/* * Implementation of the access vector table type. * * Author : Stephen Smalley, */ /* Updated: Frank Mayer and Karl MacMillan * * Added conditional policy language extensions * * Copyright (C) 2003 Tresys Technology, LLC * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2. * * Updated: Yuichi Nakamura * Tuned number of hash slots for avtab to reduce memory usage */ #include #include #include #include "avtab.h" #include "policydb.h" static struct kmem_cache *avtab_node_cachep; static struct kmem_cache *avtab_xperms_cachep; static inline int avtab_hash(struct avtab_key *keyp, u16 mask) { return ((keyp->target_class + (keyp->target_type << 2) + (keyp->source_type << 9)) & mask); } static struct avtab_node* avtab_insert_node(struct avtab *h, int hvalue, struct avtab_node *prev, struct avtab_node *cur, struct avtab_key *key, struct avtab_datum *datum) { struct avtab_node *newnode; struct avtab_extended_perms *xperms; newnode = kmem_cache_zalloc(avtab_node_cachep, GFP_KERNEL); if (newnode == NULL) return NULL; newnode->key = *key; if (key->specified & AVTAB_XPERMS) { xperms = kmem_cache_zalloc(avtab_xperms_cachep, GFP_KERNEL); if (xperms == NULL) { kmem_cache_free(avtab_node_cachep, newnode); return NULL; } *xperms = *(datum->u.xperms); newnode->datum.u.xperms = xperms; } else { newnode->datum.u.data = datum->u.data; } if (prev) { newnode->next = prev->next; prev->next = newnode; } else { newnode->next = h->htable[hvalue]; h->htable[hvalue] = newnode; } h->nel++; return newnode; } static int avtab_insert(struct avtab *h, struct avtab_key *key, struct avtab_datum *datum) { int hvalue; struct avtab_node *prev, *cur, *newnode; u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD); if (!h || !h->htable) return -EINVAL; hvalue = avtab_hash(key, h->mask); for (prev = NULL, cur = h->htable[hvalue]; cur; prev = cur, cur = cur->next) { if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified)) { /* extended perms may not be unique */ if (specified & AVTAB_XPERMS) break; return -EEXIST; } if (key->source_type < cur->key.source_type) break; if (key->source_type == cur->key.source_type && key->target_type < cur->key.target_type) break; if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class) break; } newnode = avtab_insert_node(h, hvalue, prev, cur, key, datum); if (!newnode) return -ENOMEM; return 0; } /* Unlike avtab_insert(), this function allow multiple insertions of the same * key/specified mask into the table, as needed by the conditional avtab. * It also returns a pointer to the node inserted. */ struct avtab_node * avtab_insert_nonunique(struct avtab *h, struct avtab_key *key, struct avtab_datum *datum) { int hvalue; struct avtab_node *prev, *cur; u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD); if (!h || !h->htable) return NULL; hvalue = avtab_hash(key, h->mask); for (prev = NULL, cur = h->htable[hvalue]; cur; prev = cur, cur = cur->next) { if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified)) break; if (key->source_type < cur->key.source_type) break; if (key->source_type == cur->key.source_type && key->target_type < cur->key.target_type) break; if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class) break; } return avtab_insert_node(h, hvalue, prev, cur, key, datum); } struct avtab_datum *avtab_search(struct avtab *h, struct avtab_key *key) { int hvalue; struct avtab_node *cur; u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD); if (!h || !h->htable) return NULL; hvalue = avtab_hash(key, h->mask); for (cur = h->htable[hvalue]; cur; cur = cur->next) { if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified)) return &cur->datum; if (key->source_type < cur->key.source_type) break; if (key->source_type == cur->key.source_type && key->target_type < cur->key.target_type) break; if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class) break; } return NULL; } /* This search function returns a node pointer, and can