• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * asm/tbx.h
3  *
4  * Copyright (C) 2000-2012 Imagination Technologies.
5  *
6  * This program is free software; you can redistribute it and/or modify it under
7  * the terms of the GNU General Public License version 2 as published by the
8  * Free Software Foundation.
9  *
10  * Thread binary interface header
11  */
12 
13 #ifndef _ASM_METAG_TBX_H_
14 #define _ASM_METAG_TBX_H_
15 
16 /* for CACHEW_* values */
17 #include <asm/metag_isa.h>
18 /* for LINSYSEVENT_* addresses */
19 #include <asm/metag_mem.h>
20 
21 #ifdef  TBI_1_4
22 #ifndef TBI_MUTEXES_1_4
23 #define TBI_MUTEXES_1_4
24 #endif
25 #ifndef TBI_SEMAPHORES_1_4
26 #define TBI_SEMAPHORES_1_4
27 #endif
28 #ifndef TBI_ASYNC_SWITCH_1_4
29 #define TBI_ASYNC_SWITCH_1_4
30 #endif
31 #ifndef TBI_FASTINT_1_4
32 #define TBI_FASTINT_1_4
33 #endif
34 #endif
35 
36 
37 /* Id values in the TBI system describe a segment using an arbitrary
38    integer value and flags in the bottom 8 bits, the SIGPOLL value is
39    used in cases where control over blocking or polling behaviour is
40    needed. */
41 #define TBID_SIGPOLL_BIT    0x02 /* Set bit in an Id value to poll vs block */
42 /* Extended segment identifiers use strings in the string table */
43 #define TBID_IS_SEGSTR( Id ) (((Id) & (TBID_SEGTYPE_BITS>>1)) == 0)
44 
45 /* Segment identifiers contain the following related bit-fields */
46 #define TBID_SEGTYPE_BITS   0x0F /* One of the predefined segment types */
47 #define TBID_SEGTYPE_S      0
48 #define TBID_SEGSCOPE_BITS  0x30 /* Indicates the scope of the segment */
49 #define TBID_SEGSCOPE_S     4
50 #define TBID_SEGGADDR_BITS  0xC0 /* Indicates access possible via pGAddr */
51 #define TBID_SEGGADDR_S     6
52 
53 /* Segments of memory can only really contain a few types of data */
54 #define TBID_SEGTYPE_TEXT   0x02 /* Code segment */
55 #define TBID_SEGTYPE_DATA   0x04 /* Data segment */
56 #define TBID_SEGTYPE_STACK  0x06 /* Stack segment */
57 #define TBID_SEGTYPE_HEAP   0x0A /* Heap segment */
58 #define TBID_SEGTYPE_ROOT   0x0C /* Root block segments */
59 #define TBID_SEGTYPE_STRING 0x0E /* String table segment */
60 
61 /* Segments have one of three possible scopes */
62 #define TBID_SEGSCOPE_INIT     0 /* Temporary area for initialisation phase */
63 #define TBID_SEGSCOPE_LOCAL    1 /* Private to this thread */
64 #define TBID_SEGSCOPE_GLOBAL   2 /* Shared globally throughout the system */
65 #define TBID_SEGSCOPE_SHARED   3 /* Limited sharing between local/global */
66 
67 /* For segment specifier a further field in two of the remaining bits
68    indicates the usefulness of the pGAddr field in the segment descriptor
69    descriptor. */
70 #define TBID_SEGGADDR_NULL     0 /* pGAddr is NULL -> SEGSCOPE_(LOCAL|INIT) */
71 #define TBID_SEGGADDR_READ     1 /* Only read    via pGAddr */
72 #define TBID_SEGGADDR_WRITE    2 /* Full access  via pGAddr */
73 #define TBID_SEGGADDR_EXEC     3 /* Only execute via pGAddr */
74 
75 /* The following values are common to both segment and signal Id value and
76    live in the top 8 bits of the Id values. */
77 
78 /* The ISTAT bit indicates if segments are related to interrupt vs
79    background level interfaces a thread can still handle all triggers at
80    either level, but can also split these up if it wants to. */
81 #define TBID_ISTAT_BIT    0x01000000
82 #define TBID_ISTAT_S      24
83 
84 /* Privilege needed to access a segment is indicated by the next bit.
85 
86    This bit is set to mirror the current privilege level when starting a
87    search for a segment - setting it yourself toggles the automatically
88    generated state which is only useful to emulate unprivileged behaviour
89    or access unprivileged areas of memory while at privileged level. */
90 #define TBID_PSTAT_BIT    0x02000000
91 #define TBID_PSTAT_S      25
92 
93 /* The top six bits of a signal/segment specifier identifies a thread within
94    the system. This represents a segments owner. */
95 #define TBID_THREAD_BITS  0xFC000000
96 #define TBID_THREAD_S     26
97 
98 /* Special thread id values */
99 #define TBID_THREAD_NULL   (-32) /* Never matches any thread/segment id used */
100 #define TBID_THREAD_GLOBAL (-31) /* Things global to all threads */
101 #define TBID_THREAD_HOST   ( -1) /* Host interface */
102 #define TBID_THREAD_EXTIO  (TBID_THREAD_HOST)   /* Host based ExtIO i/f */
103 
104 /* Virtual Id's are used for external thread interface structures or the
105    above special Id's */
106 #define TBID_IS_VIRTTHREAD( Id ) ((Id) < 0)
107 
108 /* Real Id's are used for actual hardware threads that are local */
109 #define TBID_IS_REALTHREAD( Id ) ((Id) >= 0)
110 
111 /* Generate a segment Id given Thread, Scope, and Type */
112 #define TBID_SEG( Thread, Scope, Type )                           (\
113     ((Thread)<<TBID_THREAD_S) + ((Scope)<<TBID_SEGSCOPE_S) + (Type))
114 
115 /* Generate a signal Id given Thread and SigNum */
116 #define TBID_SIG( Thread, SigNum )                                        (\
117     ((Thread)<<TBID_THREAD_S) + ((SigNum)<<TBID_SIGNUM_S) + TBID_SIGNAL_BIT)
118 
119 /* Generate an Id that solely represents a thread - useful for cache ops */
120 #define TBID_THD( Thread ) ((Thread)<<TBID_THREAD_S)
121 #define TBID_THD_NULL      ((TBID_THREAD_NULL)  <<TBID_THREAD_S)
122 #define TBID_THD_GLOBAL    ((TBID_THREAD_GLOBAL)<<TBID_THREAD_S)
123 
124 /* Common exception handler (see TBID_SIGNUM_XXF below) receives hardware
125    generated fault codes TBIXXF_SIGNUM_xxF in it's SigNum parameter */
126 #define TBIXXF_SIGNUM_IIF   0x01 /* General instruction fault */
127 #define TBIXXF_SIGNUM_PGF   0x02 /* Privilege general fault */
128 #define TBIXXF_SIGNUM_DHF   0x03 /* Data access watchpoint HIT */
129 #define TBIXXF_SIGNUM_IGF   0x05 /* Code fetch general read failure */
130 #define TBIXXF_SIGNUM_DGF   0x07 /* Data access general read/write fault */
131 #define TBIXXF_SIGNUM_IPF   0x09 /* Code fetch page fault */
132 #define TBIXXF_SIGNUM_DPF   0x0B /* Data access page fault */
133 #define TBIXXF_SIGNUM_IHF   0x0D /* Instruction breakpoint HIT */
134 #define TBIXXF_SIGNUM_DWF   0x0F /* Data access read-only fault */
135 
136 /* Hardware signals communicate events between processing levels within a
137    single thread all the _xxF cases are exceptions and are routed via a
138    common exception handler, _SWx are software trap events and kicks including
139    __TBISignal generated kicks, and finally _TRx are hardware triggers */
140 #define TBID_SIGNUM_SW0     0x00 /* SWITCH GROUP 0 - Per thread user */
141 #define TBID_SIGNUM_SW1     0x01 /* SWITCH GROUP 1 - Per thread system */
142 #define TBID_SIGNUM_SW2     0x02 /* SWITCH GROUP 2 - Internal global request */
143 #define TBID_SIGNUM_SW3     0x03 /* SWITCH GROUP 3 - External global request */
144 #ifdef TBI_1_4
145 #define TBID_SIGNUM_FPE     0x04 /* Deferred exception - Any IEEE 754 exception */
146 #define TBID_SIGNUM_FPD     0x05 /* Deferred exception - Denormal exception */
