• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* Linux PRO/1000 Ethernet Driver main header file */
30 
31 #ifndef _E1000_H_
32 #define _E1000_H_
33 
34 #include <linux/bitops.h>
35 #include <linux/types.h>
36 #include <linux/timer.h>
37 #include <linux/workqueue.h>
38 #include <linux/io.h>
39 #include <linux/netdevice.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/crc32.h>
43 #include <linux/if_vlan.h>
44 #include <linux/clocksource.h>
45 #include <linux/net_tstamp.h>
46 #include <linux/ptp_clock_kernel.h>
47 #include <linux/ptp_classify.h>
48 #include <linux/mii.h>
49 #include <linux/mdio.h>
50 #include "hw.h"
51 
52 struct e1000_info;
53 
54 #define e_dbg(format, arg...) \
55 	netdev_dbg(hw->adapter->netdev, format, ## arg)
56 #define e_err(format, arg...) \
57 	netdev_err(adapter->netdev, format, ## arg)
58 #define e_info(format, arg...) \
59 	netdev_info(adapter->netdev, format, ## arg)
60 #define e_warn(format, arg...) \
61 	netdev_warn(adapter->netdev, format, ## arg)
62 #define e_notice(format, arg...) \
63 	netdev_notice(adapter->netdev, format, ## arg)
64 
65 /* Interrupt modes, as used by the IntMode parameter */
66 #define E1000E_INT_MODE_LEGACY		0
67 #define E1000E_INT_MODE_MSI		1
68 #define E1000E_INT_MODE_MSIX		2
69 
70 /* Tx/Rx descriptor defines */
71 #define E1000_DEFAULT_TXD		256
72 #define E1000_MAX_TXD			4096
73 #define E1000_MIN_TXD			64
74 
75 #define E1000_DEFAULT_RXD		256
76 #define E1000_MAX_RXD			4096
77 #define E1000_MIN_RXD			64
78 
79 #define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
80 #define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
81 
82 #define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
83 
84 /* How many Tx Descriptors do we need to call netif_wake_queue ? */
85 /* How many Rx Buffers do we bundle into one write to the hardware ? */
86 #define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
87 
88 #define AUTO_ALL_MODES			0
89 #define E1000_EEPROM_APME		0x0400
90 
91 #define E1000_MNG_VLAN_NONE		(-1)
92 
93 /* Number of packet split data buffers (not including the header buffer) */
94 #define PS_PAGE_BUFFERS			(MAX_PS_BUFFERS - 1)
95 
96 #define DEFAULT_JUMBO			9234
97 
98 /* Time to wait before putting the device into D3 if there's no link (in ms). */
99 #define LINK_TIMEOUT		100
100 
101 /* Count for polling __E1000_RESET condition every 10-20msec.
102  * Experimentation has shown the reset can take approximately 210msec.
