread;
796
797 if (p != NULL) {
798 if (cpu >= 0)
799 kthread_bind(p, cpu);
800 wake_up_process(p);
801 }
802 }
803
__create_workqueue_key(const char * name,int singlethread,int freezeable,int rt,struct lock_class_key * key,const char * lock_name)804 struct workqueue_struct *__create_workqueue_key(const char *name,
805 int singlethread,
806 int freezeable,
807 int rt,
808 struct lock_class_key *key,
809 const char *lock_name)
810 {
811 struct workqueue_struct *wq;
812 struct cpu_workqueue_struct *cwq;
813 int err = 0, cpu;
814
815 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
816 if (!wq)
817 return NULL;
818
819 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
820 if (!wq->cpu_wq) {
821 kfree(wq);
822 return NULL;
823 }
824
825 wq->name = name;
826 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
827 wq->singlethread = singlethread;
828 wq->freezeable = freezeable;
829 wq->rt = rt;
830 INIT_LIST_HEAD(&wq->list);
831
832 if (singlethread) {
833 cwq = init_cpu_workqueue(wq, singlethread_cpu);
834 err = create_workqueue_thread(cwq, singlethread_cpu);
835 start_workqueue_thread(cwq, -1);
836 } else {
837 cpu_maps_update_begin();
838 /*
839 * We must place this wq on list even if the code below fails.
840 * cpu_down(cpu) can remove cpu from cpu_populated_map before
841 * destroy_workqueue() takes the lock, in that case we leak
842 * cwq[cpu]->thread.
843 */
844 spin_lock(&workqueue_lock);
845 list_add(&wq->list, &workqueues);
846 spin_unlock(&workqueue_lock);
847 /*
848 * We must initialize cwqs for each possible cpu even if we
849 * are going to call destroy_workqueue() finally. Otherwise
850 * cpu_up() can hit the uninitialized cwq once we drop the
851 * lock.
852 */
853 for_each_possible_cpu(cpu) {
854 cwq = init_cpu_workqueue(wq, cpu);
855 if (err || !cpu_online(cpu))
856 continue;
857 err = create_workqueue_thread(cwq, cpu);
858 start_workqueue_thread(cwq, cpu);
859 }
860 cpu_maps_update_done();
861 }
862
863 if (err) {
864 destroy_workqueue(wq);
865 wq = NULL;
866 }
867 return wq;
868 }
869 EXPORT_SYMBOL_GPL(__create_workqueue_key);
870
cleanup_workqueue_thread(struct cpu_workqueue_struct * cwq)871 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
872 {
873 /*
874 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
875 * cpu_add_remove_lock protects cwq->thread.
876 */
877 if (cwq->thread == NULL)
878 return;
879
880 lock_map_acquire(&cwq->wq->lockdep_map);
881 lock_map_release(&cwq->wq->lockdep_map);
882
883 flush_cpu_workqueue(cwq);
884 /*
885 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
886 * a concurrent flush_workqueue() can insert a barrier after us.
887 * However, in that case run_workqueue() won't return and check
888 * kthread_should_stop() until it flushes all work_struct's.
889 * When ->worklist becomes empty it is safe to exit because no
890 * more work_structs can be queued on this cwq: flush_workqueue
891 * checks list_empty(), and a "normal" queue_work() can't use
892 * a dead CPU.
893 */
894 kthread_stop(cwq->thread);
895 cwq->thread = NULL;
896 }
897
898 /**
899 * destroy_workqueue - safely terminate a workqueue
900 * @wq: target workqueue
901 *
902 * Safely destroy a workqueue. All work currently pending will be done first.
