• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  * Send feedback to <socketcan-users@lists.berlios.de>
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
63 
64 #include "af_can.h"
65 
66 static __initdata const char banner[] = KERN_INFO
67 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
68 
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
73 
74 MODULE_ALIAS_NETPROTO(PF_CAN);
75 
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
79 
80 HLIST_HEAD(can_rx_dev_list);
81 static struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
83 
84 static struct kmem_cache *rcv_cache __read_mostly;
85 
86 /* table of registered CAN protocols */
87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_SPINLOCK(proto_tab_lock);
89 
90 struct timer_list can_stattimer;   /* timer for statistics update */
91 struct s_stats    can_stats;       /* packet statistics */
92 struct s_pstats   can_pstats;      /* receive list statistics */
93 
94 /*
95  * af_can socket functions
96  */
97 
can_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
99 {
100 	struct sock *sk = sock->sk;
101 
102 	switch (cmd) {
103 
104 	case SIOCGSTAMP:
105 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
106 
107 	default:
108 		return -ENOIOCTLCMD;
109 	}
110 }
111 
can_sock_destruct(struct sock * sk)112 static void can_sock_destruct(struct sock *sk)
113 {
114 	skb_queue_purge(&sk->sk_receive_queue);
115 }
116 
can_create(struct net * net,struct socket * sock,int protocol)117 static int can_create(struct net *net, struct socket *sock, int protocol)
118 {
119 	struct sock *sk;
120 	struct can_proto *cp;
121 	int err = 0;
122 
123 	sock->state = SS_UNCONNECTED;
124 
125 	if (protocol < 0 || protocol >= CAN_NPROTO)
126 		return -EINVAL;
127 
128 	if (net != &init_net)
129 		return -EAFNOSUPPORT;
130 
131 #ifdef CONFIG_MODULES
132 	/* try to load protocol module kernel is modular */
133 	if (!proto_tab[protocol]) {
134 		err = request_module("can-proto-%d", protocol);
135 
136 		/*
137 		 * In case of error we only print a message but don't
138 		 * return the error code immediately.  Below we will
139 		 * return -EPROTONOSUPPORT
140 		 */
141 		if (err && printk_ratelimit())
142 			printk(KERN_ERR "can: request_module "
143 			       "(can-proto-%d) failed.\n", protocol);
144 	}
145 #endif
146 
147 	spin_lock(&proto_tab_lock);
148 	cp = proto_tab[protocol];
149 	if (cp && !try_module_get(cp->prot->owner))
150 		cp = NULL;
151 	spin_unlock(&proto_tab_lock);
152 
153 	/* check for available protocol and correct usage */
154 
155 	if (!cp)
156 		return -EPROTONOSUPPORT;
157 
158 	if (cp->type != sock->type) {
159 		err = -EPROTONOSUPPORT;
160 		goto errout;
161 	}
162 
163 	if (cp->capability >= 0 && !capable(cp->capability)) {
164 		err = -EPERM;
165 		goto errout;
166 	}
167 
168 	sock->ops = cp->ops;
169 
170 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
171 	if (!sk) {
172 		err = -ENOMEM;
173 		goto errout;
174 	}
175 
176 	sock_init_data(sock, sk);
177 	sk->sk_destruct = can_sock_destruct;
178 
179 	if (sk->sk_prot->init)
180 		err = sk->sk_prot->init(sk);
181 
182 	if (err) {
183 		/* release sk on errors */
184 		sock_orphan(sk);
185 		sock_put(sk);
186 	}
187 
188  errout:
189 	module_put(cp->prot->owner);
190 	return err;
191 }
192 
193 /*
194  * af_can tx path
195  */
196 
197 /**
198  * can_send - transmit a CAN frame (optional with local loopback)
199  * @skb: pointer to socket buffer with CAN frame in data section
200  * @loop: loopback for listeners on local CAN sockets (recommended default!)
