1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* Linux PRO/1000 Ethernet Driver main header file */
30
31 #ifndef _E1000_H_
32 #define _E1000_H_
33
34 #include <linux/bitops.h>
35 #include <linux/types.h>
36 #include <linux/timer.h>
37 #include <linux/workqueue.h>
38 #include <linux/io.h>
39 #include <linux/netdevice.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/crc32.h>
43 #include <linux/if_vlan.h>
44 #include <linux/clocksource.h>
45 #include <linux/net_tstamp.h>
46 #include <linux/ptp_clock_kernel.h>
47 #include <linux/ptp_classify.h>
48 #include <linux/mii.h>
49 #include <linux/mdio.h>
50 #include "hw.h"
51
52 struct e1000_info;
53
54 #define e_dbg(format, arg...) \
55 netdev_dbg(hw->adapter->netdev, format, ## arg)
56 #define e_err(format, arg...) \
57 netdev_err(adapter->netdev, format, ## arg)
58 #define e_info(format, arg...) \
59 netdev_info(adapter->netdev, format, ## arg)
60 #define e_warn(format, arg...) \
61 netdev_warn(adapter->netdev, format, ## arg)
62 #define e_notice(format, arg...) \
63 netdev_notice(adapter->netdev, format, ## arg)
64
65 /* Interrupt modes, as used by the IntMode parameter */
66 #define E1000E_INT_MODE_LEGACY 0
67 #define E1000E_INT_MODE_MSI 1
68 #define E1000E_INT_MODE_MSIX 2
69
70 /* Tx/Rx descriptor defines */
71 #define E1000_DEFAULT_TXD 256
72 #define E1000_MAX_TXD 4096
73 #define E1000_MIN_TXD 64
74
75 #define E1000_DEFAULT_RXD 256
76 #define E1000_MAX_RXD 4096
77 #define E1000_MIN_RXD 64
78
79 #define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */
80 #define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */
81
82 #define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
83
84 /* How many Tx Descriptors do we need to call netif_wake_queue ? */
85 /* How many Rx Buffers do we bundle into one write to the hardware ? */
86 #define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
87
88 #define AUTO_ALL_MODES 0
89 #define E1000_EEPROM_APME 0x0400
90
91 #define E1000_MNG_VLAN_NONE (-1)
92
93 /* Number of packet split data buffers (not including the header buffer) */
94 #define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
95
96 #define DEFAULT_JUMBO 9234
97
98 /* Time to wait before putting the device into D3 if there's no link (in ms). */
99 #define LINK_TIMEOUT 100
100
101 /* Count for polling __E1000_RESET condition every 10-20msec.
102 * Experimentation has shown the reset can take approximately 210msec.
103 */
104 #define E1000_CHECK_RESET_COUNT 25
105
106 #define DEFAULT_RDTR 0
107 #define DEFAULT_RADV 8
108 #define BURST_RDTR 0x20
109 #define BURST_RADV 0x20
110
111 /* in the case of WTHRESH, it appears at least the 82571/2 hardware
112 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
113 * WTHRESH=4, so a setting of 5 gives the most efficient bus
114 * utilization but to avoid possible Tx stalls, set it to 1
115 */
116 #define E1000_TXDCTL_DMA_BURST_ENABLE \
117 (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \
118 E1000_TXDCTL_COUNT_DESC | \
119 (1 << 16) | /* wthresh must be +1 more than desired */\
120 (1 << 8) | /* hthresh */ \
121 0x1f) /* pthresh */
122
123 #define E1000_RXDCTL_DMA_BURST_ENABLE \
124 (0x01000000 | /* set descriptor granularity */ \
125 (4 << 16) | /* set writeback threshold */ \
126 (4 << 8) | /* set prefetch threshold */ \
127 0x20) /* set hthresh */
128
129 #define E1000_TIDV_FPD (1 << 31)
130 #define E1000_RDTR_FPD (1 << 31)
131
132 enum e1000_boards {
133 board_82571,
134 board_82572,
135 board_82573,
136 board_82574,
