• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Primary bucket allocation code
3  *
4  * Copyright 2012 Google, Inc.
5  *
6  * Allocation in bcache is done in terms of buckets:
7  *
8  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9  * btree pointers - they must match for the pointer to be considered valid.
10  *
11  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12  * bucket simply by incrementing its gen.
13  *
14  * The gens (along with the priorities; it's really the gens are important but
15  * the code is named as if it's the priorities) are written in an arbitrary list
16  * of buckets on disk, with a pointer to them in the journal header.
17  *
18  * When we invalidate a bucket, we have to write its new gen to disk and wait
19  * for that write to complete before we use it - otherwise after a crash we
20  * could have pointers that appeared to be good but pointed to data that had
21  * been overwritten.
22  *
23  * Since the gens and priorities are all stored contiguously on disk, we can
24  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25  * call prio_write(), and when prio_write() finishes we pull buckets off the
26  * free_inc list and optionally discard them.
27  *
28  * free_inc isn't the only freelist - if it was, we'd often to sleep while
29  * priorities and gens were being written before we could allocate. c->free is a
30  * smaller freelist, and buckets on that list are always ready to be used.
31  *
32  * If we've got discards enabled, that happens when a bucket moves from the
33  * free_inc list to the free list.
34  *
35  * There is another freelist, because sometimes we have buckets that we know
36  * have nothing pointing into them - these we can reuse without waiting for
37  * priorities to be rewritten. These come from freed btree nodes and buckets
38  * that garbage collection discovered no longer had valid keys pointing into
39  * them (because they were overwritten). That's the unused list - buckets on the
40  * unused list move to the free list, optionally being discarded in the process.
41  *
42  * It's also important to ensure that gens don't wrap around - with respect to
43  * either the oldest gen in the btree or the gen on disk. This is quite
44  * difficult to do in practice, but we explicitly guard against it anyways - if
45  * a bucket is in danger of wrapping around we simply skip invalidating it that
46  * time around, and we garbage collect or rewrite the priorities sooner than we
47  * would have otherwise.
48  *
49  * bch_bucket_alloc() allocates a single bucket from a specific cache.
50  *
51  * bch_bucket_alloc_set() allocates one or more buckets from different caches
52  * out of a cache set.
53  *
54  * free_some_buckets() drives all the processes described above. It's called
55  * from bch_bucket_alloc() and a few other places that need to make sure free
56  * buckets are ready.
57  *
58  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59  * invalidated, and then invalidate them and stick them on the free_inc list -
60  * in either lru or fifo order.
61  */
62 
63 #include "bcache.h"
64 #include "btree.h"
65 
66 #include <linux/random.h>
67 
68 #define MAX_IN_FLIGHT_DISCARDS		8U
69 
70 /* Bucket heap / gen */
71 
bch_inc_gen(struct cache * ca,struct bucket * b)72 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
73 {
74 	uint8_t ret = ++b->gen;
75 
76 	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
77 	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
78 
79 	if (CACHE_SYNC(&ca->set->sb)) {
80 		ca->need_save_prio = max(ca->need_save_prio,
81 					 bucket_disk_gen(b));
82 		WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
