1 /*
2 * Primary bucket allocation code
3 *
4 * Copyright 2012 Google, Inc.
5 *
6 * Allocation in bcache is done in terms of buckets:
7 *
8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9 * btree pointers - they must match for the pointer to be considered valid.
10 *
11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12 * bucket simply by incrementing its gen.
13 *
14 * The gens (along with the priorities; it's really the gens are important but
15 * the code is named as if it's the priorities) are written in an arbitrary list
16 * of buckets on disk, with a pointer to them in the journal header.
17 *
18 * When we invalidate a bucket, we have to write its new gen to disk and wait
19 * for that write to complete before we use it - otherwise after a crash we
20 * could have pointers that appeared to be good but pointed to data that had
21 * been overwritten.
22 *
23 * Since the gens and priorities are all stored contiguously on disk, we can
24 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25 * call prio_write(), and when prio_write() finishes we pull buckets off the
26 * free_inc list and optionally discard them.
27 *
28 * free_inc isn't the only freelist - if it was, we'd often to sleep while
29 * priorities and gens were being written before we could allocate. c->free is a
30 * smaller freelist, and buckets on that list are always ready to be used.
31 *
32 * If we've got discards enabled, that happens when a bucket moves from the
33 * free_inc list to the free list.
34 *
35 * There is another freelist, because sometimes we have buckets that we know
36 * have nothing pointing into them - these we can reuse without waiting for
37 * priorities to be rewritten. These come from freed btree nodes and buckets
38 * that garbage collection discovered no longer had valid keys pointing into
39 * them (because they were overwritten). That's the unused list - buckets on the
40 * unused list move to the free list, optionally being discarded in the process.
41 *
42 * It's also important to ensure that gens don't wrap around - with respect to
43 * either the oldest gen in the btree or the gen on disk. This is quite
44 * difficult to do in practice, but we explicitly guard against it anyways - if
45 * a bucket is in danger of wrapping around we simply skip invalidating it that
46 * time around, and we garbage collect or rewrite the priorities sooner than we
47 * would have otherwise.
48 *
49 * bch_bucket_alloc() allocates a single bucket from a specific cache.
50 *
51 * bch_bucket_alloc_set() allocates one or more buckets from different caches
52 * out of a cache set.
53 *
54 * free_some_buckets() drives all the processes described above. It's called
55 * from bch_bucket_alloc() and a few other places that need to make sure free
56 * buckets are ready.
57 *
58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59 * invalidated, and then invalidate them and stick them on the free_inc list -
60 * in either lru or fifo order.
61 */
62
63 #include "bcache.h"
64 #include "btree.h"
65
66 #include <linux/random.h>
67
68 #define MAX_IN_FLIGHT_DISCARDS 8U
69
70 /* Bucket heap / gen */
71
bch_inc_gen(struct cache * ca,struct bucket * b)72 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
73 {
74 uint8_t ret = ++b->gen;
75
76 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
77 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
78
79 if (CACHE_SYNC(&ca->set->sb)) {
80 ca->need_save_prio = max(ca->need_save_prio,
