• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Code for working with individual keys, and sorted sets of keys with in a
3  * btree node
4  *
5  * Copyright 2012 Google, Inc.
6  */
7 
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 
12 #include <linux/random.h>
13 #include <linux/prefetch.h>
14 
15 /* Keylists */
16 
bch_keylist_copy(struct keylist * dest,struct keylist * src)17 void bch_keylist_copy(struct keylist *dest, struct keylist *src)
18 {
19 	*dest = *src;
20 
21 	if (src->list == src->d) {
22 		size_t n = (uint64_t *) src->top - src->d;
23 		dest->top = (struct bkey *) &dest->d[n];
24 		dest->list = dest->d;
25 	}
26 }
27 
bch_keylist_realloc(struct keylist * l,int nptrs,struct cache_set * c)28 int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c)
29 {
30 	unsigned oldsize = (uint64_t *) l->top - l->list;
31 	unsigned newsize = oldsize + 2 + nptrs;
32 	uint64_t *new;
33 
34 	/* The journalling code doesn't handle the case where the keys to insert
35 	 * is bigger than an empty write: If we just return -ENOMEM here,
36 	 * bio_insert() and bio_invalidate() will insert the keys created so far
37 	 * and finish the rest when the keylist is empty.
38 	 */
39 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
40 		return -ENOMEM;
41 
42 	newsize = roundup_pow_of_two(newsize);
43 
44 	if (newsize <= KEYLIST_INLINE ||
45 	    roundup_pow_of_two(oldsize) == newsize)
46 		return 0;
47 
48 	new = krealloc(l->list == l->d ? NULL : l->list,
49 		       sizeof(uint64_t) * newsize, GFP_NOIO);
50 
51 	if (!new)
52 		return -ENOMEM;
53 
54 	if (l->list == l->d)
55 		memcpy(new, l->list, sizeof(uint64_t) * KEYLIST_INLINE);
56 
57 	l->list = new;
58 	l->top = (struct bkey *) (&l->list[oldsize]);
59 
60 	return 0;
61 }
62 
bch_keylist_pop(struct keylist * l)63 struct bkey *bch_keylist_pop(struct keylist *l)
64 {
65 	struct bkey *k = l->bottom;
66 
67 	if (k == l->top)
68 		return NULL;
69 
70 	while (bkey_next(k) != l->top)
71 		k = bkey_next(k);
72 
73 	return l->top = k;
74 }
75 
76 /* Pointer validation */
77 
__bch_ptr_invalid(struct cache_set * c,int level,const struct bkey * k)78 bool __bch_ptr_invalid(struct cache_set *c, int level, const struct bkey *k)
79 {
80 	unsigned i;
81 
82 	if (level && (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k)))
83 		goto bad;
84 
85 	if (!level && KEY_SIZE(k) > KEY_OFFSET(k))
86 		goto bad;
87 
88 	if (!KEY_SIZE(k))
89 		return true;
90 
91 	for (i = 0; i < KEY_PTRS(k); i++)
92 		if (ptr_available(c, k, i)) {
93 			struct cache *ca = PTR_CACHE(c, k, i);
94 			size_t bucket = PTR_BUCKET_NR(c, k, i);
95 			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
96 
97 			if (KEY_SIZE(k) + r > c->sb.bucket_size ||
98 			    bucket <  ca->sb.first_bucket ||
99 			    bucket >= ca->sb.nbuckets)
100 				goto bad;
101 		}
102 
103 	return false;
104 bad:
105 	cache_bug(c, "spotted bad key %s: %s", pkey(k), bch_ptr_status(c, k));
106 	return true;
107 }
108 
bch_ptr_bad(struct btree * b,const struct bkey * k)109 bool bch_ptr_bad(struct btree *b, const struct bkey *k)
110 {
111 	struct bucket *g;
112 	unsigned i, stale;
113 
114 	if (!bkey_cmp(k, &ZERO_KEY) ||
115 	    !KEY_PTRS(k) ||
116 	    bch_ptr_invalid(b, k))
117 		return true;
118 
119 	if (KEY_PTRS(k) && PTR_DEV(k, 0) == PTR_CHECK_DEV)
120 		return true;