147 /* Reserved 0x6 for a reserved deferred exception */
148 #define TBID_SIGNUM_BUS     0x07 /* Deferred exception - Bus Error */
149 /* Reserved 0x08-0x09 */
150 #else
151 /* Reserved 0x04-0x09 */
152 #endif
153 #define TBID_SIGNUM_SWS     0x0A /* KICK received with SigMask != 0 */
154 #define TBID_SIGNUM_SWK     0x0B /* KICK received with SigMask == 0 */
155 /* Reserved 0x0C-0x0F */
156 #define TBID_SIGNUM_TRT     0x10 /* Timer trigger */
157 #define TBID_SIGNUM_LWK     0x11 /* Low level kick (handler provided by TBI) */
158 #define TBID_SIGNUM_XXF     0x12 /* Fault handler - receives ALL _xxF sigs */
159 #ifdef TBI_1_4
160 #define TBID_SIGNUM_DFR     0x13 /* Deferred Exception handler */
161 #else
162 #define TBID_SIGNUM_FPE     0x13 /* FPE Exception handler */
163 #endif
164 /* External trigger one group 0x14 to 0x17 - per thread */
165 #define TBID_SIGNUM_TR1(Thread) (0x14+(Thread))
166 #define TBID_SIGNUM_T10     0x14
167 #define TBID_SIGNUM_T11     0x15
168 #define TBID_SIGNUM_T12     0x16
169 #define TBID_SIGNUM_T13     0x17
170 /* External trigger two group 0x18 to 0x1b - per thread */
171 #define TBID_SIGNUM_TR2(Thread) (0x18+(Thread))
172 #define TBID_SIGNUM_T20     0x18
173 #define TBID_SIGNUM_T21     0x19
174 #define TBID_SIGNUM_T22     0x1A
175 #define TBID_SIGNUM_T23     0x1B
176 #define TBID_SIGNUM_TR3     0x1C /* External trigger N-4 (global) */
177 #define TBID_SIGNUM_TR4     0x1D /* External trigger N-3 (global) */
178 #define TBID_SIGNUM_TR5     0x1E /* External trigger N-2 (global) */
179 #define TBID_SIGNUM_TR6     0x1F /* External trigger N-1 (global) */
180 #define TBID_SIGNUM_MAX     0x1F
181 
182 /* Return the trigger register(TXMASK[I]/TXSTAT[I]) bits related to
183    each hardware signal, sometimes this is a many-to-one relationship. */
184 #define TBI_TRIG_BIT(SigNum)                                      (\
185     ((SigNum) >= TBID_SIGNUM_TRT) ? 1<<((SigNum)-TBID_SIGNUM_TRT) :\
186     ( ((SigNum) == TBID_SIGNUM_SWS) ||                             \
187       ((SigNum) == TBID_SIGNUM_SWK)    ) ?                         \
188                          TXSTAT_KICK_BIT : TXSTATI_BGNDHALT_BIT    )
189 
190 /* Return the hardware trigger vector number for entries in the
191    HWVEC0EXT table that will generate the required internal trigger. */
192 #define TBI_TRIG_VEC(SigNum)                                      (\
193     ((SigNum) >= TBID_SIGNUM_T10) ? ((SigNum)-TBID_SIGNUM_TRT) : -1)
194 
195 /* Default trigger masks for each thread at background/interrupt level */
196 #define TBI_TRIGS_INIT( Thread )                           (\
197     TXSTAT_KICK_BIT + TBI_TRIG_BIT(TBID_SIGNUM_TR1(Thread)) )
198 #define TBI_INTS_INIT( Thread )                            (\
199     TXSTAT_KICK_BIT + TXSTATI_BGNDHALT_BIT                  \
200                     + TBI_TRIG_BIT(TBID_SIGNUM_TR2(Thread)) )
201 
202 #ifndef __ASSEMBLY__
203 /* A spin-lock location is a zero-initialised location in memory */
204 typedef volatile int TBISPIN, *PTBISPIN;
205 
206 /* A kick location is a hardware location you can write to
207  * in order to cause a kick
208  */
209 typedef volatile int *PTBIKICK;
210 
211 #if defined(METAC_1_0) || defined(METAC_1_1)
212 /* Macro to perform a kick */
213 #define TBI_KICK( pKick ) do { pKick[0] = 1; } while (0)
214 #else
215 /* #define METAG_LIN_VALUES before including machine.h if required */
216 #ifdef LINSYSEVENT_WR_COMBINE_FLUSH
217 /* Macro to perform a kick - write combiners must be flushed */
218 #define TBI_KICK( pKick )                                                do {\
219     volatile int *pFlush = (volatile int *) LINSYSEVENT_WR_COMBINE_FLUSH;    \
220     pFlush[0] = 0;                                                           \
221     pKick[0]  = 1;                                                } while (0)
222 #endif
223 #endif /* if defined(METAC_1_0) || defined(METAC_1_1) */
224 #endif /* ifndef __ASSEMBLY__ */
225 
226 #ifndef __ASSEMBLY__
227 /* 64-bit dual unit state value */
228 typedef struct _tbidual_tag_ {
229     /* 32-bit value from a pair of registers in data or address units */
230     int U0, U1;
231 } TBIDUAL, *PTBIDUAL;
232 #endif /* ifndef __ASSEMBLY__ */
233 
234 /* Byte offsets of fields within TBIDUAL */
235 #define TBIDUAL_U0      (0)
236 #define TBIDUAL_U1      (4)
237 
238 #define TBIDUAL_BYTES   (8)
239 
240 #define TBICTX_CRIT_BIT 0x0001  /* ASync state saved in TBICTX */
241 #define TBICTX_SOFT_BIT 0x0002  /* Sync state saved in TBICTX (other bits 0) */
242 #ifdef TBI_FASTINT_1_4
243 #define TBICTX_FINT_BIT 0x0004  /* Using Fast Interrupts */
244 #endif
245 #define TBICTX_FPAC_BIT 0x0010  /* FPU state in TBICTX, FPU active on entry */
246 #define TBICTX_XMCC_BIT 0x0020  /* Bit to identify a MECC task */
247 #define TBICTX_CBUF_BIT 0x0040  /* Hardware catch buffer flag from TXSTATUS */
248 #define TBICTX_CBRP_BIT 0x0080  /* Read pipeline dirty from TXDIVTIME */
249 #define TBICTX_XDX8_BIT 0x0100  /* Saved DX.8 to DX.15 too */
250 #define TBICTX_XAXX_BIT 0x0200  /* Save remaining AX registers to AX.7 */
251 #define TBICTX_XHL2_BIT 0x0400  /* Saved hardware loop registers too */
252 #define TBICTX_XTDP_BIT 0x0800  /* Saved DSP registers too */
253 #define TBICTX_XEXT_BIT 0x1000  /* Set if TBICTX.Ext.Ctx contains extended
254                                    state save area, otherwise TBICTX.Ext.AX2
255                                    just holds normal A0.2 and A1.2 states */
256 #define TBICTX_WAIT_BIT 0x2000  /* Causes wait for trigger - sticky toggle */
257 #define TBICTX_XCBF_BIT 0x4000  /* Catch buffer or RD extracted into TBICTX */
258 #define TBICTX_PRIV_BIT 0x8000  /* Set if system uses 'privileged' model */
259 
260 #ifdef METAC_1_0
261 #define TBICTX_XAX3_BIT 0x0200  /* Saved AX.5 to AX.7 for XAXX */
262 #define TBICTX_AX_REGS  5       /* Ax.0 to Ax.4 are core GP regs on CHORUS */
263 #else
264 #define TBICTX_XAX4_BIT 0x0200  /* Saved AX.4 to AX.7 for XAXX */
265 #define TBICTX_AX_REGS  4       /* Default is Ax.0 to Ax.3 */
266 #endif
267 
268 #ifdef TBI_1_4
269 #define TBICTX_CFGFPU_FX16_BIT  0x00010000               /* Save FX.8 to FX.15 too */
270 
271 /* The METAC_CORE_ID_CONFIG field indicates omitted DSP resources */
272 #define METAC_COREID_CFGXCTX_MASK( Value )                                 (\
273 	( (((Value & METAC_COREID_CFGDSP_BITS)>>                                \
274 	             METAC_COREID_CFGDSP_S      ) == METAC_COREID_CFGDSP_MIN) ? \
275 	         ~(TBICTX_XHL2_BIT+TBICTX_XTDP_BIT+                             \
276 	           TBICTX_XAXX_BIT+TBICTX_XDX8_BIT ) : ~0U )                    )
277 #endif
278 
279 /* Extended context state provides a standardised method for registering the
280    arguments required by __TBICtxSave to save the additional register states
281    currently in use by non general purpose code. The state of the __TBIExtCtx
282    variable in the static space of the thread forms an extension of the base
283    context of the thread.
