• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* RSA asymmetric public-key algorithm [RFC3447]
2  *
3  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public Licence
8  * as published by the Free Software Foundation; either version
9  * 2 of the Licence, or (at your option) any later version.
10  */
11 
12 #define pr_fmt(fmt) "RSA: "fmt
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <crypto/algapi.h>
17 #include "public_key.h"
18 
19 MODULE_LICENSE("GPL");
20 MODULE_DESCRIPTION("RSA Public Key Algorithm");
21 
22 #define kenter(FMT, ...) \
23 	pr_devel("==> %s("FMT")\n", __func__, ##__VA_ARGS__)
24 #define kleave(FMT, ...) \
25 	pr_devel("<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
26 
27 /*
28  * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
29  */
30 static const u8 RSA_digest_info_MD5[] = {
31 	0x30, 0x20, 0x30, 0x0C, 0x06, 0x08,
32 	0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* OID */
33 	0x05, 0x00, 0x04, 0x10
34 };
35 
36 static const u8 RSA_digest_info_SHA1[] = {
37 	0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
38 	0x2B, 0x0E, 0x03, 0x02, 0x1A,
39 	0x05, 0x00, 0x04, 0x14
40 };
41 
42 static const u8 RSA_digest_info_RIPE_MD_160[] = {
43 	0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
44 	0x2B, 0x24, 0x03, 0x02, 0x01,
45 	0x05, 0x00, 0x04, 0x14
46 };
47 
48 static const u8 RSA_digest_info_SHA224[] = {
49 	0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
50 	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
51 	0x05, 0x00, 0x04, 0x1C
52 };
53 
54 static const u8 RSA_digest_info_SHA256[] = {
55 	0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
56 	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
57 	0x05, 0x00, 0x04, 0x20
58 };
59 
60 static const u8 RSA_digest_info_SHA384[] = {
61 	0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
62 	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
63 	0x05, 0x00, 0x04, 0x30
64 };
65 
66 static const u8 RSA_digest_info_SHA512[] = {
67 	0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
68 	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
69 	0x05, 0x00, 0x04, 0x40
70 };
71 
72 static const struct {
73 	const u8 *data;
74 	size_t size;
75 } RSA_ASN1_templates[PKEY_HASH__LAST] = {
76 #define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) }
77 	[PKEY_HASH_MD5]		= _(MD5),
78 	[PKEY_HASH_SHA1]	= _(SHA1),
79 	[PKEY_HASH_RIPE_MD_160]	= _(RIPE_MD_160),
80 	[PKEY_HASH_SHA256]	= _(SHA256),
81 	[PKEY_HASH_SHA384]	= _(SHA384),
82 	[PKEY_HASH_SHA512]	= _(SHA512),
83 	[PKEY_HASH_SHA224]	= _(SHA224),
84 #undef _
85 };
86 
87 /*
88  * RSAVP1() function [RFC3447 sec 5.2.2]
89  */
RSAVP1(const struct public_key * key,MPI s,MPI * _m)90 static int RSAVP1(const struct public_key *key, MPI s, MPI *_m)
91 {
92 	MPI m;
93 	int ret;
94 
95 	/* (1) Validate 0 <= s < n */
96 	if (mpi_cmp_ui(s, 0) < 0) {
97 		kleave(" = -EBADMSG [s < 0]");
98 		return -EBADMSG;
99 	}
100 	if (mpi_cmp(s, key->rsa.n) >= 0) {
101 		kleave(" = -EBADMSG [s >= n]");
102 		return -EBADMSG;
103 	}
104 
105 	m = mpi_alloc(0);
106 	if (!m)
107 		return -ENOMEM;
108 
109 	/* (2) m = s^e mod n */
110 	ret = mpi_powm(m, s, key->rsa.e, key->rsa.n);
111 	if (ret < 0) {
112 		mpi_free(m);
113 		return ret;
114 	}
115 
116 	*_m = m;
117 	return 0;
118 }
119 
120 /*
121  * Integer to Octet String conversion [RFC3447 sec 4.1]
122  */
RSA_I2OSP(MPI x,size_t xLen,u8 ** _X)123 static int RSA_I2OSP(MPI x, size_t xLen, u8 **_X)
124 {
125 	unsigned X_size, x_size;
126 	int X_sign;
127 	u8 *X;
128 
129 	/* Make sure the string is the right length.  The number should begin
130 	 * with { 0x00, 0x01, ... } so we have to account for 15 leading zero
131 	 * bits not being reported by MPI.
132 	 */
133 	x_size = mpi_get_nbits(x);
134 	pr_devel("size(x)=%u xLen*8=%zu\n", x_size, xLen * 8);
135 	if (x_size != xLen * 8 - 15)
136 		return -ERANGE;
137 
138 	X = mpi_get_buffer(x, &X_size, &X_sign);
139 	if (!X)
140 		return -ENOMEM;
141 	if (X_sign < 0) {
142 		kfree(X);
143 		return -EBADMSG;
144 	}
145 	if (X_size != xLen - 1) {
146 		kfree(X);
147 		return -EBADMSG;
148 	}
149 
150 	*_X = X;
151 	return 0;
152 }
153 
154 /*
155  * Perform the RSA signature verification.