121 
122 	for (i = 0; i < KEY_PTRS(k); i++)
123 		if (ptr_available(b->c, k, i)) {
124 			g = PTR_BUCKET(b->c, k, i);
125 			stale = ptr_stale(b->c, k, i);
126 
127 			btree_bug_on(stale > 96, b,
128 				     "key too stale: %i, need_gc %u",
129 				     stale, b->c->need_gc);
130 
131 			btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
132 				     b, "stale dirty pointer");
133 
134 			if (stale)
135 				return true;
136 
137 #ifdef CONFIG_BCACHE_EDEBUG
138 			if (!mutex_trylock(&b->c->bucket_lock))
139 				continue;
140 
141 			if (b->level) {
142 				if (KEY_DIRTY(k) ||
143 				    g->prio != BTREE_PRIO ||
144 				    (b->c->gc_mark_valid &&
145 				     GC_MARK(g) != GC_MARK_METADATA))
146 					goto bug;
147 
148 			} else {
149 				if (g->prio == BTREE_PRIO)
150 					goto bug;
151 
152 				if (KEY_DIRTY(k) &&
153 				    b->c->gc_mark_valid &&
154 				    GC_MARK(g) != GC_MARK_DIRTY)
155 					goto bug;
156 			}
157 			mutex_unlock(&b->c->bucket_lock);
158 #endif
159 		}
160 
161 	return false;
162 #ifdef CONFIG_BCACHE_EDEBUG
163 bug:
164 	mutex_unlock(&b->c->bucket_lock);
165 	btree_bug(b,
166 "inconsistent pointer %s: bucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i",
167 		  pkey(k), PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
168 		  g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen);
169 	return true;
170 #endif
171 }
172 
173 /* Key/pointer manipulation */
174 
bch_bkey_copy_single_ptr(struct bkey * dest,const struct bkey * src,unsigned i)175 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
176 			      unsigned i)
177 {
178 	BUG_ON(i > KEY_PTRS(src));
179 
180 	/* Only copy the header, key, and one pointer. */
181 	memcpy(dest, src, 2 * sizeof(uint64_t));
182 	dest->ptr[0] = src->ptr[i];
183 	SET_KEY_PTRS(dest, 1);
184 	/* We didn't copy the checksum so clear that bit. */
185 	SET_KEY_CSUM(dest, 0);
186 }
187 
__bch_cut_front(const struct bkey * where,struct bkey * k)188 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
189 {
190 	unsigned i, len = 0;
191 
192 	if (bkey_cmp(where, &START_KEY(k)) <= 0)
193 		return false;
194 
195 	if (bkey_cmp(where, k) < 0)
196 		len = KEY_OFFSET(k) - KEY_OFFSET(where);
197 	else
198 		bkey_copy_key(k, where);
199 
200 	for (i = 0; i < KEY_PTRS(k); i++)
201 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
202 
203 	BUG_ON(len > KEY_SIZE(k));
204 	SET_KEY_SIZE(k, len);
205 	return true;
206 }
207 
__bch_cut_back(const struct bkey * where,struct bkey * k)208 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
209 {
210 	unsigned len = 0;
211 
212 	if (bkey_cmp(where, k) >= 0)
213 		return false;
214 
215 	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
216 
217 	if (bkey_cmp(where, &START_KEY(k)) > 0)
218 		len = KEY_OFFSET(where) - KEY_START(k);
219 
220 	bkey_copy_key(k, where);
221 
222 	BUG_ON(len > KEY_SIZE(k));
223 	SET_KEY_SIZE(k, len);
224 	return true;
225 }
226 
merge_chksums(struct bkey * l,struct bkey * r)227 static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
228 {
229 	return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
230 		~((uint64_t)1 << 63);
231 }
232 
233 /* Tries to merge l and r: l should be lower than r
234  * Returns true if we were able to merge. If we did merge, l will be the merged
235  * key, r will be untouched.