81 bucket_disk_gen(b));
82 WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
83 }
84
85 return ret;
86 }
87
bch_rescale_priorities(struct cache_set * c,int sectors)88 void bch_rescale_priorities(struct cache_set *c, int sectors)
89 {
90 struct cache *ca;
91 struct bucket *b;
92 unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
93 unsigned i;
94 int r;
95
96 atomic_sub(sectors, &c->rescale);
97
98 do {
99 r = atomic_read(&c->rescale);
100
101 if (r >= 0)
102 return;
103 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
104
105 mutex_lock(&c->bucket_lock);
106
107 c->min_prio = USHRT_MAX;
108
109 for_each_cache(ca, c, i)
110 for_each_bucket(b, ca)
111 if (b->prio &&
112 b->prio != BTREE_PRIO &&
113 !atomic_read(&b->pin)) {
114 b->prio--;
115 c->min_prio = min(c->min_prio, b->prio);
116 }
117
118 mutex_unlock(&c->bucket_lock);
119 }
120
121 /* Discard/TRIM */
122
123 struct discard {
124 struct list_head list;
125 struct work_struct work;
126 struct cache *ca;
127 long bucket;
128
129 struct bio bio;
130 struct bio_vec bv;
131 };
132
discard_finish(struct work_struct * w)133 static void discard_finish(struct work_struct *w)
134 {
135 struct discard *d = container_of(w, struct discard, work);
136 struct cache *ca = d->ca;
137 char buf[BDEVNAME_SIZE];
138
139 if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) {
140 pr_notice("discard error on %s, disabling",
141 bdevname(ca->bdev, buf));
142 d->ca->discard = 0;
143 }
144
145 mutex_lock(&ca->set->bucket_lock);
146
147 fifo_push(&ca->free, d->bucket);
148 list_add(&d->list, &ca->discards);
149 atomic_dec(&ca->discards_in_flight);
150
151 mutex_unlock(&ca->set->bucket_lock);
152
153 closure_wake_up(&ca->set->bucket_wait);
154 wake_up(&ca->set->alloc_wait);
155
156 closure_put(&ca->set->cl);
157 }
158
discard_endio(struct bio * bio,int error)159 static void discard_endio(struct bio *bio, int error)
160 {
161 struct discard *d = container_of(bio, struct discard, bio);
162 schedule_work(&d->work);
163 }
164
do_discard(struct cache * ca,long bucket)165 static void do_discard(struct cache *ca, long bucket)
166 {
167 struct discard *d = list_first_entry(&ca->discards,
168 struct discard, list);
169
170 list_del(&d->list);
171 d->bucket = bucket;
172
173 atomic_inc(&ca->discards_in_flight);
174 closure_get(&ca->set->cl);
175
176 bio_init(&d->bio);
177
178 d->bio.bi_sector = bucket_to_sector(ca->set, d->bucket);
179 d->bio.bi_bdev = ca->bdev;
180 d->bio.bi_rw = REQ_WRITE|REQ_DISCARD;
181 d->bio.bi_max_vecs = 1;
182 d->bio.bi_io_vec = d->bio.bi_inline_vecs;
183 d->bio.bi_size = bucket_bytes(ca);
184 d->bio.bi_end_io = discard_endio;
185 bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
186
187 submit_bio(0, &d->bio);
188 }
189
190 /* Allocation */
191
can_inc_bucket_gen(struct bucket * b)192 static inline bool can_inc_bucket_gen(struct bucket *b)
193 {
194 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
195 bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
196 }
197
bch_bucket_add_unused(struct cache * ca,struct bucket * b)198 bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
199 {
200 BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
201
202 if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] &&
203 CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
204 return false;
205
206 b->prio = 0;
207
208 if (can_inc_bucket_gen(b) &&
209 fifo_push(&ca->unused, b - ca->buckets)) {
210 atomic_inc(&b->pin);