284 
285    If ( __TBIExtCtx.Ctx.SaveMask == 0 ) then pExt is assumed to be NULL and
286    the empty state of  __TBIExtCtx is represented by the fact that
287    TBICTX.SaveMask does not have the bit TBICTX_XEXT_BIT set.
288 
289    If ( __TBIExtCtx.Ctx.SaveMask != 0 ) then pExt should point at a suitably
290    sized extended context save area (usually at the end of the stack space
291    allocated by the current routine). This space should allow for the
292    displaced state of A0.2 and A1.2 to be saved along with the other extended
293    states indicated via __TBIExtCtx.Ctx.SaveMask. */
294 #ifndef __ASSEMBLY__
295 typedef union _tbiextctx_tag_ {
296     long long Val;
297     TBIDUAL AX2;
298     struct _tbiextctxext_tag {
299 #ifdef TBI_1_4
300         short DspramSizes;      /* DSPRAM sizes. Encoding varies between
301                                    TBICtxAlloc and the ECH scheme. */
302 #else
303         short Reserved0;
304 #endif
305         short SaveMask;         /* Flag bits for state saved */
306         PTBIDUAL pExt;          /* AX[2] state saved first plus Xxxx state */
307 
308     } Ctx;
309 
310 } TBIEXTCTX, *PTBIEXTCTX;
311 
312 /* Automatic registration of extended context save for __TBINestInts */
313 extern TBIEXTCTX __TBIExtCtx;
314 #endif /* ifndef __ASSEMBLY__ */
315 
316 /* Byte offsets of fields within TBIEXTCTX */
317 #define TBIEXTCTX_AX2           (0)
318 #define TBIEXTCTX_Ctx           (0)
319 #define TBIEXTCTX_Ctx_SaveMask  (TBIEXTCTX_Ctx + 2)
320 #define TBIEXTCTX_Ctx_pExt      (TBIEXTCTX_Ctx + 2 + 2)
321 
322 /* Extended context data size calculation constants */
323 #define TBICTXEXT_BYTES          (8)
324 #define TBICTXEXTBB8_BYTES     (8*8)
325 #define TBICTXEXTAX3_BYTES     (3*8)
326 #define TBICTXEXTAX4_BYTES     (4*8)
327 #ifdef METAC_1_0
328 #define TBICTXEXTAXX_BYTES     TBICTXEXTAX3_BYTES
329 #else
330 #define TBICTXEXTAXX_BYTES     TBICTXEXTAX4_BYTES
331 #endif
332 #define TBICTXEXTHL2_BYTES     (3*8)
333 #define TBICTXEXTTDR_BYTES    (27*8)
334 #define TBICTXEXTTDP_BYTES TBICTXEXTTDR_BYTES
335 
336 #ifdef TBI_1_4
337 #define TBICTXEXTFX8_BYTES	(4*8)
338 #define TBICTXEXTFPAC_BYTES	(1*4 + 2*2 + 4*8)
339 #define TBICTXEXTFACF_BYTES	(3*8)
340 #endif
341 
342 /* Maximum flag bits to be set via the TBICTX_EXTSET macro */
343 #define TBICTXEXT_MAXBITS  (TBICTX_XEXT_BIT|                \
344                             TBICTX_XDX8_BIT|TBICTX_XAXX_BIT|\
345                             TBICTX_XHL2_BIT|TBICTX_XTDP_BIT )
346 
347 /* Maximum size of the extended context save area for current variant */
348 #define TBICTXEXT_MAXBYTES (TBICTXEXT_BYTES+TBICTXEXTBB8_BYTES+\
349                          TBICTXEXTAXX_BYTES+TBICTXEXTHL2_BYTES+\
350                                             TBICTXEXTTDP_BYTES )
351 
352 #ifdef TBI_FASTINT_1_4
353 /* Maximum flag bits to be set via the TBICTX_EXTSET macro */
354 #define TBICTX2EXT_MAXBITS (TBICTX_XDX8_BIT|TBICTX_XAXX_BIT|\
355                             TBICTX_XHL2_BIT|TBICTX_XTDP_BIT )
356 
357 /* Maximum size of the extended context save area for current variant */
358 #define TBICTX2EXT_MAXBYTES (TBICTXEXTBB8_BYTES+TBICTXEXTAXX_BYTES\
359                              +TBICTXEXTHL2_BYTES+TBICTXEXTTDP_BYTES )
360 #endif
361 
362 /* Specify extended resources being used by current routine, code must be
363    assembler generated to utilise extended resources-
364 
365         MOV     D0xxx,A0StP             ; Perform alloca - routine should
366         ADD     A0StP,A0StP,#SaveSize   ; setup/use A0FrP to access locals
367         MOVT    D1xxx,#SaveMask         ; TBICTX_XEXT_BIT MUST be set
368         SETL    [A1GbP+#OG(___TBIExtCtx)],D0xxx,D1xxx
369 
370     NB: OG(___TBIExtCtx) is a special case supported for SETL/GETL operations
371         on 64-bit sizes structures only, other accesses must be based on use
372         of OGA(___TBIExtCtx).
373 
374    At exit of routine-
375 
376         MOV     D0xxx,#0                ; Clear extended context save state
377         MOV     D1xxx,#0
378         SETL    [A1GbP+#OG(___TBIExtCtx)],D0xxx,D1xxx
379         SUB     A0StP,A0StP,#SaveSize   ; If original A0StP required
380 
381     NB: Both the setting and clearing of the whole __TBIExtCtx MUST be done
382         atomically in one 64-bit write operation.
383 
384    For simple interrupt handling only via __TBINestInts there should be no
385    impact of the __TBIExtCtx system. If pre-emptive scheduling is being
386    performed however (assuming __TBINestInts has already been called earlier
387    on) then the following logic will correctly call __TBICtxSave if required
388    and clear out the currently selected background task-
389 
390         if ( __TBIExtCtx.Ctx.SaveMask & TBICTX_XEXT_BIT )
391         {
392             / * Store extended states in pCtx * /
393             State.Sig.SaveMask |= __TBIExtCtx.Ctx.SaveMask;
394 
395             (void) __TBICtxSave( State, (void *) __TBIExtCtx.Ctx.pExt );
396             __TBIExtCtx.Val   = 0;
397         }
398 
399     and when restoring task states call __TBICtxRestore-
400 
401         / * Restore state from pCtx * /
402         State.Sig.pCtx     = pCtx;
403         State.Sig.SaveMask = pCtx->SaveMask;
404 
405         if ( State.Sig.SaveMask & TBICTX_XEXT_BIT )
406         {
407             / * Restore extended states from pCtx * /
408             __TBIExtCtx.Val = pCtx->Ext.Val;
409 
410             (void) __TBICtxRestore( State, (void *) __TBIExtCtx.Ctx.pExt );
411         }
412 
413  */
414 
415 /* Critical thread state save area */
416 #ifndef __ASSEMBLY__
417 typedef struct _tbictx_tag_ {
418     /* TXSTATUS_FLAG_BITS and TXSTATUS_LSM_STEP_BITS from TXSTATUS */
419     short Flags;
420     /* Mask indicates any extended context state saved; 0 -> Never run */
421     short SaveMask;
422     /* Saved PC value */
423     int CurrPC;
424     /* Saved critical register states */
425     TBIDUAL DX[8];
426     /* Background control register states - for cores without catch buffer
427        base in DIVTIME the TXSTATUS bits RPVALID and RPMASK are stored with
428        the real state TXDIVTIME in CurrDIVTIME */
429     int CurrRPT, CurrBPOBITS, CurrMODE, CurrDIVTIME;
430     /* Saved AX register states */
431     TBIDUAL AX[2];
432     TBIEXTCTX Ext;
433     TBIDUAL AX3[TBICTX_AX_REGS-3];
434 
435     /* Any CBUF state to be restored by a handler return must be stored here.
436        Other extended state can be stored anywhere - see __TBICtxSave and
437        __TBICtxRestore. */
438 
439 } TBICTX, *PTBICTX;
440 
441 #ifdef TBI_FASTINT_1_4
442 typedef struct _tbictx2_tag_ {
443     TBIDUAL AX[2];    /* AU.0, AU.1 */
444     TBIDUAL DX[2];    /* DU.0, DU.4 */
445     int     CurrMODE;
446     int     CurrRPT;
447     int     CurrSTATUS;
448     void   *CurrPC;   /* PC in PC address space */
449 } TBICTX2, *PTBICTX2;
450 /* TBICTX2 is followed by:
451  *   TBICTXEXTCB0                if TXSTATUS.CBMarker
452  *   TBIDUAL * TXSTATUS.IRPCount if TXSTATUS.IRPCount > 0
453  *   TBICTXGP                    if using __TBIStdRootIntHandler or __TBIStdCtxSwitchRootIntHandler
454  */
455 
456 typedef struct _tbictxgp_tag_ {
457     short    DspramSizes;
458     short    SaveMask;
459     void    *pExt;
460     TBIDUAL  DX[6]; /* DU.1-DU.3, DU.5-DU.7 */
461     TBIDUAL  AX[2]; /* AU.2-AU.3 */
462 } TBICTXGP, *PTBICTXGP;
463 
464 #define TBICTXGP_DspramSizes (0)
465 #define TBICTXGP_SaveMask    (TBICTXGP_DspramSizes + 2)
466 #define TBICTXGP_MAX_BYTES   (2 + 2 + 4 + 8*(6+2))
467 
468 #endif
469 #endif /* ifndef __ASSEMBLY__ */
470 
471 /* Byte offsets of fields within TBICTX */
472 #define TBICTX_Flags            (0)
473 #define TBICTX_SaveMask         (2)
474 #define TBICTX_CurrPC           (4)
475 #define TBICTX_DX               (2 + 2 + 4)
476 #define TBICTX_CurrRPT          (2 + 2 + 4 + 8 * 8)
477 #define TBICTX_CurrMODE         (2 + 2 + 4 + 8 * 8 + 4 + 4)
478 #define TBICTX_AX               (2 + 2 + 4 + 8 * 8 + 4 + 4 + 4 + 4)
479 #define TBICTX_Ext              (2 + 2 + 4 + 8 * 8 + 4 + 4 + 4 + 4 + 2 * 8)
480 #define TBICTX_Ext_AX2          (TBICTX_Ext + TBIEXTCTX_AX2)
481 #define TBICTX_Ext_AX2_U0       (TBICTX_Ext + TBIEXTCTX_AX2 + TBIDUAL_U0)
482 #define TBICTX_Ext_AX2_U1       (TBICTX_Ext + TBIEXTCTX_AX2 + TBIDUAL_U1)
483 #define TBICTX_Ext_Ctx_pExt     (TBICTX_Ext + TBIEXTCTX_Ctx_pExt)
484 #define TBICTX_Ext_Ctx_SaveMask (TBICTX_Ext + TBIEXTCTX_Ctx_SaveMask)
485 
486 #ifdef TBI_FASTINT_1_4