236  */
bch_bkey_try_merge(struct btree * b,struct bkey * l,struct bkey * r)237 bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r)
238 {
239 	unsigned i;
240 
241 	if (key_merging_disabled(b->c))
242 		return false;
243 
244 	if (KEY_PTRS(l) != KEY_PTRS(r) ||
245 	    KEY_DIRTY(l) != KEY_DIRTY(r) ||
246 	    bkey_cmp(l, &START_KEY(r)))
247 		return false;
248 
249 	for (i = 0; i < KEY_PTRS(l); i++)
250 		if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
251 		    PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
252 			return false;
253 
254 	/* Keys with no pointers aren't restricted to one bucket and could
255 	 * overflow KEY_SIZE
256 	 */
257 	if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
258 		SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
259 		SET_KEY_SIZE(l, USHRT_MAX);
260 
261 		bch_cut_front(l, r);
262 		return false;
263 	}
264 
265 	if (KEY_CSUM(l)) {
266 		if (KEY_CSUM(r))
267 			l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
268 		else
269 			SET_KEY_CSUM(l, 0);
270 	}
271 
272 	SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
273 	SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
274 
275 	return true;
276 }
277 
278 /* Binary tree stuff for auxiliary search trees */
279 
inorder_next(unsigned j,unsigned size)280 static unsigned inorder_next(unsigned j, unsigned size)
281 {
282 	if (j * 2 + 1 < size) {
283 		j = j * 2 + 1;
284 
285 		while (j * 2 < size)
286 			j *= 2;
287 	} else
288 		j >>= ffz(j) + 1;
289 
290 	return j;
291 }
292 
inorder_prev(unsigned j,unsigned size)293 static unsigned inorder_prev(unsigned j, unsigned size)
294 {
295 	if (j * 2 < size) {
296 		j = j * 2;
297 
298 		while (j * 2 + 1 < size)
299 			j = j * 2 + 1;
300 	} else
301 		j >>= ffs(j);
302 
303 	return j;
304 }
305 
306 /* I have no idea why this code works... and I'm the one who wrote it
307  *
308  * However, I do know what it does:
309  * Given a binary tree constructed in an array (i.e. how you normally implement
310  * a heap), it converts a node in the tree - referenced by array index - to the
311  * index it would have if you did an inorder traversal.
312  *
313  * Also tested for every j, size up to size somewhere around 6 million.
314  *
315  * The binary tree starts at array index 1, not 0
316  * extra is a function of size:
317  *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
318  */
__to_inorder(unsigned j,unsigned size,unsigned extra)319 static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
320 {
321 	unsigned b = fls(j);
322 	unsigned shift = fls(size - 1) - b;
323 
324 	j  ^= 1U << (b - 1);
325 	j <<= 1;
326 	j  |= 1;
327 	j <<= shift;
328 
329 	if (j > extra)
330 		j -= (j - extra) >> 1;
331 
332 	return j;
333 }
334 
to_inorder(unsigned j,struct bset_tree * t)335 static unsigned to_inorder(unsigned j, struct bset_tree *t)
336 {
337 	return __to_inorder(j, t->size, t->extra);
338 }
339 
__inorder_to_tree(unsigned j,unsigned size,unsigned extra)340 static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
341 {
342 	unsigned shift;
343 
344 	if (j > extra)
345 		j += j - extra;
346 
347 	shift = ffs(j);
348 
349 	j >>= shift;
350 	j  |= roundup_pow_of_two(size) >> shift;
351 
352 	return j;
353 }
354 
inorder_to_tree(unsigned j,struct bset_tree * t)355 static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
356 {
357 	return __inorder_to_tree(j, t->size, t->extra);
358 }
359 
360 #if 0
361 void inorder_test(void)
362 {
363 	unsigned long done = 0;
364 	ktime_t start = ktime_get();
365 
366 	for (unsigned size = 2;
367 	     size < 65536000;
368 	     size++) {
369 		unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
370 		unsigned i = 1, j = rounddown_pow_of_two(size - 1);
371 
372 		if (!(size % 4096))
373 			printk(KERN_NOTICE "loop %u, %llu per us\n", size,
374 			       done / ktime_us_delta(ktime_get(), start));
375 
376 		while (1) {
377 			if (__inorder_to_tree(i, size, extra) != j)
378 				panic("size %10u j %10u i %10u", size, j, i);
379 
380 			if (__to_inorder(j, size, extra) != i)
381 				panic("size %10u j %10u i %10u", size, j, i);
382 
383 			if (j == rounddown_pow_of_two(size) - 1)
384 				break;
385 
386 			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
387 
388 			j = inorder_next(j, size);
389 			i++;
390 		}
391 
392 		done += size - 1;
393 	}
394 }
395 #endif
396 
397 /*
398  * Cacheline/offset <-> bkey pointer arithmatic:
399  *
400  * t->tree is a binary search tree in an array; each node corresponds to a key
401  * in one cacheline in t->set (BSET_CACHELINE bytes).
402  *
403  * This means we don't have to store the full index of the key that a node in
404  * the binary tree points to; to_inorder() gives us the cacheline, and then
405  * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
406  *
407  * cacheline_to_bkey() and friends abstract out all the pointer arithmatic to
408  * make this work.
