• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file implements the perfmon-2 subsystem which is used
3  * to program the IA-64 Performance Monitoring Unit (PMU).
4  *
5  * The initial version of perfmon.c was written by
6  * Ganesh Venkitachalam, IBM Corp.
7  *
8  * Then it was modified for perfmon-1.x by Stephane Eranian and
9  * David Mosberger, Hewlett Packard Co.
10  *
11  * Version Perfmon-2.x is a rewrite of perfmon-1.x
12  * by Stephane Eranian, Hewlett Packard Co.
13  *
14  * Copyright (C) 1999-2005  Hewlett Packard Co
15  *               Stephane Eranian <eranian@hpl.hp.com>
16  *               David Mosberger-Tang <davidm@hpl.hp.com>
17  *
18  * More information about perfmon available at:
19  * 	http://www.hpl.hp.com/research/linux/perfmon
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 #include <linux/cpu.h>
46 
47 #include <asm/errno.h>
48 #include <asm/intrinsics.h>
49 #include <asm/page.h>
50 #include <asm/perfmon.h>
51 #include <asm/processor.h>
52 #include <asm/signal.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
55 
56 #ifdef CONFIG_PERFMON
57 /*
58  * perfmon context state
59  */
60 #define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
61 #define PFM_CTX_LOADED		2	/* context is loaded onto a task */
62 #define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
64 
65 #define PFM_INVALID_ACTIVATION	(~0UL)
66 
67 #define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
69 
70 /*
71  * depth of message queue
72  */
73 #define PFM_MAX_MSGS		32
74 #define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75 
76 /*
77  * type of a PMU register (bitmask).
78  * bitmask structure:
79  * 	bit0   : register implemented
80  * 	bit1   : end marker
81  * 	bit2-3 : reserved
82  * 	bit4   : pmc has pmc.pm
83  * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
84  * 	bit6-7 : register type
85  * 	bit8-31: reserved
86  */
87 #define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
88 #define PFM_REG_IMPL		0x1 /* register implemented */
89 #define PFM_REG_END		0x2 /* end marker */
90 #define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 
96 #define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 
99 #define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
100 
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
110 
111 #define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
115 
116 #define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
118 
119 #define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h)		(h)->ctx_task
122 
123 #define PMU_PMC_OI		5 /* position of pmc.oi bit */
124 
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 
131 #define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR	0	/* requesting code range restriction */
135 #define PFM_DATA_RR	1	/* requestion data range restriction */
136 
137 #define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
140 
141 #define RDEP(x)	(1UL<<(x))
142 
143 /*
144  * context protection macros
145  * in SMP:
146  * 	- we need to protect against CPU concurrency (spin_lock)
147  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
148  * in UP:
149  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
150  *
151  * spin_lock_irqsave()/spin_unlock_irqrestore():
152  * 	in SMP: local_irq_disable + spin_lock
153  * 	in UP : local_irq_disable
154  *
155  * spin_lock()/spin_lock():
156  * 	in UP : removed automatically
157  * 	in SMP: protect against context accesses from other CPU. interrupts
158  * 	        are not masked. This is useful for the PMU interrupt handler
159  * 	        because we know we will not get PMU concurrency in that code.
160  */
161 #define PROTECT_CTX(c, f) \
162 	do {  \
163 		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 		spin_lock_irqsave(&(c)->ctx_lock, f); \
165 		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
166 	} while(0)
167 
168 #define UNPROTECT_CTX(c, f) \
169 	do { \
170 		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 	} while(0)
173 
174 #define PROTECT_CTX_NOPRINT(c, f) \
175 	do {  \
176 		spin_lock_irqsave(&(c)->ctx_lock, f); \
177 	} while(0)
178 
179 
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 	do { \
182 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
183 	} while(0)
184 
185 
186 #define PROTECT_CTX_NOIRQ(c) \
187 	do {  \
188 		spin_lock(&(c)->ctx_lock); \
189 	} while(0)
190 
191 #define UNPROTECT_CTX_NOIRQ(c) \
192 	do { \
193 		spin_unlock(&(c)->ctx_lock); \
194 	} while(0)
195 
196 
197 #ifdef CONFIG_SMP
198 
199 #define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
202 
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) 	do {} while(0)
205 #define GET_ACTIVATION(t) 	do {} while(0)
206 #define INC_ACTIVATION(t) 	do {} while(0)
207 #endif /* CONFIG_SMP */
208 
209 #define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
212 
213 #define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 
216 #define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217 
218 /*
219  * cmp0 must be the value of pmc0
220  */
221 #define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
222 
223 #define PFMFS_MAGIC 0xa0b4d889
224 
225 /*
226  * debugging
227  */
228 #define PFM_DEBUGGING 1
229 #ifdef PFM_DEBUGGING
230 #define DPRINT(a) \
231 	do { \
232 		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 	} while (0)
234 
235 #define DPRINT_ovfl(a) \
236 	do { \
237 		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
238 	} while (0)
239 #endif
240 
241 /*
242  * 64-bit software counter structure
243  *
244  * the next_reset_type is applied to the next call to pfm_reset_regs()
245  */
246 typedef struct {
247 	unsigned long	val;		/* virtual 64bit counter value */
248 	unsigned long	lval;		/* last reset value */
249 	unsigned long	long_reset;	/* reset value on sampling overflow */
250 	unsigned long	short_reset;    /* reset value on overflow */
251 	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
252 	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
253 	unsigned long	seed;		/* seed for random-number generator */
254 	unsigned long	mask;		/* mask for random-number generator */
255 	unsigned int 	flags;		/* notify/do not notify */
256 	unsigned long	eventid;	/* overflow event identifier */
257 } pfm_counter_t;
258 
259 /*
260  * context flags
261  */
262 typedef struct {
263 	unsigned int block:1;		/* when 1, task will blocked on user notifications */
264 	unsigned int system:1;		/* do system wide monitoring */
265 	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
266 	unsigned int is_sampling:1;	/* true if using a custom format */
267 	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
268 	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
269 	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
270 	unsigned int no_msg:1;		/* no message sent on overflow */
271 	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
272 	unsigned int reserved:22;
273 } pfm_context_flags_t;
274 
275 #define PFM_TRAP_REASON_NONE		0x0	/* default value */
276 #define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
278 
279 
280 /*
281  * perfmon context: encapsulates all the state of a monitoring session
282  */
283 
284 typedef struct pfm_context {
285 	spinlock_t		ctx_lock;		/* context protection */
286 
287 	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
288 	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
289 
290 	struct task_struct 	*ctx_task;		/* task to which context is attached */
291 
292 	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
293 
294 	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
295 
296 	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
297 	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
298 	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
299 
300 	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
301 	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
302 	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
303 
304 	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
305 
306 	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
307 	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
308 	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
309 	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
310 
311 	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 
313 	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
314 	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
315 
316 	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
317 
318 	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
319 	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
320 	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
321 
322 	int			ctx_fd;			/* file descriptor used my this context */
323 	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
324 
325 	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
326 	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
327 	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
328 	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
329 
330 	wait_queue_head_t 	ctx_msgq_wait;
331 	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
332 	int			ctx_msgq_head;
333 	int			ctx_msgq_tail;
334 	struct fasync_struct	*ctx_async_queue;
335 
336 	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
337 } pfm_context_t;
338 
339 /*
340  * magic number used to verify that structure is really
341  * a perfmon context
342  */
343 #define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
344 
345 #define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
346 
347 #ifdef CONFIG_SMP
348 #define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
350 #else
351 #define SET_LAST_CPU(ctx, v)	do {} while(0)
352 #define GET_LAST_CPU(ctx)	do {} while(0)
353 #endif
354 
355 
356 #define ctx_fl_block		ctx_flags.block
357 #define ctx_fl_system		ctx_flags.system
358 #define ctx_fl_using_dbreg	ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling	ctx_flags.is_sampling
360 #define ctx_fl_excl_idle	ctx_flags.excl_idle
361 #define ctx_fl_going_zombie	ctx_flags.going_zombie
362 #define ctx_fl_trap_reason	ctx_flags.trap_reason
363 #define ctx_fl_no_msg		ctx_flags.no_msg
364 #define ctx_fl_can_restart	ctx_flags.can_restart
365 
366 #define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
368 
369 /*
370  * global information about all sessions
371  * mostly used to synchronize between system wide and per-process
372  */
373 typedef struct {
374 	spinlock_t		pfs_lock;		   /* lock the structure */
375 
376 	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
377 	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
378 	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
379 	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
380 	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
381 } pfm_session_t;
382 
383 /*
384  * information about a PMC or PMD.
385  * dep_pmd[]: a bitmask of dependent PMD registers
386  * dep_pmc[]: a bitmask of dependent PMC registers
387  */
388 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
389 typedef struct {
390 	unsigned int		type;
391 	int			pm_pos;
392 	unsigned long		default_value;	/* power-on default value */
393 	unsigned long		reserved_mask;	/* bitmask of reserved bits */
394 	pfm_reg_check_t		read_check;
395 	pfm_reg_check_t		write_check;
396 	unsigned long		dep_pmd[4];
397 	unsigned long		dep_pmc[4];
398 } pfm_reg_desc_t;
399 
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402 
403 /*
404  * This structure is initialized at boot time and contains
405  * a description of the PMU main characteristics.
406  *
407  * If the probe function is defined, detection is based
408  * on its return value:
409  * 	- 0 means recognized PMU
410  * 	- anything else means not supported
411  * When the probe function is not defined, then the pmu_family field
412  * is used and it must match the host CPU family such that:
413  * 	- cpu->family & config->pmu_family != 0
414  */
415 typedef struct {
416 	unsigned long  ovfl_val;	/* overflow value for counters */
417 
418 	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
419 	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
420 
421 	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
422 	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
423 	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
424 	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
425 
426 	char	      *pmu_name;	/* PMU family name */
427 	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
428 	unsigned int  flags;		/* pmu specific flags */
429 	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
430 	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
431 	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
432 	int           (*probe)(void);   /* customized probe routine */
433 	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
434 } pmu_config_t;
435 /*
436  * PMU specific flags
437  */
438 #define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
439 
440 /*
441  * debug register related type definitions
442  */
443 typedef struct {
444 	unsigned long ibr_mask:56;
445 	unsigned long ibr_plm:4;
446 	unsigned long ibr_ig:3;
447 	unsigned long ibr_x:1;
448 } ibr_mask_reg_t;
449 
450 typedef struct {
451 	unsigned long dbr_mask:56;
452 	unsigned long dbr_plm:4;
453 	unsigned long dbr_ig:2;
454 	unsigned long dbr_w:1;
455 	unsigned long dbr_r:1;
456 } dbr_mask_reg_t;
457 
458 typedef union {
459 	unsigned long  val;
460 	ibr_mask_reg_t ibr;
461 	dbr_mask_reg_t dbr;
462 } dbreg_t;
463 
464 
465 /*
466  * perfmon command descriptions
467  */
468 typedef struct {
469 	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470 	char		*cmd_name;
471 	int		cmd_flags;
472 	unsigned int	cmd_narg;
473 	size_t		cmd_argsize;
474 	int		(*cmd_getsize)(void *arg, size_t *sz);
475 } pfm_cmd_desc_t;
476 
477 #define PFM_CMD_FD		0x01	/* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
479 #define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
480 #define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
481 
482 
483 #define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 
489 #define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
490 
491 typedef struct {
492 	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
493 	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
494 	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
495 	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
496 	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
497 	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
498 	unsigned long pfm_smpl_handler_calls;
499 	unsigned long pfm_smpl_handler_cycles;
500 	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
501 } pfm_stats_t;
502 
503 /*
504  * perfmon internal variables
505  */
506 static pfm_stats_t		pfm_stats[NR_CPUS];
507 static pfm_session_t		pfm_sessions;	/* global sessions information */
508 
509 static DEFINE_SPINLOCK(pfm_alt_install_check);
510 static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
511 
512 static struct proc_dir_entry 	*perfmon_dir;
513 static pfm_uuid_t		pfm_null_uuid = {0,};
514 
515 static spinlock_t		pfm_buffer_fmt_lock;
516 static LIST_HEAD(pfm_buffer_fmt_list);
517 
518 static pmu_config_t		*pmu_conf;
519 
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl;
522 EXPORT_SYMBOL(pfm_sysctl);
523 
524 static ctl_table pfm_ctl_table[]={
525 	{
526 		.procname	= "debug",
527 		.data		= &pfm_sysctl.debug,
528 		.maxlen		= sizeof(int),
529 		.mode		= 0666,
530 		.proc_handler	= proc_dointvec,
531 	},
532 	{
533 		.procname	= "debug_ovfl",
534 		.data		= &pfm_sysctl.debug_ovfl,
535 		.maxlen		= sizeof(int),
536 		.mode		= 0666,
537 		.proc_handler	= proc_dointvec,
538 	},
539 	{
540 		.procname	= "fastctxsw",
541 		.data		= &pfm_sysctl.fastctxsw,
542 		.maxlen		= sizeof(int),
543 		.mode		= 0600,
544 		.proc_handler	= proc_dointvec,
545 	},
546 	{
547 		.procname	= "expert_mode",
548 		.data		= &pfm_sysctl.expert_mode,
549 		.maxlen		= sizeof(int),
550 		.mode		= 0600,
551 		.proc_handler	= proc_dointvec,
552 	},
553 	{}
554 };
555 static ctl_table pfm_sysctl_dir[] = {
556 	{
557 		.procname	= "perfmon",
558 		.mode		= 0555,
559 		.child		= pfm_ctl_table,
560 	},
561  	{}
562 };
563 static ctl_table pfm_sysctl_root[] = {
564 	{
565 		.procname	= "kernel",
566 		.mode		= 0555,
567 		.child		= pfm_sysctl_dir,
568 	},
569  	{}
570 };
571 static struct ctl_table_header *pfm_sysctl_header;
572 
573 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
574 
575 #define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b)		per_cpu(a, b)
577 
578 static inline void
pfm_put_task(struct task_struct * task)579 pfm_put_task(struct task_struct *task)
580 {
581 	if (task != current) put_task_struct(task);
582 }
583 
584 static inline void
pfm_reserve_page(unsigned long a)585 pfm_reserve_page(unsigned long a)
586 {
587 	SetPageReserved(vmalloc_to_page((void *)a));
588 }
589 static inline void
pfm_unreserve_page(unsigned long a)590 pfm_unreserve_page(unsigned long a)
591 {
592 	ClearPageReserved(vmalloc_to_page((void*)a));
593 }
594 
595 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)596 pfm_protect_ctx_ctxsw(pfm_context_t *x)
597 {
598 	spin_lock(&(x)->ctx_lock);
599 	return 0UL;
600 }
601 
602 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)603 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
604 {
605 	spin_unlock(&(x)->ctx_lock);
606 }
607 
608 /* forward declaration */
609 static const struct dentry_operations pfmfs_dentry_operations;
610 
611 static struct dentry *
pfmfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)612 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
613 {
614 	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
615 			PFMFS_MAGIC);
616 }
617 
618 static struct file_system_type pfm_fs_type = {
619 	.name     = "pfmfs",
620 	.mount    = pfmfs_mount,
621 	.kill_sb  = kill_anon_super,
622 };
623 MODULE_ALIAS_FS("pfmfs");
624 
625 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
626 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
627 DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
628 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
629 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
630 
631 
632 /* forward declaration */
633 static const struct file_operations pfm_file_ops;
634 
635 /*
636  * forward declarations
637  */
638 #ifndef CONFIG_SMP
639 static void pfm_lazy_save_regs (struct task_struct *ta);
640 #endif
641 
642 void dump_pmu_state(const char *);
643 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
644 
645 #include "perfmon_itanium.h"
646 #include "perfmon_mckinley.h"
647 #include "perfmon_montecito.h"
648 #include "perfmon_generic.h"
649 
650 static pmu_config_t *pmu_confs[]={
651 	&pmu_conf_mont,
652 	&pmu_conf_mck,
653 	&pmu_conf_ita,
654 	&pmu_conf_gen, /* must be last */
655 	NULL
656 };
657 
658 
659 static int pfm_end_notify_user(pfm_context_t *ctx);
660 
661 static inline void
pfm_clear_psr_pp(void)662 pfm_clear_psr_pp(void)
663 {
664 	ia64_rsm(IA64_PSR_PP);
665 	ia64_srlz_i();
666 }
667 
668 static inline void
pfm_set_psr_pp(void)669 pfm_set_psr_pp(void)
670 {
671 	ia64_ssm(IA64_PSR_PP);
672 	ia64_srlz_i();
673 }
674 
675 static inline void
pfm_clear_psr_up(void)676 pfm_clear_psr_up(void)
677 {
678 	ia64_rsm(IA64_PSR_UP);
679 	ia64_srlz_i();
680 }
681 
682 static inline void
pfm_set_psr_up(void)683 pfm_set_psr_up(void)
684 {
685 	ia64_ssm(IA64_PSR_UP);
686 	ia64_srlz_i();
687 }
688 
689 static inline unsigned long
pfm_get_psr(void)690 pfm_get_psr(void)
691 {
692 	unsigned long tmp;
693 	tmp = ia64_getreg(_IA64_REG_PSR);
694 	ia64_srlz_i();
695 	return tmp;
696 }
697 
698 static inline void
pfm_set_psr_l(unsigned long val)699 pfm_set_psr_l(unsigned long val)
700 {
701 	ia64_setreg(_IA64_REG_PSR_L, val);
702 	ia64_srlz_i();
703 }
704 
705 static inline void
pfm_freeze_pmu(void)706 pfm_freeze_pmu(void)
707 {
708 	ia64_set_pmc(0,1UL);
709 	ia64_srlz_d();
710 }
711 
712 static inline void
pfm_unfreeze_pmu(void)713 pfm_unfreeze_pmu(void)
714 {
715 	ia64_set_pmc(0,0UL);
716 	ia64_srlz_d();
717 }
718 
719 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)720 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
721 {
722 	int i;
723 
724 	for (i=0; i < nibrs; i++) {
725 		ia64_set_ibr(i, ibrs[i]);
726 		ia64_dv_serialize_instruction();
727 	}
728 	ia64_srlz_i();
729 }
730 
731 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)732 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
733 {
734 	int i;
735 
736 	for (i=0; i < ndbrs; i++) {
737 		ia64_set_dbr(i, dbrs[i]);
738 		ia64_dv_serialize_data();
739 	}
740 	ia64_srlz_d();
741 }
742 
743 /*
744  * PMD[i] must be a counter. no check is made
745  */
746 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)747 pfm_read_soft_counter(pfm_context_t *ctx, int i)
748 {
749 	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
750 }
751 
752 /*
753  * PMD[i] must be a counter. no check is made
754  */
755 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)756 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
757 {
758 	unsigned long ovfl_val = pmu_conf->ovfl_val;
759 
760 	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
761 	/*
762 	 * writing to unimplemented part is ignore, so we do not need to
763 	 * mask off top part
764 	 */
765 	ia64_set_pmd(i, val & ovfl_val);
766 }
767 
768 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)769 pfm_get_new_msg(pfm_context_t *ctx)
770 {
771 	int idx, next;
772 
773 	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
774 
775 	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
776 	if (next == ctx->ctx_msgq_head) return NULL;
777 
778  	idx = 	ctx->ctx_msgq_tail;
779 	ctx->ctx_msgq_tail = next;
780 
781 	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
782 
783 	return ctx->ctx_msgq+idx;
784 }
785 
786 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)787 pfm_get_next_msg(pfm_context_t *ctx)
788 {
789 	pfm_msg_t *msg;
790 
791 	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
792 
793 	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
794 
795 	/*
796 	 * get oldest message
797 	 */
798 	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
799 
800 	/*
801 	 * and move forward
802 	 */
803 	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
804 
805 	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
806 
807 	return msg;
808 }
809 
810 static void
pfm_reset_msgq(pfm_context_t * ctx)811 pfm_reset_msgq(pfm_context_t *ctx)
812 {
813 	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
814 	DPRINT(("ctx=%p msgq reset\n", ctx));
815 }
816 
817 static void *
pfm_rvmalloc(unsigned long size)818 pfm_rvmalloc(unsigned long size)
819 {
820 	void *mem;
821 	unsigned long addr;
822 
823 	size = PAGE_ALIGN(size);
824 	mem  = vzalloc(size);
825 	if (mem) {
826 		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827 		addr = (unsigned long)mem;
828 		while (size > 0) {
829 			pfm_reserve_page(addr);
830 			addr+=PAGE_SIZE;
831 			size-=PAGE_SIZE;
832 		}
833 	}
834 	return mem;
835 }
836 
837 static void
pfm_rvfree(void * mem,unsigned long size)838 pfm_rvfree(void *mem, unsigned long size)
839 {
840 	unsigned long addr;
841 
842 	if (mem) {
843 		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
844 		addr = (unsigned long) mem;
845 		while ((long) size > 0) {
846 			pfm_unreserve_page(addr);
847 			addr+=PAGE_SIZE;
848 			size-=PAGE_SIZE;
849 		}
850 		vfree(mem);
851 	}
852 	return;
853 }
854 
855 static pfm_context_t *
pfm_context_alloc(int ctx_flags)856 pfm_context_alloc(int ctx_flags)
857 {
858 	pfm_context_t *ctx;
859 
860 	/*
861 	 * allocate context descriptor
862 	 * must be able to free with interrupts disabled
863 	 */
864 	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
865 	if (ctx) {
866 		DPRINT(("alloc ctx @%p\n", ctx));
867 
868 		/*
869 		 * init context protection lock
870 		 */
871 		spin_lock_init(&ctx->ctx_lock);
872 
873 		/*
874 		 * context is unloaded
875 		 */
876 		ctx->ctx_state = PFM_CTX_UNLOADED;
877 
878 		/*
879 		 * initialization of context's flags
880 		 */
881 		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
882 		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
883 		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
884 		/*
885 		 * will move to set properties
886 		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
887 		 */
888 
889 		/*
890 		 * init restart semaphore to locked
891 		 */
892 		init_completion(&ctx->ctx_restart_done);
893 
894 		/*
895 		 * activation is used in SMP only
896 		 */
897 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
898 		SET_LAST_CPU(ctx, -1);
899 
900 		/*
901 		 * initialize notification message queue
902 		 */
903 		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
904 		init_waitqueue_head(&ctx->ctx_msgq_wait);
905 		init_waitqueue_head(&ctx->ctx_zombieq);
906 
907 	}
908 	return ctx;
909 }
910 
911 static void
pfm_context_free(pfm_context_t * ctx)912 pfm_context_free(pfm_context_t *ctx)
913 {
914 	if (ctx) {
915 		DPRINT(("free ctx @%p\n", ctx));
916 		kfree(ctx);
917 	}
918 }
919 
920 static void
pfm_mask_monitoring(struct task_struct * task)921 pfm_mask_monitoring(struct task_struct *task)
922 {
923 	pfm_context_t *ctx = PFM_GET_CTX(task);
924 	unsigned long mask, val, ovfl_mask;
925 	int i;
926 
927 	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
928 
929 	ovfl_mask = pmu_conf->ovfl_val;
930 	/*
931 	 * monitoring can only be masked as a result of a valid
932 	 * counter overflow. In UP, it means that the PMU still
933 	 * has an owner. Note that the owner can be different
934 	 * from the current task. However the PMU state belongs
935 	 * to the owner.
936 	 * In SMP, a valid overflow only happens when task is
937 	 * current. Therefore if we come here, we know that
938 	 * the PMU state belongs to the current task, therefore
939 	 * we can access the live registers.
940 	 *
941 	 * So in both cases, the live register contains the owner's
942 	 * state. We can ONLY touch the PMU registers and NOT the PSR.
943 	 *
944 	 * As a consequence to this call, the ctx->th_pmds[] array
945 	 * contains stale information which must be ignored
946 	 * when context is reloaded AND monitoring is active (see
947 	 * pfm_restart).