103  */
104 #define E1000_CHECK_RESET_COUNT		25
105 
106 #define DEFAULT_RDTR			0
107 #define DEFAULT_RADV			8
108 #define BURST_RDTR			0x20
109 #define BURST_RADV			0x20
110 
111 /* in the case of WTHRESH, it appears at least the 82571/2 hardware
112  * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
113  * WTHRESH=4, so a setting of 5 gives the most efficient bus
114  * utilization but to avoid possible Tx stalls, set it to 1
115  */
116 #define E1000_TXDCTL_DMA_BURST_ENABLE                          \
117 	(E1000_TXDCTL_GRAN | /* set descriptor granularity */  \
118 	 E1000_TXDCTL_COUNT_DESC |                             \
119 	 (1 << 16) | /* wthresh must be +1 more than desired */\
120 	 (1 << 8)  | /* hthresh */                             \
121 	 0x1f)       /* pthresh */
122 
123 #define E1000_RXDCTL_DMA_BURST_ENABLE                          \
124 	(0x01000000 | /* set descriptor granularity */         \
125 	 (4 << 16)  | /* set writeback threshold    */         \
126 	 (4 << 8)   | /* set prefetch threshold     */         \
127 	 0x20)        /* set hthresh                */
128 
129 #define E1000_TIDV_FPD (1 << 31)
130 #define E1000_RDTR_FPD (1 << 31)
131 
132 enum e1000_boards {
133 	board_82571,
134 	board_82572,
135 	board_82573,
136 	board_82574,
137 	board_82583,
138 	board_80003es2lan,
139 	board_ich8lan,
140 	board_ich9lan,
141 	board_ich10lan,
142 	board_pchlan,
143 	board_pch2lan,
144 	board_pch_lpt,
145 };
146 
147 struct e1000_ps_page {
148 	struct page *page;
149 	u64 dma; /* must be u64 - written to hw */
150 };
151 
152 /* wrappers around a pointer to a socket buffer,
153  * so a DMA handle can be stored along with the buffer
154  */
155 struct e1000_buffer {
156 	dma_addr_t dma;
157 	struct sk_buff *skb;
158 	union {
159 		/* Tx */
160 		struct {
161 			unsigned long time_stamp;
162 			u16 length;
163 			u16 next_to_watch;
164 			unsigned int segs;
165 			unsigned int bytecount;
166 			u16 mapped_as_page;
167 		};
168 		/* Rx */
169 		struct {
170 			/* arrays of page information for packet split */
171 			struct e1000_ps_page *ps_pages;
172 			struct page *page;
173 		};
174 	};
175 };
176 
177 struct e1000_ring {
178 	struct e1000_adapter *adapter;	/* back pointer to adapter */
179 	void *desc;			/* pointer to ring memory  */
180 	dma_addr_t dma;			/* phys address of ring    */
181 	unsigned int size;		/* length of ring in bytes */
182 	unsigned int count;		/* number of desc. in ring */
183 
184 	u16 next_to_use;
185 	u16 next_to_clean;
186 
187 	void __iomem *head;
188 	void __iomem *tail;
189 
190 	/* array of buffer information structs */
191 	struct e1000_buffer *buffer_info;
192 
193 	char name[IFNAMSIZ + 5];
194 	u32 ims_val;
195 	u32 itr_val;
196 	void __iomem *itr_register;
197 	int set_itr;
198 
199 	struct sk_buff *rx_skb_top;
200 };
201 
202 /* PHY register snapshot values */
203 struct e1000_phy_regs {
204 	u16 bmcr;		/* basic mode control register    */
205 	u16 bmsr;		/* basic mode status register     */
206 	u16 advertise;		/* auto-negotiation advertisement */
207 	u16 lpa;		/* link partner ability register  */
208 	u16 expansion;		/* auto-negotiation expansion reg */
209 	u16 ctrl1000;		/* 1000BASE-T control register    */
210 	u16 stat1000;		/* 1000BASE-T status register     */
211 	u16 estatus;		/* extended status register       */
212 };
213 
214 /* board specific private data structure */
215 struct e1000_adapter {
216 	struct timer_list watchdog_timer;
217 	struct timer_list phy_info_timer;
218 	struct timer_list blink_timer;
219 
220 	struct work_struct reset_task;
221 	struct work_struct watchdog_task;
222 
223 	const struct e1000_info *ei;
224 
225 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
226 	u32 bd_number;
227 	u32 rx_buffer_len;
228 	u16 mng_vlan_id;
229 	u16 link_speed;
230 	u16 link_duplex;
231 	u16 eeprom_vers;
232 
233 	/* track device up/down/testing state */
234 	unsigned long state;
235 
236 	/* Interrupt Throttle Rate */