409  *
410  * To construct the bfloat for an arbitrary key we need to know what the key
411  * immediately preceding it is: we have to check if the two keys differ in the
412  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
413  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
414  */
415 
cacheline_to_bkey(struct bset_tree * t,unsigned cacheline,unsigned offset)416 static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
417 				      unsigned offset)
418 {
419 	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
420 }
421 
bkey_to_cacheline(struct bset_tree * t,struct bkey * k)422 static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
423 {
424 	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
425 }
426 
bkey_to_cacheline_offset(struct bkey * k)427 static unsigned bkey_to_cacheline_offset(struct bkey *k)
428 {
429 	return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t);
430 }
431 
tree_to_bkey(struct bset_tree * t,unsigned j)432 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
433 {
434 	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
435 }
436 
tree_to_prev_bkey(struct bset_tree * t,unsigned j)437 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
438 {
439 	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
440 }
441 
442 /*
443  * For the write set - the one we're currently inserting keys into - we don't
444  * maintain a full search tree, we just keep a simple lookup table in t->prev.
445  */
table_to_bkey(struct bset_tree * t,unsigned cacheline)446 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
447 {
448 	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
449 }
450 
shrd128(uint64_t high,uint64_t low,uint8_t shift)451 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
452 {
453 #ifdef CONFIG_X86_64
454 	asm("shrd %[shift],%[high],%[low]"
455 	    : [low] "+Rm" (low)
456 	    : [high] "R" (high),
457 	    [shift] "ci" (shift)
458 	    : "cc");
459 #else
460 	low >>= shift;
461 	low  |= (high << 1) << (63U - shift);
462 #endif
463 	return low;
464 }
465 
bfloat_mantissa(const struct bkey * k,struct bkey_float * f)466 static inline unsigned bfloat_mantissa(const struct bkey *k,
467 				       struct bkey_float *f)
468 {
469 	const uint64_t *p = &k->low - (f->exponent >> 6);
470 	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
471 }
472 
make_bfloat(struct bset_tree * t,unsigned j)473 static void make_bfloat(struct bset_tree *t, unsigned j)
474 {
475 	struct bkey_float *f = &t->tree[j];
476 	struct bkey *m = tree_to_bkey(t, j);
477 	struct bkey *p = tree_to_prev_bkey(t, j);
478 
479 	struct bkey *l = is_power_of_2(j)
480 		? t->data->start
481 		: tree_to_prev_bkey(t, j >> ffs(j));
482 
483 	struct bkey *r = is_power_of_2(j + 1)
484 		? node(t->data, t->data->keys - bkey_u64s(&t->end))
485 		: tree_to_bkey(t, j >> (ffz(j) + 1));
486 
487 	BUG_ON(m < l || m > r);
488 	BUG_ON(bkey_next(p) != m);
489 
490 	if (KEY_INODE(l) != KEY_INODE(r))
491 		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
492 	else
493 		f->exponent = fls64(r->low ^ l->low);
494 
495 	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
496 
497 	/*
498 	 * Setting f->exponent = 127 flags this node as failed, and causes the
499 	 * lookup code to fall back to comparing against the original key.