948 	 */
949 	mask = ctx->ctx_used_pmds[0];
950 	for (i = 0; mask; i++, mask>>=1) {
951 		/* skip non used pmds */
952 		if ((mask & 0x1) == 0) continue;
953 		val = ia64_get_pmd(i);
954 
955 		if (PMD_IS_COUNTING(i)) {
956 			/*
957 		 	 * we rebuild the full 64 bit value of the counter
958 		 	 */
959 			ctx->ctx_pmds[i].val += (val & ovfl_mask);
960 		} else {
961 			ctx->ctx_pmds[i].val = val;
962 		}
963 		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
964 			i,
965 			ctx->ctx_pmds[i].val,
966 			val & ovfl_mask));
967 	}
968 	/*
969 	 * mask monitoring by setting the privilege level to 0
970 	 * we cannot use psr.pp/psr.up for this, it is controlled by
971 	 * the user
972 	 *
973 	 * if task is current, modify actual registers, otherwise modify
974 	 * thread save state, i.e., what will be restored in pfm_load_regs()
975 	 */
976 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
977 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
978 		if ((mask & 0x1) == 0UL) continue;
979 		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
980 		ctx->th_pmcs[i] &= ~0xfUL;
981 		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
982 	}
983 	/*
984 	 * make all of this visible
985 	 */
986 	ia64_srlz_d();
987 }
988 
989 /*
990  * must always be done with task == current
991  *
992  * context must be in MASKED state when calling
993  */
994 static void
pfm_restore_monitoring(struct task_struct * task)995 pfm_restore_monitoring(struct task_struct *task)
996 {
997 	pfm_context_t *ctx = PFM_GET_CTX(task);
998 	unsigned long mask, ovfl_mask;
999 	unsigned long psr, val;
1000 	int i, is_system;
1001 
1002 	is_system = ctx->ctx_fl_system;
1003 	ovfl_mask = pmu_conf->ovfl_val;
1004 
1005 	if (task != current) {
1006 		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007 		return;
1008 	}
1009 	if (ctx->ctx_state != PFM_CTX_MASKED) {
1010 		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011 			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012 		return;
1013 	}
1014 	psr = pfm_get_psr();
1015 	/*
1016 	 * monitoring is masked via the PMC.
1017 	 * As we restore their value, we do not want each counter to
1018 	 * restart right away. We stop monitoring using the PSR,
1019 	 * restore the PMC (and PMD) and then re-establish the psr
1020 	 * as it was. Note that there can be no pending overflow at
1021 	 * this point, because monitoring was MASKED.
1022 	 *
1023 	 * system-wide session are pinned and self-monitoring
1024 	 */
1025 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026 		/* disable dcr pp */
1027 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028 		pfm_clear_psr_pp();
1029 	} else {
1030 		pfm_clear_psr_up();
1031 	}
1032 	/*
1033 	 * first, we restore the PMD
1034 	 */
1035 	mask = ctx->ctx_used_pmds[0];
1036 	for (i = 0; mask; i++, mask>>=1) {
1037 		/* skip non used pmds */
1038 		if ((mask & 0x1) == 0) continue;
1039 
1040 		if (PMD_IS_COUNTING(i)) {
1041 			/*
1042 			 * we split the 64bit value according to
1043 			 * counter width
1044 			 */
1045 			val = ctx->ctx_pmds[i].val & ovfl_mask;
1046 			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047 		} else {
1048 			val = ctx->ctx_pmds[i].val;
1049 		}
1050 		ia64_set_pmd(i, val);
1051 
1052 		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053 			i,
1054 			ctx->ctx_pmds[i].val,
1055 			val));
1056 	}
1057 	/*
1058 	 * restore the PMCs
1059 	 */
1060 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062 		if ((mask & 0x1) == 0UL) continue;
1063 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064 		ia64_set_pmc(i, ctx->th_pmcs[i]);
1065 		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066 					task_pid_nr(task), i, ctx->th_pmcs[i]));
1067 	}
1068 	ia64_srlz_d();
1069 
1070 	/*
1071 	 * must restore DBR/IBR because could be modified while masked
1072 	 * XXX: need to optimize
1073 	 */
1074 	if (ctx->ctx_fl_using_dbreg) {
1075 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077 	}
1078 
1079 	/*
1080 	 * now restore PSR
1081 	 */
1082 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083 		/* enable dcr pp */
1084 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085 		ia64_srlz_i();
1086 	}
1087 	pfm_set_psr_l(psr);
1088 }
1089 
1090 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1091 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092 {
1093 	int i;
1094 
1095 	ia64_srlz_d();
1096 
1097 	for (i=0; mask; i++, mask>>=1) {
1098 		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099 	}
1100 }
1101 
1102 /*
1103  * reload from thread state (used for ctxw only)
1104  */
1105 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1106 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107 {
1108 	int i;
1109 	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110 
1111 	for (i=0; mask; i++, mask>>=1) {
1112 		if ((mask & 0x1) == 0) continue;
1113 		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114 		ia64_set_pmd(i, val);
1115 	}
1116 	ia64_srlz_d();
1117 }
1118 
1119 /*
1120  * propagate PMD from context to thread-state
1121  */
1122 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1123 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124 {
1125 	unsigned long ovfl_val = pmu_conf->ovfl_val;
1126 	unsigned long mask = ctx->ctx_all_pmds[0];
1127 	unsigned long val;
1128 	int i;
1129 
1130 	DPRINT(("mask=0x%lx\n", mask));
1131 
1132 	for (i=0; mask; i++, mask>>=1) {
1133 
1134 		val = ctx->ctx_pmds[i].val;
1135 
1136 		/*
1137 		 * We break up the 64 bit value into 2 pieces
1138 		 * the lower bits go to the machine state in the
1139 		 * thread (will be reloaded on ctxsw in).
1140 		 * The upper part stays in the soft-counter.
1141 		 */
1142 		if (PMD_IS_COUNTING(i)) {
1143 			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144 			 val &= ovfl_val;
1145 		}
1146 		ctx->th_pmds[i] = val;
1147 
1148 		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149 			i,
1150 			ctx->th_pmds[i],
1151 			ctx->ctx_pmds[i].val));
1152 	}
1153 }
1154 
1155 /*
1156  * propagate PMC from context to thread-state
1157  */
1158 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1159 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160 {
1161 	unsigned long mask = ctx->ctx_all_pmcs[0];
1162 	int i;
1163 
1164 	DPRINT(("mask=0x%lx\n", mask));
1165 
1166 	for (i=0; mask; i++, mask>>=1) {
1167 		/* masking 0 with ovfl_val yields 0 */
1168 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170 	}
1171 }
1172 
1173 
1174 
1175 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1176 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177 {
1178 	int i;
1179 
1180 	for (i=0; mask; i++, mask>>=1) {
1181 		if ((mask & 0x1) == 0) continue;
1182 		ia64_set_pmc(i, pmcs[i]);
1183 	}
1184 	ia64_srlz_d();
1185 }
1186 
1187 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1188 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189 {
1190 	return memcmp(a, b, sizeof(pfm_uuid_t));
1191 }
1192 
1193 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1194 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195 {
1196 	int ret = 0;
1197 	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198 	return ret;
1199 }
1200 
1201 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1202 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203 {
1204 	int ret = 0;
1205 	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206 	return ret;
1207 }
1208 
1209 
1210 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1211 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212 		     int cpu, void *arg)
1213 {
1214 	int ret = 0;
1215 	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216 	return ret;
1217 }
1218 
1219 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1220 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221 		     int cpu, void *arg)
1222 {
1223 	int ret = 0;
1224 	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225 	return ret;
1226 }
1227 
1228 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1229 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230 {
1231 	int ret = 0;
1232 	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233 	return ret;
1234 }
1235 
1236 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1237 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238 {
1239 	int ret = 0;
1240 	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241 	return ret;
1242 }
1243 
1244 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1245 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246 {
1247 	struct list_head * pos;
1248 	pfm_buffer_fmt_t * entry;
1249 
1250 	list_for_each(pos, &pfm_buffer_fmt_list) {
1251 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252 		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253 			return entry;
1254 	}
1255 	return NULL;
1256 }
1257 
1258 /*
1259  * find a buffer format based on its uuid
1260  */
1261 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1262 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263 {
1264 	pfm_buffer_fmt_t * fmt;
1265 	spin_lock(&pfm_buffer_fmt_lock);
1266 	fmt = __pfm_find_buffer_fmt(uuid);
1267 	spin_unlock(&pfm_buffer_fmt_lock);
1268 	return fmt;
1269 }
1270 
1271 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1272 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273 {
1274 	int ret = 0;
1275 
1276 	/* some sanity checks */
1277 	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278 
1279 	/* we need at least a handler */
1280 	if (fmt->fmt_handler == NULL) return -EINVAL;
1281 
1282 	/*
1283 	 * XXX: need check validity of fmt_arg_size
1284 	 */
1285 
1286 	spin_lock(&pfm_buffer_fmt_lock);
1287 
1288 	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289 		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290 		ret = -EBUSY;
1291 		goto out;
1292 	}
1293 	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294 	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295 
1296 out:
1297 	spin_unlock(&pfm_buffer_fmt_lock);
1298  	return ret;
1299 }
1300 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301 
1302 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1303 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304 {
1305 	pfm_buffer_fmt_t *fmt;
1306 	int ret = 0;
1307 
1308 	spin_lock(&pfm_buffer_fmt_lock);
1309 
1310 	fmt = __pfm_find_buffer_fmt(uuid);
1311 	if (!fmt) {
1312 		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313 		ret = -EINVAL;
1314 		goto out;
1315 	}
1316 	list_del_init(&fmt->fmt_list);
1317 	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318 
1319 out:
1320 	spin_unlock(&pfm_buffer_fmt_lock);
1321 	return ret;
1322 
1323 }
1324 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325 
1326 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1327 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328 {
1329 	unsigned long flags;
1330 	/*
1331 	 * validity checks on cpu_mask have been done upstream
1332 	 */
1333 	LOCK_PFS(flags);
1334 
1335 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 		pfm_sessions.pfs_sys_sessions,
1337 		pfm_sessions.pfs_task_sessions,
1338 		pfm_sessions.pfs_sys_use_dbregs,
1339 		is_syswide,
1340 		cpu));
1341 
1342 	if (is_syswide) {
1343 		/*
1344 		 * cannot mix system wide and per-task sessions
1345 		 */
1346 		if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 			  	pfm_sessions.pfs_task_sessions));
1349 			goto abort;
1350 		}
1351 
1352 		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353 
1354 		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355 
1356 		pfm_sessions.pfs_sys_session[cpu] = task;
1357 
1358 		pfm_sessions.pfs_sys_sessions++ ;
1359 
1360 	} else {
1361 		if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 		pfm_sessions.pfs_task_sessions++;
1363 	}
1364 
1365 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 		pfm_sessions.pfs_sys_sessions,
1367 		pfm_sessions.pfs_task_sessions,
1368 		pfm_sessions.pfs_sys_use_dbregs,
1369 		is_syswide,
1370 		cpu));
1371 
1372 	/*
1373 	 * Force idle() into poll mode
1374 	 */
1375 	cpu_idle_poll_ctrl(true);
1376 
1377 	UNLOCK_PFS(flags);
1378 
1379 	return 0;
1380 
1381 error_conflict:
1382 	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383   		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 		cpu));
1385 abort:
1386 	UNLOCK_PFS(flags);
1387 
1388 	return -EBUSY;
1389 
1390 }
1391 
1392 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1393 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394 {
1395 	unsigned long flags;
1396 	/*
1397 	 * validity checks on cpu_mask have been done upstream
1398 	 */
1399 	LOCK_PFS(flags);
1400 
1401 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 		pfm_sessions.pfs_sys_sessions,
1403 		pfm_sessions.pfs_task_sessions,
1404 		pfm_sessions.pfs_sys_use_dbregs,
1405 		is_syswide,
1406 		cpu));
1407 
1408 
1409 	if (is_syswide) {
1410 		pfm_sessions.pfs_sys_session[cpu] = NULL;
1411 		/*
1412 		 * would not work with perfmon+more than one bit in cpu_mask
1413 		 */
1414 		if (ctx && ctx->ctx_fl_using_dbreg) {
1415 			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 			} else {
1418 				pfm_sessions.pfs_sys_use_dbregs--;
1419 			}
1420 		}
1421 		pfm_sessions.pfs_sys_sessions--;
1422 	} else {
1423 		pfm_sessions.pfs_task_sessions--;
1424 	}
1425 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 		pfm_sessions.pfs_sys_sessions,
1427 		pfm_sessions.pfs_task_sessions,
1428 		pfm_sessions.pfs_sys_use_dbregs,
1429 		is_syswide,
1430 		cpu));
1431 
1432 	/* Undo forced polling. Last session reenables pal_halt */
1433 	cpu_idle_poll_ctrl(false);
1434 
1435 	UNLOCK_PFS(flags);
1436 
1437 	return 0;
1438 }
1439 
1440 /*
1441  * removes virtual mapping of the sampling buffer.
1442  * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443  * a PROTECT_CTX() section.
1444  */
1445 static int
pfm_remove_smpl_mapping(void * vaddr,unsigned long size)1446 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447 {
1448 	struct task_struct *task = current;
1449 	int r;
1450 
1451 	/* sanity checks */
1452 	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453 		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454 		return -EINVAL;
1455 	}
1456 
1457 	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458 
1459 	/*
1460 	 * does the actual unmapping
1461 	 */
1462 	r = vm_munmap((unsigned long)vaddr, size);
1463 
1464 	if (r !=0) {
1465 		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466 	}
1467 
1468 	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  * free actual physical storage used by sampling buffer
1475  */
1476 #if 0
1477 static int
1478 pfm_free_smpl_buffer(pfm_context_t *ctx)
1479 {
1480 	pfm_buffer_fmt_t *fmt;
1481 
1482 	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483 
1484 	/*
1485 	 * we won't use the buffer format anymore
1486 	 */
1487 	fmt = ctx->ctx_buf_fmt;
1488 
1489 	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 		ctx->ctx_smpl_hdr,
1491 		ctx->ctx_smpl_size,
1492 		ctx->ctx_smpl_vaddr));
1493 
1494 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495 
1496 	/*
1497 	 * free the buffer
1498 	 */
1499 	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500 
1501 	ctx->ctx_smpl_hdr  = NULL;
1502 	ctx->ctx_smpl_size = 0UL;
1503 
1504 	return 0;
1505 
1506 invalid_free:
1507 	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508 	return -EINVAL;
1509 }
1510 #endif
1511 
1512 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1513 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514 {
1515 	if (fmt == NULL) return;
1516 
1517 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518 
1519 }
1520 
1521 /*
1522  * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523  * no real gain from having the whole whorehouse mounted. So we don't need
1524  * any operations on the root directory. However, we need a non-trivial
1525  * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526  */
1527 static struct vfsmount *pfmfs_mnt __read_mostly;
1528 
1529 static int __init
init_pfm_fs(void)1530 init_pfm_fs(void)
1531 {
1532 	int err = register_filesystem(&pfm_fs_type);
1533 	if (!err) {
1534 		pfmfs_mnt = kern_mount(&pfm_fs_type);
1535 		err = PTR_ERR(pfmfs_mnt);
1536 		if (IS_ERR(pfmfs_mnt))
1537 			unregister_filesystem(&pfm_fs_type);
1538 		else
1539 			err = 0;
1540 	}
1541 	return err;
1542 }
1543 
1544 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1545 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546 {
1547 	pfm_context_t *ctx;
1548 	pfm_msg_t *msg;
1549 	ssize_t ret;
1550 	unsigned long flags;
1551   	DECLARE_WAITQUEUE(wait, current);
1552 	if (PFM_IS_FILE(filp) == 0) {
1553 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554 		return -EINVAL;
1555 	}
1556 
1557 	ctx = filp->private_data;
1558 	if (ctx == NULL) {
1559 		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560 		return -EINVAL;
1561 	}
1562 
1563 	/*
1564 	 * check even when there is no message
1565 	 */
1566 	if (size < sizeof(pfm_msg_t)) {
1567 		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568 		return -EINVAL;
1569 	}
1570 
1571 	PROTECT_CTX(ctx, flags);
1572 
1573   	/*
1574 	 * put ourselves on the wait queue
1575 	 */
1576   	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577 
1578 
1579   	for(;;) {
1580 		/*
1581 		 * check wait queue
1582 		 */
1583 
1584   		set_current_state(TASK_INTERRUPTIBLE);
1585 
1586 		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587 
1588 		ret = 0;
1589 		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590 
1591 		UNPROTECT_CTX(ctx, flags);
1592 
1593 		/*
1594 		 * check non-blocking read
1595 		 */
1596       		ret = -EAGAIN;
1597 		if(filp->f_flags & O_NONBLOCK) break;
1598 
1599 		/*
1600 		 * check pending signals
1601 		 */
1602 		if(signal_pending(current)) {
1603 			ret = -EINTR;
1604 			break;
1605 		}
1606       		/*
1607 		 * no message, so wait
1608 		 */
1609       		schedule();
1610 
1611 		PROTECT_CTX(ctx, flags);
1612 	}
1613 	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614   	set_current_state(TASK_RUNNING);
1615 	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616 
1617 	if (ret < 0) goto abort;
1618 
1619 	ret = -EINVAL;
1620 	msg = pfm_get_next_msg(ctx);
1621 	if (msg == NULL) {
1622 		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623 		goto abort_locked;
1624 	}
1625 
1626 	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627 
1628 	ret = -EFAULT;
1629   	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630 
1631 abort_locked:
1632 	UNPROTECT_CTX(ctx, flags);
1633 abort:
1634 	return ret;
1635 }
1636 
1637 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1638 pfm_write(struct file *file, const char __user *ubuf,
1639 			  size_t size, loff_t *ppos)
1640 {
1641 	DPRINT(("pfm_write called\n"));
1642 	return -EINVAL;
1643 }
1644 
1645 static unsigned int
pfm_poll(struct file * filp,poll_table * wait)1646 pfm_poll(struct file *filp, poll_table * wait)
1647 {
1648 	pfm_context_t *ctx;
1649 	unsigned long flags;
1650 	unsigned int mask = 0;
1651 
1652 	if (PFM_IS_FILE(filp) == 0) {
1653 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654 		return 0;
1655 	}
1656 
1657 	ctx = filp->private_data;
1658 	if (ctx == NULL) {
1659 		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660 		return 0;
1661 	}
1662 
1663 
1664 	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665 
1666 	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667 
1668 	PROTECT_CTX(ctx, flags);
1669 
1670 	if (PFM_CTXQ_EMPTY(ctx) == 0)
1671 		mask =  POLLIN | POLLRDNORM;
1672 
1673 	UNPROTECT_CTX(ctx, flags);
1674 
1675 	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676 
1677 	return mask;
1678 }
1679 
1680 static long
pfm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1681 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682 {
1683 	DPRINT(("pfm_ioctl called\n"));
1684 	return -EINVAL;
1685 }
1686 
1687 /*
1688  * interrupt cannot be masked when coming here
1689  */
1690 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1691 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692 {
1693 	int ret;
1694 
1695 	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696 
1697 	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 		task_pid_nr(current),
1699 		fd,
1700 		on,
1701 		ctx->ctx_async_queue, ret));
1702 
1703 	return ret;
1704 }
1705 
1706 static int
pfm_fasync(int fd,struct file * filp,int on)1707 pfm_fasync(int fd, struct file *filp, int on)
1708 {
1709 	pfm_context_t *ctx;
1710 	int ret;
1711 
1712 	if (PFM_IS_FILE(filp) == 0) {
1713 		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714 		return -EBADF;
1715 	}
1716 
1717 	ctx = filp->private_data;
1718 	if (ctx == NULL) {
1719 		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720 		return -EBADF;
1721 	}
1722 	/*
1723 	 * we cannot mask interrupts during this call because this may
1724 	 * may go to sleep if memory is not readily avalaible.
1725 	 *
1726 	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727 	 * done in caller. Serialization of this function is ensured by caller.
1728 	 */
1729 	ret = pfm_do_fasync(fd, filp, ctx, on);
1730 
1731 
1732 	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733 		fd,
1734 		on,
1735 		ctx->ctx_async_queue, ret));
1736 
1737 	return ret;
1738 }
1739 
1740 #ifdef CONFIG_SMP
1741 /*
1742  * this function is exclusively called from pfm_close().
1743  * The context is not protected at that time, nor are interrupts
1744  * on the remote CPU. That's necessary to avoid deadlocks.
1745  */
1746 static void
pfm_syswide_force_stop(void * info)1747 pfm_syswide_force_stop(void *info)
1748 {
1749 	pfm_context_t   *ctx = (pfm_context_t *)info;
1750 	struct pt_regs *regs = task_pt_regs(current);
1751 	struct task_struct *owner;
1752 	unsigned long flags;
1753 	int ret;
1754 
1755 	if (ctx->ctx_cpu != smp_processor_id()) {
1756 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757 			ctx->ctx_cpu,
1758 			smp_processor_id());
1759 		return;
1760 	}
1761 	owner = GET_PMU_OWNER();
1762 	if (owner != ctx->ctx_task) {
1763 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764 			smp_processor_id(),
1765 			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766 		return;
1767 	}
1768 	if (GET_PMU_CTX() != ctx) {
1769 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770 			smp_processor_id(),
1771 			GET_PMU_CTX(), ctx);
1772 		return;
1773 	}
1774 
1775 	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776 	/*
1777 	 * the context is already protected in pfm_close(), we simply
1778 	 * need to mask interrupts to avoid a PMU interrupt race on
1779 	 * this CPU
1780 	 */
1781 	local_irq_save(flags);
1782 
1783 	ret = pfm_context_unload(ctx, NULL, 0, regs);
1784 	if (ret) {
1785 		DPRINT(("context_unload returned %d\n", ret));
1786 	}
1787 
1788 	/*
1789 	 * unmask interrupts, PMU interrupts are now spurious here
1790 	 */
1791 	local_irq_restore(flags);
1792 }
1793 
1794 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1795 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796 {
1797 	int ret;
1798 
1799 	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800 	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801 	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802 }
1803 #endif /* CONFIG_SMP */
1804 
1805 /*
1806  * called for each close(). Partially free resources.
1807  * When caller is self-monitoring, the context is unloaded.
1808  */
1809 static int
pfm_flush(struct file * filp,fl_owner_t id)1810 pfm_flush(struct file *filp, fl_owner_t id)
1811 {
1812 	pfm_context_t *ctx;
1813 	struct task_struct *task;
1814 	struct pt_regs *regs;
1815 	unsigned long flags;
1816 	unsigned long smpl_buf_size = 0UL;
1817 	void *smpl_buf_vaddr = NULL;
1818 	int state, is_system;
1819 
1820 	if (PFM_IS_FILE(filp) == 0) {
1821 		DPRINT(("bad magic for\n"));
1822 		return -EBADF;
1823 	}
1824 
1825 	ctx = filp->private_data;
1826 	if (ctx == NULL) {
1827 		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828 		return -EBADF;
1829 	}
1830 
1831 	/*
1832 	 * remove our file from the async queue, if we use this mode.
1833 	 * This can be done without the context being protected. We come
1834 	 * here when the context has become unreachable by other tasks.
1835 	 *
1836 	 * We may still have active monitoring at this point and we may
1837 	 * end up in pfm_overflow_handler(). However, fasync_helper()
1838 	 * operates with interrupts disabled and it cleans up the
1839 	 * queue. If the PMU handler is called prior to entering
1840 	 * fasync_helper() then it will send a signal. If it is
1841 	 * invoked after, it will find an empty queue and no
1842 	 * signal will be sent. In both case, we are safe
1843 	 */
1844 	PROTECT_CTX(ctx, flags);
1845 
1846 	state     = ctx->ctx_state;
1847 	is_system = ctx->ctx_fl_system;
1848 
1849 	task = PFM_CTX_TASK(ctx);
1850 	regs = task_pt_regs(task);
1851 
1852 	DPRINT(("ctx_state=%d is_current=%d\n",
1853 		state,
1854 		task == current ? 1 : 0));
1855 
1856 	/*
1857 	 * if state == UNLOADED, then task is NULL
1858 	 */
1859 
1860 	/*
1861 	 * we must stop and unload because we are losing access to the context.