211 return true;
212 }
213
214 return false;
215 }
216
can_invalidate_bucket(struct cache * ca,struct bucket * b)217 static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
218 {
219 return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
220 !atomic_read(&b->pin) &&
221 can_inc_bucket_gen(b);
222 }
223
invalidate_one_bucket(struct cache * ca,struct bucket * b)224 static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
225 {
226 bch_inc_gen(ca, b);
227 b->prio = INITIAL_PRIO;
228 atomic_inc(&b->pin);
229 fifo_push(&ca->free_inc, b - ca->buckets);
230 }
231
232 #define bucket_prio(b) \
233 (((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b))
234
235 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
236 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
237
invalidate_buckets_lru(struct cache * ca)238 static void invalidate_buckets_lru(struct cache *ca)
239 {
240 struct bucket *b;
241 ssize_t i;
242
243 ca->heap.used = 0;
244
245 for_each_bucket(b, ca) {
246 /*
247 * If we fill up the unused list, if we then return before
248 * adding anything to the free_inc list we'll skip writing
249 * prios/gens and just go back to allocating from the unused
250 * list:
251 */
252 if (fifo_full(&ca->unused))
253 return;
254
255 if (!can_invalidate_bucket(ca, b))
256 continue;
257
258 if (!GC_SECTORS_USED(b) &&
259 bch_bucket_add_unused(ca, b))
260 continue;
261
262 if (!heap_full(&ca->heap))
263 heap_add(&ca->heap, b, bucket_max_cmp);
264 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
265 ca->heap.data[0] = b;
266 heap_sift(&ca->heap, 0, bucket_max_cmp);
267 }
268 }
269
270 for (i = ca->heap.used / 2 - 1; i >= 0; --i)
271 heap_sift(&ca->heap, i, bucket_min_cmp);
272
273 while (!fifo_full(&ca->free_inc)) {
274 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
275 /*
276 * We don't want to be calling invalidate_buckets()
277 * multiple times when it can't do anything
278 */
279 ca->invalidate_needs_gc = 1;
280 bch_queue_gc(ca->set);
281 return;
282 }
283
284 invalidate_one_bucket(ca, b);
285 }
286 }
287
invalidate_buckets_fifo(struct cache * ca)288 static void invalidate_buckets_fifo(struct cache *ca)
289 {
290 struct bucket *b;
291 size_t checked = 0;
292
293 while (!fifo_full(&ca->free_inc)) {
294 if (ca->fifo_last_bucket < ca->sb.first_bucket ||
295 ca->fifo_last_bucket >= ca->sb.nbuckets)
296 ca->fifo_last_bucket = ca->sb.first_bucket;
297
298 b = ca->buckets + ca->fifo_last_bucket++;
299
300 if (can_invalidate_bucket(ca, b))
301 invalidate_one_bucket(ca, b);
302
303 if (++checked >= ca->sb.nbuckets) {
304 ca->invalidate_needs_gc = 1;
305 bch_queue_gc(ca->set);
306 return;
307 }
308 }
309 }
310
invalidate_buckets_random(struct cache * ca)311 static void invalidate_buckets_random(struct cache *ca)
312 {
313 struct bucket *b;
314 size_t checked = 0;
315
316 while (!fifo_full(&ca->free_inc)) {
317 size_t n;
318 get_random_bytes(&n, sizeof(n));
319
320 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
321 n += ca->sb.first_bucket;
322
323 b = ca->buckets + n;
324
325 if (can_invalidate_bucket(ca, b))
326 invalidate_one_bucket(ca, b);
327
328 if (++checked >= ca->sb.nbuckets / 2) {
329 ca->invalidate_needs_gc = 1;
330 bch_queue_gc(ca->set);
331 return;
332 }
333 }
334 }
335
invalidate_buckets(struct cache * ca)336 static void invalidate_buckets(struct cache *ca)
337 {
338 if (ca->invalidate_needs_gc)
339 return;
340
341 switch (CACHE_REPLACEMENT(&ca->sb)) {