237 	u32 itr;
238 	u32 itr_setting;
239 	u16 tx_itr;
240 	u16 rx_itr;
241 
242 	/* Tx - one ring per active queue */
243 	struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
244 	u32 tx_fifo_limit;
245 
246 	struct napi_struct napi;
247 
248 	unsigned int uncorr_errors;	/* uncorrectable ECC errors */
249 	unsigned int corr_errors;	/* correctable ECC errors */
250 	unsigned int restart_queue;
251 	u32 txd_cmd;
252 
253 	bool detect_tx_hung;
254 	bool tx_hang_recheck;
255 	u8 tx_timeout_factor;
256 
257 	u32 tx_int_delay;
258 	u32 tx_abs_int_delay;
259 
260 	unsigned int total_tx_bytes;
261 	unsigned int total_tx_packets;
262 	unsigned int total_rx_bytes;
263 	unsigned int total_rx_packets;
264 
265 	/* Tx stats */
266 	u64 tpt_old;
267 	u64 colc_old;
268 	u32 gotc;
269 	u64 gotc_old;
270 	u32 tx_timeout_count;
271 	u32 tx_fifo_head;
272 	u32 tx_head_addr;
273 	u32 tx_fifo_size;
274 	u32 tx_dma_failed;
275 
276 	/* Rx */
277 	bool (*clean_rx) (struct e1000_ring *ring, int *work_done,
278 			  int work_to_do) ____cacheline_aligned_in_smp;
279 	void (*alloc_rx_buf) (struct e1000_ring *ring, int cleaned_count,
280 			      gfp_t gfp);
281 	struct e1000_ring *rx_ring;
282 
283 	u32 rx_int_delay;
284 	u32 rx_abs_int_delay;
285 
286 	/* Rx stats */
287 	u64 hw_csum_err;
288 	u64 hw_csum_good;
289 	u64 rx_hdr_split;
290 	u32 gorc;
291 	u64 gorc_old;
292 	u32 alloc_rx_buff_failed;
293 	u32 rx_dma_failed;
294 	u32 rx_hwtstamp_cleared;
295 
296 	unsigned int rx_ps_pages;
297 	u16 rx_ps_bsize0;
298 	u32 max_frame_size;
299 	u32 min_frame_size;
300 
301 	/* OS defined structs */
302 	struct net_device *netdev;
303 	struct pci_dev *pdev;
304 
305 	/* structs defined in e1000_hw.h */
306 	struct e1000_hw hw;
307 
308 	spinlock_t stats64_lock;	/* protects statistics counters */
309 	struct e1000_hw_stats stats;
310 	struct e1000_phy_info phy_info;
311 	struct e1000_phy_stats phy_stats;
312 
313 	/* Snapshot of PHY registers */
314 	struct e1000_phy_regs phy_regs;
315 
316 	struct e1000_ring test_tx_ring;
317 	struct e1000_ring test_rx_ring;
318 	u32 test_icr;
319 
320 	u32 msg_enable;
321 	unsigned int num_vectors;
322 	struct msix_entry *msix_entries;
323 	int int_mode;
324 	u32 eiac_mask;
325 
326 	u32 eeprom_wol;
327 	u32 wol;
328 	u32 pba;
329 	u32 max_hw_frame_size;
330 
331 	bool fc_autoneg;
332 
333 	unsigned int flags;
334 	unsigned int flags2;
335 	struct work_struct downshift_task;
336 	struct work_struct update_phy_task;
337 	struct work_struct print_hang_task;
338 
339 	bool idle_check;
340 	int phy_hang_count;
341 
342 	u16 tx_ring_count;
343 	u16 rx_ring_count;
344 
345 	struct hwtstamp_config hwtstamp_config;
346 	struct delayed_work systim_overflow_work;
347 	struct sk_buff *tx_hwtstamp_skb;
348 	struct work_struct tx_hwtstamp_work;
349 	spinlock_t systim_lock;	/* protects SYSTIML/H regsters */
350 	struct cyclecounter cc;
351 	struct timecounter tc;
352 	struct ptp_clock *ptp_clock;
353 	struct ptp_clock_info ptp_clock_info;
354 
355 	u16 eee_advert;
356 };
357 
358 struct e1000_info {
359 	enum e1000_mac_type	mac;
360 	unsigned int		flags;
361 	unsigned int		flags2;
362 	u32			pba;
363 	u32			max_hw_frame_size;
364 	s32			(*get_variants)(struct e1000_adapter *);
365 	const struct e1000_mac_operations *mac_ops;
366 	const struct e1000_phy_operations *phy_ops;
367 	const struct e1000_nvm_operations *nvm_ops;
368 };
369 
370 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
371 
372 /* The system time is maintained by a 64-bit counter comprised of the 32-bit
373  * SYSTIMH and SYSTIML registers.  How the counter increments (and therefore
374  * its resolution) is based on the contents of the TIMINCA register - it
375  * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
376  * For the best accuracy, the incperiod should be as small as possible.  The
377  * incvalue is scaled by a factor as large as possible (while still fitting
378  * in bits 23:0) so that relatively small clock corrections can be made.