1862 	 */
1863 	if (task == current) {
1864 #ifdef CONFIG_SMP
1865 		/*
1866 		 * the task IS the owner but it migrated to another CPU: that's bad
1867 		 * but we must handle this cleanly. Unfortunately, the kernel does
1868 		 * not provide a mechanism to block migration (while the context is loaded).
1869 		 *
1870 		 * We need to release the resource on the ORIGINAL cpu.
1871 		 */
1872 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873 
1874 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875 			/*
1876 			 * keep context protected but unmask interrupt for IPI
1877 			 */
1878 			local_irq_restore(flags);
1879 
1880 			pfm_syswide_cleanup_other_cpu(ctx);
1881 
1882 			/*
1883 			 * restore interrupt masking
1884 			 */
1885 			local_irq_save(flags);
1886 
1887 			/*
1888 			 * context is unloaded at this point
1889 			 */
1890 		} else
1891 #endif /* CONFIG_SMP */
1892 		{
1893 
1894 			DPRINT(("forcing unload\n"));
1895 			/*
1896 		 	* stop and unload, returning with state UNLOADED
1897 		 	* and session unreserved.
1898 		 	*/
1899 			pfm_context_unload(ctx, NULL, 0, regs);
1900 
1901 			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902 		}
1903 	}
1904 
1905 	/*
1906 	 * remove virtual mapping, if any, for the calling task.
1907 	 * cannot reset ctx field until last user is calling close().
1908 	 *
1909 	 * ctx_smpl_vaddr must never be cleared because it is needed
1910 	 * by every task with access to the context
1911 	 *
1912 	 * When called from do_exit(), the mm context is gone already, therefore
1913 	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914 	 * do anything here
1915 	 */
1916 	if (ctx->ctx_smpl_vaddr && current->mm) {
1917 		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918 		smpl_buf_size  = ctx->ctx_smpl_size;
1919 	}
1920 
1921 	UNPROTECT_CTX(ctx, flags);
1922 
1923 	/*
1924 	 * if there was a mapping, then we systematically remove it
1925 	 * at this point. Cannot be done inside critical section
1926 	 * because some VM function reenables interrupts.
1927 	 *
1928 	 */
1929 	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930 
1931 	return 0;
1932 }
1933 /*
1934  * called either on explicit close() or from exit_files().
1935  * Only the LAST user of the file gets to this point, i.e., it is
1936  * called only ONCE.
1937  *
1938  * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939  * (fput()),i.e, last task to access the file. Nobody else can access the
1940  * file at this point.
1941  *
1942  * When called from exit_files(), the VMA has been freed because exit_mm()
1943  * is executed before exit_files().
1944  *
1945  * When called from exit_files(), the current task is not yet ZOMBIE but we
1946  * flush the PMU state to the context.
1947  */
1948 static int
pfm_close(struct inode * inode,struct file * filp)1949 pfm_close(struct inode *inode, struct file *filp)
1950 {
1951 	pfm_context_t *ctx;
1952 	struct task_struct *task;
1953 	struct pt_regs *regs;
1954   	DECLARE_WAITQUEUE(wait, current);
1955 	unsigned long flags;
1956 	unsigned long smpl_buf_size = 0UL;
1957 	void *smpl_buf_addr = NULL;
1958 	int free_possible = 1;
1959 	int state, is_system;
1960 
1961 	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962 
1963 	if (PFM_IS_FILE(filp) == 0) {
1964 		DPRINT(("bad magic\n"));
1965 		return -EBADF;
1966 	}
1967 
1968 	ctx = filp->private_data;
1969 	if (ctx == NULL) {
1970 		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971 		return -EBADF;
1972 	}
1973 
1974 	PROTECT_CTX(ctx, flags);
1975 
1976 	state     = ctx->ctx_state;
1977 	is_system = ctx->ctx_fl_system;
1978 
1979 	task = PFM_CTX_TASK(ctx);
1980 	regs = task_pt_regs(task);
1981 
1982 	DPRINT(("ctx_state=%d is_current=%d\n",
1983 		state,
1984 		task == current ? 1 : 0));
1985 
1986 	/*
1987 	 * if task == current, then pfm_flush() unloaded the context
1988 	 */
1989 	if (state == PFM_CTX_UNLOADED) goto doit;
1990 
1991 	/*
1992 	 * context is loaded/masked and task != current, we need to
1993 	 * either force an unload or go zombie
1994 	 */
1995 
1996 	/*
1997 	 * The task is currently blocked or will block after an overflow.
1998 	 * we must force it to wakeup to get out of the
1999 	 * MASKED state and transition to the unloaded state by itself.
2000 	 *
2001 	 * This situation is only possible for per-task mode
2002 	 */
2003 	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004 
2005 		/*
2006 		 * set a "partial" zombie state to be checked
2007 		 * upon return from down() in pfm_handle_work().
2008 		 *
2009 		 * We cannot use the ZOMBIE state, because it is checked
2010 		 * by pfm_load_regs() which is called upon wakeup from down().
2011 		 * In such case, it would free the context and then we would
2012 		 * return to pfm_handle_work() which would access the
2013 		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014 		 * but visible to pfm_handle_work().
2015 		 *
2016 		 * For some window of time, we have a zombie context with
2017 		 * ctx_state = MASKED  and not ZOMBIE
2018 		 */
2019 		ctx->ctx_fl_going_zombie = 1;
2020 
2021 		/*
2022 		 * force task to wake up from MASKED state
2023 		 */
2024 		complete(&ctx->ctx_restart_done);
2025 
2026 		DPRINT(("waking up ctx_state=%d\n", state));
2027 
2028 		/*
2029 		 * put ourself to sleep waiting for the other
2030 		 * task to report completion
2031 		 *
2032 		 * the context is protected by mutex, therefore there
2033 		 * is no risk of being notified of completion before
2034 		 * begin actually on the waitq.
2035 		 */
2036   		set_current_state(TASK_INTERRUPTIBLE);
2037   		add_wait_queue(&ctx->ctx_zombieq, &wait);
2038 
2039 		UNPROTECT_CTX(ctx, flags);
2040 
2041 		/*
2042 		 * XXX: check for signals :
2043 		 * 	- ok for explicit close
2044 		 * 	- not ok when coming from exit_files()
2045 		 */
2046       		schedule();
2047 
2048 
2049 		PROTECT_CTX(ctx, flags);
2050 
2051 
2052 		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053   		set_current_state(TASK_RUNNING);
2054 
2055 		/*
2056 		 * context is unloaded at this point
2057 		 */
2058 		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059 	}
2060 	else if (task != current) {
2061 #ifdef CONFIG_SMP
2062 		/*
2063 	 	 * switch context to zombie state
2064 	 	 */
2065 		ctx->ctx_state = PFM_CTX_ZOMBIE;
2066 
2067 		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068 		/*
2069 		 * cannot free the context on the spot. deferred until
2070 		 * the task notices the ZOMBIE state
2071 		 */
2072 		free_possible = 0;
2073 #else
2074 		pfm_context_unload(ctx, NULL, 0, regs);
2075 #endif
2076 	}
2077 
2078 doit:
2079 	/* reload state, may have changed during  opening of critical section */
2080 	state = ctx->ctx_state;
2081 
2082 	/*
2083 	 * the context is still attached to a task (possibly current)
2084 	 * we cannot destroy it right now
2085 	 */
2086 
2087 	/*
2088 	 * we must free the sampling buffer right here because
2089 	 * we cannot rely on it being cleaned up later by the
2090 	 * monitored task. It is not possible to free vmalloc'ed
2091 	 * memory in pfm_load_regs(). Instead, we remove the buffer
2092 	 * now. should there be subsequent PMU overflow originally
2093 	 * meant for sampling, the will be converted to spurious
2094 	 * and that's fine because the monitoring tools is gone anyway.
2095 	 */
2096 	if (ctx->ctx_smpl_hdr) {
2097 		smpl_buf_addr = ctx->ctx_smpl_hdr;
2098 		smpl_buf_size = ctx->ctx_smpl_size;
2099 		/* no more sampling */
2100 		ctx->ctx_smpl_hdr = NULL;
2101 		ctx->ctx_fl_is_sampling = 0;
2102 	}
2103 
2104 	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105 		state,
2106 		free_possible,
2107 		smpl_buf_addr,
2108 		smpl_buf_size));
2109 
2110 	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111 
2112 	/*
2113 	 * UNLOADED that the session has already been unreserved.
2114 	 */
2115 	if (state == PFM_CTX_ZOMBIE) {
2116 		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117 	}
2118 
2119 	/*
2120 	 * disconnect file descriptor from context must be done
2121 	 * before we unlock.
2122 	 */
2123 	filp->private_data = NULL;
2124 
2125 	/*
2126 	 * if we free on the spot, the context is now completely unreachable
2127 	 * from the callers side. The monitored task side is also cut, so we
2128 	 * can freely cut.
2129 	 *
2130 	 * If we have a deferred free, only the caller side is disconnected.
2131 	 */
2132 	UNPROTECT_CTX(ctx, flags);
2133 
2134 	/*
2135 	 * All memory free operations (especially for vmalloc'ed memory)
2136 	 * MUST be done with interrupts ENABLED.
2137 	 */
2138 	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139 
2140 	/*
2141 	 * return the memory used by the context
2142 	 */
2143 	if (free_possible) pfm_context_free(ctx);
2144 
2145 	return 0;
2146 }
2147 
2148 static int
pfm_no_open(struct inode * irrelevant,struct file * dontcare)2149 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2150 {
2151 	DPRINT(("pfm_no_open called\n"));
2152 	return -ENXIO;
2153 }
2154 
2155 
2156 
2157 static const struct file_operations pfm_file_ops = {
2158 	.llseek		= no_llseek,
2159 	.read		= pfm_read,
2160 	.write		= pfm_write,
2161 	.poll		= pfm_poll,
2162 	.unlocked_ioctl = pfm_ioctl,
2163 	.open		= pfm_no_open,	/* special open code to disallow open via /proc */
2164 	.fasync		= pfm_fasync,
2165 	.release	= pfm_close,
2166 	.flush		= pfm_flush
2167 };
2168 
2169 static int
pfmfs_delete_dentry(const struct dentry * dentry)2170 pfmfs_delete_dentry(const struct dentry *dentry)
2171 {
2172 	return 1;
2173 }
2174 
pfmfs_dname(struct dentry * dentry,char * buffer,int buflen)2175 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2176 {
2177 	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2178 			     dentry->d_inode->i_ino);
2179 }
2180 
2181 static const struct dentry_operations pfmfs_dentry_operations = {
2182 	.d_delete = pfmfs_delete_dentry,
2183 	.d_dname = pfmfs_dname,
2184 };
2185 
2186 
2187 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2188 pfm_alloc_file(pfm_context_t *ctx)
2189 {
2190 	struct file *file;
2191 	struct inode *inode;
2192 	struct path path;
2193 	struct qstr this = { .name = "" };
2194 
2195 	/*
2196 	 * allocate a new inode
2197 	 */
2198 	inode = new_inode(pfmfs_mnt->mnt_sb);
2199 	if (!inode)
2200 		return ERR_PTR(-ENOMEM);
2201 
2202 	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2203 
2204 	inode->i_mode = S_IFCHR|S_IRUGO;
2205 	inode->i_uid  = current_fsuid();
2206 	inode->i_gid  = current_fsgid();
2207 
2208 	/*
2209 	 * allocate a new dcache entry
2210 	 */
2211 	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2212 	if (!path.dentry) {
2213 		iput(inode);
2214 		return ERR_PTR(-ENOMEM);
2215 	}
2216 	path.mnt = mntget(pfmfs_mnt);
2217 
2218 	d_add(path.dentry, inode);
2219 
2220 	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2221 	if (IS_ERR(file)) {
2222 		path_put(&path);
2223 		return file;
2224 	}
2225 
2226 	file->f_flags = O_RDONLY;
2227 	file->private_data = ctx;
2228 
2229 	return file;
2230 }
2231 
2232 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2233 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2234 {
2235 	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2236 
2237 	while (size > 0) {
2238 		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2239 
2240 
2241 		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2242 			return -ENOMEM;
2243 
2244 		addr  += PAGE_SIZE;
2245 		buf   += PAGE_SIZE;
2246 		size  -= PAGE_SIZE;
2247 	}
2248 	return 0;
2249 }
2250 
2251 /*
2252  * allocate a sampling buffer and remaps it into the user address space of the task
2253  */
2254 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2255 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2256 {
2257 	struct mm_struct *mm = task->mm;
2258 	struct vm_area_struct *vma = NULL;
2259 	unsigned long size;
2260 	void *smpl_buf;
2261 
2262 
2263 	/*
2264 	 * the fixed header + requested size and align to page boundary
2265 	 */
2266 	size = PAGE_ALIGN(rsize);
2267 
2268 	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2269 
2270 	/*
2271 	 * check requested size to avoid Denial-of-service attacks
2272 	 * XXX: may have to refine this test
2273 	 * Check against address space limit.
2274 	 *
2275 	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2276 	 * 	return -ENOMEM;
2277 	 */
2278 	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2279 		return -ENOMEM;
2280 
2281 	/*
2282 	 * We do the easy to undo allocations first.
2283  	 *
2284 	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2285 	 */
2286 	smpl_buf = pfm_rvmalloc(size);
2287 	if (smpl_buf == NULL) {
2288 		DPRINT(("Can't allocate sampling buffer\n"));
2289 		return -ENOMEM;
2290 	}
2291 
2292 	DPRINT(("smpl_buf @%p\n", smpl_buf));
2293 
2294 	/* allocate vma */
2295 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2296 	if (!vma) {
2297 		DPRINT(("Cannot allocate vma\n"));
2298 		goto error_kmem;
2299 	}
2300 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2301 
2302 	/*
2303 	 * partially initialize the vma for the sampling buffer
2304 	 */
2305 	vma->vm_mm	     = mm;
2306 	vma->vm_file	     = get_file(filp);
2307 	vma->vm_flags	     = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2308 	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2309 
2310 	/*
2311 	 * Now we have everything we need and we can initialize
2312 	 * and connect all the data structures
2313 	 */
2314 
2315 	ctx->ctx_smpl_hdr   = smpl_buf;
2316 	ctx->ctx_smpl_size  = size; /* aligned size */
2317 
2318 	/*
2319 	 * Let's do the difficult operations next.
2320 	 *
2321 	 * now we atomically find some area in the address space and
2322 	 * remap the buffer in it.
2323 	 */
2324 	down_write(&task->mm->mmap_sem);
2325 
2326 	/* find some free area in address space, must have mmap sem held */
2327 	vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2328 	if (IS_ERR_VALUE(vma->vm_start)) {
2329 		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2330 		up_write(&task->mm->mmap_sem);
2331 		goto error;
2332 	}
2333 	vma->vm_end = vma->vm_start + size;
2334 	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2335 
2336 	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2337 
2338 	/* can only be applied to current task, need to have the mm semaphore held when called */
2339 	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2340 		DPRINT(("Can't remap buffer\n"));
2341 		up_write(&task->mm->mmap_sem);
2342 		goto error;
2343 	}
2344 
2345 	/*
2346 	 * now insert the vma in the vm list for the process, must be
2347 	 * done with mmap lock held
2348 	 */
2349 	insert_vm_struct(mm, vma);
2350 
2351 	vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2352 							vma_pages(vma));
2353 	up_write(&task->mm->mmap_sem);
2354 
2355 	/*
2356 	 * keep track of user level virtual address
2357 	 */
2358 	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2359 	*(unsigned long *)user_vaddr = vma->vm_start;
2360 
2361 	return 0;
2362 
2363 error:
2364 	kmem_cache_free(vm_area_cachep, vma);
2365 error_kmem:
2366 	pfm_rvfree(smpl_buf, size);
2367 
2368 	return -ENOMEM;
2369 }
2370 
2371 /*
2372  * XXX: do something better here
2373  */
2374 static int
pfm_bad_permissions(struct task_struct * task)2375 pfm_bad_permissions(struct task_struct *task)
2376 {
2377 	const struct cred *tcred;
2378 	kuid_t uid = current_uid();
2379 	kgid_t gid = current_gid();
2380 	int ret;
2381 
2382 	rcu_read_lock();
2383 	tcred = __task_cred(task);
2384 
2385 	/* inspired by ptrace_attach() */
2386 	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2387 		from_kuid(&init_user_ns, uid),
2388 		from_kgid(&init_user_ns, gid),
2389 		from_kuid(&init_user_ns, tcred->euid),
2390 		from_kuid(&init_user_ns, tcred->suid),
2391 		from_kuid(&init_user_ns, tcred->uid),
2392 		from_kgid(&init_user_ns, tcred->egid),
2393 		from_kgid(&init_user_ns, tcred->sgid)));
2394 
2395 	ret = ((!uid_eq(uid, tcred->euid))
2396 	       || (!uid_eq(uid, tcred->suid))
2397 	       || (!uid_eq(uid, tcred->uid))
2398 	       || (!gid_eq(gid, tcred->egid))
2399 	       || (!gid_eq(gid, tcred->sgid))
2400 	       || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2401 
2402 	rcu_read_unlock();
2403 	return ret;
2404 }
2405 
2406 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2407 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2408 {
2409 	int ctx_flags;
2410 
2411 	/* valid signal */
2412 
2413 	ctx_flags = pfx->ctx_flags;
2414 
2415 	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2416 
2417 		/*
2418 		 * cannot block in this mode
2419 		 */
2420 		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2421 			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2422 			return -EINVAL;
2423 		}
2424 	} else {
2425 	}
2426 	/* probably more to add here */
2427 
2428 	return 0;
2429 }
2430 
2431 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2432 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2433 		     unsigned int cpu, pfarg_context_t *arg)
2434 {
2435 	pfm_buffer_fmt_t *fmt = NULL;
2436 	unsigned long size = 0UL;
2437 	void *uaddr = NULL;
2438 	void *fmt_arg = NULL;
2439 	int ret = 0;
2440 #define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2441 
2442 	/* invoke and lock buffer format, if found */
2443 	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2444 	if (fmt == NULL) {
2445 		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2446 		return -EINVAL;
2447 	}
2448 
2449 	/*
2450 	 * buffer argument MUST be contiguous to pfarg_context_t
2451 	 */
2452 	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2453 
2454 	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2455 
2456 	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2457 
2458 	if (ret) goto error;
2459 
2460 	/* link buffer format and context */
2461 	ctx->ctx_buf_fmt = fmt;
2462 	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2463 
2464 	/*
2465 	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2466 	 */
2467 	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2468 	if (ret) goto error;
2469 
2470 	if (size) {
2471 		/*
2472 		 * buffer is always remapped into the caller's address space
2473 		 */
2474 		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2475 		if (ret) goto error;
2476 
2477 		/* keep track of user address of buffer */
2478 		arg->ctx_smpl_vaddr = uaddr;
2479 	}
2480 	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2481 
2482 error:
2483 	return ret;
2484 }
2485 
2486 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2487 pfm_reset_pmu_state(pfm_context_t *ctx)
2488 {
2489 	int i;
2490 
2491 	/*
2492 	 * install reset values for PMC.
2493 	 */
2494 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2495 		if (PMC_IS_IMPL(i) == 0) continue;
2496 		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2497 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2498 	}
2499 	/*
2500 	 * PMD registers are set to 0UL when the context in memset()
2501 	 */
2502 
2503 	/*
2504 	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2505 	 * when they are not actively used by the task. In UP, the incoming process
2506 	 * may otherwise pick up left over PMC, PMD state from the previous process.
2507 	 * As opposed to PMD, stale PMC can cause harm to the incoming
2508 	 * process because they may change what is being measured.
2509 	 * Therefore, we must systematically reinstall the entire
2510 	 * PMC state. In SMP, the same thing is possible on the
2511 	 * same CPU but also on between 2 CPUs.
2512 	 *
2513 	 * The problem with PMD is information leaking especially
2514 	 * to user level when psr.sp=0
2515 	 *
2516 	 * There is unfortunately no easy way to avoid this problem
2517 	 * on either UP or SMP. This definitively slows down the
2518 	 * pfm_load_regs() function.
2519 	 */
2520 
2521 	 /*
2522 	  * bitmask of all PMCs accessible to this context
2523 	  *
2524 	  * PMC0 is treated differently.
2525 	  */
2526 	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2527 
2528 	/*
2529 	 * bitmask of all PMDs that are accessible to this context
2530 	 */
2531 	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2532 
2533 	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2534 
2535 	/*
2536 	 * useful in case of re-enable after disable
2537 	 */
2538 	ctx->ctx_used_ibrs[0] = 0UL;
2539 	ctx->ctx_used_dbrs[0] = 0UL;
2540 }
2541 
2542 static int
pfm_ctx_getsize(void * arg,size_t * sz)2543 pfm_ctx_getsize(void *arg, size_t *sz)
2544 {
2545 	pfarg_context_t *req = (pfarg_context_t *)arg;
2546 	pfm_buffer_fmt_t *fmt;
2547 
2548 	*sz = 0;
2549 
2550 	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2551 
2552 	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2553 	if (fmt == NULL) {
2554 		DPRINT(("cannot find buffer format\n"));
2555 		return -EINVAL;
2556 	}
2557 	/* get just enough to copy in user parameters */
2558 	*sz = fmt->fmt_arg_size;
2559 	DPRINT(("arg_size=%lu\n", *sz));
2560 
2561 	return 0;
2562 }
2563 
2564 
2565 
2566 /*
2567  * cannot attach if :
2568  * 	- kernel task
2569  * 	- task not owned by caller
2570  * 	- task incompatible with context mode
2571  */
2572 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2573 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2574 {
2575 	/*
2576 	 * no kernel task or task not owner by caller
2577 	 */
2578 	if (task->mm == NULL) {
2579 		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2580 		return -EPERM;
2581 	}
2582 	if (pfm_bad_permissions(task)) {
2583 		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2584 		return -EPERM;
2585 	}
2586 	/*
2587 	 * cannot block in self-monitoring mode
2588 	 */
2589 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2590 		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2591 		return -EINVAL;
2592 	}
2593 
2594 	if (task->exit_state == EXIT_ZOMBIE) {
2595 		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2596 		return -EBUSY;
2597 	}
2598 
2599 	/*
2600 	 * always ok for self
2601 	 */
2602 	if (task == current) return 0;
2603 
2604 	if (!task_is_stopped_or_traced(task)) {
2605 		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2606 		return -EBUSY;
2607 	}
2608 	/*
2609 	 * make sure the task is off any CPU
2610 	 */
2611 	wait_task_inactive(task, 0);
2612 
2613 	/* more to come... */
2614 
2615 	return 0;
2616 }
2617 
2618 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2619 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2620 {
2621 	struct task_struct *p = current;
2622 	int ret;
2623 
2624 	/* XXX: need to add more checks here */
2625 	if (pid < 2) return -EPERM;
2626 
2627 	if (pid != task_pid_vnr(current)) {
2628 
2629 		read_lock(&tasklist_lock);
2630 
2631 		p = find_task_by_vpid(pid);
2632 
2633 		/* make sure task cannot go away while we operate on it */
2634 		if (p) get_task_struct(p);
2635 
2636 		read_unlock(&tasklist_lock);
2637 
2638 		if (p == NULL) return -ESRCH;
2639 	}
2640 
2641 	ret = pfm_task_incompatible(ctx, p);
2642 	if (ret == 0) {
2643 		*task = p;
2644 	} else if (p != current) {
2645 		pfm_put_task(p);
2646 	}
2647 	return ret;
2648 }
2649 
2650 
2651 
2652 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2653 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2654 {
2655 	pfarg_context_t *req = (pfarg_context_t *)arg;
2656 	struct file *filp;
2657 	struct path path;
2658 	int ctx_flags;
2659 	int fd;
2660 	int ret;
2661 
2662 	/* let's check the arguments first */
2663 	ret = pfarg_is_sane(current, req);
2664 	if (ret < 0)
2665 		return ret;
2666 
2667 	ctx_flags = req->ctx_flags;
2668 
2669 	ret = -ENOMEM;
2670 
2671 	fd = get_unused_fd();
2672 	if (fd < 0)
2673 		return fd;
2674 
2675 	ctx = pfm_context_alloc(ctx_flags);
2676 	if (!ctx)
2677 		goto error;
2678 
2679 	filp = pfm_alloc_file(ctx);
2680 	if (IS_ERR(filp)) {
2681 		ret = PTR_ERR(filp);
2682 		goto error_file;
2683 	}
2684 
2685 	req->ctx_fd = ctx->ctx_fd = fd;
2686 
2687 	/*
2688 	 * does the user want to sample?