be used in * conjunction with avtab_search_next_node() */ struct avtab_node* avtab_search_node(struct avtab *h, struct avtab_key *key) { int hvalue; struct avtab_node *cur; u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD); if (!h || !h->htable) return NULL; hvalue = avtab_hash(key, h->mask); for (cur = h->htable[hvalue]; cur; cur = cur->next) { if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class == cur->key.target_class && (specified & cur->key.specified)) return cur; if (key->source_type < cur->key.source_type) break; if (key->source_type == cur->key.source_type && key->target_type < cur->key.target_type) break; if (key->source_type == cur->key.source_type && key->target_type == cur->key.target_type && key->target_class < cur->key.target_class) break; } return NULL; } struct avtab_node* avtab_search_node_next(struct avtab_node *node, int specified) { struct avtab_node *cur; if (!node) return NULL; specified &= ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD); for (cur = node->next; cur; cur = cur->next) { if (node->key.source_type == cur->key.source_type && node->key.target_type == cur->key.target_type && node->key.target_class == cur->key.target_class && (specified & cur->key.specified)) return cur; if (node->key.source_type < cur->key.source_type) break; if (node->key.source_type == cur->key.source_type && node->key.target_type < cur->key.target_type) break; if (node->key.source_type == cur->key.source_type && node->key.target_type == cur->key.target_type && node->key.target_class < cur->key.target_class) break; } return NULL; } void avtab_destroy(struct avtab *h) { int i; struct avtab_node *cur, *temp; if (!h || !h->htable) return; for (i = 0; i < h->nslot; i++) { cur = h->htable[i]; while (cur) { temp = cur; cur = cur->next; if (temp->key.specified & AVTAB_XPERMS) kmem_cache_free(avtab_xperms_cachep, temp->datum.u.xperms); kmem_cache_free(avtab_node_cachep, temp); } h->htable[i] = NULL; } kfree(h->htable); h->htable = NULL; h->nslot = 0; h->mask = 0; } int avtab_init(struct avtab *h) { h->htable = NULL; h->nel = 0; return 0; } int avtab_alloc(struct avtab *h, u32 nrules) { u16 mask = 0; u32 shift = 0; u32 work = nrules; u32 nslot = 0; if (nrules == 0) goto avtab_alloc_out; while (work) { work = work >> 1; shift++; } if (shift > 2) shift = shift - 2; nslot = 1 << shift; if (nslot > MAX_AVTAB_HASH_BUCKETS) nslot = MAX_AVTAB_HASH_BUCKETS; mask = nslot - 1; h->htable = kcalloc(nslot, sizeof(*(h->htable)), GFP_KERNEL); if (!h->htable) return -ENOMEM; avtab_alloc_out: h->nel = 0; h->nslot = nslot; h->mask = mask; printk(KERN_DEBUG "SELinux: %d avtab hash slots, %d rules.\n", h->nslot, nrules); return 0; } void avtab_hash_eval(struct avtab *h, char *tag) { int i, chain_len, slots_used, max_chain_len; unsigned long long chain2_len_sum; struct avtab_node *cur; slots_used = 0; max_chain_len = 0; chain2_len_sum = 0; for (i = 0; i < h->nslot; i++) { cur = h->htable[i]; if (cur) { slots_used++; chain_len = 0; while (cur) { chain_len++; cur = cur->next; } if (chain_len > max_chain_len) max_chain_len = chain_len; chain2_len_sum += chain_len * chain_len; } } printk(KERN_DEBUG "SELinux: %s: %d entries and %d/%d buckets used, " "longest chain length %d sum of chain length^2 %llu\n", tag, h->nel, slots_used, h->nslot, max_chain_len, chain2_len_sum); } /* * extended permissions compatibility. Make ToT Android kernels compatible * with Android M releases */ #define AVTAB_OPTYPE_ALLOWED 0x1000 #define AVTAB_OPTYPE_AUDITALLOW 0x2000 #define AVTAB_OPTYPE_DONTAUDIT 0x4000 #define AVTAB_OPTYPE (AVTAB_OPTYPE_ALLOWED | \ AVTAB_OPTYPE_AUDITALLOW | \ AVTAB_OPTYPE_DONTAUDIT) #define AVTAB_XPERMS_OPTYPE 4 #define avtab_xperms_to_optype(x) (x << AVTAB_XPERMS_OPTYPE) #define avtab_optype_to_xperms(x) (x >> AVTAB_XPERMS_OPTYPE) static unsigned int avtab_android_m_compat; static void avtab_android_m_compat_set(void) { if (!avtab_android_m_compat) { pr_info("SELinux: Android master kernel running Android" " M policy in compatibility mode.