500 	 */
501 
502 	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
503 		f->mantissa = bfloat_mantissa(m, f) - 1;
504 	else
505 		f->exponent = 127;
506 }
507 
bset_alloc_tree(struct btree * b,struct bset_tree * t)508 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
509 {
510 	if (t != b->sets) {
511 		unsigned j = roundup(t[-1].size,
512 				     64 / sizeof(struct bkey_float));
513 
514 		t->tree = t[-1].tree + j;
515 		t->prev = t[-1].prev + j;
516 	}
517 
518 	while (t < b->sets + MAX_BSETS)
519 		t++->size = 0;
520 }
521 
bset_build_unwritten_tree(struct btree * b)522 static void bset_build_unwritten_tree(struct btree *b)
523 {
524 	struct bset_tree *t = b->sets + b->nsets;
525 
526 	bset_alloc_tree(b, t);
527 
528 	if (t->tree != b->sets->tree + bset_tree_space(b)) {
529 		t->prev[0] = bkey_to_cacheline_offset(t->data->start);
530 		t->size = 1;
531 	}
532 }
533 
bset_build_written_tree(struct btree * b)534 static void bset_build_written_tree(struct btree *b)
535 {
536 	struct bset_tree *t = b->sets + b->nsets;
537 	struct bkey *k = t->data->start;
538 	unsigned j, cacheline = 1;
539 
540 	bset_alloc_tree(b, t);
541 
542 	t->size = min_t(unsigned,
543 			bkey_to_cacheline(t, end(t->data)),
544 			b->sets->tree + bset_tree_space(b) - t->tree);
545 
546 	if (t->size < 2) {
547 		t->size = 0;
548 		return;
549 	}
550 
551 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
552 
553 	/* First we figure out where the first key in each cacheline is */
554 	for (j = inorder_next(0, t->size);
555 	     j;
556 	     j = inorder_next(j, t->size)) {
557 		while (bkey_to_cacheline(t, k) != cacheline)
558 			k = bkey_next(k);
559 
560 		t->prev[j] = bkey_u64s(k);
561 		k = bkey_next(k);
562 		cacheline++;
563 		t->tree[j].m = bkey_to_cacheline_offset(k);
564 	}
565 
566 	while (bkey_next(k) != end(t->data))
567 		k = bkey_next(k);
568 
569 	t->end = *k;
570 
571 	/* Then we build the tree */
572 	for (j = inorder_next(0, t->size);
573 	     j;
574 	     j = inorder_next(j, t->size))
575 		make_bfloat(t, j);
576 }
577 
bch_bset_fix_invalidated_key(struct btree * b,struct bkey * k)578 void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k)
579 {
580 	struct bset_tree *t;
581 	unsigned inorder, j = 1;
582 
583 	for (t = b->sets; t <= &b->sets[b->nsets]; t++)
584 		if (k < end(t->data))
585 			goto found_set;
586 
587 	BUG();
588 found_set:
589 	if (!t->size || !bset_written(b, t))
590 		return;
591 
592 	inorder = bkey_to_cacheline(t, k);
593 
594 	if (k == t->data->start)
595 		goto fix_left;
596 
597 	if (bkey_next(k) == end(t->data)) {
598 		t->end = *k;
599 		goto fix_right;
600 	}
601 
602 	j = inorder_to_tree(inorder, t);
603 
604 	if (j &&
605 	    j < t->size &&
606 	    k == tree_to_bkey(t, j))
607 fix_left:	do {
608 			make_bfloat(t, j);
609 			j = j * 2;
610 		} while (j < t->size);
611 
612 	j = inorder_to_tree(inorder + 1, t);
613 
614 	if (j &&
615 	    j < t->size &&
616 	    k == tree_to_prev_bkey(t, j))
617 fix_right:	do {
618 			make_bfloat(t, j);
619 			j = j * 2 + 1;
620 		} while (j < t->size);
621 }
622 
bch_bset_fix_lookup_table(struct btree * b,struct bkey * k)623 void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k)
624 {
625 	struct bset_tree *t = &b->sets[b->nsets];
626 	unsigned shift = bkey_u64s(k);
627 	unsigned j = bkey_to_cacheline(t, k);
628 
629 	/* We're getting called from btree_split() or btree_gc, just bail out */
630 	if (!t->size)
631 		return;
632 
633 	/* k is the key we just inserted; we need to find the entry in the
634 	 * lookup table for the first key that is strictly greater than k:
635 	 * it's either k's cacheline or the next one
636 	 */
637 	if (j < t->size &&
638 	    table_to_bkey(t, j) <= k)
639 		j++;
640 
641 	/* Adjust all the lookup table entries, and find a new key for any that
642 	 * have gotten too big
643 	 */
644 	for (; j < t->size; j++) {
645 		t->prev[j] += shift;
646 
647 		if (t->prev[j] > 7) {
648 			k = table_to_bkey(t, j - 1);
649 
650 			while (k < cacheline_to_bkey(t, j, 0))
651 				k = bkey_next(k);
652 
653 			t->prev[j] = bkey_to_cacheline_offset(k);