487 #define TBICTX2_BYTES (8 * 2 + 8 * 2 + 4 + 4 + 4 + 4)
488 #define TBICTXEXTCB0_BYTES (4 + 4 + 8)
489 
490 #define TBICTX2_CRIT_MAX_BYTES (TBICTX2_BYTES + TBICTXEXTCB0_BYTES + 6 * TBIDUAL_BYTES)
491 #define TBI_SWITCH_NEXT_PC(PC, EXTRA) ((PC) + (EXTRA & 1) ? 8 : 4)
492 #endif
493 
494 #ifndef __ASSEMBLY__
495 /* Extended thread state save areas - catch buffer state element */
496 typedef struct _tbictxextcb0_tag_ {
497     /* Flags data and address value - see METAC_CATCH_VALUES in machine.h */
498     unsigned long CBFlags, CBAddr;
499     /* 64-bit data */
500     TBIDUAL CBData;
501 
502 } TBICTXEXTCB0, *PTBICTXEXTCB0;
503 
504 /* Read pipeline state saved on later cores after single catch buffer slot */
505 typedef struct _tbictxextrp6_tag_ {
506     /* RPMask is TXSTATUS_RPMASK_BITS only, reserved is undefined */
507     unsigned long RPMask, Reserved0;
508     TBIDUAL CBData[6];
509 
510 } TBICTXEXTRP6, *PTBICTXEXTRP6;
511 
512 /* Extended thread state save areas - 8 DU register pairs */
513 typedef struct _tbictxextbb8_tag_ {
514     /* Remaining Data unit registers in 64-bit pairs */
515     TBIDUAL UX[8];
516 
517 } TBICTXEXTBB8, *PTBICTXEXTBB8;
518 
519 /* Extended thread state save areas - 3 AU register pairs */
520 typedef struct _tbictxextbb3_tag_ {
521     /* Remaining Address unit registers in 64-bit pairs */
522     TBIDUAL UX[3];
523 
524 } TBICTXEXTBB3, *PTBICTXEXTBB3;
525 
526 /* Extended thread state save areas - 4 AU register pairs or 4 FX pairs */
527 typedef struct _tbictxextbb4_tag_ {
528     /* Remaining Address unit or FPU registers in 64-bit pairs */
529     TBIDUAL UX[4];
530 
531 } TBICTXEXTBB4, *PTBICTXEXTBB4;
532 
533 /* Extended thread state save areas - Hardware loop states (max 2) */
534 typedef struct _tbictxexthl2_tag_ {
535     /* Hardware looping register states */
536     TBIDUAL Start, End, Count;
537 
538 } TBICTXEXTHL2, *PTBICTXEXTHL2;
539 
540 /* Extended thread state save areas - DSP register states */
541 typedef struct _tbictxexttdp_tag_ {
542     /* DSP 32-bit accumulator register state (Bits 31:0 of ACX.0) */
543     TBIDUAL Acc32[1];
544     /* DSP > 32-bit accumulator bits 63:32 of ACX.0 (zero-extended) */
545     TBIDUAL Acc64[1];
546     /* Twiddle register state, and three phase increment states */
547     TBIDUAL PReg[4];
548     /* Modulo region size, padded to 64-bits */
549     int CurrMRSIZE, Reserved0;
550 
551 } TBICTXEXTTDP, *PTBICTXEXTTDP;
552 
553 /* Extended thread state save areas - DSP register states including DSP RAM */
554 typedef struct _tbictxexttdpr_tag_ {
555     /* DSP 32-bit accumulator register state (Bits 31:0 of ACX.0) */
556     TBIDUAL Acc32[1];
557     /* DSP 40-bit accumulator register state (Bits 39:8 of ACX.0) */
558     TBIDUAL Acc40[1];
559     /* DSP RAM Pointers */
560     TBIDUAL RP0[2],  WP0[2],  RP1[2],  WP1[2];
561     /* DSP RAM Increments */
562     TBIDUAL RPI0[2], WPI0[2], RPI1[2], WPI1[2];
563     /* Template registers */
564     unsigned long Tmplt[16];
565     /* Modulo address region size and DSP RAM module region sizes */
566     int CurrMRSIZE, CurrDRSIZE;
567 
568 } TBICTXEXTTDPR, *PTBICTXEXTTDPR;
569 
570 #ifdef TBI_1_4
571 /* The METAC_ID_CORE register state is a marker for the FPU
572    state that is then stored after this core header structure.  */
573 #define TBICTXEXTFPU_CONFIG_MASK  ( (METAC_COREID_NOFPACC_BIT+     \
574                                      METAC_COREID_CFGFPU_BITS ) << \
575                                      METAC_COREID_CONFIG_BITS       )
576 
577 /* Recorded FPU exception state from TXDEFR in DefrFpu */
578 #define TBICTXEXTFPU_DEFRFPU_MASK (TXDEFR_FPU_FE_BITS)
579 
580 /* Extended thread state save areas - FPU register states */
581 typedef struct _tbictxextfpu_tag_ {
582     /* Stored METAC_CORE_ID CONFIG */
583     int CfgFpu;
584     /* Stored deferred TXDEFR bits related to FPU
585      *
586      * This is encoded as follows in order to fit into 16-bits:
587      * DefrFPU:15 - 14 <= 0
588      *        :13 -  8 <= TXDEFR:21-16
589      *        : 7 -  6 <= 0
590      *        : 5 -  0 <= TXDEFR:5-0
591      */
592     short DefrFpu;
593 
594     /* TXMODE bits related to FPU */
595     short ModeFpu;
596 
597     /* FPU Even/Odd register states */
598     TBIDUAL FX[4];
599 
600     /* if CfgFpu & TBICTX_CFGFPU_FX16_BIT  -> 1 then TBICTXEXTBB4 holds FX.8-15 */
601     /* if CfgFpu & TBICTX_CFGFPU_NOACF_BIT -> 0 then TBICTXEXTFPACC holds state */
602 } TBICTXEXTFPU, *PTBICTXEXTFPU;
603 
604 /* Extended thread state save areas - FPU accumulator state */
605 typedef struct _tbictxextfpacc_tag_ {
606     /* FPU accumulator register state - three 64-bit parts */
607     TBIDUAL FAcc32[3];
608 
609 } TBICTXEXTFPACC, *PTBICTXEXTFPACC;
610 #endif
611 
612 /* Prototype TBI structure */
613 struct _tbi_tag_ ;
614 
615 /* A 64-bit return value used commonly in the TBI APIs */
616 typedef union _tbires_tag_ {
617     /* Save and load this value to get/set the whole result quickly */
618     long long Val;
619 
620     /* Parameter of a fnSigs or __TBICtx* call */
621     struct _tbires_sig_tag_ {
622         /* TXMASK[I] bits zeroed upto and including current trigger level */
623         unsigned short TrigMask;
624         /* Control bits for handlers - see PTBIAPIFN documentation below */
625         unsigned short SaveMask;
626         /* Pointer to the base register context save area of the thread */
627         PTBICTX pCtx;
628     } Sig;
629 
630     /* Result of TBIThrdPrivId call */
631     struct _tbires_thrdprivid_tag_ {
632         /* Basic thread identifier; just TBID_THREAD_BITS */
633         int Id;
634         /* None thread number bits; TBID_ISTAT_BIT+TBID_PSTAT_BIT */
635         int Priv;
636     } Thrd;
637 
638     /* Parameter and Result of a __TBISwitch call */
639     struct _tbires_switch_tag_ {
640         /* Parameter passed across context switch */
641         void *pPara;
642         /* Thread context of other Thread includng restore flags */
643         PTBICTX pCtx;
644     } Switch;
645 
646     /* For extended S/W events only */
647     struct _tbires_ccb_tag_ {
648         void *pCCB;
649         int COff;
650     } CCB;
651 
652     struct _tbires_tlb_tag_ {
653         int Leaf;  /* TLB Leaf data */
654         int Flags; /* TLB Flags */
655     } Tlb;
656 
657 #ifdef TBI_FASTINT_1_4
658     struct _tbires_intr_tag_ {
659       short    TrigMask;
660       short    SaveMask;
661       PTBICTX2 pCtx;
662     } Intr;
663 #endif
664 
665 } TBIRES, *PTBIRES;
666 #endif /* ifndef __ASSEMBLY__ */
667 
668 #ifndef __ASSEMBLY__
669 /* Prototype for all signal handler functions, called via ___TBISyncTrigger or
670    ___TBIASyncTrigger.
671 
672    State.Sig.TrigMask will indicate the bits set within TXMASKI at
673           the time of the handler call that have all been cleared to prevent
674           nested interrupt occuring immediately.
675 
676    State.Sig.SaveMask is a bit-mask which will be set to Zero when a trigger
677           occurs at background level and TBICTX_CRIT_BIT and optionally
678           TBICTX_CBUF_BIT when a trigger occurs at interrupt level.
679 
680           TBICTX_CBUF_BIT reflects the state of TXSTATUS_CBMARKER_BIT for
681           the interrupted background thread.
682 
683    State.Sig.pCtx will point at a TBICTX structure generated to hold the
684           critical state of the interrupted thread at interrupt level and
685           should be set to NULL when called at background level.
686 
687    Triggers will indicate the status of TXSTAT or TXSTATI sampled by the
688           code that called the handler.
689 
690    InstOrSWSId is defined firstly as 'Inst' if the SigNum is TBID_SIGNUM_SWx
691           and hold the actual SWITCH instruction detected, secondly if SigNum
692           is TBID_SIGNUM_SWS the 'SWSId' is defined to hold the Id of the
693           software signal detected, in other cases the value of this
694           parameter is undefined.
695 
696    pTBI   points at the PTBI structure related to the thread and processing
697           level involved.
698 
699    TBIRES return value at both processing levels is similar in terms of any
700           changes that the handler makes. By default the State argument value
701           passed in should be returned.
702 
703       Sig.TrigMask value is bits to OR back into TXMASKI when the handler
704           completes to enable currently disabled interrupts.