201  *
202  * Return:
203  *  0 on success
204  *  -ENETDOWN when the selected interface is down
205  *  -ENOBUFS on full driver queue (see net_xmit_errno())
206  *  -ENOMEM when local loopback failed at calling skb_clone()
207  *  -EPERM when trying to send on a non-CAN interface
208  *  -EINVAL when the skb->data does not contain a valid CAN frame
209  */
can_send(struct sk_buff * skb,int loop)210 int can_send(struct sk_buff *skb, int loop)
211 {
212 	struct sk_buff *newskb = NULL;
213 	struct can_frame *cf = (struct can_frame *)skb->data;
214 	int err;
215 
216 	if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
217 		kfree_skb(skb);
218 		return -EINVAL;
219 	}
220 
221 	if (skb->dev->type != ARPHRD_CAN) {
222 		kfree_skb(skb);
223 		return -EPERM;
224 	}
225 
226 	if (!(skb->dev->flags & IFF_UP)) {
227 		kfree_skb(skb);
228 		return -ENETDOWN;
229 	}
230 
231 	skb->protocol = htons(ETH_P_CAN);
232 	skb_reset_network_header(skb);
233 	skb_reset_transport_header(skb);
234 
235 	if (loop) {
236 		/* local loopback of sent CAN frames */
237 
238 		/* indication for the CAN driver: do loopback */
239 		skb->pkt_type = PACKET_LOOPBACK;
240 
241 		/*
242 		 * The reference to the originating sock may be required
243 		 * by the receiving socket to check whether the frame is
244 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
245 		 * Therefore we have to ensure that skb->sk remains the
246 		 * reference to the originating sock by restoring skb->sk
247 		 * after each skb_clone() or skb_orphan() usage.
248 		 */
249 
250 		if (!(skb->dev->flags & IFF_ECHO)) {
251 			/*
252 			 * If the interface is not capable to do loopback
253 			 * itself, we do it here.
254 			 */
255 			newskb = skb_clone(skb, GFP_ATOMIC);
256 			if (!newskb) {
257 				kfree_skb(skb);
258 				return -ENOMEM;
259 			}
260 
261 			newskb->sk = skb->sk;
262 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
263 			newskb->pkt_type = PACKET_BROADCAST;
264 		}
265 	} else {
266 		/* indication for the CAN driver: no loopback required */
267 		skb->pkt_type = PACKET_HOST;
268 	}
269 
270 	/* send to netdevice */
271 	err = dev_queue_xmit(skb);
272 	if (err > 0)
273 		err = net_xmit_errno(err);
274 
275 	if (err) {
276 		if (newskb)
277 			kfree_skb(newskb);
278 		return err;
279 	}
280 
281 	if (newskb)
282 		netif_rx(newskb);
283 
284 	/* update statistics */
285 	can_stats.tx_frames++;
286 	can_stats.tx_frames_delta++;
287 
288 	return 0;
289 }
290 EXPORT_SYMBOL(can_send);
291 
292 /*
293  * af_can rx path
294  */
295 
find_dev_rcv_lists(struct net_device * dev)296 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
297 {
298 	struct dev_rcv_lists *d = NULL;
299 	struct hlist_node *n;
300 
301 	/*
302 	 * find receive list for this device
303 	 *
304 	 * The hlist_for_each_entry*() macros curse through the list
305 	 * using the pointer variable n and set d to the containing
306 	 * struct in each list iteration.  Therefore, after list
307 	 * iteration, d is unmodified when the list is empty, and it
308 	 * points to last list element, when the list is non-empty
309 	 * but no match in the loop body is found.  I.e. d is *not*
310 	 * NULL when no match is found.  We can, however, use the
311 	 * cursor variable n to decide if a match was found.
312 	 */
313 
314 	hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) {
315 		if (d->dev == dev)
316 			break;
317 	}
318 
319 	return n ? d : NULL;
320 }
321 
322 /**
323  * find_rcv_list - determine optimal filterlist inside device filter struct
324  * @can_id: pointer to CAN identifier of a given can_filter
325  * @mask: pointer to CAN mask of a given can_filter
326  * @d: pointer to the device filter struct
327  *
328  * Description:
329  *  Returns the optimal filterlist to reduce the filter handling in the
330  *  receive path. This function is called by service functions that need
331  *  to register or unregister a can_filter in the filter lists.
332  *
333  *  A filter matches in general, when
334  *
335  *          <received_can_id> & mask == can_id & mask
336  *
337  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
338  *  relevant bits for the filter.
339  *
340  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
341  *  filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
342  *  there is a special filterlist and a special rx path filter handling.
343  *
344  * Return:
345  *  Pointer to optimal filterlist for the given can_id/mask pair.
346  *  Constistency checked mask.
347  *  Reduced can_id to have a preprocessed filter compare value.