2689 	 */
2690 	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2691 		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2692 		if (ret)
2693 			goto buffer_error;
2694 	}
2695 
2696 	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2697 		ctx,
2698 		ctx_flags,
2699 		ctx->ctx_fl_system,
2700 		ctx->ctx_fl_block,
2701 		ctx->ctx_fl_excl_idle,
2702 		ctx->ctx_fl_no_msg,
2703 		ctx->ctx_fd));
2704 
2705 	/*
2706 	 * initialize soft PMU state
2707 	 */
2708 	pfm_reset_pmu_state(ctx);
2709 
2710 	fd_install(fd, filp);
2711 
2712 	return 0;
2713 
2714 buffer_error:
2715 	path = filp->f_path;
2716 	put_filp(filp);
2717 	path_put(&path);
2718 
2719 	if (ctx->ctx_buf_fmt) {
2720 		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2721 	}
2722 error_file:
2723 	pfm_context_free(ctx);
2724 
2725 error:
2726 	put_unused_fd(fd);
2727 	return ret;
2728 }
2729 
2730 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2731 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2732 {
2733 	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2734 	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2735 	extern unsigned long carta_random32 (unsigned long seed);
2736 
2737 	if (reg->flags & PFM_REGFL_RANDOM) {
2738 		new_seed = carta_random32(old_seed);
2739 		val -= (old_seed & mask);	/* counter values are negative numbers! */
2740 		if ((mask >> 32) != 0)
2741 			/* construct a full 64-bit random value: */
2742 			new_seed |= carta_random32(old_seed >> 32) << 32;
2743 		reg->seed = new_seed;
2744 	}
2745 	reg->lval = val;
2746 	return val;
2747 }
2748 
2749 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2750 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2751 {
2752 	unsigned long mask = ovfl_regs[0];
2753 	unsigned long reset_others = 0UL;
2754 	unsigned long val;
2755 	int i;
2756 
2757 	/*
2758 	 * now restore reset value on sampling overflowed counters
2759 	 */
2760 	mask >>= PMU_FIRST_COUNTER;
2761 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2762 
2763 		if ((mask & 0x1UL) == 0UL) continue;
2764 
2765 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2766 		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2767 
2768 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2769 	}
2770 
2771 	/*
2772 	 * Now take care of resetting the other registers
2773 	 */
2774 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2775 
2776 		if ((reset_others & 0x1) == 0) continue;
2777 
2778 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2779 
2780 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2781 			  is_long_reset ? "long" : "short", i, val));
2782 	}
2783 }
2784 
2785 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2786 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2787 {
2788 	unsigned long mask = ovfl_regs[0];
2789 	unsigned long reset_others = 0UL;
2790 	unsigned long val;
2791 	int i;
2792 
2793 	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2794 
2795 	if (ctx->ctx_state == PFM_CTX_MASKED) {
2796 		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2797 		return;
2798 	}
2799 
2800 	/*
2801 	 * now restore reset value on sampling overflowed counters
2802 	 */
2803 	mask >>= PMU_FIRST_COUNTER;
2804 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2805 
2806 		if ((mask & 0x1UL) == 0UL) continue;
2807 
2808 		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2809 		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2810 
2811 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2812 
2813 		pfm_write_soft_counter(ctx, i, val);
2814 	}
2815 
2816 	/*
2817 	 * Now take care of resetting the other registers
2818 	 */
2819 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2820 
2821 		if ((reset_others & 0x1) == 0) continue;
2822 
2823 		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2824 
2825 		if (PMD_IS_COUNTING(i)) {
2826 			pfm_write_soft_counter(ctx, i, val);
2827 		} else {
2828 			ia64_set_pmd(i, val);
2829 		}
2830 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2831 			  is_long_reset ? "long" : "short", i, val));
2832 	}
2833 	ia64_srlz_d();
2834 }
2835 
2836 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2837 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2838 {
2839 	struct task_struct *task;
2840 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2841 	unsigned long value, pmc_pm;
2842 	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2843 	unsigned int cnum, reg_flags, flags, pmc_type;
2844 	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2845 	int is_monitor, is_counting, state;
2846 	int ret = -EINVAL;
2847 	pfm_reg_check_t	wr_func;
2848 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2849 
2850 	state     = ctx->ctx_state;
2851 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2852 	is_system = ctx->ctx_fl_system;
2853 	task      = ctx->ctx_task;
2854 	impl_pmds = pmu_conf->impl_pmds[0];
2855 
2856 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2857 
2858 	if (is_loaded) {
2859 		/*
2860 		 * In system wide and when the context is loaded, access can only happen
2861 		 * when the caller is running on the CPU being monitored by the session.
2862 		 * It does not have to be the owner (ctx_task) of the context per se.
2863 		 */
2864 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2865 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2866 			return -EBUSY;
2867 		}
2868 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2869 	}
2870 	expert_mode = pfm_sysctl.expert_mode;
2871 
2872 	for (i = 0; i < count; i++, req++) {
2873 
2874 		cnum       = req->reg_num;
2875 		reg_flags  = req->reg_flags;
2876 		value      = req->reg_value;
2877 		smpl_pmds  = req->reg_smpl_pmds[0];
2878 		reset_pmds = req->reg_reset_pmds[0];
2879 		flags      = 0;
2880 
2881 
2882 		if (cnum >= PMU_MAX_PMCS) {
2883 			DPRINT(("pmc%u is invalid\n", cnum));
2884 			goto error;
2885 		}
2886 
2887 		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2888 		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2889 		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2890 		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2891 
2892 		/*
2893 		 * we reject all non implemented PMC as well
2894 		 * as attempts to modify PMC[0-3] which are used
2895 		 * as status registers by the PMU
2896 		 */
2897 		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2898 			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2899 			goto error;
2900 		}
2901 		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2902 		/*
2903 		 * If the PMC is a monitor, then if the value is not the default:
2904 		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2905 		 * 	- per-task           : PMCx.pm=0 (user monitor)
2906 		 */
2907 		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2908 			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2909 				cnum,
2910 				pmc_pm,
2911 				is_system));
2912 			goto error;
2913 		}
2914 
2915 		if (is_counting) {
2916 			/*
2917 		 	 * enforce generation of overflow interrupt. Necessary on all
2918 		 	 * CPUs.
2919 		 	 */
2920 			value |= 1 << PMU_PMC_OI;
2921 
2922 			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2923 				flags |= PFM_REGFL_OVFL_NOTIFY;
2924 			}
2925 
2926 			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2927 
2928 			/* verify validity of smpl_pmds */
2929 			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2930 				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2931 				goto error;
2932 			}
2933 
2934 			/* verify validity of reset_pmds */
2935 			if ((reset_pmds & impl_pmds) != reset_pmds) {
2936 				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2937 				goto error;
2938 			}
2939 		} else {
2940 			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2941 				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2942 				goto error;
2943 			}
2944 			/* eventid on non-counting monitors are ignored */
2945 		}
2946 
2947 		/*
2948 		 * execute write checker, if any
2949 		 */
2950 		if (likely(expert_mode == 0 && wr_func)) {
2951 			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2952 			if (ret) goto error;
2953 			ret = -EINVAL;
2954 		}
2955 
2956 		/*
2957 		 * no error on this register
2958 		 */
2959 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2960 
2961 		/*
2962 		 * Now we commit the changes to the software state
2963 		 */
2964 
2965 		/*
2966 		 * update overflow information
2967 		 */
2968 		if (is_counting) {
2969 			/*
2970 		 	 * full flag update each time a register is programmed
2971 		 	 */
2972 			ctx->ctx_pmds[cnum].flags = flags;
2973 
2974 			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2975 			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2976 			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2977 
2978 			/*
2979 			 * Mark all PMDS to be accessed as used.
2980 			 *
2981 			 * We do not keep track of PMC because we have to
2982 			 * systematically restore ALL of them.
2983 			 *
2984 			 * We do not update the used_monitors mask, because
2985 			 * if we have not programmed them, then will be in
2986 			 * a quiescent state, therefore we will not need to
2987 			 * mask/restore then when context is MASKED.
2988 			 */
2989 			CTX_USED_PMD(ctx, reset_pmds);
2990 			CTX_USED_PMD(ctx, smpl_pmds);
2991 			/*
2992 		 	 * make sure we do not try to reset on
2993 		 	 * restart because we have established new values
2994 		 	 */
2995 			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2996 		}
2997 		/*
2998 		 * Needed in case the user does not initialize the equivalent
2999 		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3000 		 * possible leak here.
3001 		 */
3002 		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3003 
3004 		/*
3005 		 * keep track of the monitor PMC that we are using.
3006 		 * we save the value of the pmc in ctx_pmcs[] and if
3007 		 * the monitoring is not stopped for the context we also
3008 		 * place it in the saved state area so that it will be
3009 		 * picked up later by the context switch code.
3010 		 *
3011 		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3012 		 *
3013 		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3014 		 * monitoring needs to be stopped.
3015 		 */
3016 		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3017 
3018 		/*
3019 		 * update context state
3020 		 */
3021 		ctx->ctx_pmcs[cnum] = value;
3022 
3023 		if (is_loaded) {
3024 			/*
3025 			 * write thread state
3026 			 */
3027 			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3028 
3029 			/*
3030 			 * write hardware register if we can
3031 			 */
3032 			if (can_access_pmu) {
3033 				ia64_set_pmc(cnum, value);
3034 			}
3035 #ifdef CONFIG_SMP
3036 			else {
3037 				/*
3038 				 * per-task SMP only here
3039 				 *
3040 			 	 * we are guaranteed that the task is not running on the other CPU,
3041 			 	 * we indicate that this PMD will need to be reloaded if the task
3042 			 	 * is rescheduled on the CPU it ran last on.
3043 			 	 */
3044 				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3045 			}
3046 #endif
3047 		}
3048 
3049 		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3050 			  cnum,
3051 			  value,
3052 			  is_loaded,
3053 			  can_access_pmu,
3054 			  flags,
3055 			  ctx->ctx_all_pmcs[0],
3056 			  ctx->ctx_used_pmds[0],
3057 			  ctx->ctx_pmds[cnum].eventid,
3058 			  smpl_pmds,
3059 			  reset_pmds,
3060 			  ctx->ctx_reload_pmcs[0],
3061 			  ctx->ctx_used_monitors[0],
3062 			  ctx->ctx_ovfl_regs[0]));
3063 	}
3064 
3065 	/*
3066 	 * make sure the changes are visible
3067 	 */
3068 	if (can_access_pmu) ia64_srlz_d();
3069 
3070 	return 0;
3071 error:
3072 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3073 	return ret;
3074 }
3075 
3076 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3077 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3078 {
3079 	struct task_struct *task;
3080 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3081 	unsigned long value, hw_value, ovfl_mask;
3082 	unsigned int cnum;
3083 	int i, can_access_pmu = 0, state;
3084 	int is_counting, is_loaded, is_system, expert_mode;
3085 	int ret = -EINVAL;
3086 	pfm_reg_check_t wr_func;
3087 
3088 
3089 	state     = ctx->ctx_state;
3090 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3091 	is_system = ctx->ctx_fl_system;
3092 	ovfl_mask = pmu_conf->ovfl_val;
3093 	task      = ctx->ctx_task;
3094 
3095 	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3096 
3097 	/*
3098 	 * on both UP and SMP, we can only write to the PMC when the task is
3099 	 * the owner of the local PMU.
3100 	 */
3101 	if (likely(is_loaded)) {
3102 		/*
3103 		 * In system wide and when the context is loaded, access can only happen
3104 		 * when the caller is running on the CPU being monitored by the session.
3105 		 * It does not have to be the owner (ctx_task) of the context per se.
3106 		 */
3107 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3108 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3109 			return -EBUSY;
3110 		}
3111 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3112 	}
3113 	expert_mode = pfm_sysctl.expert_mode;
3114 
3115 	for (i = 0; i < count; i++, req++) {
3116 
3117 		cnum  = req->reg_num;
3118 		value = req->reg_value;
3119 
3120 		if (!PMD_IS_IMPL(cnum)) {
3121 			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3122 			goto abort_mission;
3123 		}
3124 		is_counting = PMD_IS_COUNTING(cnum);
3125 		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3126 
3127 		/*
3128 		 * execute write checker, if any
3129 		 */
3130 		if (unlikely(expert_mode == 0 && wr_func)) {
3131 			unsigned long v = value;
3132 
3133 			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3134 			if (ret) goto abort_mission;
3135 
3136 			value = v;
3137 			ret   = -EINVAL;
3138 		}
3139 
3140 		/*
3141 		 * no error on this register
3142 		 */
3143 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3144 
3145 		/*
3146 		 * now commit changes to software state
3147 		 */
3148 		hw_value = value;
3149 
3150 		/*
3151 		 * update virtualized (64bits) counter
3152 		 */
3153 		if (is_counting) {
3154 			/*
3155 			 * write context state
3156 			 */
3157 			ctx->ctx_pmds[cnum].lval = value;
3158 
3159 			/*
3160 			 * when context is load we use the split value
3161 			 */
3162 			if (is_loaded) {
3163 				hw_value = value &  ovfl_mask;
3164 				value    = value & ~ovfl_mask;
3165 			}
3166 		}
3167 		/*
3168 		 * update reset values (not just for counters)
3169 		 */
3170 		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3171 		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3172 
3173 		/*
3174 		 * update randomization parameters (not just for counters)
3175 		 */
3176 		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3177 		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3178 
3179 		/*
3180 		 * update context value
3181 		 */
3182 		ctx->ctx_pmds[cnum].val  = value;
3183 
3184 		/*
3185 		 * Keep track of what we use
3186 		 *
3187 		 * We do not keep track of PMC because we have to
3188 		 * systematically restore ALL of them.
3189 		 */
3190 		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3191 
3192 		/*
3193 		 * mark this PMD register used as well
3194 		 */
3195 		CTX_USED_PMD(ctx, RDEP(cnum));
3196 
3197 		/*
3198 		 * make sure we do not try to reset on
3199 		 * restart because we have established new values
3200 		 */
3201 		if (is_counting && state == PFM_CTX_MASKED) {
3202 			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3203 		}
3204 
3205 		if (is_loaded) {
3206 			/*
3207 		 	 * write thread state
3208 		 	 */
3209 			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3210 
3211 			/*
3212 			 * write hardware register if we can
3213 			 */
3214 			if (can_access_pmu) {
3215 				ia64_set_pmd(cnum, hw_value);
3216 			} else {
3217 #ifdef CONFIG_SMP
3218 				/*
3219 			 	 * we are guaranteed that the task is not running on the other CPU,
3220 			 	 * we indicate that this PMD will need to be reloaded if the task
3221 			 	 * is rescheduled on the CPU it ran last on.
3222 			 	 */
3223 				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3224 #endif
3225 			}
3226 		}
3227 
3228 		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3229 			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3230 			cnum,
3231 			value,
3232 			is_loaded,
3233 			can_access_pmu,
3234 			hw_value,
3235 			ctx->ctx_pmds[cnum].val,
3236 			ctx->ctx_pmds[cnum].short_reset,
3237 			ctx->ctx_pmds[cnum].long_reset,
3238 			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3239 			ctx->ctx_pmds[cnum].seed,
3240 			ctx->ctx_pmds[cnum].mask,
3241 			ctx->ctx_used_pmds[0],
3242 			ctx->ctx_pmds[cnum].reset_pmds[0],
3243 			ctx->ctx_reload_pmds[0],
3244 			ctx->ctx_all_pmds[0],
3245 			ctx->ctx_ovfl_regs[0]));
3246 	}
3247 
3248 	/*
3249 	 * make changes visible
3250 	 */
3251 	if (can_access_pmu) ia64_srlz_d();
3252 
3253 	return 0;
3254 
3255 abort_mission:
3256 	/*
3257 	 * for now, we have only one possibility for error
3258 	 */
3259 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3260 	return ret;
3261 }
3262 
3263 /*
3264  * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3265  * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3266  * interrupt is delivered during the call, it will be kept pending until we leave, making
3267  * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3268  * guaranteed to return consistent data to the user, it may simply be old. It is not
3269  * trivial to treat the overflow while inside the call because you may end up in
3270  * some module sampling buffer code causing deadlocks.
3271  */
3272 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3273 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3274 {
3275 	struct task_struct *task;
3276 	unsigned long val = 0UL, lval, ovfl_mask, sval;
3277 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3278 	unsigned int cnum, reg_flags = 0;
3279 	int i, can_access_pmu = 0, state;
3280 	int is_loaded, is_system, is_counting, expert_mode;
3281 	int ret = -EINVAL;
3282 	pfm_reg_check_t rd_func;
3283 
3284 	/*
3285 	 * access is possible when loaded only for
3286 	 * self-monitoring tasks or in UP mode
3287 	 */
3288 
3289 	state     = ctx->ctx_state;
3290 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3291 	is_system = ctx->ctx_fl_system;
3292 	ovfl_mask = pmu_conf->ovfl_val;
3293 	task      = ctx->ctx_task;
3294 
3295 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3296 
3297 	if (likely(is_loaded)) {
3298 		/*
3299 		 * In system wide and when the context is loaded, access can only happen
3300 		 * when the caller is running on the CPU being monitored by the session.
3301 		 * It does not have to be the owner (ctx_task) of the context per se.
3302 		 */
3303 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3304 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3305 			return -EBUSY;
3306 		}
3307 		/*
3308 		 * this can be true when not self-monitoring only in UP
3309 		 */
3310 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3311 
3312 		if (can_access_pmu) ia64_srlz_d();
3313 	}
3314 	expert_mode = pfm_sysctl.expert_mode;
3315 
3316 	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3317 		is_loaded,
3318 		can_access_pmu,
3319 		state));
3320 
3321 	/*
3322 	 * on both UP and SMP, we can only read the PMD from the hardware register when
3323 	 * the task is the owner of the local PMU.
3324 	 */
3325 
3326 	for (i = 0; i < count; i++, req++) {
3327 
3328 		cnum        = req->reg_num;
3329 		reg_flags   = req->reg_flags;
3330 
3331 		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3332 		/*
3333 		 * we can only read the register that we use. That includes
3334 		 * the one we explicitly initialize AND the one we want included
3335 		 * in the sampling buffer (smpl_regs).
3336 		 *
3337 		 * Having this restriction allows optimization in the ctxsw routine
3338 		 * without compromising security (leaks)
3339 		 */
3340 		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3341 
3342 		sval        = ctx->ctx_pmds[cnum].val;
3343 		lval        = ctx->ctx_pmds[cnum].lval;
3344 		is_counting = PMD_IS_COUNTING(cnum);
3345 
3346 		/*
3347 		 * If the task is not the current one, then we check if the
3348 		 * PMU state is still in the local live register due to lazy ctxsw.
3349 		 * If true, then we read directly from the registers.
3350 		 */
3351 		if (can_access_pmu){
3352 			val = ia64_get_pmd(cnum);
3353 		} else {
3354 			/*
3355 			 * context has been saved
3356 			 * if context is zombie, then task does not exist anymore.
3357 			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3358 			 */
3359 			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3360 		}
3361 		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3362 
3363 		if (is_counting) {
3364 			/*
3365 			 * XXX: need to check for overflow when loaded
3366 			 */
3367 			val &= ovfl_mask;
3368 			val += sval;
3369 		}
3370 
3371 		/*
3372 		 * execute read checker, if any
3373 		 */
3374 		if (unlikely(expert_mode == 0 && rd_func)) {
3375 			unsigned long v = val;
3376 			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3377 			if (ret) goto error;
3378 			val = v;
3379 			ret = -EINVAL;
3380 		}
3381 
3382 		PFM_REG_RETFLAG_SET(reg_flags, 0);
3383 
3384 		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3385 
3386 		/*
3387 		 * update register return value, abort all if problem during copy.
3388 		 * we only modify the reg_flags field. no check mode is fine because
3389 		 * access has been verified upfront in sys_perfmonctl().
3390 		 */
3391 		req->reg_value            = val;
3392 		req->reg_flags            = reg_flags;
3393 		req->reg_last_reset_val   = lval;
3394 	}
3395 
3396 	return 0;
3397 
3398 error:
3399 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3400 	return ret;
3401 }
3402 
3403 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3404 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3405 {
3406 	pfm_context_t *ctx;
3407 
3408 	if (req == NULL) return -EINVAL;
3409 
3410  	ctx = GET_PMU_CTX();
3411 
3412 	if (ctx == NULL) return -EINVAL;
3413 
3414 	/*
3415 	 * for now limit to current task, which is enough when calling
3416 	 * from overflow handler
3417 	 */
3418 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3419 
3420 	return pfm_write_pmcs(ctx, req, nreq, regs);
3421 }
3422 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3423 
3424 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3425 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3426 {
3427 	pfm_context_t *ctx;
3428 
3429 	if (req == NULL) return -EINVAL;
3430 
3431  	ctx = GET_PMU_CTX();
3432 
3433 	if (ctx == NULL) return -EINVAL;
3434 
3435 	/*
3436 	 * for now limit to current task, which is enough when calling
3437 	 * from overflow handler
3438 	 */
3439 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3440 
3441 	return pfm_read_pmds(ctx, req, nreq, regs);
3442 }
3443 EXPORT_SYMBOL(pfm_mod_read_pmds);
3444 
3445 /*
3446  * Only call this function when a process it trying to
3447  * write the debug registers (reading is always allowed)
3448  */
3449 int
pfm_use_debug_registers(struct task_struct * task)3450 pfm_use_debug_registers(struct task_struct *task)
3451 {
3452 	pfm_context_t *ctx = task->thread.pfm_context;
3453 	unsigned long flags;
3454 	int ret = 0;
3455 
3456 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3457 
3458 	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3459 
3460 	/*
3461 	 * do it only once
3462 	 */
3463 	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3464 
3465 	/*
3466 	 * Even on SMP, we do not need to use an atomic here because
3467 	 * the only way in is via ptrace() and this is possible only when the
3468 	 * process is stopped. Even in the case where the ctxsw out is not totally
3469 	 * completed by the time we come here, there is no way the 'stopped' process
3470 	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3471 	 * So this is always safe.
3472 	 */
3473 	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3474 
3475 	LOCK_PFS(flags);
3476 
3477 	/*
3478 	 * We cannot allow setting breakpoints when system wide monitoring
3479 	 * sessions are using the debug registers.