379  *
380  * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
381  * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
382  * bits to count nanoseconds leaving the rest for fractional nonseconds.
383  */
384 #define INCVALUE_96MHz		125
385 #define INCVALUE_SHIFT_96MHz	17
386 #define INCPERIOD_SHIFT_96MHz	2
387 #define INCPERIOD_96MHz		(12 >> INCPERIOD_SHIFT_96MHz)
388 
389 #define INCVALUE_25MHz		40
390 #define INCVALUE_SHIFT_25MHz	18
391 #define INCPERIOD_25MHz		1
392 
393 /* Another drawback of scaling the incvalue by a large factor is the
394  * 64-bit SYSTIM register overflows more quickly.  This is dealt with
395  * by simply reading the clock before it overflows.
396  *
397  * Clock	ns bits	Overflows after
398  * ~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~
399  * 96MHz	47-bit	2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
400  * 25MHz	46-bit	2^46 / 10^9 / 3600 = 19.55 hours
401  */
402 #define E1000_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 60 * 4)
403 
404 /* hardware capability, feature, and workaround flags */
405 #define FLAG_HAS_AMT                      (1 << 0)
406 #define FLAG_HAS_FLASH                    (1 << 1)
407 #define FLAG_HAS_HW_VLAN_FILTER           (1 << 2)
408 #define FLAG_HAS_WOL                      (1 << 3)
409 /* reserved bit4 */
410 #define FLAG_HAS_CTRLEXT_ON_LOAD          (1 << 5)
411 #define FLAG_HAS_SWSM_ON_LOAD             (1 << 6)
412 #define FLAG_HAS_JUMBO_FRAMES             (1 << 7)
413 #define FLAG_READ_ONLY_NVM                (1 << 8)
414 #define FLAG_IS_ICH                       (1 << 9)
415 #define FLAG_HAS_MSIX                     (1 << 10)
416 #define FLAG_HAS_SMART_POWER_DOWN         (1 << 11)
417 #define FLAG_IS_QUAD_PORT_A               (1 << 12)
418 #define FLAG_IS_QUAD_PORT                 (1 << 13)
419 #define FLAG_HAS_HW_TIMESTAMP             (1 << 14)
420 #define FLAG_APME_IN_WUC                  (1 << 15)
421 #define FLAG_APME_IN_CTRL3                (1 << 16)
422 #define FLAG_APME_CHECK_PORT_B            (1 << 17)
423 #define FLAG_DISABLE_FC_PAUSE_TIME        (1 << 18)
424 #define FLAG_NO_WAKE_UCAST                (1 << 19)
425 #define FLAG_MNG_PT_ENABLED               (1 << 20)
426 #define FLAG_RESET_OVERWRITES_LAA         (1 << 21)
427 #define FLAG_TARC_SPEED_MODE_BIT          (1 << 22)
428 #define FLAG_TARC_SET_BIT_ZERO            (1 << 23)
429 #define FLAG_RX_NEEDS_RESTART             (1 << 24)
430 #define FLAG_LSC_GIG_SPEED_DROP           (1 << 25)
431 #define FLAG_SMART_POWER_DOWN             (1 << 26)
432 #define FLAG_MSI_ENABLED                  (1 << 27)
433 /* reserved (1 << 28) */
434 #define FLAG_TSO_FORCE                    (1 << 29)
435 #define FLAG_RESTART_NOW                  (1 << 30)
436 #define FLAG_MSI_TEST_FAILED              (1 << 31)
437 
438 #define FLAG2_CRC_STRIPPING               (1 << 0)
439 #define FLAG2_HAS_PHY_WAKEUP              (1 << 1)
440 #define FLAG2_IS_DISCARDING               (1 << 2)
441 #define FLAG2_DISABLE_ASPM_L1             (1 << 3)
442 #define FLAG2_HAS_PHY_STATS               (1 << 4)
443 #define FLAG2_HAS_EEE                     (1 << 5)
444 #define FLAG2_DMA_BURST                   (1 << 6)
445 #define FLAG2_DISABLE_ASPM_L0S            (1 << 7)
446 #define FLAG2_DISABLE_AIM                 (1 << 8)
447 #define FLAG2_CHECK_PHY_HANG              (1 << 9)
448 #define FLAG2_NO_DISABLE_RX               (1 << 10)