654 		}
655 	}
656 
657 	if (t->size == b->sets->tree + bset_tree_space(b) - t->tree)
658 		return;
659 
660 	/* Possibly add a new entry to the end of the lookup table */
661 
662 	for (k = table_to_bkey(t, t->size - 1);
663 	     k != end(t->data);
664 	     k = bkey_next(k))
665 		if (t->size == bkey_to_cacheline(t, k)) {
666 			t->prev[t->size] = bkey_to_cacheline_offset(k);
667 			t->size++;
668 		}
669 }
670 
bch_bset_init_next(struct btree * b)671 void bch_bset_init_next(struct btree *b)
672 {
673 	struct bset *i = write_block(b);
674 
675 	if (i != b->sets[0].data) {
676 		b->sets[++b->nsets].data = i;
677 		i->seq = b->sets[0].data->seq;
678 	} else
679 		get_random_bytes(&i->seq, sizeof(uint64_t));
680 
681 	i->magic	= bset_magic(b->c);
682 	i->version	= 0;
683 	i->keys		= 0;
684 
685 	bset_build_unwritten_tree(b);
686 }
687 
688 struct bset_search_iter {
689 	struct bkey *l, *r;
690 };
691 
bset_search_write_set(struct btree * b,struct bset_tree * t,const struct bkey * search)692 static struct bset_search_iter bset_search_write_set(struct btree *b,
693 						     struct bset_tree *t,
694 						     const struct bkey *search)
695 {
696 	unsigned li = 0, ri = t->size;
697 
698 	BUG_ON(!b->nsets &&
699 	       t->size < bkey_to_cacheline(t, end(t->data)));
700 
701 	while (li + 1 != ri) {
702 		unsigned m = (li + ri) >> 1;
703 
704 		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
705 			ri = m;
706 		else
707 			li = m;
708 	}
709 
710 	return (struct bset_search_iter) {
711 		table_to_bkey(t, li),
712 		ri < t->size ? table_to_bkey(t, ri) : end(t->data)
713 	};
714 }
715 
bset_search_tree(struct btree * b,struct bset_tree * t,const struct bkey * search)716 static struct bset_search_iter bset_search_tree(struct btree *b,
717 						struct bset_tree *t,
718 						const struct bkey *search)
719 {
720 	struct bkey *l, *r;
721 	struct bkey_float *f;
722 	unsigned inorder, j, n = 1;
723 
724 	do {
725 		unsigned p = n << 4;
726 		p &= ((int) (p - t->size)) >> 31;
727 
728 		prefetch(&t->tree[p]);
729 
730 		j = n;
731 		f = &t->tree[j];
732 
733 		/*
734 		 * n = (f->mantissa > bfloat_mantissa())
735 		 *	? j * 2
736 		 *	: j * 2 + 1;
737 		 *
738 		 * We need to subtract 1 from f->mantissa for the sign bit trick
739 		 * to work  - that's done in make_bfloat()
740 		 */
741 		if (likely(f->exponent != 127))
742 			n = j * 2 + (((unsigned)
743 				      (f->mantissa -
744 				       bfloat_mantissa(search, f))) >> 31);
745 		else
746 			n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
747 				? j * 2
748 				: j * 2 + 1;
749 	} while (n < t->size);
750 
751 	inorder = to_inorder(j, t);
752 
753 	/*
754 	 * n would have been the node we recursed to - the low bit tells us if
755 	 * we recursed left or recursed right.
756 	 */
757 	if (n & 1) {
758 		l = cacheline_to_bkey(t, inorder, f->m);
759 
760 		if (++inorder != t->size) {
761 			f = &t->tree[inorder_next(j, t->size)];
762 			r = cacheline_to_bkey(t, inorder, f->m);
763 		} else
764 			r = end(t->data);
765 	} else {
766 		r = cacheline_to_bkey(t, inorder, f->m);
767 
768 		if (--inorder) {
769 			f = &t->tree[inorder_prev(j, t->size)];
770 			l = cacheline_to_bkey(t, inorder, f->m);
771 		} else
772 			l = t->data->start;
773 	}
774 
775 	return (struct bset_search_iter) {l, r};
776 }
777 
__bch_bset_search(struct btree * b,struct bset_tree * t,const struct bkey * search)778 struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t,
779 			       const struct bkey *search)
780 {
781 	struct bset_search_iter i;
782 
783 	/*
784 	 * First, we search for a cacheline, then lastly we do a linear search
785 	 * within that cacheline.
786 	 *
787 	 * To search for the cacheline, there's three different possibilities:
788 	 *  * The set is too small to have a search tree, so we just do a linear
789 	 *    search over the whole set.
790 	 *  * The set is the one we're currently inserting into; keeping a full
791 	 *    auxiliary search tree up to date would be too expensive, so we
792 	 *    use a much simpler lookup table to do a binary search -
793 	 *    bset_search_write_set().