83 	}
84 
85 	return ret;
86 }
87 
bch_rescale_priorities(struct cache_set * c,int sectors)88 void bch_rescale_priorities(struct cache_set *c, int sectors)
89 {
90 	struct cache *ca;
91 	struct bucket *b;
92 	unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
93 	unsigned i;
94 	int r;
95 
96 	atomic_sub(sectors, &c->rescale);
97 
98 	do {
99 		r = atomic_read(&c->rescale);
100 
101 		if (r >= 0)
102 			return;
103 	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
104 
105 	mutex_lock(&c->bucket_lock);
106 
107 	c->min_prio = USHRT_MAX;
108 
109 	for_each_cache(ca, c, i)
110 		for_each_bucket(b, ca)
111 			if (b->prio &&
112 			    b->prio != BTREE_PRIO &&
113 			    !atomic_read(&b->pin)) {
114 				b->prio--;
115 				c->min_prio = min(c->min_prio, b->prio);
116 			}
117 
118 	mutex_unlock(&c->bucket_lock);
119 }
120 
121 /* Discard/TRIM */
122 
123 struct discard {
124 	struct list_head	list;
125 	struct work_struct	work;
126 	struct cache		*ca;
127 	long			bucket;
128 
129 	struct bio		bio;
130 	struct bio_vec		bv;
131 };
132 
discard_finish(struct work_struct * w)133 static void discard_finish(struct work_struct *w)
134 {
135 	struct discard *d = container_of(w, struct discard, work);
136 	struct cache *ca = d->ca;
137 	char buf[BDEVNAME_SIZE];
138 
139 	if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) {
140 		pr_notice("discard error on %s, disabling",
141 			 bdevname(ca->bdev, buf));
142 		d->ca->discard = 0;
143 	}
144 
145 	mutex_lock(&ca->set->bucket_lock);
146 
147 	fifo_push(&ca->free, d->bucket);
148 	list_add(&d->list, &ca->discards);
149 	atomic_dec(&ca->discards_in_flight);
150 
151 	mutex_unlock(&ca->set->bucket_lock);
152 
153 	closure_wake_up(&ca->set->bucket_wait);
154 	wake_up(&ca->set->alloc_wait);
155 
156 	closure_put(&ca->set->cl);
157 }
158 
discard_endio(struct bio * bio,int error)159 static void discard_endio(struct bio *bio, int error)
160 {
161 	struct discard *d = container_of(bio, struct discard, bio);
162 	schedule_work(&d->work);
163 }
164 
do_discard(struct cache * ca,long bucket)165 static void do_discard(struct cache *ca, long bucket)
166 {
167 	struct discard *d = list_first_entry(&ca->discards,
168 					     struct discard, list);
169 
170 	list_del(&d->list);
171 	d->bucket = bucket;
172 
173 	atomic_inc(&ca->discards_in_flight);
174 	closure_get(&ca->set->cl);
175 
176 	bio_init(&d->bio);
177 
178 	d->bio.bi_sector	= bucket_to_sector(ca->set, d->bucket);
179 	d->bio.bi_bdev		= ca->bdev;
180 	d->bio.bi_rw		= REQ_WRITE|REQ_DISCARD;
181 	d->bio.bi_max_vecs	= 1;
182 	d->bio.bi_io_vec	= d->bio.bi_inline_vecs;
183 	d->bio.bi_size		= bucket_bytes(ca);
184 	d->bio.bi_end_io	= discard_endio;
185 	bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
186 
187 	submit_bio(0, &d->bio);
188 }
189 
190 /* Allocation */
191 
can_inc_bucket_gen(struct bucket * b)192 static inline bool can_inc_bucket_gen(struct bucket *b)
193 {
194 	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
195 		bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
196 }
197 
bch_bucket_add_unused(struct cache * ca,struct bucket * b)198 bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
199 {
200 	BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
201 
202 	if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] &&
203 	    CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
204 		return false;
205 
206 	b->prio = 0;
207 
208 	if (can_inc_bucket_gen(b) &&
209 	    fifo_push(&ca->unused, b - ca->buckets)) {
210 		atomic_inc(&b->pin);
211 		return true;
212 	}
213 
214 	return false;
215 }
216 
can_invalidate_bucket(struct cache * ca,struct bucket * b)217 static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