348  */
find_rcv_list(canid_t * can_id,canid_t * mask,struct dev_rcv_lists * d)349 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
350 					struct dev_rcv_lists *d)
351 {
352 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
353 
354 	/* filter for error frames in extra filterlist */
355 	if (*mask & CAN_ERR_FLAG) {
356 		/* clear CAN_ERR_FLAG in filter entry */
357 		*mask &= CAN_ERR_MASK;
358 		return &d->rx[RX_ERR];
359 	}
360 
361 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
362 
363 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
364 
365 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
366 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
367 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
368 
369 	/* reduce condition testing at receive time */
370 	*can_id &= *mask;
371 
372 	/* inverse can_id/can_mask filter */
373 	if (inv)
374 		return &d->rx[RX_INV];
375 
376 	/* mask == 0 => no condition testing at receive time */
377 	if (!(*mask))
378 		return &d->rx[RX_ALL];
379 
380 	/* extra filterlists for the subscription of a single non-RTR can_id */
381 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS)
382 	    && !(*can_id & CAN_RTR_FLAG)) {
383 
384 		if (*can_id & CAN_EFF_FLAG) {
385 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
386 				/* RFC: a future use-case for hash-tables? */
387 				return &d->rx[RX_EFF];
388 			}
389 		} else {
390 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
391 				return &d->rx_sff[*can_id];
392 		}
393 	}
394 
395 	/* default: filter via can_id/can_mask */
396 	return &d->rx[RX_FIL];
397 }
398 
399 /**
400  * can_rx_register - subscribe CAN frames from a specific interface
401  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
402  * @can_id: CAN identifier (see description)
403  * @mask: CAN mask (see description)
404  * @func: callback function on filter match
405  * @data: returned parameter for callback function
406  * @ident: string for calling module indentification
407  *
408  * Description:
409  *  Invokes the callback function with the received sk_buff and the given
410  *  parameter 'data' on a matching receive filter. A filter matches, when
411  *
412  *          <received_can_id> & mask == can_id & mask
413  *
414  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
415  *  filter for error frames (CAN_ERR_FLAG bit set in mask).
416  *
417  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
418  *  the callback function is running. The callback function must *not* free
419  *  the given sk_buff while processing it's task. When the given sk_buff is
420  *  needed after the end of the callback function it must be cloned inside
421  *  the callback function with skb_clone().
422  *
423  * Return:
424  *  0 on success
425  *  -ENOMEM on missing cache mem to create subscription entry
426  *  -ENODEV unknown device
427  */
can_rx_register(struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data,char * ident)428 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
429 		    void (*func)(struct sk_buff *, void *), void *data,
430 		    char *ident)
431 {
432 	struct receiver *r;
433 	struct hlist_head *rl;
434 	struct dev_rcv_lists *d;
435 	int err = 0;
436 
437 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
438 
439 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
440 	if (!r)
441 		return -ENOMEM;
442 
443 	spin_lock(&can_rcvlists_lock);
444 
445 	d = find_dev_rcv_lists(dev);
446 	if (d) {
447 		rl = find_rcv_list(&can_id, &mask, d);
448 
449 		r->can_id  = can_id;
450 		r->mask    = mask;
451 		r->matches = 0;
452 		r->func    = func;
453 		r->data    = data;
454 		r->ident   = ident;
455 
456 		hlist_add_head_rcu(&r->list, rl);
457 		d->entries++;
458 
459 		can_pstats.rcv_entries++;
460 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
461 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
462 	} else {
463 		kmem_cache_free(rcv_cache, r);
464 		err = -ENODEV;
465 	}
466 
467 	spin_unlock(&can_rcvlists_lock);
468 
469 	return err;
470 }
471 EXPORT_SYMBOL(can_rx_register);
472 
473 /*
474  * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal
475  */
can_rx_delete_device(struct rcu_head * rp)476 static void can_rx_delete_device(struct rcu_head *rp)
477 {
478 	struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu);
479 
480 	kfree(d);
481 }
482 
483 /*
484  * can_rx_delete_receiver - rcu callback for single receiver entry removal
485  */
can_rx_delete_receiver(struct rcu_head * rp)486 static void can_rx_delete_receiver(struct rcu_head *rp)
487 {
488 	struct receiver *r = container_of(rp, struct receiver, rcu);
489 
490 	kmem_cache_free(rcv_cache, r);
491 }
492 
493 /**
494  * can_rx_unregister - unsubscribe CAN frames from a specific interface
495  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
496  * @can_id: CAN identifier
497  * @mask: CAN mask
498  * @func: callback function on filter match
499  * @data: returned parameter for callback function
500  *
501  * Description:
502  *  Removes subscription entry depending on given (subscription) values.