3480 	 */
3481 	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3482 		ret = -1;
3483 	else
3484 		pfm_sessions.pfs_ptrace_use_dbregs++;
3485 
3486 	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3487 		  pfm_sessions.pfs_ptrace_use_dbregs,
3488 		  pfm_sessions.pfs_sys_use_dbregs,
3489 		  task_pid_nr(task), ret));
3490 
3491 	UNLOCK_PFS(flags);
3492 
3493 	return ret;
3494 }
3495 
3496 /*
3497  * This function is called for every task that exits with the
3498  * IA64_THREAD_DBG_VALID set. This indicates a task which was
3499  * able to use the debug registers for debugging purposes via
3500  * ptrace(). Therefore we know it was not using them for
3501  * performance monitoring, so we only decrement the number
3502  * of "ptraced" debug register users to keep the count up to date
3503  */
3504 int
pfm_release_debug_registers(struct task_struct * task)3505 pfm_release_debug_registers(struct task_struct *task)
3506 {
3507 	unsigned long flags;
3508 	int ret;
3509 
3510 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3511 
3512 	LOCK_PFS(flags);
3513 	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3514 		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3515 		ret = -1;
3516 	}  else {
3517 		pfm_sessions.pfs_ptrace_use_dbregs--;
3518 		ret = 0;
3519 	}
3520 	UNLOCK_PFS(flags);
3521 
3522 	return ret;
3523 }
3524 
3525 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3526 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3527 {
3528 	struct task_struct *task;
3529 	pfm_buffer_fmt_t *fmt;
3530 	pfm_ovfl_ctrl_t rst_ctrl;
3531 	int state, is_system;
3532 	int ret = 0;
3533 
3534 	state     = ctx->ctx_state;
3535 	fmt       = ctx->ctx_buf_fmt;
3536 	is_system = ctx->ctx_fl_system;
3537 	task      = PFM_CTX_TASK(ctx);
3538 
3539 	switch(state) {
3540 		case PFM_CTX_MASKED:
3541 			break;
3542 		case PFM_CTX_LOADED:
3543 			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3544 			/* fall through */
3545 		case PFM_CTX_UNLOADED:
3546 		case PFM_CTX_ZOMBIE:
3547 			DPRINT(("invalid state=%d\n", state));
3548 			return -EBUSY;
3549 		default:
3550 			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3551 			return -EINVAL;
3552 	}
3553 
3554 	/*
3555  	 * In system wide and when the context is loaded, access can only happen
3556  	 * when the caller is running on the CPU being monitored by the session.
3557  	 * It does not have to be the owner (ctx_task) of the context per se.
3558  	 */
3559 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3560 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3561 		return -EBUSY;
3562 	}
3563 
3564 	/* sanity check */
3565 	if (unlikely(task == NULL)) {
3566 		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3567 		return -EINVAL;
3568 	}
3569 
3570 	if (task == current || is_system) {
3571 
3572 		fmt = ctx->ctx_buf_fmt;
3573 
3574 		DPRINT(("restarting self %d ovfl=0x%lx\n",
3575 			task_pid_nr(task),
3576 			ctx->ctx_ovfl_regs[0]));
3577 
3578 		if (CTX_HAS_SMPL(ctx)) {
3579 
3580 			prefetch(ctx->ctx_smpl_hdr);
3581 
3582 			rst_ctrl.bits.mask_monitoring = 0;
3583 			rst_ctrl.bits.reset_ovfl_pmds = 0;
3584 
3585 			if (state == PFM_CTX_LOADED)
3586 				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3587 			else
3588 				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3589 		} else {
3590 			rst_ctrl.bits.mask_monitoring = 0;
3591 			rst_ctrl.bits.reset_ovfl_pmds = 1;
3592 		}
3593 
3594 		if (ret == 0) {
3595 			if (rst_ctrl.bits.reset_ovfl_pmds)
3596 				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3597 
3598 			if (rst_ctrl.bits.mask_monitoring == 0) {
3599 				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3600 
3601 				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3602 			} else {
3603 				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3604 
3605 				// cannot use pfm_stop_monitoring(task, regs);
3606 			}
3607 		}
3608 		/*
3609 		 * clear overflowed PMD mask to remove any stale information
3610 		 */
3611 		ctx->ctx_ovfl_regs[0] = 0UL;
3612 
3613 		/*
3614 		 * back to LOADED state
3615 		 */
3616 		ctx->ctx_state = PFM_CTX_LOADED;
3617 
3618 		/*
3619 		 * XXX: not really useful for self monitoring
3620 		 */
3621 		ctx->ctx_fl_can_restart = 0;
3622 
3623 		return 0;
3624 	}
3625 
3626 	/*
3627 	 * restart another task
3628 	 */
3629 
3630 	/*
3631 	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3632 	 * one is seen by the task.
3633 	 */
3634 	if (state == PFM_CTX_MASKED) {
3635 		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3636 		/*
3637 		 * will prevent subsequent restart before this one is
3638 		 * seen by other task
3639 		 */
3640 		ctx->ctx_fl_can_restart = 0;
3641 	}
3642 
3643 	/*
3644 	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3645 	 * the task is blocked or on its way to block. That's the normal
3646 	 * restart path. If the monitoring is not masked, then the task
3647 	 * can be actively monitoring and we cannot directly intervene.
3648 	 * Therefore we use the trap mechanism to catch the task and
3649 	 * force it to reset the buffer/reset PMDs.
3650 	 *
3651 	 * if non-blocking, then we ensure that the task will go into
3652 	 * pfm_handle_work() before returning to user mode.
3653 	 *
3654 	 * We cannot explicitly reset another task, it MUST always
3655 	 * be done by the task itself. This works for system wide because
3656 	 * the tool that is controlling the session is logically doing
3657 	 * "self-monitoring".
3658 	 */
3659 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3660 		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3661 		complete(&ctx->ctx_restart_done);
3662 	} else {
3663 		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3664 
3665 		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3666 
3667 		PFM_SET_WORK_PENDING(task, 1);
3668 
3669 		set_notify_resume(task);
3670 
3671 		/*
3672 		 * XXX: send reschedule if task runs on another CPU
3673 		 */
3674 	}
3675 	return 0;
3676 }
3677 
3678 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3679 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3680 {
3681 	unsigned int m = *(unsigned int *)arg;
3682 
3683 	pfm_sysctl.debug = m == 0 ? 0 : 1;
3684 
3685 	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3686 
3687 	if (m == 0) {
3688 		memset(pfm_stats, 0, sizeof(pfm_stats));
3689 		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3690 	}
3691 	return 0;
3692 }
3693 
3694 /*
3695  * arg can be NULL and count can be zero for this function
3696  */
3697 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3698 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3699 {
3700 	struct thread_struct *thread = NULL;
3701 	struct task_struct *task;
3702 	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3703 	unsigned long flags;
3704 	dbreg_t dbreg;
3705 	unsigned int rnum;
3706 	int first_time;
3707 	int ret = 0, state;
3708 	int i, can_access_pmu = 0;
3709 	int is_system, is_loaded;
3710 
3711 	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3712 
3713 	state     = ctx->ctx_state;
3714 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3715 	is_system = ctx->ctx_fl_system;
3716 	task      = ctx->ctx_task;
3717 
3718 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3719 
3720 	/*
3721 	 * on both UP and SMP, we can only write to the PMC when the task is
3722 	 * the owner of the local PMU.
3723 	 */
3724 	if (is_loaded) {
3725 		thread = &task->thread;
3726 		/*
3727 		 * In system wide and when the context is loaded, access can only happen
3728 		 * when the caller is running on the CPU being monitored by the session.
3729 		 * It does not have to be the owner (ctx_task) of the context per se.
3730 		 */
3731 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3732 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3733 			return -EBUSY;
3734 		}
3735 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3736 	}
3737 
3738 	/*
3739 	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3740 	 * ensuring that no real breakpoint can be installed via this call.
3741 	 *
3742 	 * IMPORTANT: regs can be NULL in this function
3743 	 */
3744 
3745 	first_time = ctx->ctx_fl_using_dbreg == 0;
3746 
3747 	/*
3748 	 * don't bother if we are loaded and task is being debugged
3749 	 */
3750 	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3751 		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3752 		return -EBUSY;
3753 	}
3754 
3755 	/*
3756 	 * check for debug registers in system wide mode
3757 	 *
3758 	 * If though a check is done in pfm_context_load(),
3759 	 * we must repeat it here, in case the registers are
3760 	 * written after the context is loaded
3761 	 */
3762 	if (is_loaded) {
3763 		LOCK_PFS(flags);
3764 
3765 		if (first_time && is_system) {
3766 			if (pfm_sessions.pfs_ptrace_use_dbregs)
3767 				ret = -EBUSY;
3768 			else
3769 				pfm_sessions.pfs_sys_use_dbregs++;
3770 		}
3771 		UNLOCK_PFS(flags);
3772 	}
3773 
3774 	if (ret != 0) return ret;
3775 
3776 	/*
3777 	 * mark ourself as user of the debug registers for
3778 	 * perfmon purposes.
3779 	 */
3780 	ctx->ctx_fl_using_dbreg = 1;
3781 
3782 	/*
3783  	 * clear hardware registers to make sure we don't
3784  	 * pick up stale state.
3785 	 *
3786 	 * for a system wide session, we do not use
3787 	 * thread.dbr, thread.ibr because this process
3788 	 * never leaves the current CPU and the state
3789 	 * is shared by all processes running on it
3790  	 */
3791 	if (first_time && can_access_pmu) {
3792 		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3793 		for (i=0; i < pmu_conf->num_ibrs; i++) {
3794 			ia64_set_ibr(i, 0UL);
3795 			ia64_dv_serialize_instruction();
3796 		}
3797 		ia64_srlz_i();
3798 		for (i=0; i < pmu_conf->num_dbrs; i++) {
3799 			ia64_set_dbr(i, 0UL);
3800 			ia64_dv_serialize_data();
3801 		}
3802 		ia64_srlz_d();
3803 	}
3804 
3805 	/*
3806 	 * Now install the values into the registers
3807 	 */
3808 	for (i = 0; i < count; i++, req++) {
3809 
3810 		rnum      = req->dbreg_num;
3811 		dbreg.val = req->dbreg_value;
3812 
3813 		ret = -EINVAL;
3814 
3815 		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3816 			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3817 				  rnum, dbreg.val, mode, i, count));
3818 
3819 			goto abort_mission;
3820 		}
3821 
3822 		/*
3823 		 * make sure we do not install enabled breakpoint
3824 		 */
3825 		if (rnum & 0x1) {
3826 			if (mode == PFM_CODE_RR)
3827 				dbreg.ibr.ibr_x = 0;
3828 			else
3829 				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3830 		}
3831 
3832 		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3833 
3834 		/*
3835 		 * Debug registers, just like PMC, can only be modified
3836 		 * by a kernel call. Moreover, perfmon() access to those
3837 		 * registers are centralized in this routine. The hardware
3838 		 * does not modify the value of these registers, therefore,
3839 		 * if we save them as they are written, we can avoid having
3840 		 * to save them on context switch out. This is made possible
3841 		 * by the fact that when perfmon uses debug registers, ptrace()
3842 		 * won't be able to modify them concurrently.
3843 		 */
3844 		if (mode == PFM_CODE_RR) {
3845 			CTX_USED_IBR(ctx, rnum);
3846 
3847 			if (can_access_pmu) {
3848 				ia64_set_ibr(rnum, dbreg.val);
3849 				ia64_dv_serialize_instruction();
3850 			}
3851 
3852 			ctx->ctx_ibrs[rnum] = dbreg.val;
3853 
3854 			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3855 				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3856 		} else {
3857 			CTX_USED_DBR(ctx, rnum);
3858 
3859 			if (can_access_pmu) {
3860 				ia64_set_dbr(rnum, dbreg.val);
3861 				ia64_dv_serialize_data();
3862 			}
3863 			ctx->ctx_dbrs[rnum] = dbreg.val;
3864 
3865 			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3866 				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3867 		}
3868 	}
3869 
3870 	return 0;
3871 
3872 abort_mission:
3873 	/*
3874 	 * in case it was our first attempt, we undo the global modifications
3875 	 */
3876 	if (first_time) {
3877 		LOCK_PFS(flags);
3878 		if (ctx->ctx_fl_system) {
3879 			pfm_sessions.pfs_sys_use_dbregs--;
3880 		}
3881 		UNLOCK_PFS(flags);
3882 		ctx->ctx_fl_using_dbreg = 0;
3883 	}
3884 	/*
3885 	 * install error return flag
3886 	 */
3887 	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3888 
3889 	return ret;
3890 }
3891 
3892 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3893 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3894 {
3895 	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3896 }
3897 
3898 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3899 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3900 {
3901 	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3902 }
3903 
3904 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3905 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3906 {
3907 	pfm_context_t *ctx;
3908 
3909 	if (req == NULL) return -EINVAL;
3910 
3911  	ctx = GET_PMU_CTX();
3912 
3913 	if (ctx == NULL) return -EINVAL;
3914 
3915 	/*
3916 	 * for now limit to current task, which is enough when calling
3917 	 * from overflow handler
3918 	 */
3919 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3920 
3921 	return pfm_write_ibrs(ctx, req, nreq, regs);
3922 }
3923 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3924 
3925 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3926 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3927 {
3928 	pfm_context_t *ctx;
3929 
3930 	if (req == NULL) return -EINVAL;
3931 
3932  	ctx = GET_PMU_CTX();
3933 
3934 	if (ctx == NULL) return -EINVAL;
3935 
3936 	/*
3937 	 * for now limit to current task, which is enough when calling
3938 	 * from overflow handler
3939 	 */
3940 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3941 
3942 	return pfm_write_dbrs(ctx, req, nreq, regs);
3943 }
3944 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3945 
3946 
3947 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3948 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3949 {
3950 	pfarg_features_t *req = (pfarg_features_t *)arg;
3951 
3952 	req->ft_version = PFM_VERSION;
3953 	return 0;
3954 }
3955 
3956 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3957 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3958 {
3959 	struct pt_regs *tregs;
3960 	struct task_struct *task = PFM_CTX_TASK(ctx);
3961 	int state, is_system;
3962 
3963 	state     = ctx->ctx_state;
3964 	is_system = ctx->ctx_fl_system;
3965 
3966 	/*
3967 	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3968 	 */
3969 	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3970 
3971 	/*
3972  	 * In system wide and when the context is loaded, access can only happen
3973  	 * when the caller is running on the CPU being monitored by the session.
3974  	 * It does not have to be the owner (ctx_task) of the context per se.
3975  	 */
3976 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3977 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3978 		return -EBUSY;
3979 	}
3980 	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3981 		task_pid_nr(PFM_CTX_TASK(ctx)),
3982 		state,
3983 		is_system));
3984 	/*
3985 	 * in system mode, we need to update the PMU directly
3986 	 * and the user level state of the caller, which may not
3987 	 * necessarily be the creator of the context.
3988 	 */
3989 	if (is_system) {
3990 		/*
3991 		 * Update local PMU first
3992 		 *
3993 		 * disable dcr pp
3994 		 */
3995 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3996 		ia64_srlz_i();
3997 
3998 		/*
3999 		 * update local cpuinfo
4000 		 */
4001 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4002 
4003 		/*
4004 		 * stop monitoring, does srlz.i
4005 		 */
4006 		pfm_clear_psr_pp();
4007 
4008 		/*
4009 		 * stop monitoring in the caller
4010 		 */
4011 		ia64_psr(regs)->pp = 0;
4012 
4013 		return 0;
4014 	}
4015 	/*
4016 	 * per-task mode
4017 	 */
4018 
4019 	if (task == current) {
4020 		/* stop monitoring  at kernel level */
4021 		pfm_clear_psr_up();
4022 
4023 		/*
4024 	 	 * stop monitoring at the user level
4025 	 	 */
4026 		ia64_psr(regs)->up = 0;
4027 	} else {
4028 		tregs = task_pt_regs(task);
4029 
4030 		/*
4031 	 	 * stop monitoring at the user level
4032 	 	 */
4033 		ia64_psr(tregs)->up = 0;
4034 
4035 		/*
4036 		 * monitoring disabled in kernel at next reschedule
4037 		 */
4038 		ctx->ctx_saved_psr_up = 0;
4039 		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4040 	}
4041 	return 0;
4042 }
4043 
4044 
4045 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4046 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4047 {
4048 	struct pt_regs *tregs;
4049 	int state, is_system;
4050 
4051 	state     = ctx->ctx_state;
4052 	is_system = ctx->ctx_fl_system;
4053 
4054 	if (state != PFM_CTX_LOADED) return -EINVAL;
4055 
4056 	/*
4057  	 * In system wide and when the context is loaded, access can only happen
4058  	 * when the caller is running on the CPU being monitored by the session.
4059  	 * It does not have to be the owner (ctx_task) of the context per se.
4060  	 */
4061 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4062 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4063 		return -EBUSY;
4064 	}
4065 
4066 	/*
4067 	 * in system mode, we need to update the PMU directly
4068 	 * and the user level state of the caller, which may not
4069 	 * necessarily be the creator of the context.
4070 	 */
4071 	if (is_system) {
4072 
4073 		/*
4074 		 * set user level psr.pp for the caller
4075 		 */
4076 		ia64_psr(regs)->pp = 1;
4077 
4078 		/*
4079 		 * now update the local PMU and cpuinfo
4080 		 */
4081 		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4082 
4083 		/*
4084 		 * start monitoring at kernel level
4085 		 */
4086 		pfm_set_psr_pp();
4087 
4088 		/* enable dcr pp */
4089 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4090 		ia64_srlz_i();
4091 
4092 		return 0;
4093 	}
4094 
4095 	/*
4096 	 * per-process mode
4097 	 */
4098 
4099 	if (ctx->ctx_task == current) {
4100 
4101 		/* start monitoring at kernel level */
4102 		pfm_set_psr_up();
4103 
4104 		/*
4105 		 * activate monitoring at user level
4106 		 */
4107 		ia64_psr(regs)->up = 1;
4108 
4109 	} else {
4110 		tregs = task_pt_regs(ctx->ctx_task);
4111 
4112 		/*
4113 		 * start monitoring at the kernel level the next
4114 		 * time the task is scheduled
4115 		 */
4116 		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4117 
4118 		/*
4119 		 * activate monitoring at user level
4120 		 */
4121 		ia64_psr(tregs)->up = 1;
4122 	}
4123 	return 0;
4124 }
4125 
4126 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4127 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4128 {
4129 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4130 	unsigned int cnum;
4131 	int i;
4132 	int ret = -EINVAL;
4133 
4134 	for (i = 0; i < count; i++, req++) {
4135 
4136 		cnum = req->reg_num;
4137 
4138 		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4139 
4140 		req->reg_value = PMC_DFL_VAL(cnum);
4141 
4142 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4143 
4144 		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4145 	}
4146 	return 0;
4147 
4148 abort_mission:
4149 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4150 	return ret;
4151 }
4152 
4153 static int
pfm_check_task_exist(pfm_context_t * ctx)4154 pfm_check_task_exist(pfm_context_t *ctx)
4155 {
4156 	struct task_struct *g, *t;
4157 	int ret = -ESRCH;
4158 
4159 	read_lock(&tasklist_lock);
4160 
4161 	do_each_thread (g, t) {
4162 		if (t->thread.pfm_context == ctx) {
4163 			ret = 0;
4164 			goto out;
4165 		}
4166 	} while_each_thread (g, t);
4167 out:
4168 	read_unlock(&tasklist_lock);
4169 
4170 	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4171 
4172 	return ret;
4173 }
4174 
4175 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4176 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4177 {
4178 	struct task_struct *task;
4179 	struct thread_struct *thread;
4180 	struct pfm_context_t *old;
4181 	unsigned long flags;
4182 #ifndef CONFIG_SMP
4183 	struct task_struct *owner_task = NULL;
4184 #endif
4185 	pfarg_load_t *req = (pfarg_load_t *)arg;
4186 	unsigned long *pmcs_source, *pmds_source;
4187 	int the_cpu;
4188 	int ret = 0;
4189 	int state, is_system, set_dbregs = 0;
4190 
4191 	state     = ctx->ctx_state;
4192 	is_system = ctx->ctx_fl_system;
4193 	/*
4194 	 * can only load from unloaded or terminated state
4195 	 */
4196 	if (state != PFM_CTX_UNLOADED) {
4197 		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4198 			req->load_pid,
4199 			ctx->ctx_state));
4200 		return -EBUSY;
4201 	}
4202 
4203 	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4204 
4205 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4206 		DPRINT(("cannot use blocking mode on self\n"));
4207 		return -EINVAL;
4208 	}
4209 
4210 	ret = pfm_get_task(ctx, req->load_pid, &task);
4211 	if (ret) {
4212 		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4213 		return ret;
4214 	}
4215 
4216 	ret = -EINVAL;
4217 
4218 	/*
4219 	 * system wide is self monitoring only
4220 	 */
4221 	if (is_system && task != current) {
4222 		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4223 			req->load_pid));
4224 		goto error;
4225 	}
4226 
4227 	thread = &task->thread;
4228 
4229 	ret = 0;
4230 	/*
4231 	 * cannot load a context which is using range restrictions,
4232 	 * into a task that is being debugged.
4233 	 */
4234 	if (ctx->ctx_fl_using_dbreg) {
4235 		if (thread->flags & IA64_THREAD_DBG_VALID) {
4236 			ret = -EBUSY;
4237 			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4238 			goto error;
4239 		}
4240 		LOCK_PFS(flags);
4241 
4242 		if (is_system) {
4243 			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4244 				DPRINT(("cannot load [%d] dbregs in use\n",
4245 							task_pid_nr(task)));
4246 				ret = -EBUSY;
4247 			} else {
4248 				pfm_sessions.pfs_sys_use_dbregs++;
4249 				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4250 				set_dbregs = 1;
4251 			}
4252 		}
4253 
4254 		UNLOCK_PFS(flags);
4255 
4256 		if (ret) goto error;
4257 	}
4258 
4259 	/*
4260 	 * SMP system-wide monitoring implies self-monitoring.
4261 	 *
4262 	 * The programming model expects the task to
4263 	 * be pinned on a CPU throughout the session.
4264 	 * Here we take note of the current CPU at the
4265 	 * time the context is loaded. No call from
4266 	 * another CPU will be allowed.
4267 	 *
4268 	 * The pinning via shed_setaffinity()
4269 	 * must be done by the calling task prior
4270 	 * to this call.
4271 	 *
4272 	 * systemwide: keep track of CPU this session is supposed to run on
4273 	 */
4274 	the_cpu = ctx->ctx_cpu = smp_processor_id();
4275 
4276 	ret = -EBUSY;
4277 	/*
4278 	 * now reserve the session
4279 	 */
4280 	ret = pfm_reserve_session(current, is_system, the_cpu);
4281 	if (ret) goto error;
4282 
4283 	/*
4284 	 * task is necessarily stopped at this point.
4285 	 *
4286 	 * If the previous context was zombie, then it got removed in
4287 	 * pfm_save_regs(). Therefore we should not see it here.