794 	 *  * Or we use the auxiliary search tree we constructed earlier -
795 	 *    bset_search_tree()
796 	 */
797 
798 	if (unlikely(!t->size)) {
799 		i.l = t->data->start;
800 		i.r = end(t->data);
801 	} else if (bset_written(b, t)) {
802 		/*
803 		 * Each node in the auxiliary search tree covers a certain range
804 		 * of bits, and keys above and below the set it covers might
805 		 * differ outside those bits - so we have to special case the
806 		 * start and end - handle that here:
807 		 */
808 
809 		if (unlikely(bkey_cmp(search, &t->end) >= 0))
810 			return end(t->data);
811 
812 		if (unlikely(bkey_cmp(search, t->data->start) < 0))
813 			return t->data->start;
814 
815 		i = bset_search_tree(b, t, search);
816 	} else
817 		i = bset_search_write_set(b, t, search);
818 
819 #ifdef CONFIG_BCACHE_EDEBUG
820 	BUG_ON(bset_written(b, t) &&
821 	       i.l != t->data->start &&
822 	       bkey_cmp(tree_to_prev_bkey(t,
823 		  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
824 			search) > 0);
825 
826 	BUG_ON(i.r != end(t->data) &&
827 	       bkey_cmp(i.r, search) <= 0);
828 #endif
829 
830 	while (likely(i.l != i.r) &&
831 	       bkey_cmp(i.l, search) <= 0)
832 		i.l = bkey_next(i.l);
833 
834 	return i.l;
835 }
836 
837 /* Btree iterator */
838 
btree_iter_cmp(struct btree_iter_set l,struct btree_iter_set r)839 static inline bool btree_iter_cmp(struct btree_iter_set l,
840 				  struct btree_iter_set r)
841 {
842 	int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
843 
844 	return c ? c > 0 : l.k < r.k;
845 }
846 
btree_iter_end(struct btree_iter * iter)847 static inline bool btree_iter_end(struct btree_iter *iter)
848 {
849 	return !iter->used;
850 }
851 
bch_btree_iter_push(struct btree_iter * iter,struct bkey * k,struct bkey * end)852 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
853 			 struct bkey *end)
854 {
855 	if (k != end)
856 		BUG_ON(!heap_add(iter,
857 				 ((struct btree_iter_set) { k, end }),
858 				 btree_iter_cmp));
859 }
860 
__bch_btree_iter_init(struct btree * b,struct btree_iter * iter,struct bkey * search,struct bset_tree * start)861 struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter,
862 			       struct bkey *search, struct bset_tree *start)
863 {
864 	struct bkey *ret = NULL;
865 	iter->size = ARRAY_SIZE(iter->data);
866 	iter->used = 0;
867 
868 	for (; start <= &b->sets[b->nsets]; start++) {
869 		ret = bch_bset_search(b, start, search);
870 		bch_btree_iter_push(iter, ret, end(start->data));
871 	}
872 
873 	return ret;
874 }
875 
bch_btree_iter_next(struct btree_iter * iter)876 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
877 {
878 	struct btree_iter_set unused;
879 	struct bkey *ret = NULL;
880 
881 	if (!btree_iter_end(iter)) {
882 		ret = iter->data->k;
883 		iter->data->k = bkey_next(iter->data->k);
884 
885 		if (iter->data->k > iter->data->end) {
886 			WARN_ONCE(1, "bset was corrupt!\n");
887 			iter->data->k = iter->data->end;
888 		}
889 
890 		if (iter->data->k == iter->data->end)
891 			heap_pop(iter, unused, btree_iter_cmp);
892 		else
893 			heap_sift(iter, 0, btree_iter_cmp);
894 	}
895 
896 	return ret;
897 }
898 
bch_btree_iter_next_filter(struct btree_iter * iter,struct btree * b,ptr_filter_fn fn)899 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
900 					struct btree *b, ptr_filter_fn fn)
901 {
902 	struct bkey *ret;
903 
904 	do {
905 		ret = bch_btree_iter_next(iter);
906 	} while (ret && fn(b, ret));
907 
908 	return ret;
909 }
910 
bch_next_recurse_key(struct btree * b,struct bkey * search)911 struct bkey *bch_next_recurse_key(struct btree *b, struct bkey *search)
912 {
913 	struct btree_iter iter;
914 