503  */
can_rx_unregister(struct net_device * dev,canid_t can_id,canid_t mask,void (* func)(struct sk_buff *,void *),void * data)504 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
505 		       void (*func)(struct sk_buff *, void *), void *data)
506 {
507 	struct receiver *r = NULL;
508 	struct hlist_head *rl;
509 	struct hlist_node *next;
510 	struct dev_rcv_lists *d;
511 
512 	spin_lock(&can_rcvlists_lock);
513 
514 	d = find_dev_rcv_lists(dev);
515 	if (!d) {
516 		printk(KERN_ERR "BUG: receive list not found for "
517 		       "dev %s, id %03X, mask %03X\n",
518 		       DNAME(dev), can_id, mask);
519 		goto out;
520 	}
521 
522 	rl = find_rcv_list(&can_id, &mask, d);
523 
524 	/*
525 	 * Search the receiver list for the item to delete.  This should
526 	 * exist, since no receiver may be unregistered that hasn't
527 	 * been registered before.
528 	 */
529 
530 	hlist_for_each_entry_rcu(r, next, rl, list) {
531 		if (r->can_id == can_id && r->mask == mask
532 		    && r->func == func && r->data == data)
533 			break;
534 	}
535 
536 	/*
537 	 * Check for bugs in CAN protocol implementations:
538 	 * If no matching list item was found, the list cursor variable next
539 	 * will be NULL, while r will point to the last item of the list.
540 	 */
541 
542 	if (!next) {
543 		printk(KERN_ERR "BUG: receive list entry not found for "
544 		       "dev %s, id %03X, mask %03X\n",
545 		       DNAME(dev), can_id, mask);
546 		r = NULL;
547 		d = NULL;
548 		goto out;
549 	}
550 
551 	hlist_del_rcu(&r->list);
552 	d->entries--;
553 
554 	if (can_pstats.rcv_entries > 0)
555 		can_pstats.rcv_entries--;
556 
557 	/* remove device structure requested by NETDEV_UNREGISTER */
558 	if (d->remove_on_zero_entries && !d->entries)
559 		hlist_del_rcu(&d->list);
560 	else
561 		d = NULL;
562 
563  out:
564 	spin_unlock(&can_rcvlists_lock);
565 
566 	/* schedule the receiver item for deletion */
567 	if (r)
568 		call_rcu(&r->rcu, can_rx_delete_receiver);
569 
570 	/* schedule the device structure for deletion */
571 	if (d)
572 		call_rcu(&d->rcu, can_rx_delete_device);
573 }
574 EXPORT_SYMBOL(can_rx_unregister);
575 
deliver(struct sk_buff * skb,struct receiver * r)576 static inline void deliver(struct sk_buff *skb, struct receiver *r)
577 {
578 	r->func(skb, r->data);
579 	r->matches++;
580 }
581 
can_rcv_filter(struct dev_rcv_lists * d,struct sk_buff * skb)582 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
583 {
584 	struct receiver *r;
585 	struct hlist_node *n;
586 	int matches = 0;
587 	struct can_frame *cf = (struct can_frame *)skb->data;
588 	canid_t can_id = cf->can_id;
589 
590 	if (d->entries == 0)
591 		return 0;
592 
593 	if (can_id & CAN_ERR_FLAG) {
594 		/* check for error frame entries only */
595 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
596 			if (can_id & r->mask) {
597 				deliver(skb, r);
598 				matches++;
599 			}
600 		}
601 		return matches;
602 	}
603 
604 	/* check for unfiltered entries */
605 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
606 		deliver(skb, r);
607 		matches++;
608 	}
609 
610 	/* check for can_id/mask entries */
611 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
612 		if ((can_id & r->mask) == r->can_id) {
613 			deliver(skb, r);
614 			matches++;
615 		}
616 	}
617 
618 	/* check for inverted can_id/mask entries */
619 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
620 		if ((can_id & r->mask) != r->can_id) {
621 			deliver(skb, r);
622 			matches++;
623 		}
624 	}
625 
626 	/* check filterlists for single non-RTR can_ids */
627 	if (can_id & CAN_RTR_FLAG)
628 		return matches;
629 
630 	if (can_id & CAN_EFF_FLAG) {
631 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
632 			if (r->can_id == can_id) {
633 				deliver(skb, r);
634 				matches++;
635 			}
636 		}
637 	} else {
638 		can_id &= CAN_SFF_MASK;