4288 	 * If we see a context, then this is an active context
4289 	 *
4290 	 * XXX: needs to be atomic
4291 	 */
4292 	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4293 		thread->pfm_context, ctx));
4294 
4295 	ret = -EBUSY;
4296 	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4297 	if (old != NULL) {
4298 		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4299 		goto error_unres;
4300 	}
4301 
4302 	pfm_reset_msgq(ctx);
4303 
4304 	ctx->ctx_state = PFM_CTX_LOADED;
4305 
4306 	/*
4307 	 * link context to task
4308 	 */
4309 	ctx->ctx_task = task;
4310 
4311 	if (is_system) {
4312 		/*
4313 		 * we load as stopped
4314 		 */
4315 		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4316 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4317 
4318 		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4319 	} else {
4320 		thread->flags |= IA64_THREAD_PM_VALID;
4321 	}
4322 
4323 	/*
4324 	 * propagate into thread-state
4325 	 */
4326 	pfm_copy_pmds(task, ctx);
4327 	pfm_copy_pmcs(task, ctx);
4328 
4329 	pmcs_source = ctx->th_pmcs;
4330 	pmds_source = ctx->th_pmds;
4331 
4332 	/*
4333 	 * always the case for system-wide
4334 	 */
4335 	if (task == current) {
4336 
4337 		if (is_system == 0) {
4338 
4339 			/* allow user level control */
4340 			ia64_psr(regs)->sp = 0;
4341 			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4342 
4343 			SET_LAST_CPU(ctx, smp_processor_id());
4344 			INC_ACTIVATION();
4345 			SET_ACTIVATION(ctx);
4346 #ifndef CONFIG_SMP
4347 			/*
4348 			 * push the other task out, if any
4349 			 */
4350 			owner_task = GET_PMU_OWNER();
4351 			if (owner_task) pfm_lazy_save_regs(owner_task);
4352 #endif
4353 		}
4354 		/*
4355 		 * load all PMD from ctx to PMU (as opposed to thread state)
4356 		 * restore all PMC from ctx to PMU
4357 		 */
4358 		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4359 		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4360 
4361 		ctx->ctx_reload_pmcs[0] = 0UL;
4362 		ctx->ctx_reload_pmds[0] = 0UL;
4363 
4364 		/*
4365 		 * guaranteed safe by earlier check against DBG_VALID
4366 		 */
4367 		if (ctx->ctx_fl_using_dbreg) {
4368 			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4369 			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4370 		}
4371 		/*
4372 		 * set new ownership
4373 		 */
4374 		SET_PMU_OWNER(task, ctx);
4375 
4376 		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4377 	} else {
4378 		/*
4379 		 * when not current, task MUST be stopped, so this is safe
4380 		 */
4381 		regs = task_pt_regs(task);
4382 
4383 		/* force a full reload */
4384 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4385 		SET_LAST_CPU(ctx, -1);
4386 
4387 		/* initial saved psr (stopped) */
4388 		ctx->ctx_saved_psr_up = 0UL;
4389 		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4390 	}
4391 
4392 	ret = 0;
4393 
4394 error_unres:
4395 	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4396 error:
4397 	/*
4398 	 * we must undo the dbregs setting (for system-wide)
4399 	 */
4400 	if (ret && set_dbregs) {
4401 		LOCK_PFS(flags);
4402 		pfm_sessions.pfs_sys_use_dbregs--;
4403 		UNLOCK_PFS(flags);
4404 	}
4405 	/*
4406 	 * release task, there is now a link with the context
4407 	 */
4408 	if (is_system == 0 && task != current) {
4409 		pfm_put_task(task);
4410 
4411 		if (ret == 0) {
4412 			ret = pfm_check_task_exist(ctx);
4413 			if (ret) {
4414 				ctx->ctx_state = PFM_CTX_UNLOADED;
4415 				ctx->ctx_task  = NULL;
4416 			}
4417 		}
4418 	}
4419 	return ret;
4420 }
4421 
4422 /*
4423  * in this function, we do not need to increase the use count
4424  * for the task via get_task_struct(), because we hold the
4425  * context lock. If the task were to disappear while having
4426  * a context attached, it would go through pfm_exit_thread()
4427  * which also grabs the context lock  and would therefore be blocked
4428  * until we are here.
4429  */
4430 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4431 
4432 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4433 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4434 {
4435 	struct task_struct *task = PFM_CTX_TASK(ctx);
4436 	struct pt_regs *tregs;
4437 	int prev_state, is_system;
4438 	int ret;
4439 
4440 	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4441 
4442 	prev_state = ctx->ctx_state;
4443 	is_system  = ctx->ctx_fl_system;
4444 
4445 	/*
4446 	 * unload only when necessary
4447 	 */
4448 	if (prev_state == PFM_CTX_UNLOADED) {
4449 		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4450 		return 0;
4451 	}
4452 
4453 	/*
4454 	 * clear psr and dcr bits
4455 	 */
4456 	ret = pfm_stop(ctx, NULL, 0, regs);
4457 	if (ret) return ret;
4458 
4459 	ctx->ctx_state = PFM_CTX_UNLOADED;
4460 
4461 	/*
4462 	 * in system mode, we need to update the PMU directly
4463 	 * and the user level state of the caller, which may not
4464 	 * necessarily be the creator of the context.
4465 	 */
4466 	if (is_system) {
4467 
4468 		/*
4469 		 * Update cpuinfo
4470 		 *
4471 		 * local PMU is taken care of in pfm_stop()
4472 		 */
4473 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4474 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4475 
4476 		/*
4477 		 * save PMDs in context
4478 		 * release ownership
4479 		 */
4480 		pfm_flush_pmds(current, ctx);
4481 
4482 		/*
4483 		 * at this point we are done with the PMU
4484 		 * so we can unreserve the resource.
4485 		 */
4486 		if (prev_state != PFM_CTX_ZOMBIE)
4487 			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4488 
4489 		/*
4490 		 * disconnect context from task
4491 		 */
4492 		task->thread.pfm_context = NULL;
4493 		/*
4494 		 * disconnect task from context
4495 		 */
4496 		ctx->ctx_task = NULL;
4497 
4498 		/*
4499 		 * There is nothing more to cleanup here.
4500 		 */
4501 		return 0;
4502 	}
4503 
4504 	/*
4505 	 * per-task mode
4506 	 */
4507 	tregs = task == current ? regs : task_pt_regs(task);
4508 
4509 	if (task == current) {
4510 		/*
4511 		 * cancel user level control
4512 		 */
4513 		ia64_psr(regs)->sp = 1;
4514 
4515 		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4516 	}
4517 	/*
4518 	 * save PMDs to context
4519 	 * release ownership
4520 	 */
4521 	pfm_flush_pmds(task, ctx);
4522 
4523 	/*
4524 	 * at this point we are done with the PMU
4525 	 * so we can unreserve the resource.
4526 	 *
4527 	 * when state was ZOMBIE, we have already unreserved.
4528 	 */
4529 	if (prev_state != PFM_CTX_ZOMBIE)
4530 		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4531 
4532 	/*
4533 	 * reset activation counter and psr
4534 	 */
4535 	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4536 	SET_LAST_CPU(ctx, -1);
4537 
4538 	/*
4539 	 * PMU state will not be restored
4540 	 */
4541 	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4542 
4543 	/*
4544 	 * break links between context and task
4545 	 */
4546 	task->thread.pfm_context  = NULL;
4547 	ctx->ctx_task             = NULL;
4548 
4549 	PFM_SET_WORK_PENDING(task, 0);
4550 
4551 	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4552 	ctx->ctx_fl_can_restart  = 0;
4553 	ctx->ctx_fl_going_zombie = 0;
4554 
4555 	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4556 
4557 	return 0;
4558 }
4559 
4560 
4561 /*
4562  * called only from exit_thread(): task == current
4563  * we come here only if current has a context attached (loaded or masked)
4564  */
4565 void
pfm_exit_thread(struct task_struct * task)4566 pfm_exit_thread(struct task_struct *task)
4567 {
4568 	pfm_context_t *ctx;
4569 	unsigned long flags;
4570 	struct pt_regs *regs = task_pt_regs(task);
4571 	int ret, state;
4572 	int free_ok = 0;
4573 
4574 	ctx = PFM_GET_CTX(task);
4575 
4576 	PROTECT_CTX(ctx, flags);
4577 
4578 	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4579 
4580 	state = ctx->ctx_state;
4581 	switch(state) {
4582 		case PFM_CTX_UNLOADED:
4583 			/*
4584 	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4585 			 * be in unloaded state
4586 	 		 */
4587 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4588 			break;
4589 		case PFM_CTX_LOADED:
4590 		case PFM_CTX_MASKED:
4591 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4592 			if (ret) {
4593 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4594 			}
4595 			DPRINT(("ctx unloaded for current state was %d\n", state));
4596 
4597 			pfm_end_notify_user(ctx);
4598 			break;
4599 		case PFM_CTX_ZOMBIE:
4600 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4601 			if (ret) {
4602 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4603 			}
4604 			free_ok = 1;
4605 			break;
4606 		default:
4607 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4608 			break;
4609 	}
4610 	UNPROTECT_CTX(ctx, flags);
4611 
4612 	{ u64 psr = pfm_get_psr();
4613 	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4614 	  BUG_ON(GET_PMU_OWNER());
4615 	  BUG_ON(ia64_psr(regs)->up);
4616 	  BUG_ON(ia64_psr(regs)->pp);
4617 	}
4618 
4619 	/*
4620 	 * All memory free operations (especially for vmalloc'ed memory)
4621 	 * MUST be done with interrupts ENABLED.
4622 	 */
4623 	if (free_ok) pfm_context_free(ctx);
4624 }
4625 
4626 /*
4627  * functions MUST be listed in the increasing order of their index (see permfon.h)
4628  */
4629 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4630 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4631 #define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4632 #define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4633 #define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4634 
4635 static pfm_cmd_desc_t pfm_cmd_tab[]={
4636 /* 0  */PFM_CMD_NONE,
4637 /* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4638 /* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4639 /* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4640 /* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4641 /* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4642 /* 6  */PFM_CMD_NONE,
4643 /* 7  */PFM_CMD_NONE,
4644 /* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4645 /* 9  */PFM_CMD_NONE,
4646 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4647 /* 11 */PFM_CMD_NONE,
4648 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4649 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4650 /* 14 */PFM_CMD_NONE,
4651 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4652 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4653 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4654 /* 18 */PFM_CMD_NONE,
4655 /* 19 */PFM_CMD_NONE,
4656 /* 20 */PFM_CMD_NONE,
4657 /* 21 */PFM_CMD_NONE,
4658 /* 22 */PFM_CMD_NONE,
4659 /* 23 */PFM_CMD_NONE,
4660 /* 24 */PFM_CMD_NONE,
4661 /* 25 */PFM_CMD_NONE,
4662 /* 26 */PFM_CMD_NONE,
4663 /* 27 */PFM_CMD_NONE,
4664 /* 28 */PFM_CMD_NONE,
4665 /* 29 */PFM_CMD_NONE,
4666 /* 30 */PFM_CMD_NONE,
4667 /* 31 */PFM_CMD_NONE,
4668 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4669 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4670 };
4671 #define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4672 
4673 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4674 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4675 {
4676 	struct task_struct *task;
4677 	int state, old_state;
4678 
4679 recheck:
4680 	state = ctx->ctx_state;
4681 	task  = ctx->ctx_task;
4682 
4683 	if (task == NULL) {
4684 		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4685 		return 0;
4686 	}
4687 
4688 	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4689 		ctx->ctx_fd,
4690 		state,
4691 		task_pid_nr(task),
4692 		task->state, PFM_CMD_STOPPED(cmd)));
4693 
4694 	/*
4695 	 * self-monitoring always ok.
4696 	 *
4697 	 * for system-wide the caller can either be the creator of the
4698 	 * context (to one to which the context is attached to) OR
4699 	 * a task running on the same CPU as the session.
4700 	 */
4701 	if (task == current || ctx->ctx_fl_system) return 0;
4702 
4703 	/*
4704 	 * we are monitoring another thread
4705 	 */
4706 	switch(state) {
4707 		case PFM_CTX_UNLOADED:
4708 			/*
4709 			 * if context is UNLOADED we are safe to go
4710 			 */
4711 			return 0;
4712 		case PFM_CTX_ZOMBIE:
4713 			/*
4714 			 * no command can operate on a zombie context
4715 			 */
4716 			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4717 			return -EINVAL;
4718 		case PFM_CTX_MASKED:
4719 			/*
4720 			 * PMU state has been saved to software even though
4721 			 * the thread may still be running.
4722 			 */
4723 			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4724 	}
4725 
4726 	/*
4727 	 * context is LOADED or MASKED. Some commands may need to have
4728 	 * the task stopped.
4729 	 *
4730 	 * We could lift this restriction for UP but it would mean that
4731 	 * the user has no guarantee the task would not run between
4732 	 * two successive calls to perfmonctl(). That's probably OK.
4733 	 * If this user wants to ensure the task does not run, then
4734 	 * the task must be stopped.
4735 	 */
4736 	if (PFM_CMD_STOPPED(cmd)) {
4737 		if (!task_is_stopped_or_traced(task)) {
4738 			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4739 			return -EBUSY;
4740 		}
4741 		/*
4742 		 * task is now stopped, wait for ctxsw out
4743 		 *
4744 		 * This is an interesting point in the code.
4745 		 * We need to unprotect the context because
4746 		 * the pfm_save_regs() routines needs to grab
4747 		 * the same lock. There are danger in doing
4748 		 * this because it leaves a window open for
4749 		 * another task to get access to the context
4750 		 * and possibly change its state. The one thing
4751 		 * that is not possible is for the context to disappear
4752 		 * because we are protected by the VFS layer, i.e.,
4753 		 * get_fd()/put_fd().
4754 		 */
4755 		old_state = state;
4756 
4757 		UNPROTECT_CTX(ctx, flags);
4758 
4759 		wait_task_inactive(task, 0);
4760 
4761 		PROTECT_CTX(ctx, flags);
4762 
4763 		/*
4764 		 * we must recheck to verify if state has changed
4765 		 */
4766 		if (ctx->ctx_state != old_state) {
4767 			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4768 			goto recheck;
4769 		}
4770 	}
4771 	return 0;
4772 }
4773 
4774 /*
4775  * system-call entry point (must return long)
4776  */
4777 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4778 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4779 {
4780 	struct fd f = {NULL, 0};
4781 	pfm_context_t *ctx = NULL;
4782 	unsigned long flags = 0UL;
4783 	void *args_k = NULL;
4784 	long ret; /* will expand int return types */
4785 	size_t base_sz, sz, xtra_sz = 0;
4786 	int narg, completed_args = 0, call_made = 0, cmd_flags;
4787 	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4788 	int (*getsize)(void *arg, size_t *sz);
4789 #define PFM_MAX_ARGSIZE	4096
4790 
4791 	/*
4792 	 * reject any call if perfmon was disabled at initialization
4793 	 */
4794 	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4795 
4796 	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4797 		DPRINT(("invalid cmd=%d\n", cmd));
4798 		return -EINVAL;
4799 	}
4800 
4801 	func      = pfm_cmd_tab[cmd].cmd_func;
4802 	narg      = pfm_cmd_tab[cmd].cmd_narg;
4803 	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4804 	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4805 	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4806 
4807 	if (unlikely(func == NULL)) {
4808 		DPRINT(("invalid cmd=%d\n", cmd));
4809 		return -EINVAL;
4810 	}
4811 
4812 	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4813 		PFM_CMD_NAME(cmd),
4814 		cmd,
4815 		narg,
4816 		base_sz,
4817 		count));
4818 
4819 	/*
4820 	 * check if number of arguments matches what the command expects
4821 	 */
4822 	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4823 		return -EINVAL;
4824 
4825 restart_args:
4826 	sz = xtra_sz + base_sz*count;
4827 	/*
4828 	 * limit abuse to min page size
4829 	 */
4830 	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4831 		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4832 		return -E2BIG;
4833 	}
4834 
4835 	/*
4836 	 * allocate default-sized argument buffer
4837 	 */
4838 	if (likely(count && args_k == NULL)) {
4839 		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4840 		if (args_k == NULL) return -ENOMEM;
4841 	}
4842 
4843 	ret = -EFAULT;
4844 
4845 	/*
4846 	 * copy arguments
4847 	 *
4848 	 * assume sz = 0 for command without parameters
4849 	 */
4850 	if (sz && copy_from_user(args_k, arg, sz)) {
4851 		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4852 		goto error_args;
4853 	}
4854 
4855 	/*
4856 	 * check if command supports extra parameters
4857 	 */
4858 	if (completed_args == 0 && getsize) {
4859 		/*
4860 		 * get extra parameters size (based on main argument)
4861 		 */
4862 		ret = (*getsize)(args_k, &xtra_sz);
4863 		if (ret) goto error_args;
4864 
4865 		completed_args = 1;
4866 
4867 		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4868 
4869 		/* retry if necessary */
4870 		if (likely(xtra_sz)) goto restart_args;
4871 	}
4872 
4873 	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4874 
4875 	ret = -EBADF;
4876 
4877 	f = fdget(fd);
4878 	if (unlikely(f.file == NULL)) {
4879 		DPRINT(("invalid fd %d\n", fd));
4880 		goto error_args;
4881 	}
4882 	if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4883 		DPRINT(("fd %d not related to perfmon\n", fd));
4884 		goto error_args;
4885 	}
4886 
4887 	ctx = f.file->private_data;
4888 	if (unlikely(ctx == NULL)) {
4889 		DPRINT(("no context for fd %d\n", fd));
4890 		goto error_args;
4891 	}
4892 	prefetch(&ctx->ctx_state);
4893 
4894 	PROTECT_CTX(ctx, flags);
4895 
4896 	/*
4897 	 * check task is stopped
4898 	 */
4899 	ret = pfm_check_task_state(ctx, cmd, flags);
4900 	if (unlikely(ret)) goto abort_locked;
4901 
4902 skip_fd:
4903 	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4904 
4905 	call_made = 1;
4906 
4907 abort_locked:
4908 	if (likely(ctx)) {
4909 		DPRINT(("context unlocked\n"));
4910 		UNPROTECT_CTX(ctx, flags);
4911 	}
4912 
4913 	/* copy argument back to user, if needed */
4914 	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4915 
4916 error_args:
4917 	if (f.file)
4918 		fdput(f);
4919 
4920 	kfree(args_k);
4921 
4922 	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4923 
4924 	return ret;
4925 }
4926 
4927 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4928 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4929 {
4930 	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4931 	pfm_ovfl_ctrl_t rst_ctrl;
4932 	int state;
4933 	int ret = 0;
4934 
4935 	state = ctx->ctx_state;
4936 	/*
4937 	 * Unlock sampling buffer and reset index atomically
4938 	 * XXX: not really needed when blocking
4939 	 */
4940 	if (CTX_HAS_SMPL(ctx)) {
4941 
4942 		rst_ctrl.bits.mask_monitoring = 0;
4943 		rst_ctrl.bits.reset_ovfl_pmds = 0;
4944 
4945 		if (state == PFM_CTX_LOADED)
4946 			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4947 		else
4948 			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4949 	} else {
4950 		rst_ctrl.bits.mask_monitoring = 0;
4951 		rst_ctrl.bits.reset_ovfl_pmds = 1;
4952 	}
4953 
4954 	if (ret == 0) {
4955 		if (rst_ctrl.bits.reset_ovfl_pmds) {
4956 			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4957 		}
4958 		if (rst_ctrl.bits.mask_monitoring == 0) {
4959 			DPRINT(("resuming monitoring\n"));
4960 			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4961 		} else {
4962 			DPRINT(("stopping monitoring\n"));
4963 			//pfm_stop_monitoring(current, regs);
4964 		}
4965 		ctx->ctx_state = PFM_CTX_LOADED;
4966 	}
4967 }
4968 
4969 /*
4970  * context MUST BE LOCKED when calling
4971  * can only be called for current
4972  */
4973 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4974 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4975 {
4976 	int ret;
4977 
4978 	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4979 
4980 	ret = pfm_context_unload(ctx, NULL, 0, regs);
4981 	if (ret) {
4982 		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4983 	}
4984 
4985 	/*
4986 	 * and wakeup controlling task, indicating we are now disconnected
4987 	 */
4988 	wake_up_interruptible(&ctx->ctx_zombieq);
4989 
4990 	/*
4991 	 * given that context is still locked, the controlling
4992 	 * task will only get access when we return from
4993 	 * pfm_handle_work().
4994 	 */
4995 }
4996 
4997 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4998 
4999  /*
5000   * pfm_handle_work() can be called with interrupts enabled
5001   * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5002   * call may sleep, therefore we must re-enable interrupts
5003   * to avoid deadlocks. It is safe to do so because this function
5004   * is called ONLY when returning to user level (pUStk=1), in which case
5005   * there is no risk of kernel stack overflow due to deep
5006   * interrupt nesting.
5007   */
5008 void
pfm_handle_work(void)5009 pfm_handle_work(void)
5010 {
5011 	pfm_context_t *ctx;
5012 	struct pt_regs *regs;
5013 	unsigned long flags, dummy_flags;
5014 	unsigned long ovfl_regs;
5015 	unsigned int reason;
5016 	int ret;
5017 
5018 	ctx = PFM_GET_CTX(current);
5019 	if (ctx == NULL) {
5020 		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5021 			task_pid_nr(current));
5022 		return;
5023 	}
5024 
5025 	PROTECT_CTX(ctx, flags);
5026 
5027 	PFM_SET_WORK_PENDING(current, 0);
5028 
5029 	regs = task_pt_regs(current);
5030 
5031 	/*
5032 	 * extract reason for being here and clear
5033 	 */
5034 	reason = ctx->ctx_fl_trap_reason;
5035 	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5036 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5037 
5038 	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5039 
5040 	/*
5041 	 * must be done before we check for simple-reset mode
5042 	 */
5043 	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5044 		goto do_zombie;
5045 
5046 	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5047 	if (reason == PFM_TRAP_REASON_RESET)
5048 		goto skip_blocking;
5049 
5050 	/*
5051 	 * restore interrupt mask to what it was on entry.
5052 	 * Could be enabled/diasbled.
5053 	 */
5054 	UNPROTECT_CTX(ctx, flags);
5055 
5056 	/*
5057 	 * force interrupt enable because of down_interruptible()
5058 	 */
5059 	local_irq_enable();
5060 
5061 	DPRINT(("before block sleeping\n"));
5062 
5063 	/*
5064 	 * may go through without blocking on SMP systems
5065 	 * if restart has been received already by the time we call down()
5066 	 */
5067 	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5068 
5069 	DPRINT(("after block sleeping ret=%d\n", ret));
5070 
5071 	/*
5072 	 * lock context and mask interrupts again
5073 	 * We save flags into a dummy because we may have
5074 	 * altered interrupts mask compared to entry in this
5075 	 * function.
5076 	 */
5077 	PROTECT_CTX(ctx, dummy_flags);
5078 
5079 	/*
5080 	 * we need to read the ovfl_regs only after wake-up
5081 	 * because we may have had pfm_write_pmds() in between
5082 	 * and that can changed PMD values and therefore
5083 	 * ovfl_regs is reset for these new PMD values.
5084 	 */
5085 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5086 
5087 	if (ctx->ctx_fl_going_zombie) {
5088 do_zombie:
5089 		DPRINT(("context is zombie, bailing out\n"));
5090 		pfm_context_force_terminate(ctx, regs);
5091 		goto nothing_to_do;
5092 	}
5093 	/*
5094 	 * in case of interruption of down() we don't restart anything
5095 	 */
5096 	if (ret < 0)
5097 		goto nothing_to_do;
5098 
5099 skip_blocking:
5100 	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5101 	ctx->ctx_ovfl_regs[0] = 0UL;
5102 
5103 nothing_to_do:
5104 	/*
5105 	 * restore flags as they were upon entry
5106 	 */
5107 	UNPROTECT_CTX(ctx, flags);
5108 }
5109 
5110 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5111 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5112 {
5113 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5114 		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5115 		return 0;
5116 	}
5117 
5118 	DPRINT(("waking up somebody\n"));
5119 
5120 	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5121 
5122 	/*
5123 	 * safe, we are not in intr handler, nor in ctxsw when
5124 	 * we come here
5125 	 */
5126 	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5127 
5128 	return 0;
5129 }
5130 
5131 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5132 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5133 {
5134 	pfm_msg_t *msg = NULL;
5135 
5136 	if (ctx->ctx_fl_no_msg == 0) {
5137 		msg = pfm_get_new_msg(ctx);
5138 		if (msg == NULL) {
5139 			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5140 			return -1;
5141 		}
5142 
5143 		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5144 		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5145 		msg->pfm_ovfl_msg.msg_active_set   = 0;
5146 		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5147 		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5148 		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5149 		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5150 		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5151 	}
5152 
5153 	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5154 		msg,
5155 		ctx->ctx_fl_no_msg,
5156 		ctx->ctx_fd,
5157 		ovfl_pmds));
5158 
5159 	return pfm_notify_user(ctx, msg);
5160 }
5161 
5162 static int
pfm_end_notify_user(pfm_context_t * ctx)5163 pfm_end_notify_user(pfm_context_t *ctx)
5164 {
5165 	pfm_msg_t *msg;
5166 
5167 	msg = pfm_get_new_msg(ctx);
5168 	if (msg == NULL) {
5169 		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5170 		return -1;
5171 	}
5172 	/* no leak */
5173 	memset(msg, 0, sizeof(*msg));
5174 
5175 	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5176 	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5177 	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5178 
5179 	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5180 		msg,
5181 		ctx->ctx_fl_no_msg,
5182 		ctx->ctx_fd));
5183 
5184 	return pfm_notify_user(ctx, msg);
5185 }
5186 
5187 /*
5188  * main overflow processing routine.