218 {
219 	return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
220 		!atomic_read(&b->pin) &&
221 		can_inc_bucket_gen(b);
222 }
223 
invalidate_one_bucket(struct cache * ca,struct bucket * b)224 static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
225 {
226 	bch_inc_gen(ca, b);
227 	b->prio = INITIAL_PRIO;
228 	atomic_inc(&b->pin);
229 	fifo_push(&ca->free_inc, b - ca->buckets);
230 }
231 
232 #define bucket_prio(b)				\
233 	(((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b))
234 
235 #define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
236 #define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
237 
invalidate_buckets_lru(struct cache * ca)238 static void invalidate_buckets_lru(struct cache *ca)
239 {
240 	struct bucket *b;
241 	ssize_t i;
242 
243 	ca->heap.used = 0;
244 
245 	for_each_bucket(b, ca) {
246 		/*
247 		 * If we fill up the unused list, if we then return before
248 		 * adding anything to the free_inc list we'll skip writing
249 		 * prios/gens and just go back to allocating from the unused
250 		 * list:
251 		 */
252 		if (fifo_full(&ca->unused))
253 			return;
254 
255 		if (!can_invalidate_bucket(ca, b))
256 			continue;
257 
258 		if (!GC_SECTORS_USED(b) &&
259 		    bch_bucket_add_unused(ca, b))
260 			continue;
261 
262 		if (!heap_full(&ca->heap))
263 			heap_add(&ca->heap, b, bucket_max_cmp);
264 		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
265 			ca->heap.data[0] = b;
266 			heap_sift(&ca->heap, 0, bucket_max_cmp);
267 		}
268 	}
269 
270 	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
271 		heap_sift(&ca->heap, i, bucket_min_cmp);
272 
273 	while (!fifo_full(&ca->free_inc)) {
274 		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
275 			/*
276 			 * We don't want to be calling invalidate_buckets()
277 			 * multiple times when it can't do anything
278 			 */
279 			ca->invalidate_needs_gc = 1;
280 			bch_queue_gc(ca->set);
281 			return;
282 		}
283 
284 		invalidate_one_bucket(ca, b);
285 	}
286 }
287 
invalidate_buckets_fifo(struct cache * ca)288 static void invalidate_buckets_fifo(struct cache *ca)
289 {
290 	struct bucket *b;
291 	size_t checked = 0;
292 
293 	while (!fifo_full(&ca->free_inc)) {
294 		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
295 		    ca->fifo_last_bucket >= ca->sb.nbuckets)
296 			ca->fifo_last_bucket = ca->sb.first_bucket;
297 
298 		b = ca->buckets + ca->fifo_last_bucket++;
299 
300 		if (can_invalidate_bucket(ca, b))
301 			invalidate_one_bucket(ca, b);
302 
303 		if (++checked >= ca->sb.nbuckets) {
304 			ca->invalidate_needs_gc = 1;
305 			bch_queue_gc(ca->set);
306 			return;
307 		}
308 	}
309 }
310 
invalidate_buckets_random(struct cache * ca)311 static void invalidate_buckets_random(struct cache *ca)
312 {
313 	struct bucket *b;
314 	size_t checked = 0;
315 
316 	while (!fifo_full(&ca->free_inc)) {
317 		size_t n;
318 		get_random_bytes(&n, sizeof(n));
319 
320 		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
321 		n += ca->sb.first_bucket;
322 
323 		b = ca->buckets + n;
324 
325 		if (can_invalidate_bucket(ca, b))
326 			invalidate_one_bucket(ca, b);
327 
328 		if (++checked >= ca->sb.nbuckets / 2) {
329 			ca->invalidate_needs_gc = 1;
330 			bch_queue_gc(ca->set);
331 			return;
332 		}
333 	}
334 }
335 
invalidate_buckets(struct cache * ca)336 static void invalidate_buckets(struct cache *ca)
337 {
338 	if (ca->invalidate_needs_gc)
339 		return;
340 
341 	switch (CACHE_REPLACEMENT(&ca->sb)) {
342 	case CACHE_REPLACEMENT_LRU:
343 		invalidate_buckets_lru(ca);
344 		break;
345 	case CACHE_REPLACEMENT_FIFO:
