• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Carsten Langgaard, carstenl@mips.com
3  * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
4  * Portions copyright (C) 2009 Cisco Systems, Inc.
5  *
6  *  This program is free software; you can distribute it and/or modify it
7  *  under the terms of the GNU General Public License (Version 2) as
8  *  published by the Free Software Foundation.
9  *
10  *  This program is distributed in the hope it will be useful, but WITHOUT
11  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  *  for more details.
14  *
15  *  You should have received a copy of the GNU General Public License along
16  *  with this program; if not, write to the Free Software Foundation, Inc.,
17  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
18  */
19 #include <linux/init.h>
20 #include <linux/sched.h>
21 #include <linux/ioport.h>
22 #include <linux/pci.h>
23 #include <linux/screen_info.h>
24 #include <linux/notifier.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/ctype.h>
28 #include <linux/cpu.h>
29 #include <linux/time.h>
30 
31 #include <asm/bootinfo.h>
32 #include <asm/irq.h>
33 #include <asm/mips-boards/generic.h>
34 #include <asm/dma.h>
35 #include <asm/asm.h>
36 #include <asm/traps.h>
37 #include <asm/asm-offsets.h>
38 #include "reset.h"
39 
40 #define VAL(n)		STR(n)
41 
42 /*
43  * Macros for loading addresses and storing registers:
44  * LONG_L_	Stringified version of LONG_L for use in asm() statement
45  * LONG_S_	Stringified version of LONG_S for use in asm() statement
46  * PTR_LA_	Stringified version of PTR_LA for use in asm() statement
47  * REG_SIZE	Number of 8-bit bytes in a full width register
48  */
49 #define LONG_L_		VAL(LONG_L) " "
50 #define LONG_S_		VAL(LONG_S) " "
51 #define PTR_LA_		VAL(PTR_LA) " "
52 
53 #ifdef CONFIG_64BIT
54 #warning TODO: 64-bit code needs to be verified
55 #define REG_SIZE	"8"		/* In bytes */
56 #endif
57 
58 #ifdef CONFIG_32BIT
59 #define REG_SIZE	"4"		/* In bytes */
60 #endif
61 
62 static void register_panic_notifier(void);
63 static int panic_handler(struct notifier_block *notifier_block,
64 	unsigned long event, void *cause_string);
65 
get_system_type(void)66 const char *get_system_type(void)
67 {
68 	return "PowerTV";
69 }
70 
plat_mem_setup(void)71 void __init plat_mem_setup(void)
72 {
73 	panic_on_oops = 1;
74 	register_panic_notifier();
75 
76 #if 0
77 	mips_pcibios_init();
78 #endif
79 	mips_reboot_setup();
80 }
81 
82 /*
83  * Install a panic notifier for platform-specific diagnostics
84  */
register_panic_notifier()85 static void register_panic_notifier()
86 {
87 	static struct notifier_block panic_notifier = {
88 		.notifier_call = panic_handler,
89 		.next = NULL,
90 		.priority	= INT_MAX
91 	};
92 	atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier);
93 }
94 
panic_handler(struct notifier_block * notifier_block,unsigned long event,void * cause_string)95 static int panic_handler(struct notifier_block *notifier_block,
96 	unsigned long event, void *cause_string)
97 {
98 	struct pt_regs	my_regs;
99 
100 	/* Save all of the registers */
101 	{
102 		unsigned long	at, v0, v1; /* Must be on the stack */
103 
104 		/* Start by saving $at and v0 on the stack. We use $at
105 		 * ourselves, but it looks like the compiler may use v0 or v1
106 		 * to load the address of the pt_regs structure. We'll come
107 		 * back later to store the registers in the pt_regs
108 		 * structure. */
109 		__asm__ __volatile__ (
110 			".set	noat\n"
111 			LONG_S_		"$at, %[at]\n"
112 			LONG_S_		"$2, %[v0]\n"
113 			LONG_S_		"$3, %[v1]\n"
114 		:
115 			[at] "=m" (at),
116 			[v0] "=m" (v0),
117 			[v1] "=m" (v1)
118 		:
119 		:	"at"
120 		);
121 
122 		__asm__ __volatile__ (
123 			".set	noat\n"