5189  * it can be called from the interrupt path or explicitly during the context switch code
5190  */
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,unsigned long pmc0,struct pt_regs * regs)5191 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5192 				unsigned long pmc0, struct pt_regs *regs)
5193 {
5194 	pfm_ovfl_arg_t *ovfl_arg;
5195 	unsigned long mask;
5196 	unsigned long old_val, ovfl_val, new_val;
5197 	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5198 	unsigned long tstamp;
5199 	pfm_ovfl_ctrl_t	ovfl_ctrl;
5200 	unsigned int i, has_smpl;
5201 	int must_notify = 0;
5202 
5203 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5204 
5205 	/*
5206 	 * sanity test. Should never happen
5207 	 */
5208 	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5209 
5210 	tstamp   = ia64_get_itc();
5211 	mask     = pmc0 >> PMU_FIRST_COUNTER;
5212 	ovfl_val = pmu_conf->ovfl_val;
5213 	has_smpl = CTX_HAS_SMPL(ctx);
5214 
5215 	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5216 		     "used_pmds=0x%lx\n",
5217 			pmc0,
5218 			task ? task_pid_nr(task): -1,
5219 			(regs ? regs->cr_iip : 0),
5220 			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5221 			ctx->ctx_used_pmds[0]));
5222 
5223 
5224 	/*
5225 	 * first we update the virtual counters
5226 	 * assume there was a prior ia64_srlz_d() issued
5227 	 */
5228 	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5229 
5230 		/* skip pmd which did not overflow */
5231 		if ((mask & 0x1) == 0) continue;
5232 
5233 		/*
5234 		 * Note that the pmd is not necessarily 0 at this point as qualified events
5235 		 * may have happened before the PMU was frozen. The residual count is not
5236 		 * taken into consideration here but will be with any read of the pmd via
5237 		 * pfm_read_pmds().
5238 		 */
5239 		old_val              = new_val = ctx->ctx_pmds[i].val;
5240 		new_val             += 1 + ovfl_val;
5241 		ctx->ctx_pmds[i].val = new_val;
5242 
5243 		/*
5244 		 * check for overflow condition
5245 		 */
5246 		if (likely(old_val > new_val)) {
5247 			ovfl_pmds |= 1UL << i;
5248 			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5249 		}
5250 
5251 		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5252 			i,
5253 			new_val,
5254 			old_val,
5255 			ia64_get_pmd(i) & ovfl_val,
5256 			ovfl_pmds,
5257 			ovfl_notify));
5258 	}
5259 
5260 	/*
5261 	 * there was no 64-bit overflow, nothing else to do
5262 	 */
5263 	if (ovfl_pmds == 0UL) return;
5264 
5265 	/*
5266 	 * reset all control bits
5267 	 */
5268 	ovfl_ctrl.val = 0;
5269 	reset_pmds    = 0UL;
5270 
5271 	/*
5272 	 * if a sampling format module exists, then we "cache" the overflow by
5273 	 * calling the module's handler() routine.
5274 	 */
5275 	if (has_smpl) {
5276 		unsigned long start_cycles, end_cycles;
5277 		unsigned long pmd_mask;
5278 		int j, k, ret = 0;
5279 		int this_cpu = smp_processor_id();
5280 
5281 		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5282 		ovfl_arg = &ctx->ctx_ovfl_arg;
5283 
5284 		prefetch(ctx->ctx_smpl_hdr);
5285 
5286 		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5287 
5288 			mask = 1UL << i;
5289 
5290 			if ((pmd_mask & 0x1) == 0) continue;
5291 
5292 			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5293 			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5294 			ovfl_arg->active_set    = 0;
5295 			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5296 			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5297 
5298 			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5299 			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5300 			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5301 
5302 			/*
5303 		 	 * copy values of pmds of interest. Sampling format may copy them
5304 		 	 * into sampling buffer.
5305 		 	 */
5306 			if (smpl_pmds) {
5307 				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5308 					if ((smpl_pmds & 0x1) == 0) continue;
5309 					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5310 					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5311 				}
5312 			}
5313 
5314 			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5315 
5316 			start_cycles = ia64_get_itc();
5317 
5318 			/*
5319 		 	 * call custom buffer format record (handler) routine
5320 		 	 */
5321 			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5322 
5323 			end_cycles = ia64_get_itc();
5324 
5325 			/*
5326 			 * For those controls, we take the union because they have
5327 			 * an all or nothing behavior.
5328 			 */
5329 			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5330 			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5331 			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5332 			/*
5333 			 * build the bitmask of pmds to reset now
5334 			 */
5335 			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5336 
5337 			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5338 		}
5339 		/*
5340 		 * when the module cannot handle the rest of the overflows, we abort right here
5341 		 */
5342 		if (ret && pmd_mask) {
5343 			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5344 				pmd_mask<<PMU_FIRST_COUNTER));
5345 		}
5346 		/*
5347 		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5348 		 */
5349 		ovfl_pmds &= ~reset_pmds;
5350 	} else {
5351 		/*
5352 		 * when no sampling module is used, then the default
5353 		 * is to notify on overflow if requested by user
5354 		 */
5355 		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5356 		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5357 		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5358 		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5359 		/*
5360 		 * if needed, we reset all overflowed pmds
5361 		 */
5362 		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5363 	}
5364 
5365 	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5366 
5367 	/*
5368 	 * reset the requested PMD registers using the short reset values
5369 	 */
5370 	if (reset_pmds) {
5371 		unsigned long bm = reset_pmds;
5372 		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5373 	}
5374 
5375 	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5376 		/*
5377 		 * keep track of what to reset when unblocking
5378 		 */
5379 		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5380 
5381 		/*
5382 		 * check for blocking context
5383 		 */
5384 		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5385 
5386 			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5387 
5388 			/*
5389 			 * set the perfmon specific checking pending work for the task
5390 			 */
5391 			PFM_SET_WORK_PENDING(task, 1);
5392 
5393 			/*
5394 			 * when coming from ctxsw, current still points to the
5395 			 * previous task, therefore we must work with task and not current.
5396 			 */
5397 			set_notify_resume(task);
5398 		}
5399 		/*
5400 		 * defer until state is changed (shorten spin window). the context is locked
5401 		 * anyway, so the signal receiver would come spin for nothing.
5402 		 */
5403 		must_notify = 1;
5404 	}
5405 
5406 	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5407 			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5408 			PFM_GET_WORK_PENDING(task),
5409 			ctx->ctx_fl_trap_reason,
5410 			ovfl_pmds,
5411 			ovfl_notify,
5412 			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5413 	/*
5414 	 * in case monitoring must be stopped, we toggle the psr bits
5415 	 */
5416 	if (ovfl_ctrl.bits.mask_monitoring) {
5417 		pfm_mask_monitoring(task);
5418 		ctx->ctx_state = PFM_CTX_MASKED;
5419 		ctx->ctx_fl_can_restart = 1;
5420 	}
5421 
5422 	/*
5423 	 * send notification now
5424 	 */
5425 	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5426 
5427 	return;
5428 
5429 sanity_check:
5430 	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5431 			smp_processor_id(),
5432 			task ? task_pid_nr(task) : -1,
5433 			pmc0);
5434 	return;
5435 
5436 stop_monitoring:
5437 	/*
5438 	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5439 	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5440 	 * come here as zombie only if the task is the current task. In which case, we
5441 	 * can access the PMU  hardware directly.
5442 	 *
5443 	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5444 	 *
5445 	 * In case the context was zombified it could not be reclaimed at the time
5446 	 * the monitoring program exited. At this point, the PMU reservation has been
5447 	 * returned, the sampiing buffer has been freed. We must convert this call
5448 	 * into a spurious interrupt. However, we must also avoid infinite overflows
5449 	 * by stopping monitoring for this task. We can only come here for a per-task
5450 	 * context. All we need to do is to stop monitoring using the psr bits which
5451 	 * are always task private. By re-enabling secure montioring, we ensure that
5452 	 * the monitored task will not be able to re-activate monitoring.
5453 	 * The task will eventually be context switched out, at which point the context
5454 	 * will be reclaimed (that includes releasing ownership of the PMU).
5455 	 *
5456 	 * So there might be a window of time where the number of per-task session is zero
5457 	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5458 	 * context. This is safe because if a per-task session comes in, it will push this one
5459 	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5460 	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5461 	 * also push our zombie context out.
5462 	 *
5463 	 * Overall pretty hairy stuff....
5464 	 */
5465 	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5466 	pfm_clear_psr_up();
5467 	ia64_psr(regs)->up = 0;
5468 	ia64_psr(regs)->sp = 1;
5469 	return;
5470 }
5471 
5472 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5473 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5474 {
5475 	struct task_struct *task;
5476 	pfm_context_t *ctx;
5477 	unsigned long flags;
5478 	u64 pmc0;
5479 	int this_cpu = smp_processor_id();
5480 	int retval = 0;
5481 
5482 	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5483 
5484 	/*
5485 	 * srlz.d done before arriving here
5486 	 */
5487 	pmc0 = ia64_get_pmc(0);
5488 
5489 	task = GET_PMU_OWNER();
5490 	ctx  = GET_PMU_CTX();
5491 
5492 	/*
5493 	 * if we have some pending bits set
5494 	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5495 	 */
5496 	if (PMC0_HAS_OVFL(pmc0) && task) {
5497 		/*
5498 		 * we assume that pmc0.fr is always set here
5499 		 */
5500 
5501 		/* sanity check */
5502 		if (!ctx) goto report_spurious1;
5503 
5504 		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5505 			goto report_spurious2;
5506 
5507 		PROTECT_CTX_NOPRINT(ctx, flags);
5508 
5509 		pfm_overflow_handler(task, ctx, pmc0, regs);
5510 
5511 		UNPROTECT_CTX_NOPRINT(ctx, flags);
5512 
5513 	} else {
5514 		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5515 		retval = -1;
5516 	}
5517 	/*
5518 	 * keep it unfrozen at all times
5519 	 */
5520 	pfm_unfreeze_pmu();
5521 
5522 	return retval;
5523 
5524 report_spurious1:
5525 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5526 		this_cpu, task_pid_nr(task));
5527 	pfm_unfreeze_pmu();
5528 	return -1;
5529 report_spurious2:
5530 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5531 		this_cpu,
5532 		task_pid_nr(task));
5533 	pfm_unfreeze_pmu();
5534 	return -1;
5535 }
5536 
5537 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5538 pfm_interrupt_handler(int irq, void *arg)
5539 {
5540 	unsigned long start_cycles, total_cycles;
5541 	unsigned long min, max;
5542 	int this_cpu;
5543 	int ret;
5544 	struct pt_regs *regs = get_irq_regs();
5545 
5546 	this_cpu = get_cpu();
5547 	if (likely(!pfm_alt_intr_handler)) {
5548 		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5549 		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5550 
5551 		start_cycles = ia64_get_itc();
5552 
5553 		ret = pfm_do_interrupt_handler(arg, regs);
5554 
5555 		total_cycles = ia64_get_itc();
5556 
5557 		/*
5558 		 * don't measure spurious interrupts
5559 		 */
5560 		if (likely(ret == 0)) {
5561 			total_cycles -= start_cycles;
5562 
5563 			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5564 			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5565 
5566 			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5567 		}
5568 	}
5569 	else {
5570 		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5571 	}
5572 
5573 	put_cpu();
5574 	return IRQ_HANDLED;
5575 }
5576 
5577 /*
5578  * /proc/perfmon interface, for debug only
5579  */
5580 
5581 #define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5582 
5583 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5584 pfm_proc_start(struct seq_file *m, loff_t *pos)
5585 {
5586 	if (*pos == 0) {
5587 		return PFM_PROC_SHOW_HEADER;
5588 	}
5589 
5590 	while (*pos <= nr_cpu_ids) {
5591 		if (cpu_online(*pos - 1)) {
5592 			return (void *)*pos;
5593 		}
5594 		++*pos;
5595 	}
5596 	return NULL;
5597 }
5598 
5599 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5600 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5601 {
5602 	++*pos;
5603 	return pfm_proc_start(m, pos);
5604 }
5605 
5606 static void
pfm_proc_stop(struct seq_file * m,void * v)5607 pfm_proc_stop(struct seq_file *m, void *v)
5608 {
5609 }
5610 
5611 static void
pfm_proc_show_header(struct seq_file * m)5612 pfm_proc_show_header(struct seq_file *m)
5613 {
5614 	struct list_head * pos;
5615 	pfm_buffer_fmt_t * entry;
5616 	unsigned long flags;
5617 
5618  	seq_printf(m,
5619 		"perfmon version           : %u.%u\n"
5620 		"model                     : %s\n"
5621 		"fastctxsw                 : %s\n"
5622 		"expert mode               : %s\n"
5623 		"ovfl_mask                 : 0x%lx\n"
5624 		"PMU flags                 : 0x%x\n",
5625 		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5626 		pmu_conf->pmu_name,
5627 		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5628 		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5629 		pmu_conf->ovfl_val,
5630 		pmu_conf->flags);
5631 
5632   	LOCK_PFS(flags);
5633 
5634  	seq_printf(m,
5635  		"proc_sessions             : %u\n"
5636  		"sys_sessions              : %u\n"
5637  		"sys_use_dbregs            : %u\n"
5638  		"ptrace_use_dbregs         : %u\n",
5639  		pfm_sessions.pfs_task_sessions,
5640  		pfm_sessions.pfs_sys_sessions,
5641  		pfm_sessions.pfs_sys_use_dbregs,
5642  		pfm_sessions.pfs_ptrace_use_dbregs);
5643 
5644   	UNLOCK_PFS(flags);
5645 
5646 	spin_lock(&pfm_buffer_fmt_lock);
5647 
5648 	list_for_each(pos, &pfm_buffer_fmt_list) {
5649 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5650 		seq_printf(m, "format                    : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5651 			entry->fmt_uuid[0],
5652 			entry->fmt_uuid[1],
5653 			entry->fmt_uuid[2],
5654 			entry->fmt_uuid[3],
5655 			entry->fmt_uuid[4],
5656 			entry->fmt_uuid[5],
5657 			entry->fmt_uuid[6],
5658 			entry->fmt_uuid[7],
5659 			entry->fmt_uuid[8],
5660 			entry->fmt_uuid[9],
5661 			entry->fmt_uuid[10],
5662 			entry->fmt_uuid[11],
5663 			entry->fmt_uuid[12],
5664 			entry->fmt_uuid[13],
5665 			entry->fmt_uuid[14],
5666 			entry->fmt_uuid[15],
5667 			entry->fmt_name);
5668 	}
5669 	spin_unlock(&pfm_buffer_fmt_lock);
5670 
5671 }
5672 
5673 static int
pfm_proc_show(struct seq_file * m,void * v)5674 pfm_proc_show(struct seq_file *m, void *v)
5675 {
5676 	unsigned long psr;
5677 	unsigned int i;
5678 	int cpu;
5679 
5680 	if (v == PFM_PROC_SHOW_HEADER) {
5681 		pfm_proc_show_header(m);
5682 		return 0;
5683 	}
5684 
5685 	/* show info for CPU (v - 1) */
5686 
5687 	cpu = (long)v - 1;
5688 	seq_printf(m,
5689 		"CPU%-2d overflow intrs      : %lu\n"
5690 		"CPU%-2d overflow cycles     : %lu\n"
5691 		"CPU%-2d overflow min        : %lu\n"
5692 		"CPU%-2d overflow max        : %lu\n"
5693 		"CPU%-2d smpl handler calls  : %lu\n"
5694 		"CPU%-2d smpl handler cycles : %lu\n"
5695 		"CPU%-2d spurious intrs      : %lu\n"
5696 		"CPU%-2d replay   intrs      : %lu\n"
5697 		"CPU%-2d syst_wide           : %d\n"
5698 		"CPU%-2d dcr_pp              : %d\n"
5699 		"CPU%-2d exclude idle        : %d\n"
5700 		"CPU%-2d owner               : %d\n"
5701 		"CPU%-2d context             : %p\n"
5702 		"CPU%-2d activations         : %lu\n",
5703 		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5704 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5705 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5706 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5707 		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5708 		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5709 		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5710 		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5711 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5712 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5713 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5714 		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5715 		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5716 		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5717 
5718 	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5719 
5720 		psr = pfm_get_psr();
5721 
5722 		ia64_srlz_d();
5723 
5724 		seq_printf(m,
5725 			"CPU%-2d psr                 : 0x%lx\n"
5726 			"CPU%-2d pmc0                : 0x%lx\n",
5727 			cpu, psr,
5728 			cpu, ia64_get_pmc(0));
5729 
5730 		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5731 			if (PMC_IS_COUNTING(i) == 0) continue;
5732    			seq_printf(m,
5733 				"CPU%-2d pmc%u                : 0x%lx\n"
5734    				"CPU%-2d pmd%u                : 0x%lx\n",
5735 				cpu, i, ia64_get_pmc(i),
5736 				cpu, i, ia64_get_pmd(i));
5737   		}
5738 	}
5739 	return 0;
5740 }
5741 
5742 const struct seq_operations pfm_seq_ops = {
5743 	.start =	pfm_proc_start,
5744  	.next =		pfm_proc_next,
5745  	.stop =		pfm_proc_stop,
5746  	.show =		pfm_proc_show
5747 };
5748 
5749 static int
pfm_proc_open(struct inode * inode,struct file * file)5750 pfm_proc_open(struct inode *inode, struct file *file)
5751 {
5752 	return seq_open(file, &pfm_seq_ops);
5753 }
5754 
5755 
5756 /*
5757  * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5758  * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5759  * is active or inactive based on mode. We must rely on the value in
5760  * local_cpu_data->pfm_syst_info
5761  */
5762 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5763 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5764 {
5765 	struct pt_regs *regs;
5766 	unsigned long dcr;
5767 	unsigned long dcr_pp;
5768 
5769 	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5770 
5771 	/*
5772 	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5773 	 * on every CPU, so we can rely on the pid to identify the idle task.
5774 	 */
5775 	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5776 		regs = task_pt_regs(task);
5777 		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5778 		return;
5779 	}
5780 	/*
5781 	 * if monitoring has started
5782 	 */
5783 	if (dcr_pp) {
5784 		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5785 		/*
5786 		 * context switching in?
5787 		 */
5788 		if (is_ctxswin) {
5789 			/* mask monitoring for the idle task */
5790 			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5791 			pfm_clear_psr_pp();
5792 			ia64_srlz_i();
5793 			return;
5794 		}
5795 		/*
5796 		 * context switching out
5797 		 * restore monitoring for next task
5798 		 *
5799 		 * Due to inlining this odd if-then-else construction generates
5800 		 * better code.
5801 		 */
5802 		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5803 		pfm_set_psr_pp();
5804 		ia64_srlz_i();
5805 	}
5806 }
5807 
5808 #ifdef CONFIG_SMP
5809 
5810 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5811 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5812 {
5813 	struct task_struct *task = ctx->ctx_task;
5814 
5815 	ia64_psr(regs)->up = 0;
5816 	ia64_psr(regs)->sp = 1;
5817 
5818 	if (GET_PMU_OWNER() == task) {
5819 		DPRINT(("cleared ownership for [%d]\n",
5820 					task_pid_nr(ctx->ctx_task)));
5821 		SET_PMU_OWNER(NULL, NULL);
5822 	}
5823 
5824 	/*
5825 	 * disconnect the task from the context and vice-versa
5826 	 */
5827 	PFM_SET_WORK_PENDING(task, 0);
5828 
5829 	task->thread.pfm_context  = NULL;
5830 	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5831 
5832 	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5833 }
5834 
5835 
5836 /*
5837  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5838  */
5839 void
pfm_save_regs(struct task_struct * task)5840 pfm_save_regs(struct task_struct *task)
5841 {
5842 	pfm_context_t *ctx;
5843 	unsigned long flags;
5844 	u64 psr;
5845 
5846 
5847 	ctx = PFM_GET_CTX(task);
5848 	if (ctx == NULL) return;
5849 
5850 	/*
5851  	 * we always come here with interrupts ALREADY disabled by
5852  	 * the scheduler. So we simply need to protect against concurrent
5853 	 * access, not CPU concurrency.
5854 	 */
5855 	flags = pfm_protect_ctx_ctxsw(ctx);
5856 
5857 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5858 		struct pt_regs *regs = task_pt_regs(task);
5859 
5860 		pfm_clear_psr_up();
5861 
5862 		pfm_force_cleanup(ctx, regs);
5863 
5864 		BUG_ON(ctx->ctx_smpl_hdr);
5865 
5866 		pfm_unprotect_ctx_ctxsw(ctx, flags);
5867 
5868 		pfm_context_free(ctx);
5869 		return;
5870 	}
5871 
5872 	/*
5873 	 * save current PSR: needed because we modify it
5874 	 */
5875 	ia64_srlz_d();
5876 	psr = pfm_get_psr();
5877 
5878 	BUG_ON(psr & (IA64_PSR_I));
5879 
5880 	/*
5881 	 * stop monitoring:
5882 	 * This is the last instruction which may generate an overflow
5883 	 *
5884 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5885 	 * It will be restored from ipsr when going back to user level
5886 	 */
5887 	pfm_clear_psr_up();
5888 
5889 	/*
5890 	 * keep a copy of psr.up (for reload)
5891 	 */
5892 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5893 
5894 	/*
5895 	 * release ownership of this PMU.
5896 	 * PM interrupts are masked, so nothing
5897 	 * can happen.
5898 	 */
5899 	SET_PMU_OWNER(NULL, NULL);
5900 
5901 	/*
5902 	 * we systematically save the PMD as we have no
5903 	 * guarantee we will be schedule at that same
5904 	 * CPU again.
5905 	 */
5906 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5907 
5908 	/*
5909 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5910 	 * we will need it on the restore path to check
5911 	 * for pending overflow.
5912 	 */
5913 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5914 
5915 	/*
5916 	 * unfreeze PMU if had pending overflows
5917 	 */
5918 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5919 
5920 	/*
5921 	 * finally, allow context access.
5922 	 * interrupts will still be masked after this call.
5923 	 */
5924 	pfm_unprotect_ctx_ctxsw(ctx, flags);
5925 }
5926 
5927 #else /* !CONFIG_SMP */
5928 void
pfm_save_regs(struct task_struct * task)5929 pfm_save_regs(struct task_struct *task)
5930 {
5931 	pfm_context_t *ctx;
5932 	u64 psr;
5933 
5934 	ctx = PFM_GET_CTX(task);
5935 	if (ctx == NULL) return;
5936 
5937 	/*
5938 	 * save current PSR: needed because we modify it
5939 	 */
5940 	psr = pfm_get_psr();
5941 
5942 	BUG_ON(psr & (IA64_PSR_I));
5943 
5944 	/*
5945 	 * stop monitoring:
5946 	 * This is the last instruction which may generate an overflow
5947 	 *
5948 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5949 	 * It will be restored from ipsr when going back to user level
5950 	 */
5951 	pfm_clear_psr_up();
5952 
5953 	/*
5954 	 * keep a copy of psr.up (for reload)
5955 	 */
5956 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5957 }
5958 
5959 static void
pfm_lazy_save_regs(struct task_struct * task)5960 pfm_lazy_save_regs (struct task_struct *task)
5961 {
5962 	pfm_context_t *ctx;
5963 	unsigned long flags;
5964 
5965 	{ u64 psr  = pfm_get_psr();
5966 	  BUG_ON(psr & IA64_PSR_UP);
5967 	}
5968 
5969 	ctx = PFM_GET_CTX(task);
5970 
5971 	/*
5972 	 * we need to mask PMU overflow here to
5973 	 * make sure that we maintain pmc0 until
5974 	 * we save it. overflow interrupts are
5975 	 * treated as spurious if there is no
5976 	 * owner.
5977 	 *
5978 	 * XXX: I don't think this is necessary
5979 	 */
5980 	PROTECT_CTX(ctx,flags);
5981 
5982 	/*
5983 	 * release ownership of this PMU.
5984 	 * must be done before we save the registers.
5985 	 *
5986 	 * after this call any PMU interrupt is treated
5987 	 * as spurious.