449 #define FLAG2_PCIM2PCI_ARBITER_WA         (1 << 11)
450 #define FLAG2_DFLT_CRC_STRIPPING          (1 << 12)
451 #define FLAG2_CHECK_RX_HWTSTAMP           (1 << 13)
452 
453 #define E1000_RX_DESC_PS(R, i)	    \
454 	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
455 #define E1000_RX_DESC_EXT(R, i)	    \
456 	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
457 #define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
458 #define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
459 #define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
460 
461 enum e1000_state_t {
462 	__E1000_TESTING,
463 	__E1000_RESETTING,
464 	__E1000_ACCESS_SHARED_RESOURCE,
465 	__E1000_DOWN
466 };
467 
468 enum latency_range {
469 	lowest_latency = 0,
470 	low_latency = 1,
471 	bulk_latency = 2,
472 	latency_invalid = 255
473 };
474 
475 extern char e1000e_driver_name[];
476 extern const char e1000e_driver_version[];
477 
478 extern void e1000e_check_options(struct e1000_adapter *adapter);
479 extern void e1000e_set_ethtool_ops(struct net_device *netdev);
480 
481 extern int e1000e_up(struct e1000_adapter *adapter);
482 extern void e1000e_down(struct e1000_adapter *adapter);
483 extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
484 extern void e1000e_reset(struct e1000_adapter *adapter);
485 extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
486 extern int e1000e_setup_rx_resources(struct e1000_ring *ring);
487 extern int e1000e_setup_tx_resources(struct e1000_ring *ring);
488 extern void e1000e_free_rx_resources(struct e1000_ring *ring);
489 extern void e1000e_free_tx_resources(struct e1000_ring *ring);
490 extern struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
491 						    struct rtnl_link_stats64
492 						    *stats);
493 extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
494 extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
495 extern void e1000e_get_hw_control(struct e1000_adapter *adapter);
496 extern void e1000e_release_hw_control(struct e1000_adapter *adapter);
497 extern void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
498 
499 extern unsigned int copybreak;
500 
501 extern const struct e1000_info e1000_82571_info;
502 extern const struct e1000_info e1000_82572_info;
503 extern const struct e1000_info e1000_82573_info;
504 extern const struct e1000_info e1000_82574_info;
505 extern const struct e1000_info e1000_82583_info;
506 extern const struct e1000_info e1000_ich8_info;
507 extern const struct e1000_info e1000_ich9_info;
508 extern const struct e1000_info e1000_ich10_info;
509 extern const struct e1000_info e1000_pch_info;
510 extern const struct e1000_info e1000_pch2_info;
511 extern const struct e1000_info e1000_pch_lpt_info;
512 extern const struct e1000_info e1000_es2_info;
513 
514 extern void e1000e_ptp_init(struct e1000_adapter *adapter);
515 extern void e1000e_ptp_remove(struct e1000_adapter *adapter);
516 
e1000_phy_hw_reset(struct e1000_hw * hw)517 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
518 {
519 	return hw->phy.ops.reset(hw);
520 }
521 
e1e_rphy(struct e1000_hw * hw,u32 offset,u16 * data)522 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
523 {
524 	return hw->phy.ops.read_reg(hw, offset, data);
525 }
526 
e1e_rphy_locked(struct e1000_hw * hw,u32 offset,u16 * data)527 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