137 board_82583,
138 board_80003es2lan,
139 board_ich8lan,
140 board_ich9lan,
141 board_ich10lan,
142 board_pchlan,
143 board_pch2lan,
144 board_pch_lpt,
145 };
146
147 struct e1000_ps_page {
148 struct page *page;
149 u64 dma; /* must be u64 - written to hw */
150 };
151
152 /* wrappers around a pointer to a socket buffer,
153 * so a DMA handle can be stored along with the buffer
154 */
155 struct e1000_buffer {
156 dma_addr_t dma;
157 struct sk_buff *skb;
158 union {
159 /* Tx */
160 struct {
161 unsigned long time_stamp;
162 u16 length;
163 u16 next_to_watch;
164 unsigned int segs;
165 unsigned int bytecount;
166 u16 mapped_as_page;
167 };
168 /* Rx */
169 struct {
170 /* arrays of page information for packet split */
171 struct e1000_ps_page *ps_pages;
172 struct page *page;
173 };
174 };
175 };
176
177 struct e1000_ring {
178 struct e1000_adapter *adapter; /* back pointer to adapter */
179 void *desc; /* pointer to ring memory */
180 dma_addr_t dma; /* phys address of ring */
181 unsigned int size; /* length of ring in bytes */
182 unsigned int count; /* number of desc. in ring */
183
184 u16 next_to_use;
185 u16 next_to_clean;
186
187 void __iomem *head;
188 void __iomem *tail;
189
190 /* array of buffer information structs */
191 struct e1000_buffer *buffer_info;
192
193 char name[IFNAMSIZ + 5];
194 u32 ims_val;
195 u32 itr_val;
196 void __iomem *itr_register;
197 int set_itr;
198
199 struct sk_buff *rx_skb_top;
200 };
201
202 /* PHY register snapshot values */
203 struct e1000_phy_regs {
204 u16 bmcr; /* basic mode control register */
205 u16 bmsr; /* basic mode status register */
206 u16 advertise; /* auto-negotiation advertisement */
207 u16 lpa; /* link partner ability register */
208 u16 expansion; /* auto-negotiation expansion reg */
209 u16 ctrl1000; /* 1000BASE-T control register */
210 u16 stat1000; /* 1000BASE-T status register */
211 u16 estatus; /* extended status register */
212 };
213
214 /* board specific private data structure */
215 struct e1000_adapter {
216 struct timer_list watchdog_timer;
217 struct timer_list phy_info_timer;
218 struct timer_list blink_timer;
219
220 struct work_struct reset_task;
221 struct work_struct watchdog_task;
222
223 const struct e1000_info *ei;
224
225 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
226 u32 bd_number;
227 u32 rx_buffer_len;
228 u16 mng_vlan_id;
229 u16 link_speed;
230 u16 link_duplex;
231 u16 eeprom_vers;
232
233 /* track device up/down/testing state */
234 unsigned long state;
235
236 /* Interrupt Throttle Rate */
237 u32 itr;
238 u32 itr_setting;
239 u16 tx_itr;
240 u16 rx_itr;
241
242 /* Tx - one ring per active queue */
243 struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
244 u32 tx_fifo_limit;
245
246 struct napi_struct napi;
247
248 unsigned int uncorr_errors; /* uncorrectable ECC errors */
249 unsigned int corr_errors; /* correctable ECC errors */
250 unsigned int restart_queue;
251 u32 txd_cmd;
252
253 bool detect_tx_hung;
254 bool tx_hang_recheck;
255 u8 tx_timeout_factor;
256
257 u32 tx_int_delay;
258 u32 tx_abs_int_delay;
259
260 unsigned int total_tx_bytes;
261 unsigned int total_tx_packets;
262 unsigned int total_rx_bytes;
263 unsigned int total_rx_packets;
264
265 /* Tx stats */
266 u64 tpt_old;
267 u64 colc_old;
268 u32 gotc;
269 u64 gotc_old;
270 u32 tx_timeout_count;
271 u32 tx_fifo_head;
272 u32 tx_head_addr;
273 u32 tx_fifo_size;
274 u32 tx_dma_failed;
275
276 /* Rx */
277 bool (*clean_rx) (struct e1000_ring *ring, int *work_done,