346 		invalidate_buckets_fifo(ca);
347 		break;
348 	case CACHE_REPLACEMENT_RANDOM:
349 		invalidate_buckets_random(ca);
350 		break;
351 	}
352 
353 	pr_debug("free %zu/%zu free_inc %zu/%zu unused %zu/%zu",
354 		 fifo_used(&ca->free), ca->free.size,
355 		 fifo_used(&ca->free_inc), ca->free_inc.size,
356 		 fifo_used(&ca->unused), ca->unused.size);
357 }
358 
359 #define allocator_wait(ca, cond)					\
360 do {									\
361 	DEFINE_WAIT(__wait);						\
362 									\
363 	while (1) {							\
364 		prepare_to_wait(&ca->set->alloc_wait,			\
365 				&__wait, TASK_INTERRUPTIBLE);		\
366 		if (cond)						\
367 			break;						\
368 									\
369 		mutex_unlock(&(ca)->set->bucket_lock);			\
370 		if (test_bit(CACHE_SET_STOPPING_2, &ca->set->flags)) {	\
371 			finish_wait(&ca->set->alloc_wait, &__wait);	\
372 			closure_return(cl);				\
373 		}							\
374 									\
375 		schedule();						\
376 		mutex_lock(&(ca)->set->bucket_lock);			\
377 	}								\
378 									\
379 	finish_wait(&ca->set->alloc_wait, &__wait);			\
380 } while (0)
381 
bch_allocator_thread(struct closure * cl)382 void bch_allocator_thread(struct closure *cl)
383 {
384 	struct cache *ca = container_of(cl, struct cache, alloc);
385 
386 	mutex_lock(&ca->set->bucket_lock);
387 
388 	while (1) {
389 		/*
390 		 * First, we pull buckets off of the unused and free_inc lists,
391 		 * possibly issue discards to them, then we add the bucket to
392 		 * the free list:
393 		 */
394 		while (1) {
395 			long bucket;
396 
397 			if ((!atomic_read(&ca->set->prio_blocked) ||
398 			     !CACHE_SYNC(&ca->set->sb)) &&
399 			    !fifo_empty(&ca->unused))
400 				fifo_pop(&ca->unused, bucket);
401 			else if (!fifo_empty(&ca->free_inc))
402 				fifo_pop(&ca->free_inc, bucket);
403 			else
404 				break;
405 
406 			allocator_wait(ca, (int) fifo_free(&ca->free) >
407 				       atomic_read(&ca->discards_in_flight));
408 
409 			if (ca->discard) {
410 				allocator_wait(ca, !list_empty(&ca->discards));
411 				do_discard(ca, bucket);
412 			} else {
413 				fifo_push(&ca->free, bucket);
414 				closure_wake_up(&ca->set->bucket_wait);
415 			}
416 		}
417 
418 		/*
419 		 * We've run out of free buckets, we need to find some buckets
420 		 * we can invalidate. First, invalidate them in memory and add
421 		 * them to the free_inc list:
422 		 */
423 
424 		allocator_wait(ca, ca->set->gc_mark_valid &&
425 			       (ca->need_save_prio > 64 ||
426 				!ca->invalidate_needs_gc));
427 		invalidate_buckets(ca);
428 
429 		/*
430 		 * Now, we write their new gens to disk so we can start writing
431 		 * new stuff to them:
432 		 */
433 		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
434 		if (CACHE_SYNC(&ca->set->sb) &&
435 		    (!fifo_empty(&ca->free_inc) ||
436 		     ca->need_save_prio > 64))
437 			bch_prio_write(ca);
438 	}
439 }
440 
bch_bucket_alloc(struct cache * ca,unsigned watermark,struct closure * cl)441 long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl)
442 {
443 	long r = -1;
444 again:
445 	wake_up(&ca->set->alloc_wait);
446 
447 	if (fifo_used(&ca->free) > ca->watermark[watermark] &&
448 	    fifo_pop(&ca->free, r)) {
449 		struct bucket *b = ca->buckets + r;
450 #ifdef CONFIG_BCACHE_EDEBUG
451 		size_t iter;
452 		long i;
453 
454 		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
455 			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
456 
457 		fifo_for_each(i, &ca->free, iter)
458 			BUG_ON(i == r);
459 		fifo_for_each(i, &ca->free_inc, iter)
460 			BUG_ON(i == r);
461 		fifo_for_each(i, &ca->unused, iter)
462 			BUG_ON(i == r);
463 #endif
464 		BUG_ON(atomic_read(&b->pin) != 1);
465 
466 		SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