705 
706       Sig.SaveMask value is ignored.
707 
708       Sig.pCtx is ignored.
709 
710  */
711 typedef TBIRES (*PTBIAPIFN)( TBIRES State, int SigNum,
712                              int Triggers, int InstOrSWSId,
713                              volatile struct _tbi_tag_ *pTBI );
714 #endif /* ifndef __ASSEMBLY__ */
715 
716 #ifndef __ASSEMBLY__
717 /* The global memory map is described by a list of segment descriptors */
718 typedef volatile struct _tbiseg_tag_ {
719     volatile struct _tbiseg_tag_ *pLink;
720     int Id;                           /* Id of the segment */
721     TBISPIN Lock;                     /* Spin-lock for struct (normally 0) */
722     unsigned int Bytes;               /* Size of region in bytes */
723     void *pGAddr;                     /* Base addr of region in global space */
724     void *pLAddr;                     /* Base addr of region in local space */
725     int Data[2];                      /* Segment specific data (may be extended) */
726 
727 } TBISEG, *PTBISEG;
728 #endif /* ifndef __ASSEMBLY__ */
729 
730 /* Offsets of fields in TBISEG structure */
731 #define TBISEG_pLink    ( 0)
732 #define TBISEG_Id       ( 4)
733 #define TBISEG_Lock     ( 8)
734 #define TBISEG_Bytes    (12)
735 #define TBISEG_pGAddr   (16)
736 #define TBISEG_pLAddr   (20)
737 #define TBISEG_Data     (24)
738 
739 #ifndef __ASSEMBLY__
740 typedef volatile struct _tbi_tag_ {
741     int SigMask;                      /* Bits set to represent S/W events */
742     PTBIKICK pKick;                   /* Kick addr for S/W events */
743     void *pCCB;                       /* Extended S/W events */
744     PTBISEG pSeg;                     /* Related segment structure */
745     PTBIAPIFN fnSigs[TBID_SIGNUM_MAX+1];/* Signal handler API table */
746 } *PTBI, TBI;
747 #endif /* ifndef __ASSEMBLY__ */
748 
749 /* Byte offsets of fields within TBI */
750 #define TBI_SigMask     (0)
751 #define TBI_pKick       (4)
752 #define TBI_pCCB        (8)
753 #define TBI_pSeg       (12)
754 #define TBI_fnSigs     (16)
755 
756 #ifdef TBI_1_4
757 #ifndef __ASSEMBLY__
758 /* This handler should be used for TBID_SIGNUM_DFR */
759 extern TBIRES __TBIHandleDFR ( TBIRES State, int SigNum,
760                                int Triggers, int InstOrSWSId,
761                                volatile struct _tbi_tag_ *pTBI );
762 #endif
763 #endif
764 
765 /* String table entry - special values */
766 #define METAG_TBI_STRS (0x5300) /* Tag      : If entry is valid */
767 #define METAG_TBI_STRE (0x4500) /* Tag      : If entry is end of table */
768 #define METAG_TBI_STRG (0x4700) /* Tag      : If entry is a gap */
769 #define METAG_TBI_STRX (0x5A00) /* TransLen : If no translation present */
770 
771 #ifndef __ASSEMBLY__
772 typedef volatile struct _tbistr_tag_ {
773     short Bytes;                      /* Length of entry in Bytes */
774     short Tag;                        /* Normally METAG_TBI_STRS(0x5300) */
775     short Len;                        /* Length of the string entry (incl null) */
776     short TransLen;                   /* Normally METAG_TBI_STRX(0x5A00) */
777     char String[8];                   /* Zero terminated (may-be bigger) */
778 
779 } TBISTR, *PTBISTR;
780 #endif /* ifndef __ASSEMBLY__ */
781 
782 /* Cache size information - available as fields of Data[1] of global heap
783    segment */
784 #define METAG_TBI_ICACHE_SIZE_S    0             /* see comments below */
785 #define METAG_TBI_ICACHE_SIZE_BITS 0x0000000F
786 #define METAG_TBI_ICACHE_FILL_S    4
787 #define METAG_TBI_ICACHE_FILL_BITS 0x000000F0
788 #define METAG_TBI_DCACHE_SIZE_S    8
789 #define METAG_TBI_DCACHE_SIZE_BITS 0x00000F00
790 #define METAG_TBI_DCACHE_FILL_S    12
791 #define METAG_TBI_DCACHE_FILL_BITS 0x0000F000
792 
793 /* METAG_TBI_xCACHE_SIZE
794    Describes the physical cache size rounded up to the next power of 2
795    relative to a 16K (2^14) cache. These sizes are encoded as a signed addend
796    to this base power of 2, for example
797       4K -> 2^12 -> -2  (i.e. 12-14)
798       8K -> 2^13 -> -1
799      16K -> 2^14 ->  0
800      32K -> 2^15 -> +1
801      64K -> 2^16 -> +2
802     128K -> 2^17 -> +3
803 
804    METAG_TBI_xCACHE_FILL
805    Describes the physical cache size within the power of 2 area given by
806    the value above. For example a 10K cache may be represented as having
807    nearest size 16K with a fill of 10 sixteenths. This is encoded as the
808    number of unused 1/16ths, for example
809      0000 ->  0 -> 16/16
810      0001 ->  1 -> 15/16
811      0010 ->  2 -> 14/16
812      ...
813      1111 -> 15 ->  1/16
814  */
815 
816 #define METAG_TBI_CACHE_SIZE_BASE_LOG2 14
817 
818 /* Each declaration made by this macro generates a TBISTR entry */
819 #ifndef __ASSEMBLY__
820 #define TBISTR_DECL( Name, Str )                                       \
821     __attribute__ ((__section__ (".tbistr") )) const char Name[] = #Str
822 #endif
823 
824 /* META timer values - see below for Timer support routines */
825 #define TBI_TIMERWAIT_MIN (-16)         /* Minimum 'recommended' period */
826 #define TBI_TIMERWAIT_MAX (-0x7FFFFFFF) /* Maximum 'recommended' period */
827 
828 #ifndef __ASSEMBLY__
829 /* These macros allow direct access from C to any register known to the
830    assembler or defined in machine.h. Example candidates are TXTACTCYC,
831    TXIDLECYC, and TXPRIVEXT. Note that when higher level macros and routines
832    like the timer and trigger handling features below these should be used in
833    preference to this direct low-level access mechanism. */
834 #define TBI_GETREG( Reg )                                  __extension__ ({\
835    int __GRValue;                                                          \
836    __asm__ volatile ("MOV\t%0," #Reg "\t/* (*TBI_GETREG OK) */" :          \
837                      "=r" (__GRValue) );                                   \
838     __GRValue;                                                            })
839 
840 #define TBI_SETREG( Reg, Value )                                       do {\
841    int __SRValue = Value;                                                  \
842    __asm__ volatile ("MOV\t" #Reg ",%0\t/* (*TBI_SETREG OK) */" :          \
843                      : "r" (__SRValue) );                       } while (0)
844 
845 #define TBI_SWAPREG( Reg, Value )                                      do {\
846    int __XRValue = (Value);                                                \
847    __asm__ volatile ("SWAP\t" #Reg ",%0\t/* (*TBI_SWAPREG OK) */" :        \
848                      "=r" (__XRValue) : "0" (__XRValue) );                 \
849    Value = __XRValue;                                           } while (0)
850 
851 /* Obtain and/or release global critical section lock given that interrupts
852    are already disabled and/or should remain disabled. */
853 #define TBI_NOINTSCRITON                                             do {\
854    __asm__ volatile ("LOCK1\t\t/* (*TBI_NOINTSCRITON OK) */");} while (0)
855 #define TBI_NOINTSCRITOFF                                             do {\
856    __asm__ volatile ("LOCK0\t\t/* (*TBI_NOINTSCRITOFF OK) */");} while (0)
857 /* Optimised in-lining versions of the above macros */
858 
859 #define TBI_LOCK( TrigState )                                          do {\
860    int __TRValue;                                                          \
861    int __ALOCKHI = LINSYSEVENT_WR_ATOMIC_LOCK & 0xFFFF0000;                \
862    __asm__ volatile ("MOV %0,#0\t\t/* (*TBI_LOCK ... */\n\t"               \
863                      "SWAP\t%0,TXMASKI\t/* ... */\n\t"                     \
864                      "LOCK2\t\t/* ... */\n\t"                              \
865                      "SETD\t[%1+#0x40],D1RtP /* ... OK) */" :              \
866                      "=r&" (__TRValue) : "u" (__ALOCKHI) );                \
867    TrigState = __TRValue;                                       } while (0)
868 #define TBI_CRITON( TrigState )                                        do {\
869    int __TRValue;                                                          \
870    __asm__ volatile ("MOV %0,#0\t\t/* (*TBI_CRITON ... */\n\t"             \
871                      "SWAP\t%0,TXMASKI\t/* ... */\n\t"                     \
872                      "LOCK1\t\t/* ... OK) */" :                            \
873                      "=r" (__TRValue) );                                   \
874    TrigState = __TRValue;                                       } while (0)
875 
876 #define TBI_INTSX( TrigState )                                         do {\
877    int __TRValue = TrigState;                                              \
878    __asm__ volatile ("SWAP\t%0,TXMASKI\t/* (*TBI_INTSX OK) */" :           \
879                      "=r" (__TRValue) : "0" (__TRValue) );                 \
880    TrigState = __TRValue;                                       } while (0)
881 
882 #define TBI_UNLOCK( TrigState )                                        do {\
883    int __TRValue = TrigState;                                              \
884    int __ALOCKHI = LINSYSEVENT_WR_ATOMIC_LOCK & 0xFFFF0000;                \
885    __asm__ volatile ("SETD\t[%1+#0x00],D1RtP\t/* (*TBI_UNLOCK ... */\n\t"  \
886                      "LOCK0\t\t/* ... */\n\t"                              \
887                      "MOV\tTXMASKI,%0\t/* ... OK) */" :                    \
888                      : "r" (__TRValue), "u" (__ALOCKHI) );      } while (0)
889 
890 #define TBI_CRITOFF( TrigState )                                       do {\
891    int __TRValue = TrigState;                                              \
892    __asm__ volatile ("LOCK0\t\t/* (*TBI_CRITOFF ... */\n\t"                \
893                      "MOV\tTXMASKI,%0\t/* ... OK) */" :                    \
894                      : "r" (__TRValue) );                       } while (0)
895 
896 #define TBI_TRIGSX( SrcDst ) do { TBI_SWAPREG( TXMASK, SrcDst );} while (0)
897 