278 int work_to_do) ____cacheline_aligned_in_smp;
279 void (*alloc_rx_buf) (struct e1000_ring *ring, int cleaned_count,
280 gfp_t gfp);
281 struct e1000_ring *rx_ring;
282
283 u32 rx_int_delay;
284 u32 rx_abs_int_delay;
285
286 /* Rx stats */
287 u64 hw_csum_err;
288 u64 hw_csum_good;
289 u64 rx_hdr_split;
290 u32 gorc;
291 u64 gorc_old;
292 u32 alloc_rx_buff_failed;
293 u32 rx_dma_failed;
294 u32 rx_hwtstamp_cleared;
295
296 unsigned int rx_ps_pages;
297 u16 rx_ps_bsize0;
298 u32 max_frame_size;
299 u32 min_frame_size;
300
301 /* OS defined structs */
302 struct net_device *netdev;
303 struct pci_dev *pdev;
304
305 /* structs defined in e1000_hw.h */
306 struct e1000_hw hw;
307
308 spinlock_t stats64_lock; /* protects statistics counters */
309 struct e1000_hw_stats stats;
310 struct e1000_phy_info phy_info;
311 struct e1000_phy_stats phy_stats;
312
313 /* Snapshot of PHY registers */
314 struct e1000_phy_regs phy_regs;
315
316 struct e1000_ring test_tx_ring;
317 struct e1000_ring test_rx_ring;
318 u32 test_icr;
319
320 u32 msg_enable;
321 unsigned int num_vectors;
322 struct msix_entry *msix_entries;
323 int int_mode;
324 u32 eiac_mask;
325
326 u32 eeprom_wol;
327 u32 wol;
328 u32 pba;
329 u32 max_hw_frame_size;
330
331 bool fc_autoneg;
332
333 unsigned int flags;
334 unsigned int flags2;
335 struct work_struct downshift_task;
336 struct work_struct update_phy_task;
337 struct work_struct print_hang_task;
338
339 bool idle_check;
340 int phy_hang_count;
341
342 u16 tx_ring_count;
343 u16 rx_ring_count;
344
345 struct hwtstamp_config hwtstamp_config;
346 struct delayed_work systim_overflow_work;
347 struct sk_buff *tx_hwtstamp_skb;
348 struct work_struct tx_hwtstamp_work;
349 spinlock_t systim_lock; /* protects SYSTIML/H regsters */
350 struct cyclecounter cc;
351 struct timecounter tc;
352 struct ptp_clock *ptp_clock;
353 struct ptp_clock_info ptp_clock_info;
354
355 u16 eee_advert;
356 };
357
358 struct e1000_info {
359 enum e1000_mac_type mac;
360 unsigned int flags;
361 unsigned int flags2;
362 u32 pba;
363 u32 max_hw_frame_size;
364 s32 (*get_variants)(struct e1000_adapter *);
365 const struct e1000_mac_operations *mac_ops;
366 const struct e1000_phy_operations *phy_ops;
367 const struct e1000_nvm_operations *nvm_ops;
368 };
369
370 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
371
372 /* The system time is maintained by a 64-bit counter comprised of the 32-bit
373 * SYSTIMH and SYSTIML registers. How the counter increments (and therefore
374 * its resolution) is based on the contents of the TIMINCA register - it
375 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
376 * For the best accuracy, the incperiod should be as small as possible. The
377 * incvalue is scaled by a factor as large as possible (while still fitting
378 * in bits 23:0) so that relatively small clock corrections can be made.
379 *
380 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
381 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
382 * bits to count nanoseconds leaving the rest for fractional nonseconds.
383 */
384 #define INCVALUE_96MHz 125
385 #define INCVALUE_SHIFT_96MHz 17
386 #define INCPERIOD_SHIFT_96MHz 2
387 #define INCPERIOD_96MHz (12 >> INCPERIOD_SHIFT_96MHz)
388
389 #define INCVALUE_25MHz 40
390 #define INCVALUE_SHIFT_25MHz 18
391 #define INCPERIOD_25MHz 1
392
393 /* Another drawback of scaling the incvalue by a large factor is the
394 * 64-bit SYSTIM register overflows more quickly. This is dealt with
395 * by simply reading the clock before it overflows.