124 			"move		$at, %[pt_regs]\n"
125 
126 			/* Argument registers */
127 			LONG_S_		"$4, " VAL(PT_R4) "($at)\n"
128 			LONG_S_		"$5, " VAL(PT_R5) "($at)\n"
129 			LONG_S_		"$6, " VAL(PT_R6) "($at)\n"
130 			LONG_S_		"$7, " VAL(PT_R7) "($at)\n"
131 
132 			/* Temporary regs */
133 			LONG_S_		"$8, " VAL(PT_R8) "($at)\n"
134 			LONG_S_		"$9, " VAL(PT_R9) "($at)\n"
135 			LONG_S_		"$10, " VAL(PT_R10) "($at)\n"
136 			LONG_S_		"$11, " VAL(PT_R11) "($at)\n"
137 			LONG_S_		"$12, " VAL(PT_R12) "($at)\n"
138 			LONG_S_		"$13, " VAL(PT_R13) "($at)\n"
139 			LONG_S_		"$14, " VAL(PT_R14) "($at)\n"
140 			LONG_S_		"$15, " VAL(PT_R15) "($at)\n"
141 
142 			/* "Saved" registers */
143 			LONG_S_		"$16, " VAL(PT_R16) "($at)\n"
144 			LONG_S_		"$17, " VAL(PT_R17) "($at)\n"
145 			LONG_S_		"$18, " VAL(PT_R18) "($at)\n"
146 			LONG_S_		"$19, " VAL(PT_R19) "($at)\n"
147 			LONG_S_		"$20, " VAL(PT_R20) "($at)\n"
148 			LONG_S_		"$21, " VAL(PT_R21) "($at)\n"
149 			LONG_S_		"$22, " VAL(PT_R22) "($at)\n"
150 			LONG_S_		"$23, " VAL(PT_R23) "($at)\n"
151 
152 			/* Add'l temp regs */
153 			LONG_S_		"$24, " VAL(PT_R24) "($at)\n"
154 			LONG_S_		"$25, " VAL(PT_R25) "($at)\n"
155 
156 			/* Kernel temp regs */
157 			LONG_S_		"$26, " VAL(PT_R26) "($at)\n"
158 			LONG_S_		"$27, " VAL(PT_R27) "($at)\n"
159 
160 			/* Global pointer, stack pointer, frame pointer and
161 			 * return address */
162 			LONG_S_		"$gp, " VAL(PT_R28) "($at)\n"
163 			LONG_S_		"$sp, " VAL(PT_R29) "($at)\n"
164 			LONG_S_		"$fp, " VAL(PT_R30) "($at)\n"
165 			LONG_S_		"$ra, " VAL(PT_R31) "($at)\n"
166 
167 			/* Now we can get the $at and v0 registers back and
168 			 * store them */
169 			LONG_L_		"$8, %[at]\n"
170 			LONG_S_		"$8, " VAL(PT_R1) "($at)\n"
171 			LONG_L_		"$8, %[v0]\n"
172 			LONG_S_		"$8, " VAL(PT_R2) "($at)\n"
173 			LONG_L_		"$8, %[v1]\n"
174 			LONG_S_		"$8, " VAL(PT_R3) "($at)\n"
175 		:
176 		:
177 			[at] "m" (at),
178 			[v0] "m" (v0),
179 			[v1] "m" (v1),
180 			[pt_regs] "r" (&my_regs)
181 		:	"at", "t0"
182 		);
183 
184 		/* Set the current EPC value to be the current location in this
185 		 * function */
186 		__asm__ __volatile__ (
187 			".set	noat\n"
188 		"1:\n"
189 			PTR_LA_		"$at, 1b\n"
190 			LONG_S_		"$at, %[cp0_epc]\n"
191 		:
192 			[cp0_epc] "=m" (my_regs.cp0_epc)
193 		:
194 		:	"at"
195 		);
196 
197 		my_regs.cp0_cause = read_c0_cause();
198 		my_regs.cp0_status = read_c0_status();
199 	}
200 
201 	pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... "
202 		"zzzz... \n");
203 
204 	return NOTIFY_DONE;
205 }
206 
207 /* Information about the RF MAC address, if one was supplied on the
208  * command line. */
209 static bool have_rfmac;
210 static u8 rfmac[ETH_ALEN];
211 
rfmac_param(char * p)212 static int rfmac_param(char *p)
213 {
214 	u8	*q;
215 	bool	is_high_nibble;
216 	int	c;
217 
218 	/* Skip a leading "0x", if present */
219 	if (*p == '0' && *(p+1) == 'x')
220 		p += 2;
221 
222 	q = rfmac;
223 	is_high_nibble = true;
224 
225 	for (c = (unsigned char) *p++;
226 		isxdigit(c) && q - rfmac < ETH_ALEN;
227 		c = (unsigned char) *p++) {
228 		int	nibble;
229 
230 		nibble = (isdigit(c) ? (c - '0') :
231 			(isupper(c) ? c - 'A' + 10 : c - 'a' + 10));
232 
233 		if (is_high_nibble)
234 			*q = nibble << 4;
235 		else
236 			*q++ |= nibble;
237 
238 		is_high_nibble = !is_high_nibble;
239 	}
240 
241 	/* If we parsed all the way to the end of the parameter value and
242 	 * parsed all ETH_ALEN bytes, we have a usable RF MAC address */
243 	have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN);
244 
245 	return 0;
246 }
247 
248 early_param("rfmac", rfmac_param);
249 
250 /*
251  * Generate an Ethernet MAC address that has a good chance of being unique.