898 /* Composite macros to perform logic ops on INTS or TRIGS masks */
899 #define TBI_INTSOR( Bits )                                              do {\
900     int __TT = 0; TBI_INTSX(__TT);                                          \
901     __TT |= (Bits); TBI_INTSX(__TT);                             } while (0)
902 
903 #define TBI_INTSAND( Bits )                                             do {\
904     int __TT = 0; TBI_INTSX(__TT);                                          \
905     __TT &= (Bits); TBI_INTSX(__TT);                             } while (0)
906 
907 #ifdef TBI_1_4
908 #define TBI_DEFRICTRLSOR( Bits )                                        do {\
909     int __TT = TBI_GETREG( CT.20 );                                         \
910     __TT |= (Bits); TBI_SETREG( CT.20, __TT);                    } while (0)
911 
912 #define TBI_DEFRICTRLSAND( Bits )                                       do {\
913     int __TT = TBI_GETREG( TXDEFR );                                        \
914     __TT &= (Bits); TBI_SETREG( CT.20, __TT);                    } while (0)
915 #endif
916 
917 #define TBI_TRIGSOR( Bits )                                             do {\
918     int __TT = TBI_GETREG( TXMASK );                                        \
919     __TT |= (Bits); TBI_SETREG( TXMASK, __TT);                   } while (0)
920 
921 #define TBI_TRIGSAND( Bits )                                            do {\
922     int __TT = TBI_GETREG( TXMASK );                                        \
923     __TT &= (Bits); TBI_SETREG( TXMASK, __TT);                   } while (0)
924 
925 /* Macros to disable and re-enable interrupts using TBI_INTSX, deliberate
926    traps and exceptions can still be handled within the critical section. */
927 #define TBI_STOPINTS( Value )                                           do {\
928     int __TT = TBI_GETREG( TXMASKI );                                       \
929     __TT &= TXSTATI_BGNDHALT_BIT; TBI_INTSX( __TT );                        \
930     Value = __TT;                                                } while (0)
931 #define TBI_RESTINTS( Value )                                           do {\
932     int __TT = Value; TBI_INTSX( __TT );                         } while (0)
933 
934 /* Return pointer to segment list at current privilege level */
935 PTBISEG __TBISegList( void );
936 
937 /* Search the segment list for a match given Id, pStart can be NULL */
938 PTBISEG __TBIFindSeg( PTBISEG pStart, int Id );
939 
940 /* Prepare a new segment structure using space from within another */
941 PTBISEG __TBINewSeg( PTBISEG pFromSeg, int Id, unsigned int Bytes );
942 
943 /* Prepare a new segment using any global or local heap segments available */
944 PTBISEG __TBIMakeNewSeg( int Id, unsigned int Bytes );
945 
946 /* Insert a new segment into the segment list so __TBIFindSeg can locate it */
947 void __TBIAddSeg( PTBISEG pSeg );
948 #define __TBIADDSEG_DEF     /* Some versions failed to define this */
949 
950 /* Return Id of current thread; TBID_ISTAT_BIT+TBID_THREAD_BITS */
951 int __TBIThreadId( void );
952 
953 /* Return TBIRES.Thrd data for current thread */
954 TBIRES __TBIThrdPrivId( void );
955 
956 /* Return pointer to current threads TBI root block.
957    Id implies whether Int or Background root block is required */
958 PTBI __TBI( int Id );
959 
960 /* Try to set Mask bit using the spin-lock protocol, return 0 if fails and
961    new state if succeeds */
962 int __TBIPoll( PTBISPIN pLock, int Mask );
963 
964 /* Set Mask bits via the spin-lock protocol in *pLock, return new state */
965 int __TBISpin( PTBISPIN pLock, int Mask );
966 
967 /* Default handler set up for all TBI.fnSigs entries during initialisation */
968 TBIRES __TBIUnExpXXX( TBIRES State, int SigNum,
969                    int Triggers, int Inst, PTBI pTBI );
970 
971 /* Call this routine to service triggers at background processing level. The
972    TBID_POLL_BIT of the Id parameter value will be used to indicate that the
973    routine should return if no triggers need to be serviced initially. If this
974    bit is not set the routine will block until one trigger handler is serviced
975    and then behave like the poll case servicing any remaining triggers
976    actually outstanding before returning. Normally the State parameter should
977    be simply initialised to zero and the result should be ignored, other
978    values/options are for internal use only. */
979 TBIRES __TBISyncTrigger( TBIRES State, int Id );
980 
981 /* Call this routine to enable processing of triggers by signal handlers at
982    interrupt level. The State parameter value passed is returned by this
983    routine. The State.Sig.TrigMask field also specifies the initial
984    state of the interrupt mask register TXMASKI to be setup by the call.
985    The other parts of the State parameter are ignored unless the PRIV bit is
986    set in the SaveMask field. In this case the State.Sig.pCtx field specifies
987    the base of the stack to which the interrupt system should switch into
988    as it saves the state of the previously executing code. In the case the
989    thread will be unprivileged as it continues execution at the return
990    point of this routine and it's future state will be effectively never
991    trusted to be valid. */
992 TBIRES __TBIASyncTrigger( TBIRES State );
993 
994 /* Call this to swap soft threads executing at the background processing level.
995    The TBIRES returned to the new thread will be the same as the NextThread
996    value specified to the call. The NextThread.Switch.pCtx value specifies
997    which thread context to restore and the NextThread.Switch.Para value can
998    hold an arbitrary expression to be passed between the threads. The saved
999    state of the previous thread will be stored in a TBICTX descriptor created
1000    on it's stack and the address of this will be stored into the *rpSaveCtx
1001    location specified. */
1002 TBIRES __TBISwitch( TBIRES NextThread, PTBICTX *rpSaveCtx );
1003 
1004 /* Call this to initialise a stack frame ready for further use, up to four
1005    32-bit arguments may be specified after the fixed args to be passed via
1006    the new stack pStack to the routine specified via fnMain. If the
1007    main-line routine ever returns the thread will operate as if main itself
1008    had returned and terminate with the return code given. */
1009 typedef int (*PTBIMAINFN)( TBIRES Arg /*, <= 4 additional 32-bit args */ );
1010 PTBICTX __TBISwitchInit( void *pStack, PTBIMAINFN fnMain, ... );
1011 
1012 /* Call this to resume a thread from a saved synchronous TBICTX state.
1013    The TBIRES returned to the new thread will be the same as the NextThread
1014    value specified to the call. The NextThread.Switch.pCtx value specifies
1015    which thread context to restore and the NextThread.Switch.Para value can
1016    hold an arbitrary expression to be passed between the threads. The context
1017    of the calling thread is lost and this routine never returns to the
1018    caller. The TrigsMask value supplied is ored into TXMASKI to enable
1019    interrupts after the context of the new thread is established. */
1020 void __TBISyncResume( TBIRES NextThread, int TrigsMask );
1021 
1022 /* Call these routines to save and restore the extended states of
1023    scheduled tasks. */
1024 void *__TBICtxSave( TBIRES State, void *pExt );
1025 void *__TBICtxRestore( TBIRES State, void *pExt );
1026 
1027 #ifdef TBI_1_4
1028 #ifdef TBI_FASTINT_1_4
1029 /* Call these routines to copy the GP state to a separate buffer
1030  * Only necessary for context switching.
1031  */
1032 PTBICTXGP __TBICtx2SaveCrit( PTBICTX2 pCurrentCtx, PTBICTX2 pSaveCtx );
1033 void *__TBICtx2SaveGP( PTBICTXGP pCurrentCtxGP, PTBICTXGP pSaveCtxGP );
1034 
1035 /* Call these routines to save and restore the extended states of
1036    scheduled tasks. */
1037 void *__TBICtx2Save( PTBICTXGP pCtxGP, short SaveMask, void *pExt );
1038 void *__TBICtx2Restore( PTBICTX2 pCtx, short SaveMask, void *pExt );
1039 #endif
1040 
1041 /* If FPAC flag is set then significant FPU context exists. Call these routine
1042    to save and restore it */
1043 void *__TBICtxFPUSave( TBIRES State, void *pExt );
1044 void *__TBICtxFPURestore( TBIRES State, void *pExt );
1045 
1046 #ifdef TBI_FASTINT_1_4
1047 extern void *__TBICtx2FPUSave (PTBICTXGP, short, void*);
1048 extern void *__TBICtx2FPURestore (PTBICTXGP, short, void*);
1049 #endif
1050 #endif
1051 
1052 #ifdef TBI_1_4
1053 /* Call these routines to save and restore DSPRAM. */
1054 void *__TBIDspramSaveA (short DspramSizes, void *pExt);
1055 void *__TBIDspramSaveB (short DspramSizes, void *pExt);
1056 void *__TBIDspramRestoreA (short DspramSizes, void *pExt);
1057 void *__TBIDspramRestoreB (short DspramSizes, void *pExt);
1058 #endif
1059 
1060 /* This routine should be used at the entrypoint of interrupt handlers to
1061    re-enable higher priority interrupts and/or save state from the previously
1062    executing background code. State is a TBIRES.Sig parameter with NoNestMask
1063    indicating the triggers (if any) that should remain disabled and SaveMask
1064    CBUF bit indicating the if the hardware catch buffer is dirty. Optionally
1065    any number of extended state bits X??? including XCBF can be specified to
1066    force a nested state save call to __TBICtxSave before the current routine
1067    continues. (In the latter case __TBICtxRestore should be called to restore
1068    any extended states before the background thread of execution is resumed)
1069 
1070    By default (no X??? bits specified in SaveMask) this routine performs a
1071    sub-call to __TBICtxSave with the pExt and State parameters specified IF
1072    some triggers could be serviced while the current interrupt handler
1073    executes and the hardware catch buffer is actually dirty. In this case
1074    this routine provides the XCBF bit in State.Sig.SaveMask to force the
1075    __TBICtxSave to extract the current catch state.