639 		hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
640 			deliver(skb, r);
641 			matches++;
642 		}
643 	}
644 
645 	return matches;
646 }
647 
can_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)648 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
649 		   struct packet_type *pt, struct net_device *orig_dev)
650 {
651 	struct dev_rcv_lists *d;
652 	struct can_frame *cf = (struct can_frame *)skb->data;
653 	int matches;
654 
655 	if (dev->type != ARPHRD_CAN || !net_eq(dev_net(dev), &init_net)) {
656 		kfree_skb(skb);
657 		return 0;
658 	}
659 
660 	BUG_ON(skb->len != sizeof(struct can_frame) || cf->can_dlc > 8);
661 
662 	/* update statistics */
663 	can_stats.rx_frames++;
664 	can_stats.rx_frames_delta++;
665 
666 	rcu_read_lock();
667 
668 	/* deliver the packet to sockets listening on all devices */
669 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
670 
671 	/* find receive list for this device */
672 	d = find_dev_rcv_lists(dev);
673 	if (d)
674 		matches += can_rcv_filter(d, skb);
675 
676 	rcu_read_unlock();
677 
678 	/* free the skbuff allocated by the netdevice driver */
679 	kfree_skb(skb);
680 
681 	if (matches > 0) {
682 		can_stats.matches++;
683 		can_stats.matches_delta++;
684 	}
685 
686 	return 0;
687 }
688 
689 /*
690  * af_can protocol functions
691  */
692 
693 /**
694  * can_proto_register - register CAN transport protocol
695  * @cp: pointer to CAN protocol structure
696  *
697  * Return:
698  *  0 on success
699  *  -EINVAL invalid (out of range) protocol number
700  *  -EBUSY  protocol already in use
701  *  -ENOBUF if proto_register() fails
702  */
can_proto_register(struct can_proto * cp)703 int can_proto_register(struct can_proto *cp)
704 {
705 	int proto = cp->protocol;
706 	int err = 0;
707 
708 	if (proto < 0 || proto >= CAN_NPROTO) {
709 		printk(KERN_ERR "can: protocol number %d out of range\n",
710 		       proto);
711 		return -EINVAL;
712 	}
713 
714 	err = proto_register(cp->prot, 0);
715 	if (err < 0)
716 		return err;
717 
718 	spin_lock(&proto_tab_lock);
719 	if (proto_tab[proto]) {
720 		printk(KERN_ERR "can: protocol %d already registered\n",
721 		       proto);
722 		err = -EBUSY;
723 	} else {
724 		proto_tab[proto] = cp;
725 
726 		/* use generic ioctl function if not defined by module */
727 		if (!cp->ops->ioctl)
728 			cp->ops->ioctl = can_ioctl;
729 	}
730 	spin_unlock(&proto_tab_lock);
731 
732 	if (err < 0)
733 		proto_unregister(cp->prot);
734 
735 	return err;
736 }
737 EXPORT_SYMBOL(can_proto_register);
738 
739 /**
740  * can_proto_unregister - unregister CAN transport protocol
741  * @cp: pointer to CAN protocol structure
742  */
can_proto_unregister(struct can_proto * cp)743 void can_proto_unregister(struct can_proto *cp)
744 {
745 	int proto = cp->protocol;
746 
747 	spin_lock(&proto_tab_lock);
748 	if (!proto_tab[proto]) {
749 		printk(KERN_ERR "BUG: can: protocol %d is not registered\n",
750 		       proto);
751 	}
752 	proto_tab[proto] = NULL;
753 	spin_unlock(&proto_tab_lock);
754 
755 	proto_unregister(cp->prot);
756 }
757 EXPORT_SYMBOL(can_proto_unregister);
758 
759 /*
760  * af_can notifier to create/remove CAN netdevice specific structs
761  */
can_notifier(struct notifier_block * nb,unsigned long msg,void * data)762 static int can_notifier(struct notifier_block *nb, unsigned long msg,
763 			void *data)
764 {
765 	struct net_device *dev = (struct net_device *)data;
766 	struct dev_rcv_lists *d;
767 
768 	if (!net_eq(dev_net(dev), &init_net))
769 		return NOTIFY_DONE;
770 
771 	if (dev->type != ARPHRD_CAN)
772 		return NOTIFY_DONE;
773 
774 	switch (msg) {
775 
776 	case NETDEV_REGISTER:
777 
778 		/*
779 		 * create new dev_rcv_lists for this device
780 		 *
781 		 * N.B. zeroing the struct is the correct initialization
782 		 * for the embedded hlist_head structs.