396 *
397 * Clock ns bits Overflows after
398 * ~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~
399 * 96MHz 47-bit 2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
400 * 25MHz 46-bit 2^46 / 10^9 / 3600 = 19.55 hours
401 */
402 #define E1000_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 60 * 4)
403
404 /* hardware capability, feature, and workaround flags */
405 #define FLAG_HAS_AMT (1 << 0)
406 #define FLAG_HAS_FLASH (1 << 1)
407 #define FLAG_HAS_HW_VLAN_FILTER (1 << 2)
408 #define FLAG_HAS_WOL (1 << 3)
409 /* reserved bit4 */
410 #define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5)
411 #define FLAG_HAS_SWSM_ON_LOAD (1 << 6)
412 #define FLAG_HAS_JUMBO_FRAMES (1 << 7)
413 #define FLAG_READ_ONLY_NVM (1 << 8)
414 #define FLAG_IS_ICH (1 << 9)
415 #define FLAG_HAS_MSIX (1 << 10)
416 #define FLAG_HAS_SMART_POWER_DOWN (1 << 11)
417 #define FLAG_IS_QUAD_PORT_A (1 << 12)
418 #define FLAG_IS_QUAD_PORT (1 << 13)
419 #define FLAG_HAS_HW_TIMESTAMP (1 << 14)
420 #define FLAG_APME_IN_WUC (1 << 15)
421 #define FLAG_APME_IN_CTRL3 (1 << 16)
422 #define FLAG_APME_CHECK_PORT_B (1 << 17)
423 #define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18)
424 #define FLAG_NO_WAKE_UCAST (1 << 19)
425 #define FLAG_MNG_PT_ENABLED (1 << 20)
426 #define FLAG_RESET_OVERWRITES_LAA (1 << 21)
427 #define FLAG_TARC_SPEED_MODE_BIT (1 << 22)
428 #define FLAG_TARC_SET_BIT_ZERO (1 << 23)
429 #define FLAG_RX_NEEDS_RESTART (1 << 24)
430 #define FLAG_LSC_GIG_SPEED_DROP (1 << 25)
431 #define FLAG_SMART_POWER_DOWN (1 << 26)
432 #define FLAG_MSI_ENABLED (1 << 27)
433 /* reserved (1 << 28) */
434 #define FLAG_TSO_FORCE (1 << 29)
435 #define FLAG_RESTART_NOW (1 << 30)
436 #define FLAG_MSI_TEST_FAILED (1 << 31)
437
438 #define FLAG2_CRC_STRIPPING (1 << 0)
439 #define FLAG2_HAS_PHY_WAKEUP (1 << 1)
440 #define FLAG2_IS_DISCARDING (1 << 2)
441 #define FLAG2_DISABLE_ASPM_L1 (1 << 3)
442 #define FLAG2_HAS_PHY_STATS (1 << 4)
443 #define FLAG2_HAS_EEE (1 << 5)
444 #define FLAG2_DMA_BURST (1 << 6)
445 #define FLAG2_DISABLE_ASPM_L0S (1 << 7)
446 #define FLAG2_DISABLE_AIM (1 << 8)
447 #define FLAG2_CHECK_PHY_HANG (1 << 9)
448 #define FLAG2_NO_DISABLE_RX (1 << 10)
449 #define FLAG2_PCIM2PCI_ARBITER_WA (1 << 11)
450 #define FLAG2_DFLT_CRC_STRIPPING (1 << 12)
451 #define FLAG2_CHECK_RX_HWTSTAMP (1 << 13)
452
453 #define E1000_RX_DESC_PS(R, i) \
454 (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
455 #define E1000_RX_DESC_EXT(R, i) \
456 (&(((union e1000_rx_desc_extended *)((R).desc))[i]))
457 #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
458 #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
459 #define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
460
461 enum e1000_state_t {
462 __E1000_TESTING,
463 __E1000_RESETTING,
464 __E1000_ACCESS_SHARED_RESOURCE,
465 __E1000_DOWN
466 };
467
468 enum latency_range {
469 lowest_latency = 0,
470 low_latency = 1,
471 bulk_latency = 2,
472 latency_invalid = 255
473 };
474
475 extern char e1000e_driver_name[];
476 extern const char e1000e_driver_version[];
477
478 extern void e1000e_check_options(struct e1000_adapter *adapter);
479 extern void e1000e_set_ethtool_ops(struct net_device *netdev);
480
481 extern int e1000e_up(struct e1000_adapter *adapter);
482 extern void e1000e_down(struct e1000_adapter *adapter);
483 extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
484 extern void e1000e_reset(struct e1000_adapter *adapter);
485 extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
486 extern int e1000e_setup_rx_resources(struct e1000_ring *ring);
487 extern int e1000e_setup_tx_resources(struct e1000_ring *ring);
488 extern void e1000e_free_rx_resources(struct e1000_ring *ring);
489 extern void e1000e_free_tx_resources(struct e1000_ring *ring);
490 extern struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
491 struct rtnl_link_stats64
492 *stats);
493 extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
494 extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
495 extern void e1000e_get_hw_control(struct e1000_adapter *adapter);
496 extern void e1000e_release_hw_control(struct e1000_adapter *adapter);
497 extern void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
498
499 extern unsigned int copybreak;
500
501 extern const struct e1000_info e1000_82571_info;
502 extern const struct e1000_info e1000_82572_info;
503 extern const struct e1000_info e1000_82573_info;