156  * @H: Value of hash of data and metadata
157  * @EM: The computed signature value
158  * @k: The size of EM (EM[0] is an invalid location but should hold 0x00)
159  * @hash_size: The size of H
160  * @asn1_template: The DigestInfo ASN.1 template
161  * @asn1_size: Size of asm1_template[]
162  */
RSA_verify(const u8 * H,const u8 * EM,size_t k,size_t hash_size,const u8 * asn1_template,size_t asn1_size)163 static int RSA_verify(const u8 *H, const u8 *EM, size_t k, size_t hash_size,
164 		      const u8 *asn1_template, size_t asn1_size)
165 {
166 	unsigned PS_end, T_offset, i;
167 
168 	kenter(",,%zu,%zu,%zu", k, hash_size, asn1_size);
169 
170 	if (k < 2 + 1 + asn1_size + hash_size)
171 		return -EBADMSG;
172 
173 	/* Decode the EMSA-PKCS1-v1_5 */
174 	if (EM[1] != 0x01) {
175 		kleave(" = -EBADMSG [EM[1] == %02u]", EM[1]);
176 		return -EBADMSG;
177 	}
178 
179 	T_offset = k - (asn1_size + hash_size);
180 	PS_end = T_offset - 1;
181 	if (EM[PS_end] != 0x00) {
182 		kleave(" = -EBADMSG [EM[T-1] == %02u]", EM[PS_end]);
183 		return -EBADMSG;
184 	}
185 
186 	for (i = 2; i < PS_end; i++) {
187 		if (EM[i] != 0xff) {
188 			kleave(" = -EBADMSG [EM[PS%x] == %02u]", i - 2, EM[i]);
189 			return -EBADMSG;
190 		}
191 	}
192 
193 	if (crypto_memneq(asn1_template, EM + T_offset, asn1_size) != 0) {
194 		kleave(" = -EBADMSG [EM[T] ASN.1 mismatch]");
195 		return -EBADMSG;
196 	}
197 
198 	if (crypto_memneq(H, EM + T_offset + asn1_size, hash_size) != 0) {
199 		kleave(" = -EKEYREJECTED [EM[T] hash mismatch]");
200 		return -EKEYREJECTED;
201 	}
202 
203 	kleave(" = 0");
204 	return 0;
205 }
206 
207 /*
208  * Perform the verification step [RFC3447 sec 8.2.2].
209  */
RSA_verify_signature(const struct public_key * key,const struct public_key_signature * sig)210 static int RSA_verify_signature(const struct public_key *key,
211 				const struct public_key_signature *sig)
212 {
213 	size_t tsize;
214 	int ret;
215 
216 	/* Variables as per RFC3447 sec 8.2.2 */
217 	const u8 *H = sig->digest;
218 	u8 *EM = NULL;
219 	MPI m = NULL;
220 	size_t k;
221 
222 	kenter("");
223 
224 	if (!RSA_ASN1_templates[sig->pkey_hash_algo].data)
225 		return -ENOTSUPP;
226 
227 	/* (1) Check the signature size against the public key modulus size */
228 	k = mpi_get_nbits(key->rsa.n);
229 	tsize = mpi_get_nbits(sig->rsa.s);
230 
231 	/* According to RFC 4880 sec 3.2, length of MPI is computed starting
232 	 * from most significant bit.  So the RFC 3447 sec 8.2.2 size check
233 	 * must be relaxed to conform with shorter signatures - so we fail here
234 	 * only if signature length is longer than modulus size.
235 	 */
236 	pr_devel("step 1: k=%zu size(S)=%zu\n", k, tsize);
237 	if (k < tsize) {
238 		ret = -EBADMSG;
239 		goto error;
240 	}
241 
242 	/* Round up and convert to octets */
243 	k = (k + 7) / 8;
244 
245 	/* (2b) Apply the RSAVP1 verification primitive to the public key */
246 	ret = RSAVP1(key, sig->rsa.s, &m);
247 	if (ret < 0)
248 		goto error;
249 
250 	/* (2c) Convert the message representative (m) to an encoded message
251 	 *      (EM) of length k octets.
252 	 *
253 	 *      NOTE!  The leading zero byte is suppressed by MPI, so we pass a
254 	 *      pointer to the _preceding_ byte to RSA_verify()!
255 	 */
256 	ret = RSA_I2OSP(m, k, &EM);
257 	if (ret < 0)
258 		goto error;
259 
260 	ret = RSA_verify(H, EM - 1, k, sig->digest_size,
261 			 RSA_ASN1_templates[sig->pkey_hash_algo].data,
262 			 RSA_ASN1_templates[sig->pkey_hash_algo].size);
263 
264 error:
265 	kfree(EM);
266 	mpi_free(m);
267 	kleave(" = %d", ret);
268 	return ret;
269 }
270 
271 const struct public_key_algorithm RSA_public_key_algorithm = {
272 	.name		= "RSA",
273 	.n_pub_mpi	= 2,
274 	.n_sec_mpi	= 3,
275 	.n_sig_mpi	= 1,
276 	.verify_signature = RSA_verify_signature,
277 };
278 EXPORT_SYMBOL_GPL(RSA_public_key_algorithm);
279