252  * @addr:	Pointer to six-byte array containing the Ethernet address
253  * Generates an Ethernet MAC address that is highly likely to be unique for
254  * this particular system on a network with other systems of the same type.
255  *
256  * The problem we are solving is that, when eth_random_addr() is used to
257  * generate MAC addresses at startup, there isn't much entropy for the random
258  * number generator to use and the addresses it produces are fairly likely to
259  * be the same as those of other identical systems on the same local network.
260  * This is true even for relatively small numbers of systems (for the reason
261  * why, see the Wikipedia entry for "Birthday problem" at:
262  *	http://en.wikipedia.org/wiki/Birthday_problem
263  *
264  * The good news is that we already have a MAC address known to be unique, the
265  * RF MAC address. The bad news is that this address is already in use on the
266  * RF interface. Worse, the obvious trick, taking the RF MAC address and
267  * turning on the locally managed bit, has already been used for other devices.
268  * Still, this does give us something to work with.
269  *
270  * The approach we take is:
271  * 1.	If we can't get the RF MAC Address, just call eth_random_addr.
272  * 2.	Use the 24-bit NIC-specific bits of the RF MAC address as the last 24
273  *	bits of the new address. This is very likely to be unique, except for
274  *	the current box.
275  * 3.	To avoid using addresses already on the current box, we set the top
276  *	six bits of the address with a value different from any currently
277  *	registered Scientific Atlanta organizationally unique identifyer
278  *	(OUI). This avoids duplication with any addresses on the system that
279  *	were generated from valid Scientific Atlanta-registered address by
280  *	simply flipping the locally managed bit.
281  * 4.	We aren't generating a multicast address, so we leave the multicast
282  *	bit off. Since we aren't using a registered address, we have to set
283  *	the locally managed bit.
284  * 5.	We then randomly generate the remaining 16-bits. This does two
285  *	things:
286  *	a.	It allows us to call this function for more than one device
287  *		in this system
288  *	b.	It ensures that things will probably still work even if
289  *		some device on the device network has a locally managed
290  *		address that matches the top six bits from step 2.
291  */
platform_random_ether_addr(u8 addr[ETH_ALEN])292 void platform_random_ether_addr(u8 addr[ETH_ALEN])
293 {
294 	const int num_random_bytes = 2;
295 	const unsigned char non_sciatl_oui_bits = 0xc0u;
296 	const unsigned char mac_addr_locally_managed = (1 << 1);
297 
298 	if (!have_rfmac) {
299 		pr_warning("rfmac not available on command line; "
300 			"generating random MAC address\n");
301 		eth_random_addr(addr);
302 	}
303 
304 	else {
305 		int	i;
306 
307 		/* Set the first byte to something that won't match a Scientific
308 		 * Atlanta OUI, is locally managed, and isn't a multicast
309 		 * address */
310 		addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed;
311 
312 		/* Get some bytes of random address information */
313 		get_random_bytes(&addr[1], num_random_bytes);
314 
315 		/* Copy over the NIC-specific bits of the RF MAC address */
316 		for (i = 1 + num_random_bytes; i < ETH_ALEN; i++)
317 			addr[i] = rfmac[i];
318 	}
319 }
320