1076 
1077    The NoNestMask parameter should normally indicate that the same or lower
1078    triggers than those provoking the current handler call should not be
1079    serviced in nested calls, zero may be specified if all possible interrupts
1080    are to be allowed.
1081 
1082    The TBIRES.Sig value returned will be similar to the State parameter
1083    specified with the XCBF bit ORed into it's SaveMask if a context save was
1084    required and fewer bits set in it's TrigMask corresponding to the same/lower
1085    priority interrupt triggers still not enabled. */
1086 TBIRES __TBINestInts( TBIRES State, void *pExt, int NoNestMask );
1087 
1088 /* This routine causes the TBICTX structure specified in State.Sig.pCtx to
1089    be restored. This implies that execution will not return to the caller.
1090    The State.Sig.TrigMask field will be restored during the context switch
1091    such that any immediately occuring interrupts occur in the context of the
1092    newly specified task. The State.Sig.SaveMask parameter is ignored. */
1093 void __TBIASyncResume( TBIRES State );
1094 
1095 /* Call this routine to enable fastest possible processing of one or more
1096    interrupt triggers via a unified signal handler. The handler concerned
1097    must simple return after servicing the related hardware.
1098    The State.Sig.TrigMask parameter indicates the interrupt triggers to be
1099    enabled and the Thin.Thin.fnHandler specifies the routine to call and
1100    the whole Thin parameter value will be passed to this routine unaltered as
1101    it's first parameter. */
1102 void __TBIASyncThin( TBIRES State, TBIRES Thin );
1103 
1104 /* Do this before performing your own direct spin-lock access - use TBI_LOCK */
1105 int __TBILock( void );
1106 
1107 /* Do this after performing your own direct spin-lock access - use TBI_UNLOCK */
1108 void __TBIUnlock( int TrigState );
1109 
1110 /* Obtain and release global critical section lock - only stops execution
1111    of interrupts on this thread and similar critical section code on other
1112    local threads - use TBI_CRITON or TBI_CRITOFF */
1113 int __TBICritOn( void );
1114 void __TBICritOff( int TrigState );
1115 
1116 /* Change INTS (TXMASKI) - return old state - use TBI_INTSX */
1117 int __TBIIntsX( int NewMask );
1118 
1119 /* Change TRIGS (TXMASK) - return old state - use TBI_TRIGSX */
1120 int __TBITrigsX( int NewMask );
1121 
1122 /* This function initialises a timer for first use, only the TBID_ISTAT_BIT
1123    of the Id parameter is used to indicate which timer is to be modified. The
1124    Wait value should either be zero to disable the timer concerned or be in
1125    the recommended TBI_TIMERWAIT_* range to specify the delay required before
1126    the first timer trigger occurs.
1127 
1128    The TBID_ISTAT_BIT of the Id parameter similar effects all other timer
1129    support functions (see below). */
1130 void __TBITimerCtrl( int Id, int Wait );
1131 
1132 /* This routine returns a 64-bit time stamp value that is initialised to zero
1133    via a __TBITimerCtrl timer enabling call. */
1134 long long __TBITimeStamp( int Id );
1135 
1136 /* To manage a periodic timer each period elapsed should be subracted from
1137    the current timer value to attempt to set up the next timer trigger. The
1138    Wait parameter should be a value in the recommended TBI_TIMERWAIT_* range.
1139    The return value is the new aggregate value that the timer was updated to,
1140    if this is less than zero then a timer trigger is guaranteed to be
1141    generated after the number of ticks implied, if a positive result is
1142    returned either itterative or step-wise corrective action must be taken to
1143    resynchronise the timer and hence provoke a future timer trigger. */
1144 int __TBITimerAdd( int Id, int Wait );
1145 
1146 /* String table search function, pStart is first entry to check or NULL,
1147    pStr is string data to search for and MatchLen is either length of string
1148    to compare for an exact match or negative length to compare for partial
1149    match. */
1150 const TBISTR *__TBIFindStr( const TBISTR *pStart,
1151                             const char *pStr, int MatchLen );
1152 
1153 /* String table translate function, pStr is text to translate and Len is
1154    it's length. Value returned may not be a string pointer if the
1155    translation value is really some other type, 64-bit alignment of the return
1156    pointer is guaranteed so almost any type including a structure could be
1157    located with this routine. */
1158 const void *__TBITransStr( const char *pStr, int Len );
1159 
1160 
1161 
1162 /* Arbitrary physical memory access windows, use different Channels to avoid
1163    conflict/thrashing within a single piece of code. */
1164 void *__TBIPhysAccess( int Channel, int PhysAddr, int Bytes );
1165 void __TBIPhysRelease( int Channel, void *pLinAddr );
1166 
1167 #ifdef METAC_1_0
1168 /* Data cache function nullified because data cache is off */
1169 #define TBIDCACHE_FLUSH( pAddr )
1170 #define TBIDCACHE_PRELOAD( Type, pAddr ) ((Type) (pAddr))
1171 #define TBIDCACHE_REFRESH( Type, pAddr ) ((Type) (pAddr))
1172 #endif
1173 #ifdef METAC_1_1
1174 /* To flush a single cache line from the data cache using a linear address */
1175 #define TBIDCACHE_FLUSH( pAddr )          ((volatile char *) \
1176                  (((unsigned int) (pAddr))>>LINSYSLFLUSH_S))[0] = 0
1177 
1178 extern void * __builtin_dcache_preload (void *);
1179 
1180 /* Try to ensure that the data at the address concerned is in the cache */
1181 #define TBIDCACHE_PRELOAD( Type, Addr )                                    \
1182   ((Type) __builtin_dcache_preload ((void *)(Addr)))
1183 
1184 extern void * __builtin_dcache_refresh (void *);
1185 
1186 /* Flush any old version of data from address and re-load a new copy */
1187 #define TBIDCACHE_REFRESH( Type, Addr )                   __extension__ ({ \
1188   Type __addr = (Type)(Addr);                                              \
1189   (void)__builtin_dcache_refresh ((void *)(((unsigned int)(__addr))>>6));  \
1190   __addr; })
1191 
1192 #endif
1193 #ifndef METAC_1_0
1194 #ifndef METAC_1_1
1195 /* Support for DCACHE builtin */
1196 extern void __builtin_dcache_flush (void *);
1197 
1198 /* To flush a single cache line from the data cache using a linear address */
1199 #define TBIDCACHE_FLUSH( Addr )                                            \
1200   __builtin_dcache_flush ((void *)(Addr))
1201 
1202 extern void * __builtin_dcache_preload (void *);
1203 
1204 /* Try to ensure that the data at the address concerned is in the cache */
1205 #define TBIDCACHE_PRELOAD( Type, Addr )                                    \
1206   ((Type) __builtin_dcache_preload ((void *)(Addr)))
1207 
1208 extern void * __builtin_dcache_refresh (void *);
1209 
1210 /* Flush any old version of data from address and re-load a new copy */
1211 #define TBIDCACHE_REFRESH( Type, Addr )                                    \
1212   ((Type) __builtin_dcache_refresh ((void *)(Addr)))
1213 
1214 #endif
1215 #endif
1216 
1217 /* Flush the MMCU cache */
1218 #define TBIMCACHE_FLUSH() { ((volatile int *) LINSYSCFLUSH_MMCU)[0] = 0; }
1219 
1220 #ifdef METAC_2_1
1221 /* Obtain the MMU table entry for the specified address */
1222 #define TBIMTABLE_LEAFDATA(ADDR) TBIXCACHE_RD((int)(ADDR) & (-1<<6))
1223 
1224 #ifndef __ASSEMBLY__
1225 /* Obtain the full MMU table entry for the specified address */
1226 #define TBIMTABLE_DATA(ADDR) __extension__ ({ TBIRES __p;                     \
1227                                               __p.Val = TBIXCACHE_RL((int)(ADDR) & (-1<<6));   \
1228                                               __p; })
1229 #endif
1230 #endif
1231 
1232 /* Combine a physical base address, and a linear address
1233  * Internal use only
1234  */
1235 #define _TBIMTABLE_LIN2PHYS(PHYS, LIN, LMASK) (void*)(((int)(PHYS)&0xFFFFF000)\
1236                                                +((int)(LIN)&(LMASK)))
1237 
1238 /* Convert a linear to a physical address */
1239 #define TBIMTABLE_LIN2PHYS(LEAFDATA, ADDR)                                    \
1240           (((LEAFDATA) & CRLINPHY0_VAL_BIT)                                   \
1241               ? _TBIMTABLE_LIN2PHYS(LEAFDATA, ADDR, 0x00000FFF)               \
1242               : 0)
1243 
1244 /* Debug support - using external debugger or host */
1245 void __TBIDumpSegListEntries( void );
1246 void __TBILogF( const char *pFmt, ... );
1247 void __TBIAssert( const char *pFile, int LineNum, const char *pExp );
1248 void __TBICont( const char *pMsg, ... ); /* TBIAssert -> 'wait for continue' */
1249 
1250 /* Array of signal name data for debug messages */
1251 extern const char __TBISigNames[];
1252 #endif /* ifndef __ASSEMBLY__ */
1253 
1254 
1255 
1256 /* Scale of sub-strings in the __TBISigNames string list */
1257 #define TBI_SIGNAME_SCALE   4
1258 #define TBI_SIGNAME_SCALE_S 2
1259 
1260 #define TBI_1_3
1261 
1262 #ifdef TBI_1_3
1263 
1264 #ifndef __ASSEMBLY__
1265 #define TBIXCACHE_RD(ADDR)                                 __extension__ ({\
1266     void * __Addr = (void *)(ADDR);                                        \