467 
468 		if (watermark <= WATERMARK_METADATA) {
469 			SET_GC_MARK(b, GC_MARK_METADATA);
470 			b->prio = BTREE_PRIO;
471 		} else {
472 			SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
473 			b->prio = INITIAL_PRIO;
474 		}
475 
476 		return r;
477 	}
478 
479 	pr_debug("alloc failure: blocked %i free %zu free_inc %zu unused %zu",
480 		 atomic_read(&ca->set->prio_blocked), fifo_used(&ca->free),
481 		 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
482 
483 	if (cl) {
484 		closure_wait(&ca->set->bucket_wait, cl);
485 
486 		if (closure_blocking(cl)) {
487 			mutex_unlock(&ca->set->bucket_lock);
488 			closure_sync(cl);
489 			mutex_lock(&ca->set->bucket_lock);
490 			goto again;
491 		}
492 	}
493 
494 	return -1;
495 }
496 
bch_bucket_free(struct cache_set * c,struct bkey * k)497 void bch_bucket_free(struct cache_set *c, struct bkey *k)
498 {
499 	unsigned i;
500 
501 	for (i = 0; i < KEY_PTRS(k); i++) {
502 		struct bucket *b = PTR_BUCKET(c, k, i);
503 
504 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
505 		SET_GC_SECTORS_USED(b, 0);
506 		bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
507 	}
508 }
509 
__bch_bucket_alloc_set(struct cache_set * c,unsigned watermark,struct bkey * k,int n,struct closure * cl)510 int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
511 			   struct bkey *k, int n, struct closure *cl)
512 {
513 	int i;
514 
515 	lockdep_assert_held(&c->bucket_lock);
516 	BUG_ON(!n || n > c->caches_loaded || n > 8);
517 
518 	bkey_init(k);
519 
520 	/* sort by free space/prio of oldest data in caches */
521 
522 	for (i = 0; i < n; i++) {
523 		struct cache *ca = c->cache_by_alloc[i];
524 		long b = bch_bucket_alloc(ca, watermark, cl);
525 
526 		if (b == -1)
527 			goto err;
528 
529 		k->ptr[i] = PTR(ca->buckets[b].gen,
530 				bucket_to_sector(c, b),
531 				ca->sb.nr_this_dev);
532 
533 		SET_KEY_PTRS(k, i + 1);
534 	}
535 
536 	return 0;
537 err:
538 	bch_bucket_free(c, k);
539 	__bkey_put(c, k);
540 	return -1;
541 }
542 
bch_bucket_alloc_set(struct cache_set * c,unsigned watermark,struct bkey * k,int n,struct closure * cl)543 int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
544 			 struct bkey *k, int n, struct closure *cl)
545 {
546 	int ret;
547 	mutex_lock(&c->bucket_lock);
548 	ret = __bch_bucket_alloc_set(c, watermark, k, n, cl);
549 	mutex_unlock(&c->bucket_lock);
550 	return ret;
551 }
552 
553 /* Init */
554 
bch_cache_allocator_exit(struct cache * ca)555 void bch_cache_allocator_exit(struct cache *ca)
556 {
557 	struct discard *d;
558 
559 	while (!list_empty(&ca->discards)) {
560 		d = list_first_entry(&ca->discards, struct discard, list);
561 		cancel_work_sync(&d->work);
562 		list_del(&d->list);
563 		kfree(d);
564 	}
565 }
566 
bch_cache_allocator_init(struct cache * ca)567 int bch_cache_allocator_init(struct cache *ca)
568 {
569 	unsigned i;
570 
571 	/*
572 	 * Reserve:
573 	 * Prio/gen writes first
574 	 * Then 8 for btree allocations
575 	 * Then half for the moving garbage collector
576 	 */
577 
578 	ca->watermark[WATERMARK_PRIO] = 0;
579 
580 	ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
581 
582 	ca->watermark[WATERMARK_MOVINGGC] = 8 +
583 		ca->watermark[WATERMARK_METADATA];
584 
585 	ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
586 		ca->watermark[WATERMARK_MOVINGGC];
587 
588 	for (i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) {
589 		struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL);
590 		if (!d)
591 			return -ENOMEM;
592 
593 		d->ca = ca;
594 		INIT_WORK(&d->work, discard_finish);
595 		list_add(&d->list, &ca->discards);
596 	}
597 
598 	return 0;
599 }
600