504 extern const struct e1000_info e1000_82574_info;
505 extern const struct e1000_info e1000_82583_info;
506 extern const struct e1000_info e1000_ich8_info;
507 extern const struct e1000_info e1000_ich9_info;
508 extern const struct e1000_info e1000_ich10_info;
509 extern const struct e1000_info e1000_pch_info;
510 extern const struct e1000_info e1000_pch2_info;
511 extern const struct e1000_info e1000_pch_lpt_info;
512 extern const struct e1000_info e1000_es2_info;
513
514 extern void e1000e_ptp_init(struct e1000_adapter *adapter);
515 extern void e1000e_ptp_remove(struct e1000_adapter *adapter);
516
e1000_phy_hw_reset(struct e1000_hw * hw)517 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
518 {
519 return hw->phy.ops.reset(hw);
520 }
521
e1e_rphy(struct e1000_hw * hw,u32 offset,u16 * data)522 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
523 {
524 return hw->phy.ops.read_reg(hw, offset, data);
525 }
526
e1e_rphy_locked(struct e1000_hw * hw,u32 offset,u16 * data)527 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
528 {
529 return hw->phy.ops.read_reg_locked(hw, offset, data);
530 }
531
e1e_wphy(struct e1000_hw * hw,u32 offset,u16 data)532 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
533 {
534 return hw->phy.ops.write_reg(hw, offset, data);
535 }
536
e1e_wphy_locked(struct e1000_hw * hw,u32 offset,u16 data)537 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
538 {
539 return hw->phy.ops.write_reg_locked(hw, offset, data);
540 }
541
542 extern void e1000e_reload_nvm_generic(struct e1000_hw *hw);
543
e1000e_read_mac_addr(struct e1000_hw * hw)544 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
545 {
546 if (hw->mac.ops.read_mac_addr)
547 return hw->mac.ops.read_mac_addr(hw);
548
549 return e1000_read_mac_addr_generic(hw);
550 }
551
e1000_validate_nvm_checksum(struct e1000_hw * hw)552 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
553 {
554 return hw->nvm.ops.validate(hw);
555 }
556
e1000e_update_nvm_checksum(struct e1000_hw * hw)557 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
558 {
559 return hw->nvm.ops.update(hw);
560 }
561
e1000_read_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)562 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
563 u16 *data)
564 {
565 return hw->nvm.ops.read(hw, offset, words, data);
566 }
567
e1000_write_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)568 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
569 u16 *data)
570 {
571 return hw->nvm.ops.write(hw, offset, words, data);
572 }
573
e1000_get_phy_info(struct e1000_hw * hw)574 static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
575 {
576 return hw->phy.ops.get_info(hw);
577 }
578
__er32(struct e1000_hw * hw,unsigned long reg)579 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
580 {
581 return readl(hw->hw_addr + reg);
582 }
583
584 #define er32(reg) __er32(hw, E1000_##reg)
585
586 /**
587 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
588 * @hw: pointer to the HW structure
589 *
590 * When updating the MAC CSR registers, the Manageability Engine (ME) could
591 * be accessing the registers at the same time. Normally, this is handled in
592 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
593 * accesses later than it should which could result in the register to have
594 * an incorrect value. Workaround this by checking the FWSM register which
595 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
596 * and try again a number of times.
597 **/
__ew32_prepare(struct e1000_hw * hw)598 static inline s32 __ew32_prepare(struct e1000_hw *hw)
599 {
600 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
601
602 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
603 udelay(50);
604
605 return i;
606 }
607
__ew32(struct e1000_hw * hw,unsigned long reg,u32 val)608 static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
609 {
610 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
611 __ew32_prepare(hw);
612
613 writel(val, hw->hw_addr + reg);
614 }
615
616 #define ew32(reg, val) __ew32(hw, E1000_##reg, (val))
617
618 #define e1e_flush() er32(STATUS)
619
620 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
621 (__ew32((a), (reg + ((offset) << 2)), (value)))
622
623 #define E1000_READ_REG_ARRAY(a, reg, offset) \
624 (readl((a)->hw_addr + reg + ((offset) << 2)))
625
626 #endif /* _E1000_H_ */
627