903 */
destroy_workqueue(struct workqueue_struct * wq)904 void destroy_workqueue(struct workqueue_struct *wq)
905 {
906 const struct cpumask *cpu_map = wq_cpu_map(wq);
907 int cpu;
908
909 cpu_maps_update_begin();
910 spin_lock(&workqueue_lock);
911 list_del(&wq->list);
912 spin_unlock(&workqueue_lock);
913
914 for_each_cpu_mask_nr(cpu, *cpu_map)
915 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
916 cpu_maps_update_done();
917
918 free_percpu(wq->cpu_wq);
919 kfree(wq);
920 }
921 EXPORT_SYMBOL_GPL(destroy_workqueue);
922
workqueue_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)923 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
924 unsigned long action,
925 void *hcpu)
926 {
927 unsigned int cpu = (unsigned long)hcpu;
928 struct cpu_workqueue_struct *cwq;
929 struct workqueue_struct *wq;
930 int ret = NOTIFY_OK;
931
932 action &= ~CPU_TASKS_FROZEN;
933
934 switch (action) {
935 case CPU_UP_PREPARE:
936 cpumask_set_cpu(cpu, cpu_populated_map);
937 }
938 undo:
939 list_for_each_entry(wq, &workqueues, list) {
940 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
941
942 switch (action) {
943 case CPU_UP_PREPARE:
944 if (!create_workqueue_thread(cwq, cpu))
945 break;
946 printk(KERN_ERR "workqueue [%s] for %i failed\n",
947 wq->name, cpu);
948 action = CPU_UP_CANCELED;
949 ret = NOTIFY_BAD;
950 goto undo;
951
952 case CPU_ONLINE:
953 start_workqueue_thread(cwq, cpu);
954 break;
955
956 case CPU_UP_CANCELED:
957 start_workqueue_thread(cwq, -1);
958 case CPU_POST_DEAD:
959 cleanup_workqueue_thread(cwq);
960 break;
961 }
962 }
963
964 switch (action) {
965 case CPU_UP_CANCELED:
966 case CPU_POST_DEAD:
967 cpumask_clear_cpu(cpu, cpu_populated_map);
968 }
969
970 return ret;
971 }
972
973 #ifdef CONFIG_SMP
974 static struct workqueue_struct *work_on_cpu_wq __read_mostly;
975
976 struct work_for_cpu {
977 struct work_struct work;
978 long (*fn)(void *);
979 void *arg;
980 long ret;
981 };
982
do_work_for_cpu(struct work_struct * w)983 static void do_work_for_cpu(struct work_struct *w)
984 {
985 struct work_for_cpu *wfc = container_of(w, struct work_for_cpu, work);
986
987 wfc->ret = wfc->fn(wfc->arg);
988 }
989
990 /**
991 * work_on_cpu - run a function in user context on a particular cpu
992 * @cpu: the cpu to run on
993 * @fn: the function to run
994 * @arg: the function arg
995 *
996 * This will return the value @fn returns.
997 * It is up to the caller to ensure that the cpu doesn't go offline.
998 */
work_on_cpu(unsigned int cpu,long (* fn)(void *),void * arg)999 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1000 {
1001 struct work_for_cpu wfc;
1002
1003 INIT_WORK(&wfc.work, do_work_for_cpu);
1004 wfc.fn = fn;
1005 wfc.arg = arg;
1006 queue_work_on(cpu, work_on_cpu_wq, &wfc.work);
1007 flush_work(&wfc.work);
1008
1009 return wfc.ret;
1010 }
1011 EXPORT_SYMBOL_GPL(work_on_cpu);
1012 #endif /* CONFIG_SMP */
1013
init_workqueues(void)1014 void __init init_workqueues(void)
1015 {
1016 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1017
1018 cpumask_copy(cpu_populated_map, cpu_online_mask);
1019 singlethread_cpu = cpumask_first(cpu_possible_mask);
1020 cpu_singlethread_map = cpumask_of(singlethread_cpu);
1021 hotcpu_notifier(workqueue_cpu_callback, 0);
1022 keventd_wq = create_workqueue("events");
1023 BUG_ON(!keventd_wq);
1024 #ifdef CONFIG_SMP
1025 work_on_cpu_wq = create_workqueue("work_on_cpu");
1026 BUG_ON(!work_on_cpu_wq);
1027 #endif
1028 }
1029