342 case CACHE_REPLACEMENT_LRU:
343 invalidate_buckets_lru(ca);
344 break;
345 case CACHE_REPLACEMENT_FIFO:
346 invalidate_buckets_fifo(ca);
347 break;
348 case CACHE_REPLACEMENT_RANDOM:
349 invalidate_buckets_random(ca);
350 break;
351 }
352
353 pr_debug("free %zu/%zu free_inc %zu/%zu unused %zu/%zu",
354 fifo_used(&ca->free), ca->free.size,
355 fifo_used(&ca->free_inc), ca->free_inc.size,
356 fifo_used(&ca->unused), ca->unused.size);
357 }
358
359 #define allocator_wait(ca, cond) \
360 do { \
361 DEFINE_WAIT(__wait); \
362 \
363 while (1) { \
364 prepare_to_wait(&ca->set->alloc_wait, \
365 &__wait, TASK_INTERRUPTIBLE); \
366 if (cond) \
367 break; \
368 \
369 mutex_unlock(&(ca)->set->bucket_lock); \
370 if (test_bit(CACHE_SET_STOPPING_2, &ca->set->flags)) { \
371 finish_wait(&ca->set->alloc_wait, &__wait); \
372 closure_return(cl); \
373 } \
374 \
375 schedule(); \
376 mutex_lock(&(ca)->set->bucket_lock); \
377 } \
378 \
379 finish_wait(&ca->set->alloc_wait, &__wait); \
380 } while (0)
381
bch_allocator_thread(struct closure * cl)382 void bch_allocator_thread(struct closure *cl)
383 {
384 struct cache *ca = container_of(cl, struct cache, alloc);
385
386 mutex_lock(&ca->set->bucket_lock);
387
388 while (1) {
389 /*
390 * First, we pull buckets off of the unused and free_inc lists,
391 * possibly issue discards to them, then we add the bucket to
392 * the free list:
393 */
394 while (1) {
395 long bucket;
396
397 if ((!atomic_read(&ca->set->prio_blocked) ||
398 !CACHE_SYNC(&ca->set->sb)) &&
399 !fifo_empty(&ca->unused))
400 fifo_pop(&ca->unused, bucket);
401 else if (!fifo_empty(&ca->free_inc))
402 fifo_pop(&ca->free_inc, bucket);
403 else
404 break;
405
406 allocator_wait(ca, (int) fifo_free(&ca->free) >
407 atomic_read(&ca->discards_in_flight));
408
409 if (ca->discard) {
410 allocator_wait(ca, !list_empty(&ca->discards));
411 do_discard(ca, bucket);
412 } else {
413 fifo_push(&ca->free, bucket);
414 closure_wake_up(&ca->set->bucket_wait);
415 }
416 }
417
418 /*
419 * We've run out of free buckets, we need to find some buckets
420 * we can invalidate. First, invalidate them in memory and add
421 * them to the free_inc list:
422 */
423
424 allocator_wait(ca, ca->set->gc_mark_valid &&
425 (ca->need_save_prio > 64 ||
426 !ca->invalidate_needs_gc));
427 invalidate_buckets(ca);
428
429 /*
430 * Now, we write their new gens to disk so we can start writing
431 * new stuff to them:
432 */
433 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
434 if (CACHE_SYNC(&ca->set->sb) &&
435 (!fifo_empty(&ca->free_inc) ||
436 ca->need_save_prio > 64))
437 bch_prio_write(ca);
438 }
439 }
440
bch_bucket_alloc(struct cache * ca,unsigned watermark,struct closure * cl)441 long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl)
442 {
443 long r = -1;
444 again:
445 wake_up(&ca->set->alloc_wait);
446
447 if (fifo_used(&ca->free) > ca->watermark[watermark] &&
448 fifo_pop(&ca->free, r)) {
449 struct bucket *b = ca->buckets + r;
450 #ifdef CONFIG_BCACHE_EDEBUG
451 size_t iter;
452 long i;
453
454 for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
455 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
456
457 fifo_for_each(i, &ca->free, iter)
458 BUG_ON(i == r);
459 fifo_for_each(i, &ca->free_inc, iter)
460 BUG_ON(i == r);
461 fifo_for_each(i, &ca->unused, iter)
462 BUG_ON(i == r);
463 #endif
464 BUG_ON(atomic_read(&b->pin) != 1);
465
466 SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
467