783 		 * Another list type, e.g. list_head, would require
784 		 * explicit initialization.
785 		 */
786 
787 		d = kzalloc(sizeof(*d), GFP_KERNEL);
788 		if (!d) {
789 			printk(KERN_ERR
790 			       "can: allocation of receive list failed\n");
791 			return NOTIFY_DONE;
792 		}
793 		d->dev = dev;
794 
795 		spin_lock(&can_rcvlists_lock);
796 		hlist_add_head_rcu(&d->list, &can_rx_dev_list);
797 		spin_unlock(&can_rcvlists_lock);
798 
799 		break;
800 
801 	case NETDEV_UNREGISTER:
802 		spin_lock(&can_rcvlists_lock);
803 
804 		d = find_dev_rcv_lists(dev);
805 		if (d) {
806 			if (d->entries) {
807 				d->remove_on_zero_entries = 1;
808 				d = NULL;
809 			} else
810 				hlist_del_rcu(&d->list);
811 		} else
812 			printk(KERN_ERR "can: notifier: receive list not "
813 			       "found for dev %s\n", dev->name);
814 
815 		spin_unlock(&can_rcvlists_lock);
816 
817 		if (d)
818 			call_rcu(&d->rcu, can_rx_delete_device);
819 
820 		break;
821 	}
822 
823 	return NOTIFY_DONE;
824 }
825 
826 /*
827  * af_can module init/exit functions
828  */
829 
830 static struct packet_type can_packet __read_mostly = {
831 	.type = __constant_htons(ETH_P_CAN),
832 	.dev  = NULL,
833 	.func = can_rcv,
834 };
835 
836 static struct net_proto_family can_family_ops __read_mostly = {
837 	.family = PF_CAN,
838 	.create = can_create,
839 	.owner  = THIS_MODULE,
840 };
841 
842 /* notifier block for netdevice event */
843 static struct notifier_block can_netdev_notifier __read_mostly = {
844 	.notifier_call = can_notifier,
845 };
846 
can_init(void)847 static __init int can_init(void)
848 {
849 	printk(banner);
850 
851 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
852 				      0, 0, NULL);
853 	if (!rcv_cache)
854 		return -ENOMEM;
855 
856 	/*
857 	 * Insert can_rx_alldev_list for reception on all devices.
858 	 * This struct is zero initialized which is correct for the
859 	 * embedded hlist heads, the dev pointer, and the entries counter.
860 	 */
861 
862 	spin_lock(&can_rcvlists_lock);
863 	hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list);
864 	spin_unlock(&can_rcvlists_lock);
865 
866 	if (stats_timer) {
867 		/* the statistics are updated every second (timer triggered) */
868 		setup_timer(&can_stattimer, can_stat_update, 0);
869 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
870 	} else
871 		can_stattimer.function = NULL;
872 
873 	can_init_proc();
874 
875 	/* protocol register */
876 	sock_register(&can_family_ops);
877 	register_netdevice_notifier(&can_netdev_notifier);
878 	dev_add_pack(&can_packet);
879 
880 	return 0;
881 }
882 
can_exit(void)883 static __exit void can_exit(void)
884 {
885 	struct dev_rcv_lists *d;
886 	struct hlist_node *n, *next;
887 
888 	if (stats_timer)
889 		del_timer(&can_stattimer);
890 
891 	can_remove_proc();
892 
893 	/* protocol unregister */
894 	dev_remove_pack(&can_packet);
895 	unregister_netdevice_notifier(&can_netdev_notifier);
896 	sock_unregister(PF_CAN);
897 
898 	/* remove can_rx_dev_list */
899 	spin_lock(&can_rcvlists_lock);
900 	hlist_del(&can_rx_alldev_list.list);
901 	hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) {
902 		hlist_del(&d->list);
903 		kfree(d);
904 	}
905 	spin_unlock(&can_rcvlists_lock);
906 
907 	kmem_cache_destroy(rcv_cache);
908 }
909 
910 module_init(can_init);
911 module_exit(can_exit);
912