528 {
529 	return hw->phy.ops.read_reg_locked(hw, offset, data);
530 }
531 
e1e_wphy(struct e1000_hw * hw,u32 offset,u16 data)532 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
533 {
534 	return hw->phy.ops.write_reg(hw, offset, data);
535 }
536 
e1e_wphy_locked(struct e1000_hw * hw,u32 offset,u16 data)537 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
538 {
539 	return hw->phy.ops.write_reg_locked(hw, offset, data);
540 }
541 
542 extern void e1000e_reload_nvm_generic(struct e1000_hw *hw);
543 
e1000e_read_mac_addr(struct e1000_hw * hw)544 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
545 {
546 	if (hw->mac.ops.read_mac_addr)
547 		return hw->mac.ops.read_mac_addr(hw);
548 
549 	return e1000_read_mac_addr_generic(hw);
550 }
551 
e1000_validate_nvm_checksum(struct e1000_hw * hw)552 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
553 {
554 	return hw->nvm.ops.validate(hw);
555 }
556 
e1000e_update_nvm_checksum(struct e1000_hw * hw)557 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
558 {
559 	return hw->nvm.ops.update(hw);
560 }
561 
e1000_read_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)562 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
563 				 u16 *data)
564 {
565 	return hw->nvm.ops.read(hw, offset, words, data);
566 }
567 
e1000_write_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)568 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
569 				  u16 *data)
570 {
571 	return hw->nvm.ops.write(hw, offset, words, data);
572 }
573 
e1000_get_phy_info(struct e1000_hw * hw)574 static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
575 {
576 	return hw->phy.ops.get_info(hw);
577 }
578 
__er32(struct e1000_hw * hw,unsigned long reg)579 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
580 {
581 	return readl(hw->hw_addr + reg);
582 }
583 
584 #define er32(reg)	__er32(hw, E1000_##reg)
585 
586 /**
587  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
588  * @hw: pointer to the HW structure
589  *
590  * When updating the MAC CSR registers, the Manageability Engine (ME) could
591  * be accessing the registers at the same time.  Normally, this is handled in
592  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
593  * accesses later than it should which could result in the register to have
594  * an incorrect value.  Workaround this by checking the FWSM register which
595  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
596  * and try again a number of times.
597  **/
__ew32_prepare(struct e1000_hw * hw)598 static inline s32 __ew32_prepare(struct e1000_hw *hw)
599 {
600 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
601 
602 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
603 		udelay(50);
604 
605 	return i;
606 }
607 
__ew32(struct e1000_hw * hw,unsigned long reg,u32 val)608 static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
609 {
610 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
611 		__ew32_prepare(hw);
612 
613 	writel(val, hw->hw_addr + reg);
614 }
615 
616 #define ew32(reg, val)	__ew32(hw, E1000_##reg, (val))
617 
618 #define e1e_flush()	er32(STATUS)
619 
620 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
621 	(__ew32((a), (reg + ((offset) << 2)), (value)))
622 
623 #define E1000_READ_REG_ARRAY(a, reg, offset) \
624 	(readl((a)->hw_addr + reg + ((offset) << 2)))
625 
626 #endif /* _E1000_H_ */
627