468 if (watermark <= WATERMARK_METADATA) {
469 SET_GC_MARK(b, GC_MARK_METADATA);
470 b->prio = BTREE_PRIO;
471 } else {
472 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
473 b->prio = INITIAL_PRIO;
474 }
475
476 return r;
477 }
478
479 pr_debug("alloc failure: blocked %i free %zu free_inc %zu unused %zu",
480 atomic_read(&ca->set->prio_blocked), fifo_used(&ca->free),
481 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
482
483 if (cl) {
484 closure_wait(&ca->set->bucket_wait, cl);
485
486 if (closure_blocking(cl)) {
487 mutex_unlock(&ca->set->bucket_lock);
488 closure_sync(cl);
489 mutex_lock(&ca->set->bucket_lock);
490 goto again;
491 }
492 }
493
494 return -1;
495 }
496
bch_bucket_free(struct cache_set * c,struct bkey * k)497 void bch_bucket_free(struct cache_set *c, struct bkey *k)
498 {
499 unsigned i;
500
501 for (i = 0; i < KEY_PTRS(k); i++) {
502 struct bucket *b = PTR_BUCKET(c, k, i);
503
504 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
505 SET_GC_SECTORS_USED(b, 0);
506 bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
507 }
508 }
509
__bch_bucket_alloc_set(struct cache_set * c,unsigned watermark,struct bkey * k,int n,struct closure * cl)510 int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
511 struct bkey *k, int n, struct closure *cl)
512 {
513 int i;
514
515 lockdep_assert_held(&c->bucket_lock);
516 BUG_ON(!n || n > c->caches_loaded || n > 8);
517
518 bkey_init(k);
519
520 /* sort by free space/prio of oldest data in caches */
521
522 for (i = 0; i < n; i++) {
523 struct cache *ca = c->cache_by_alloc[i];
524 long b = bch_bucket_alloc(ca, watermark, cl);
525
526 if (b == -1)
527 goto err;
528
529 k->ptr[i] = PTR(ca->buckets[b].gen,
530 bucket_to_sector(c, b),
531 ca->sb.nr_this_dev);
532
533 SET_KEY_PTRS(k, i + 1);
534 }
535
536 return 0;
537 err:
538 bch_bucket_free(c, k);
539 __bkey_put(c, k);
540 return -1;
541 }
542
bch_bucket_alloc_set(struct cache_set * c,unsigned watermark,struct bkey * k,int n,struct closure * cl)543 int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
544 struct bkey *k, int n, struct closure *cl)
545 {
546 int ret;
547 mutex_lock(&c->bucket_lock);
548 ret = __bch_bucket_alloc_set(c, watermark, k, n, cl);
549 mutex_unlock(&c->bucket_lock);
550 return ret;
551 }
552
553 /* Init */
554
bch_cache_allocator_exit(struct cache * ca)555 void bch_cache_allocator_exit(struct cache *ca)
556 {
557 struct discard *d;
558
559 while (!list_empty(&ca->discards)) {
560 d = list_first_entry(&ca->discards, struct discard, list);
561 cancel_work_sync(&d->work);
562 list_del(&d->list);
563 kfree(d);
564 }
565 }
566
bch_cache_allocator_init(struct cache * ca)567 int bch_cache_allocator_init(struct cache *ca)
568 {
569 unsigned i;
570
571 /*
572 * Reserve:
573 * Prio/gen writes first
574 * Then 8 for btree allocations
575 * Then half for the moving garbage collector
576 */
577
578 ca->watermark[WATERMARK_PRIO] = 0;
579
580 ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
581
582 ca->watermark[WATERMARK_MOVINGGC] = 8 +
583 ca->watermark[WATERMARK_METADATA];
584
585 ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
586 ca->watermark[WATERMARK_MOVINGGC];
587
588 for (i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) {
589 struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL);
590 if (!d)
591 return -ENOMEM;
592
593 d->ca = ca;
594 INIT_WORK(&d->work, discard_finish);
595 list_add(&d->list, &ca->discards);
596 }
597
598 return 0;
599 }
600