1267     int __Data;                                                            \
1268     __asm__ volatile ( "CACHERD\t%0,[%1+#0]" :                             \
1269                        "=r" (__Data) : "r" (__Addr) );                     \
1270     __Data;                                                               })
1271 
1272 #define TBIXCACHE_RL(ADDR)                                 __extension__ ({\
1273     void * __Addr = (void *)(ADDR);                                        \
1274     long long __Data;                                                      \
1275     __asm__ volatile ( "CACHERL\t%0,%t0,[%1+#0]" :                         \
1276                        "=d" (__Data) : "r" (__Addr) );                     \
1277     __Data;                                                               })
1278 
1279 #define TBIXCACHE_WD(ADDR, DATA)                                      do {\
1280     void * __Addr = (void *)(ADDR);                                       \
1281     int __Data = DATA;                                                    \
1282     __asm__ volatile ( "CACHEWD\t[%0+#0],%1" :                            \
1283                        : "r" (__Addr), "r" (__Data) );          } while(0)
1284 
1285 #define TBIXCACHE_WL(ADDR, DATA)                                      do {\
1286     void * __Addr = (void *)(ADDR);                                       \
1287     long long __Data = DATA;                                              \
1288     __asm__ volatile ( "CACHEWL\t[%0+#0],%1,%t1" :                        \
1289                        : "r" (__Addr), "r" (__Data) );          } while(0)
1290 
1291 #ifdef TBI_4_0
1292 
1293 #define TBICACHE_FLUSH_L1D_L2(ADDR)                                       \
1294   TBIXCACHE_WD(ADDR, CACHEW_FLUSH_L1D_L2)
1295 #define TBICACHE_WRITEBACK_L1D_L2(ADDR)                                   \
1296   TBIXCACHE_WD(ADDR, CACHEW_WRITEBACK_L1D_L2)
1297 #define TBICACHE_INVALIDATE_L1D(ADDR)                                     \
1298   TBIXCACHE_WD(ADDR, CACHEW_INVALIDATE_L1D)
1299 #define TBICACHE_INVALIDATE_L1D_L2(ADDR)                                  \
1300   TBIXCACHE_WD(ADDR, CACHEW_INVALIDATE_L1D_L2)
1301 #define TBICACHE_INVALIDATE_L1DTLB(ADDR)                                  \
1302   TBIXCACHE_WD(ADDR, CACHEW_INVALIDATE_L1DTLB)
1303 #define TBICACHE_INVALIDATE_L1I(ADDR)                                     \
1304   TBIXCACHE_WD(ADDR, CACHEW_INVALIDATE_L1I)
1305 #define TBICACHE_INVALIDATE_L1ITLB(ADDR)                                  \
1306   TBIXCACHE_WD(ADDR, CACHEW_INVALIDATE_L1ITLB)
1307 
1308 #endif /* TBI_4_0 */
1309 #endif /* ifndef __ASSEMBLY__ */
1310 
1311 /*
1312  * Calculate linear PC value from real PC and Minim mode control, the LSB of
1313  * the result returned indicates if address compression has occured.
1314  */
1315 #ifndef __ASSEMBLY__
1316 #define METAG_LINPC( PCVal )                                              (\
1317     ( (TBI_GETREG(TXPRIVEXT) & TXPRIVEXT_MINIMON_BIT) != 0 ) ?           ( \
1318         ( ((PCVal) & 0x00900000) == 0x00900000 ) ?                         \
1319           (((PCVal) & 0xFFE00000) + (((PCVal) & 0x001FFFFC)>>1) + 1) :     \
1320         ( ((PCVal) & 0x00800000) == 0x00000000 ) ?                         \
1321           (((PCVal) & 0xFF800000) + (((PCVal) & 0x007FFFFC)>>1) + 1) :     \
1322                                                              (PCVal)   )   \
1323                                                                  : (PCVal) )
1324 #define METAG_LINPC_X2BIT 0x00000001       /* Make (Size>>1) if compressed */
1325 
1326 /* Convert an arbitrary Linear address into a valid Minim PC or return 0 */
1327 #define METAG_PCMINIM( LinVal )                                           (\
1328         (((LinVal) & 0x00980000) == 0x00880000) ?                          \
1329             (((LinVal) & 0xFFE00000) + (((LinVal) & 0x000FFFFE)<<1)) :     \
1330         (((LinVal) & 0x00C00000) == 0x00000000) ?                          \
1331             (((LinVal) & 0xFF800000) + (((LinVal) & 0x003FFFFE)<<1)) : 0   )
1332 
1333 /* Reverse a METAG_LINPC conversion step to return the original PCVal */
1334 #define METAG_PCLIN( LinVal )                              ( 0xFFFFFFFC & (\
1335         ( (LinVal & METAG_LINPC_X2BIT) != 0 ) ? METAG_PCMINIM( LinVal ) :  \
1336                                                                (LinVal)   ))
1337 
1338 /*
1339  * Flush the MMCU Table cache privately for each thread. On cores that do not
1340  * support per-thread flushing it will flush all threads mapping data.
1341  */
1342 #define TBIMCACHE_TFLUSH(Thread)                                   do {\
1343     ((volatile int *)( LINSYSCFLUSH_TxMMCU_BASE            +           \
1344                       (LINSYSCFLUSH_TxMMCU_STRIDE*(Thread)) ))[0] = 0; \
1345                                                              } while(0)
1346 
1347 /*
1348  * To flush a single linear-matched cache line from the code cache. In
1349  * cases where Minim is possible the METAC_LINPC operation must be used
1350  * to pre-process the address being flushed.
1351  */
1352 #define TBIICACHE_FLUSH( pAddr ) TBIXCACHE_WD (pAddr, CACHEW_ICACHE_BIT)
1353 
1354 /* To flush a single linear-matched mapping from code/data MMU table cache */
1355 #define TBIMCACHE_AFLUSH( pAddr, SegType )                                \
1356     TBIXCACHE_WD(pAddr, CACHEW_TLBFLUSH_BIT + (                           \
1357                  ((SegType) == TBID_SEGTYPE_TEXT) ? CACHEW_ICACHE_BIT : 0 ))
1358 
1359 /*
1360  * To flush translation data corresponding to a range of addresses without
1361  * using TBITCACHE_FLUSH to flush all of this threads translation data. It
1362  * is necessary to know what stride (>= 4K) must be used to flush a specific
1363  * region.
1364  *
1365  * For example direct mapped regions use the maximum page size (512K) which may
1366  * mean that only one flush is needed to cover the sub-set of the direct
1367  * mapped area used since it was setup.
1368  *
1369  * The function returns the stride on which flushes should be performed.
1370  *
1371  * If 0 is returned then the region is not subject to MMU caching, if -1 is
1372  * returned then this indicates that only TBIMCACHE_TFLUSH can be used to
1373  * flush the region concerned rather than TBIMCACHE_AFLUSH which this
1374  * function is designed to support.
1375  */
1376 int __TBIMMUCacheStride( const void *pStart, int Bytes );
1377 
1378 /*
1379  * This function will use the above lower level functions to achieve a MMU
1380  * table data flush in an optimal a fashion as possible. On a system that
1381  * supports linear address based caching this function will also call the
1382  * code or data cache flush functions to maintain address/data coherency.
1383  *
1384  * SegType should be TBID_SEGTYPE_TEXT if the address range is for code or
1385  * any other value such as TBID_SEGTYPE_DATA for data. If an area is
1386  * used in both ways then call this function twice; once for each.
1387  */
1388 void __TBIMMUCacheFlush( const void *pStart, int Bytes, int SegType );
1389 
1390 /*
1391  * Cached Core mode setup and flush functions allow one code and one data
1392  * region of the corresponding global or local cache partion size to be
1393  * locked into the corresponding cache memory. This prevents normal LRU
1394  * logic discarding the code or data and avoids write-thru bandwidth in
1395  * data areas. Code mappings are selected by specifying TBID_SEGTYPE_TEXT
1396  * for SegType, otherwise data mappings are created.
1397  *
1398  * Mode supplied should always contain the VALID bit and WINx selection data.
1399  * Data areas will be mapped read-only if the WRITE bit is not added.
1400  *
1401  * The address returned by the Opt function will either be the same as that
1402  * passed in (if optimisation cannot be supported) or the base of the new core
1403  * cached region in linear address space. The returned address must be passed
1404  * into the End function to remove the mapping when required. If a non-core
1405  * cached memory address is passed into it the End function has no effect.
1406  * Note that the region accessed MUST be flushed from the appropriate cache
1407  * before the End function is called to deliver correct operation.
1408  */
1409 void *__TBICoreCacheOpt( const void *pStart, int Bytes, int SegType, int Mode );
1410 void __TBICoreCacheEnd( const void *pOpt, int Bytes, int SegType );
1411 
1412 /*
1413  * Optimise physical access channel and flush side effects before releasing
1414  * the channel. If pStart is NULL the whole region must be flushed and this is
1415  * done automatically by the channel release function if optimisation is
1416  * enabled. Flushing the specific region that may have been accessed before
1417  * release should optimises this process. On physically cached systems we do
1418  * not flush the code/data caches only the MMU table data needs flushing.
1419  */
1420 void __TBIPhysOptim( int Channel, int IMode, int DMode );
1421 void __TBIPhysFlush( int Channel, const void *pStart, int Bytes );
1422 #endif
1423 #endif /* ifdef TBI_1_3 */
1424 
1425 #endif /* _ASM_METAG_TBX_H_ */
1426