\n"); avtab_android_m_compat = 1; } } static uint16_t spec_order[] = { AVTAB_ALLOWED, AVTAB_AUDITDENY, AVTAB_AUDITALLOW, AVTAB_TRANSITION, AVTAB_CHANGE, AVTAB_MEMBER, AVTAB_XPERMS_ALLOWED, AVTAB_XPERMS_AUDITALLOW, AVTAB_XPERMS_DONTAUDIT }; int avtab_read_item(struct avtab *a, void *fp, struct policydb *pol, int (*insertf)(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *p), void *p) { __le16 buf16[4]; u16 enabled; u32 items, items2, val, vers = pol->policyvers; struct avtab_key key; struct avtab_datum datum; struct avtab_extended_perms xperms; __le32 buf32[ARRAY_SIZE(xperms.perms.p)]; unsigned int android_m_compat_optype = 0; int i, rc; unsigned set; memset(&key, 0, sizeof(struct avtab_key)); memset(&datum, 0, sizeof(struct avtab_datum)); if (vers < POLICYDB_VERSION_AVTAB) { rc = next_entry(buf32, fp, sizeof(u32)); if (rc) { printk(KERN_ERR "SELinux: avtab: truncated entry\n"); return rc; } items2 = le32_to_cpu(buf32[0]); if (items2 > ARRAY_SIZE(buf32)) { printk(KERN_ERR "SELinux: avtab: entry overflow\n"); return -EINVAL; } rc = next_entry(buf32, fp, sizeof(u32)*items2); if (rc) { printk(KERN_ERR "SELinux: avtab: truncated entry\n"); return rc; } items = 0; val = le32_to_cpu(buf32[items++]); key.source_type = (u16)val; if (key.source_type != val) { printk(KERN_ERR "SELinux: avtab: truncated source type\n"); return -EINVAL; } val = le32_to_cpu(buf32[items++]); key.target_type = (u16)val; if (key.target_type != val) { printk(KERN_ERR "SELinux: avtab: truncated target type\n"); return -EINVAL; } val = le32_to_cpu(buf32[items++]); key.target_class = (u16)val; if (key.target_class != val) { printk(KERN_ERR "SELinux: avtab: truncated target class\n"); return -EINVAL; } val = le32_to_cpu(buf32[items++]); enabled = (val & AVTAB_ENABLED_OLD) ? AVTAB_ENABLED : 0; if (!(val & (AVTAB_AV | AVTAB_TYPE))) { printk(KERN_ERR "SELinux: avtab: null entry\n"); return -EINVAL; } if ((val & AVTAB_AV) && (val & AVTAB_TYPE)) { printk(KERN_ERR "SELinux: avtab: entry has both access vectors and types\n"); return -EINVAL; } if (val & AVTAB_XPERMS) { printk(KERN_ERR "SELinux: avtab: entry has extended permissions\n"); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(spec_order); i++) { if (val & spec_order[i]) { key.specified = spec_order[i] | enabled; datum.u.data = le32_to_cpu(buf32[items++]); rc = insertf(a, &key, &datum, p); if (rc) return rc; } } if (items != items2) { printk(KERN_ERR "SELinux: avtab: entry only had %d items, expected %d\n", items2, items); return -EINVAL; } return 0; } rc = next_entry(buf16, fp, sizeof(u16)*4); if (rc) { printk(KERN_ERR "SELinux: avtab: truncated entry\n"); return rc; } items = 0; key.source_type = le16_to_cpu(buf16[items++]); key.target_type = le16_to_cpu(buf16[items++]); key.target_class = le16_to_cpu(buf16[items++]); key.specified = le16_to_cpu(buf16[items++]); if ((key.specified & AVTAB_OPTYPE) && (vers == POLICYDB_VERSION_XPERMS_IOCTL)) { key.specified = avtab_optype_to_xperms(key.specified); android_m_compat_optype = 1; avtab_android_m_compat_set(); } if (!policydb_type_isvalid(pol, key.source_type) || !policydb_type_isvalid(pol, key.target_type) || !policydb_class_isvalid(pol, key.target_class)) { printk(KERN_ERR "SELinux: avtab: invalid type or class\n"); return -EINVAL; } set = 0; for (i = 0; i < ARRAY_SIZE(spec_order); i++) { if (key.specified & spec_order[i]) set++; } if (!set || set > 1) { printk(KERN_ERR "SELinux: avtab: more than one specifier\n"); return -EINVAL; } if ((vers < POLICYDB_VERSION_XPERMS_IOCTL) && (key.specified & AVTAB_XPERMS)) { printk(KERN_ERR "SELinux: avtab: policy version %u does not " "support extended permissions rules and one " "was specified\n", vers); return -EINVAL; } else if (key.specified & AVTAB_XPERMS) { memset(&xperms, 0, sizeof(struct avtab_extended_perms)); rc = next_entry(&xperms.specified, fp, sizeof(u8)); if (rc) { printk(KERN_ERR "SELinux: avtab: truncated entry\n"); return rc; } if (avtab_android_m_compat || ((xperms.specified != AVTAB_XPERMS_IOCTLFUNCTION) && (xperms.specified != AVTAB_XPERMS_IOCTLDRIVER) && (vers == POLICYDB_VERSION_XPERMS_IOCTL))) { xperms.driver = xperms.specified; if (android_m_compat_optype) xperms.specified = AVTAB_XPERMS_IOCTLDRIVER; else xperms.specified = AVTAB_XPERMS_IOCTLFUNCTION; avtab_android_m_compat_set(); } else { rc = next_entry(&xperms.driver, fp, sizeof(u8)); if (rc) { printk(KERN_ERR "SELinux: avtab: truncated entry\n"); return rc; } } rc = next_entry(buf32, fp, sizeof(u32)*ARRAY_SIZE(xperms.perms.p)); if (rc) { printk(KERN_ERR "SELinux: avtab: truncated entry\n"); return rc; } for (i = 0; i < ARRAY_SIZE(xperms.perms.p); i++) xperms.perms.p[i] = le32_to_cpu(buf32[i]); datum.u.xperms = &xperms; } else { rc = next_entry(buf32, fp, sizeof(u32)); if (rc) { printk(KERN_ERR "SELinux: avtab: truncated entry\n"); return rc; } datum.u.data = le32_to_cpu(*buf32); } if ((key.specified & AVTAB_TYPE) && !policydb_type_isvalid(pol, datum.u.data)) { printk(KERN_ERR "SELinux: avtab: invalid type\n"); return -EINVAL; } return insertf(a, &key, &datum, p); } static int avtab_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *p) { return avtab_insert(a, k, d); } int avtab_read(struct avtab *a, void *fp, struct policydb *pol) { int rc; __le32 buf[1]; u32 nel, i; rc = next_entry(buf, fp, sizeof(u32)); if (rc < 0) { printk(KERN_ERR "SELinux: avtab: truncated table\n"); goto bad; } nel = le32_to_cpu(buf[0]); if (!nel) { printk(KERN_ERR "SELinux: avtab: table is empty\n"); rc = -EINVAL; goto bad; } rc = avtab_alloc(a, nel); if (rc) goto bad; for (i = 0; i < nel; i++) { rc = avtab_read_item(a, fp, pol, avtab_insertf, NULL); if (rc) { if (rc == -ENOMEM) printk(KERN_ERR "SELinux: avtab: out of memory\n"); else if (rc == -EEXIST) printk(KERN_ERR "SELinux: avtab: duplicate entry\n"); goto bad; } } rc = 0; out: return rc; bad: avtab_destroy(a); goto out; } int avtab_write_item(struct policydb *p, struct avtab_node *cur, void *fp) { __le16 buf16[4]; __le32 buf32[ARRAY_SIZE(cur->datum.u.xperms->perms.p)]; int rc; unsigned int i; buf16[0] = cpu_to_le16(cur->key.source_type); buf16[1] = cpu_to_le16(cur->key.target_type); buf16[2] = cpu_to_le16(cur->key.target_class); if (avtab_android_m_compat && (cur->key.specified & AVTAB_XPERMS) && (cur->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER)) buf16[3] = cpu_to_le16(avtab_xperms_to_optype(cur->key.specified)); else buf16[3] = cpu_to_le16(cur->key.specified); rc = put_entry(buf16, sizeof(u16), 4, fp); if (rc) return rc; if (cur->key.specified & AVTAB_XPERMS) { if (avtab_android_m_compat == 0) { rc = put_entry(&cur->datum.u.xperms->specified, sizeof(u8), 1, fp); if (rc) return rc; } rc = put_entry(&cur->datum.u.xperms->driver, sizeof(u8), 1, fp); if (rc) return rc; for (i = 0; i < ARRAY_SIZE(cur->datum.u.xperms->perms.p); i++) buf32[i] = cpu_to_le32(cur->datum.u.xperms->perms.p[i]); rc = put_entry(buf32, sizeof(u32), ARRAY_SIZE(cur->datum.u.xperms->perms.p), fp); } else { buf32[0] = cpu_to_le32(cur->datum.u.data); rc = put_entry(buf32, sizeof(u32), 1, fp); } if (rc) return rc; return 0; } int avtab_write(struct policydb *p, struct avtab *a, void *fp) { unsigned int i; int rc = 0; struct avtab_node *cur; __le32 buf[1]; buf[0] = cpu_to_le32(a->nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; for (i = 0; i < a->nslot; i++) { for (cur = a->htable[i]; cur; cur = cur->next) { rc = avtab_write_item(p, cur, fp); if (rc) return rc; } } return rc; } void avtab_cache_init(void) { avtab_node_cachep = kmem_cache_create("avtab_node", sizeof(struct avtab_node), 0, SLAB_PANIC, NULL); avtab_xperms_cachep = kmem_cache_create("avtab_extended_perms", sizeof(struct avtab_extended_perms), 0, SLAB_PANIC, NULL); } void avtab_cache_destroy(void) { kmem_cache_destroy(avtab_node_cachep); kmem_cache_destroy(avtab_xperms_cachep); }