5988 	 */
5989 	SET_PMU_OWNER(NULL, NULL);
5990 
5991 	/*
5992 	 * save all the pmds we use
5993 	 */
5994 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5995 
5996 	/*
5997 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5998 	 * it is needed to check for pended overflow
5999 	 * on the restore path
6000 	 */
6001 	ctx->th_pmcs[0] = ia64_get_pmc(0);
6002 
6003 	/*
6004 	 * unfreeze PMU if had pending overflows
6005 	 */
6006 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6007 
6008 	/*
6009 	 * now get can unmask PMU interrupts, they will
6010 	 * be treated as purely spurious and we will not
6011 	 * lose any information
6012 	 */
6013 	UNPROTECT_CTX(ctx,flags);
6014 }
6015 #endif /* CONFIG_SMP */
6016 
6017 #ifdef CONFIG_SMP
6018 /*
6019  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6020  */
6021 void
pfm_load_regs(struct task_struct * task)6022 pfm_load_regs (struct task_struct *task)
6023 {
6024 	pfm_context_t *ctx;
6025 	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6026 	unsigned long flags;
6027 	u64 psr, psr_up;
6028 	int need_irq_resend;
6029 
6030 	ctx = PFM_GET_CTX(task);
6031 	if (unlikely(ctx == NULL)) return;
6032 
6033 	BUG_ON(GET_PMU_OWNER());
6034 
6035 	/*
6036 	 * possible on unload
6037 	 */
6038 	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6039 
6040 	/*
6041  	 * we always come here with interrupts ALREADY disabled by
6042  	 * the scheduler. So we simply need to protect against concurrent
6043 	 * access, not CPU concurrency.
6044 	 */
6045 	flags = pfm_protect_ctx_ctxsw(ctx);
6046 	psr   = pfm_get_psr();
6047 
6048 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6049 
6050 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6051 	BUG_ON(psr & IA64_PSR_I);
6052 
6053 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6054 		struct pt_regs *regs = task_pt_regs(task);
6055 
6056 		BUG_ON(ctx->ctx_smpl_hdr);
6057 
6058 		pfm_force_cleanup(ctx, regs);
6059 
6060 		pfm_unprotect_ctx_ctxsw(ctx, flags);
6061 
6062 		/*
6063 		 * this one (kmalloc'ed) is fine with interrupts disabled
6064 		 */
6065 		pfm_context_free(ctx);
6066 
6067 		return;
6068 	}
6069 
6070 	/*
6071 	 * we restore ALL the debug registers to avoid picking up
6072 	 * stale state.
6073 	 */
6074 	if (ctx->ctx_fl_using_dbreg) {
6075 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6076 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6077 	}
6078 	/*
6079 	 * retrieve saved psr.up
6080 	 */
6081 	psr_up = ctx->ctx_saved_psr_up;
6082 
6083 	/*
6084 	 * if we were the last user of the PMU on that CPU,
6085 	 * then nothing to do except restore psr
6086 	 */
6087 	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6088 
6089 		/*
6090 		 * retrieve partial reload masks (due to user modifications)
6091 		 */
6092 		pmc_mask = ctx->ctx_reload_pmcs[0];
6093 		pmd_mask = ctx->ctx_reload_pmds[0];
6094 
6095 	} else {
6096 		/*
6097 	 	 * To avoid leaking information to the user level when psr.sp=0,
6098 	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6099 	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6100 	 	 * we initialized or requested (sampling) so there is no risk there.
6101 	 	 */
6102 		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6103 
6104 		/*
6105 	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6106 	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6107 	 	 * up stale configuration.
6108 	 	 *
6109 	 	 * PMC0 is never in the mask. It is always restored separately.
6110 	 	 */
6111 		pmc_mask = ctx->ctx_all_pmcs[0];
6112 	}
6113 	/*
6114 	 * when context is MASKED, we will restore PMC with plm=0
6115 	 * and PMD with stale information, but that's ok, nothing
6116 	 * will be captured.
6117 	 *
6118 	 * XXX: optimize here
6119 	 */
6120 	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6121 	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6122 
6123 	/*
6124 	 * check for pending overflow at the time the state
6125 	 * was saved.
6126 	 */
6127 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6128 		/*
6129 		 * reload pmc0 with the overflow information
6130 		 * On McKinley PMU, this will trigger a PMU interrupt
6131 		 */
6132 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6133 		ia64_srlz_d();
6134 		ctx->th_pmcs[0] = 0UL;
6135 
6136 		/*
6137 		 * will replay the PMU interrupt
6138 		 */
6139 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6140 
6141 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6142 	}
6143 
6144 	/*
6145 	 * we just did a reload, so we reset the partial reload fields
6146 	 */
6147 	ctx->ctx_reload_pmcs[0] = 0UL;
6148 	ctx->ctx_reload_pmds[0] = 0UL;
6149 
6150 	SET_LAST_CPU(ctx, smp_processor_id());
6151 
6152 	/*
6153 	 * dump activation value for this PMU
6154 	 */
6155 	INC_ACTIVATION();
6156 	/*
6157 	 * record current activation for this context
6158 	 */
6159 	SET_ACTIVATION(ctx);
6160 
6161 	/*
6162 	 * establish new ownership.
6163 	 */
6164 	SET_PMU_OWNER(task, ctx);
6165 
6166 	/*
6167 	 * restore the psr.up bit. measurement
6168 	 * is active again.
6169 	 * no PMU interrupt can happen at this point
6170 	 * because we still have interrupts disabled.
6171 	 */
6172 	if (likely(psr_up)) pfm_set_psr_up();
6173 
6174 	/*
6175 	 * allow concurrent access to context
6176 	 */
6177 	pfm_unprotect_ctx_ctxsw(ctx, flags);
6178 }
6179 #else /*  !CONFIG_SMP */
6180 /*
6181  * reload PMU state for UP kernels
6182  * in 2.5 we come here with interrupts disabled
6183  */
6184 void
pfm_load_regs(struct task_struct * task)6185 pfm_load_regs (struct task_struct *task)
6186 {
6187 	pfm_context_t *ctx;
6188 	struct task_struct *owner;
6189 	unsigned long pmd_mask, pmc_mask;
6190 	u64 psr, psr_up;
6191 	int need_irq_resend;
6192 
6193 	owner = GET_PMU_OWNER();
6194 	ctx   = PFM_GET_CTX(task);
6195 	psr   = pfm_get_psr();
6196 
6197 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6198 	BUG_ON(psr & IA64_PSR_I);
6199 
6200 	/*
6201 	 * we restore ALL the debug registers to avoid picking up
6202 	 * stale state.
6203 	 *
6204 	 * This must be done even when the task is still the owner
6205 	 * as the registers may have been modified via ptrace()
6206 	 * (not perfmon) by the previous task.
6207 	 */
6208 	if (ctx->ctx_fl_using_dbreg) {
6209 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6210 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6211 	}
6212 
6213 	/*
6214 	 * retrieved saved psr.up
6215 	 */
6216 	psr_up = ctx->ctx_saved_psr_up;
6217 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6218 
6219 	/*
6220 	 * short path, our state is still there, just
6221 	 * need to restore psr and we go
6222 	 *
6223 	 * we do not touch either PMC nor PMD. the psr is not touched
6224 	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6225 	 * concurrency even without interrupt masking.
6226 	 */
6227 	if (likely(owner == task)) {
6228 		if (likely(psr_up)) pfm_set_psr_up();
6229 		return;
6230 	}
6231 
6232 	/*
6233 	 * someone else is still using the PMU, first push it out and
6234 	 * then we'll be able to install our stuff !
6235 	 *
6236 	 * Upon return, there will be no owner for the current PMU
6237 	 */
6238 	if (owner) pfm_lazy_save_regs(owner);
6239 
6240 	/*
6241 	 * To avoid leaking information to the user level when psr.sp=0,
6242 	 * we must reload ALL implemented pmds (even the ones we don't use).
6243 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6244 	 * we initialized or requested (sampling) so there is no risk there.
6245 	 */
6246 	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6247 
6248 	/*
6249 	 * ALL accessible PMCs are systematically reloaded, unused registers
6250 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6251 	 * up stale configuration.
6252 	 *
6253 	 * PMC0 is never in the mask. It is always restored separately
6254 	 */
6255 	pmc_mask = ctx->ctx_all_pmcs[0];
6256 
6257 	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6258 	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6259 
6260 	/*
6261 	 * check for pending overflow at the time the state
6262 	 * was saved.
6263 	 */
6264 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6265 		/*
6266 		 * reload pmc0 with the overflow information
6267 		 * On McKinley PMU, this will trigger a PMU interrupt
6268 		 */
6269 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6270 		ia64_srlz_d();
6271 
6272 		ctx->th_pmcs[0] = 0UL;
6273 
6274 		/*
6275 		 * will replay the PMU interrupt
6276 		 */
6277 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6278 
6279 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6280 	}
6281 
6282 	/*
6283 	 * establish new ownership.
6284 	 */
6285 	SET_PMU_OWNER(task, ctx);
6286 
6287 	/*
6288 	 * restore the psr.up bit. measurement
6289 	 * is active again.
6290 	 * no PMU interrupt can happen at this point
6291 	 * because we still have interrupts disabled.
6292 	 */
6293 	if (likely(psr_up)) pfm_set_psr_up();
6294 }
6295 #endif /* CONFIG_SMP */
6296 
6297 /*
6298  * this function assumes monitoring is stopped
6299  */
6300 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6301 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6302 {
6303 	u64 pmc0;
6304 	unsigned long mask2, val, pmd_val, ovfl_val;
6305 	int i, can_access_pmu = 0;
6306 	int is_self;
6307 
6308 	/*
6309 	 * is the caller the task being monitored (or which initiated the
6310 	 * session for system wide measurements)
6311 	 */
6312 	is_self = ctx->ctx_task == task ? 1 : 0;
6313 
6314 	/*
6315 	 * can access PMU is task is the owner of the PMU state on the current CPU
6316 	 * or if we are running on the CPU bound to the context in system-wide mode
6317 	 * (that is not necessarily the task the context is attached to in this mode).
6318 	 * In system-wide we always have can_access_pmu true because a task running on an
6319 	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6320 	 */
6321 	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6322 	if (can_access_pmu) {
6323 		/*
6324 		 * Mark the PMU as not owned
6325 		 * This will cause the interrupt handler to do nothing in case an overflow
6326 		 * interrupt was in-flight
6327 		 * This also guarantees that pmc0 will contain the final state
6328 		 * It virtually gives us full control on overflow processing from that point
6329 		 * on.
6330 		 */
6331 		SET_PMU_OWNER(NULL, NULL);
6332 		DPRINT(("releasing ownership\n"));
6333 
6334 		/*
6335 		 * read current overflow status:
6336 		 *
6337 		 * we are guaranteed to read the final stable state
6338 		 */
6339 		ia64_srlz_d();
6340 		pmc0 = ia64_get_pmc(0); /* slow */
6341 
6342 		/*
6343 		 * reset freeze bit, overflow status information destroyed
6344 		 */
6345 		pfm_unfreeze_pmu();
6346 	} else {
6347 		pmc0 = ctx->th_pmcs[0];
6348 		/*
6349 		 * clear whatever overflow status bits there were
6350 		 */
6351 		ctx->th_pmcs[0] = 0;
6352 	}
6353 	ovfl_val = pmu_conf->ovfl_val;
6354 	/*
6355 	 * we save all the used pmds
6356 	 * we take care of overflows for counting PMDs
6357 	 *
6358 	 * XXX: sampling situation is not taken into account here
6359 	 */
6360 	mask2 = ctx->ctx_used_pmds[0];
6361 
6362 	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6363 
6364 	for (i = 0; mask2; i++, mask2>>=1) {
6365 
6366 		/* skip non used pmds */
6367 		if ((mask2 & 0x1) == 0) continue;
6368 
6369 		/*
6370 		 * can access PMU always true in system wide mode
6371 		 */
6372 		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6373 
6374 		if (PMD_IS_COUNTING(i)) {
6375 			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6376 				task_pid_nr(task),
6377 				i,
6378 				ctx->ctx_pmds[i].val,
6379 				val & ovfl_val));
6380 
6381 			/*
6382 			 * we rebuild the full 64 bit value of the counter
6383 			 */
6384 			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6385 
6386 			/*
6387 			 * now everything is in ctx_pmds[] and we need
6388 			 * to clear the saved context from save_regs() such that
6389 			 * pfm_read_pmds() gets the correct value
6390 			 */
6391 			pmd_val = 0UL;
6392 
6393 			/*
6394 			 * take care of overflow inline
6395 			 */
6396 			if (pmc0 & (1UL << i)) {
6397 				val += 1 + ovfl_val;
6398 				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6399 			}
6400 		}
6401 
6402 		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6403 
6404 		if (is_self) ctx->th_pmds[i] = pmd_val;
6405 
6406 		ctx->ctx_pmds[i].val = val;
6407 	}
6408 }
6409 
6410 static struct irqaction perfmon_irqaction = {
6411 	.handler = pfm_interrupt_handler,
6412 	.flags   = IRQF_DISABLED,
6413 	.name    = "perfmon"
6414 };
6415 
6416 static void
pfm_alt_save_pmu_state(void * data)6417 pfm_alt_save_pmu_state(void *data)
6418 {
6419 	struct pt_regs *regs;
6420 
6421 	regs = task_pt_regs(current);
6422 
6423 	DPRINT(("called\n"));
6424 
6425 	/*
6426 	 * should not be necessary but
6427 	 * let's take not risk
6428 	 */
6429 	pfm_clear_psr_up();
6430 	pfm_clear_psr_pp();
6431 	ia64_psr(regs)->pp = 0;
6432 
6433 	/*
6434 	 * This call is required
6435 	 * May cause a spurious interrupt on some processors
6436 	 */
6437 	pfm_freeze_pmu();
6438 
6439 	ia64_srlz_d();
6440 }
6441 
6442 void
pfm_alt_restore_pmu_state(void * data)6443 pfm_alt_restore_pmu_state(void *data)
6444 {
6445 	struct pt_regs *regs;
6446 
6447 	regs = task_pt_regs(current);
6448 
6449 	DPRINT(("called\n"));
6450 
6451 	/*
6452 	 * put PMU back in state expected
6453 	 * by perfmon
6454 	 */
6455 	pfm_clear_psr_up();
6456 	pfm_clear_psr_pp();
6457 	ia64_psr(regs)->pp = 0;
6458 
6459 	/*
6460 	 * perfmon runs with PMU unfrozen at all times
6461 	 */
6462 	pfm_unfreeze_pmu();
6463 
6464 	ia64_srlz_d();
6465 }
6466 
6467 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6468 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6469 {
6470 	int ret, i;
6471 	int reserve_cpu;
6472 
6473 	/* some sanity checks */
6474 	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6475 
6476 	/* do the easy test first */
6477 	if (pfm_alt_intr_handler) return -EBUSY;
6478 
6479 	/* one at a time in the install or remove, just fail the others */
6480 	if (!spin_trylock(&pfm_alt_install_check)) {
6481 		return -EBUSY;
6482 	}
6483 
6484 	/* reserve our session */
6485 	for_each_online_cpu(reserve_cpu) {
6486 		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6487 		if (ret) goto cleanup_reserve;
6488 	}
6489 
6490 	/* save the current system wide pmu states */
6491 	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6492 	if (ret) {
6493 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6494 		goto cleanup_reserve;
6495 	}
6496 
6497 	/* officially change to the alternate interrupt handler */
6498 	pfm_alt_intr_handler = hdl;
6499 
6500 	spin_unlock(&pfm_alt_install_check);
6501 
6502 	return 0;
6503 
6504 cleanup_reserve:
6505 	for_each_online_cpu(i) {
6506 		/* don't unreserve more than we reserved */
6507 		if (i >= reserve_cpu) break;
6508 
6509 		pfm_unreserve_session(NULL, 1, i);
6510 	}
6511 
6512 	spin_unlock(&pfm_alt_install_check);
6513 
6514 	return ret;
6515 }
6516 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6517 
6518 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6519 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6520 {
6521 	int i;
6522 	int ret;
6523 
6524 	if (hdl == NULL) return -EINVAL;
6525 
6526 	/* cannot remove someone else's handler! */
6527 	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6528 
6529 	/* one at a time in the install or remove, just fail the others */
6530 	if (!spin_trylock(&pfm_alt_install_check)) {
6531 		return -EBUSY;
6532 	}
6533 
6534 	pfm_alt_intr_handler = NULL;
6535 
6536 	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6537 	if (ret) {
6538 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6539 	}
6540 
6541 	for_each_online_cpu(i) {
6542 		pfm_unreserve_session(NULL, 1, i);
6543 	}
6544 
6545 	spin_unlock(&pfm_alt_install_check);
6546 
6547 	return 0;
6548 }
6549 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6550 
6551 /*
6552  * perfmon initialization routine, called from the initcall() table
6553  */
6554 static int init_pfm_fs(void);
6555 
6556 static int __init
pfm_probe_pmu(void)6557 pfm_probe_pmu(void)
6558 {
6559 	pmu_config_t **p;
6560 	int family;
6561 
6562 	family = local_cpu_data->family;
6563 	p      = pmu_confs;
6564 
6565 	while(*p) {
6566 		if ((*p)->probe) {
6567 			if ((*p)->probe() == 0) goto found;
6568 		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6569 			goto found;
6570 		}
6571 		p++;
6572 	}
6573 	return -1;
6574 found:
6575 	pmu_conf = *p;
6576 	return 0;
6577 }
6578 
6579 static const struct file_operations pfm_proc_fops = {
6580 	.open		= pfm_proc_open,
6581 	.read		= seq_read,
6582 	.llseek		= seq_lseek,
6583 	.release	= seq_release,
6584 };
6585 
6586 int __init
pfm_init(void)6587 pfm_init(void)
6588 {
6589 	unsigned int n, n_counters, i;
6590 
6591 	printk("perfmon: version %u.%u IRQ %u\n",
6592 		PFM_VERSION_MAJ,
6593 		PFM_VERSION_MIN,
6594 		IA64_PERFMON_VECTOR);
6595 
6596 	if (pfm_probe_pmu()) {
6597 		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6598 				local_cpu_data->family);
6599 		return -ENODEV;
6600 	}
6601 
6602 	/*
6603 	 * compute the number of implemented PMD/PMC from the
6604 	 * description tables
6605 	 */
6606 	n = 0;
6607 	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6608 		if (PMC_IS_IMPL(i) == 0) continue;
6609 		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6610 		n++;
6611 	}
6612 	pmu_conf->num_pmcs = n;
6613 
6614 	n = 0; n_counters = 0;
6615 	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6616 		if (PMD_IS_IMPL(i) == 0) continue;
6617 		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6618 		n++;
6619 		if (PMD_IS_COUNTING(i)) n_counters++;
6620 	}
6621 	pmu_conf->num_pmds      = n;
6622 	pmu_conf->num_counters  = n_counters;
6623 
6624 	/*
6625 	 * sanity checks on the number of debug registers
6626 	 */
6627 	if (pmu_conf->use_rr_dbregs) {
6628 		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6629 			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6630 			pmu_conf = NULL;
6631 			return -1;
6632 		}
6633 		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6634 			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6635 			pmu_conf = NULL;
6636 			return -1;
6637 		}
6638 	}
6639 
6640 	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6641 	       pmu_conf->pmu_name,
6642 	       pmu_conf->num_pmcs,
6643 	       pmu_conf->num_pmds,
6644 	       pmu_conf->num_counters,
6645 	       ffz(pmu_conf->ovfl_val));
6646 
6647 	/* sanity check */
6648 	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6649 		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6650 		pmu_conf = NULL;
6651 		return -1;
6652 	}
6653 
6654 	/*
6655 	 * create /proc/perfmon (mostly for debugging purposes)
6656 	 */
6657 	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6658 	if (perfmon_dir == NULL) {
6659 		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6660 		pmu_conf = NULL;
6661 		return -1;
6662 	}
6663 
6664 	/*
6665 	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6666 	 */
6667 	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6668 
6669 	/*
6670 	 * initialize all our spinlocks
6671 	 */
6672 	spin_lock_init(&pfm_sessions.pfs_lock);
6673 	spin_lock_init(&pfm_buffer_fmt_lock);
6674 
6675 	init_pfm_fs();
6676 
6677 	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6678 
6679 	return 0;
6680 }
6681 
6682 __initcall(pfm_init);
6683 
6684 /*
6685  * this function is called before pfm_init()
6686  */
6687 void
pfm_init_percpu(void)6688 pfm_init_percpu (void)
6689 {
6690 	static int first_time=1;
6691 	/*
6692 	 * make sure no measurement is active
6693 	 * (may inherit programmed PMCs from EFI).
6694 	 */
6695 	pfm_clear_psr_pp();
6696 	pfm_clear_psr_up();
6697 
6698 	/*
6699 	 * we run with the PMU not frozen at all times
6700 	 */
6701 	pfm_unfreeze_pmu();
6702 
6703 	if (first_time) {
6704 		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6705 		first_time=0;
6706 	}
6707 
6708 	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6709 	ia64_srlz_d();
6710 }
6711 
6712 /*
6713  * used for debug purposes only
6714  */
6715 void
dump_pmu_state(const char * from)6716 dump_pmu_state(const char *from)
6717 {
6718 	struct task_struct *task;
6719 	struct pt_regs *regs;
6720 	pfm_context_t *ctx;
6721 	unsigned long psr, dcr, info, flags;
6722 	int i, this_cpu;
6723 
6724 	local_irq_save(flags);
6725 
6726 	this_cpu = smp_processor_id();
6727 	regs     = task_pt_regs(current);
6728 	info     = PFM_CPUINFO_GET();
6729 	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6730 
6731 	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6732 		local_irq_restore(flags);
6733 		return;
6734 	}
6735 
6736 	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6737 		this_cpu,
6738 		from,
6739 		task_pid_nr(current),
6740 		regs->cr_iip,
6741 		current->comm);
6742 
6743 	task = GET_PMU_OWNER();
6744 	ctx  = GET_PMU_CTX();
6745 
6746 	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6747 
6748 	psr = pfm_get_psr();
6749 
6750 	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6751 		this_cpu,
6752 		ia64_get_pmc(0),
6753 		psr & IA64_PSR_PP ? 1 : 0,
6754 		psr & IA64_PSR_UP ? 1 : 0,
6755 		dcr & IA64_DCR_PP ? 1 : 0,
6756 		info,
6757 		ia64_psr(regs)->up,
6758 		ia64_psr(regs)->pp);
6759 
6760 	ia64_psr(regs)->up = 0;
6761 	ia64_psr(regs)->pp = 0;
6762 
6763 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6764 		if (PMC_IS_IMPL(i) == 0) continue;
6765 		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6766 	}
6767 
6768 	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6769 		if (PMD_IS_IMPL(i) == 0) continue;
6770 		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6771 	}
6772 
6773 	if (ctx) {
6774 		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6775 				this_cpu,
6776 				ctx->ctx_state,
6777 				ctx->ctx_smpl_vaddr,
6778 				ctx->ctx_smpl_hdr,
6779 				ctx->ctx_msgq_head,
6780 				ctx->ctx_msgq_tail,
6781 				ctx->ctx_saved_psr_up);
6782 	}
6783 	local_irq_restore(flags);
6784 }
6785 
6786 /*
6787  * called from process.c:copy_thread(). task is new child.
6788  */
6789 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6790 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6791 {
6792 	struct thread_struct *thread;
6793 
6794 	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6795 
6796 	thread = &task->thread;
6797 
6798 	/*
6799 	 * cut links inherited from parent (current)
6800 	 */
6801 	thread->pfm_context = NULL;
6802 
6803 	PFM_SET_WORK_PENDING(task, 0);
6804 
6805 	/*
6806 	 * the psr bits are already set properly in copy_threads()
6807 	 */
6808 }
6809 #else  /* !CONFIG_PERFMON */
6810 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6811 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6812 {
6813 	return -ENOSYS;
6814 }
6815 #endif /* CONFIG_PERFMON */
6816