915 	bch_btree_iter_init(b, &iter, search);
916 	return bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
917 }
918 
919 /* Mergesort */
920 
btree_sort_fixup(struct btree_iter * iter)921 static void btree_sort_fixup(struct btree_iter *iter)
922 {
923 	while (iter->used > 1) {
924 		struct btree_iter_set *top = iter->data, *i = top + 1;
925 		struct bkey *k;
926 
927 		if (iter->used > 2 &&
928 		    btree_iter_cmp(i[0], i[1]))
929 			i++;
930 
931 		for (k = i->k;
932 		     k != i->end && bkey_cmp(top->k, &START_KEY(k)) > 0;
933 		     k = bkey_next(k))
934 			if (top->k > i->k)
935 				__bch_cut_front(top->k, k);
936 			else if (KEY_SIZE(k))
937 				bch_cut_back(&START_KEY(k), top->k);
938 
939 		if (top->k < i->k || k == i->k)
940 			break;
941 
942 		heap_sift(iter, i - top, btree_iter_cmp);
943 	}
944 }
945 
btree_mergesort(struct btree * b,struct bset * out,struct btree_iter * iter,bool fixup,bool remove_stale)946 static void btree_mergesort(struct btree *b, struct bset *out,
947 			    struct btree_iter *iter,
948 			    bool fixup, bool remove_stale)
949 {
950 	struct bkey *k, *last = NULL;
951 	bool (*bad)(struct btree *, const struct bkey *) = remove_stale
952 		? bch_ptr_bad
953 		: bch_ptr_invalid;
954 
955 	while (!btree_iter_end(iter)) {
956 		if (fixup && !b->level)
957 			btree_sort_fixup(iter);
958 
959 		k = bch_btree_iter_next(iter);
960 		if (bad(b, k))
961 			continue;
962 
963 		if (!last) {
964 			last = out->start;
965 			bkey_copy(last, k);
966 		} else if (b->level ||
967 			   !bch_bkey_try_merge(b, last, k)) {
968 			last = bkey_next(last);
969 			bkey_copy(last, k);
970 		}
971 	}
972 
973 	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
974 
975 	pr_debug("sorted %i keys", out->keys);
976 	bch_check_key_order(b, out);
977 }
978 
__btree_sort(struct btree * b,struct btree_iter * iter,unsigned start,unsigned order,bool fixup)979 static void __btree_sort(struct btree *b, struct btree_iter *iter,
980 			 unsigned start, unsigned order, bool fixup)
981 {
982 	uint64_t start_time;
983 	bool remove_stale = !b->written;
984 	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO,
985 						     order);
986 	if (!out) {
987 		mutex_lock(&b->c->sort_lock);
988 		out = b->c->sort;
989 		order = ilog2(bucket_pages(b->c));
990 	}
991 
992 	start_time = local_clock();
993 
994 	btree_mergesort(b, out, iter, fixup, remove_stale);
995 	b->nsets = start;
996 
997 	if (!fixup && !start && b->written)
998 		bch_btree_verify(b, out);
999 
1000 	if (!start && order == b->page_order) {
1001 		/*
1002 		 * Our temporary buffer is the same size as the btree node's
1003 		 * buffer, we can just swap buffers instead of doing a big
1004 		 * memcpy()
1005 		 */
1006 
1007 		out->magic	= bset_magic(b->c);
1008 		out->seq	= b->sets[0].data->seq;
1009 		out->version	= b->sets[0].data->version;
1010 		swap(out, b->sets[0].data);
1011 
1012 		if (b->c->sort == b->sets[0].data)
1013 			b->c->sort = out;
1014 	} else {
1015 		b->sets[start].data->keys = out->keys;
1016 		memcpy(b->sets[start].data->start, out->start,
1017 		       (void *) end(out) - (void *) out->start);
1018 	}
1019 
1020 	if (out == b->c->sort)
1021 		mutex_unlock(&b->c->sort_lock);
1022 	else
1023 		free_pages((unsigned long) out, order);
1024 
1025 	if (b->written)
1026 		bset_build_written_tree(b);
1027 
1028 	if (!start) {
1029 		spin_lock(&b->c->sort_time_lock);
1030 		bch_time_stats_update(&b->c->sort_time, start_time);
1031 		spin_unlock(&b->c->sort_time_lock);
1032 	}
1033 }
1034 
bch_btree_sort_partial(struct btree * b,unsigned start)1035 void bch_btree_sort_partial(struct btree *b, unsigned start)
1036 {
1037 	size_t oldsize = 0, order = b->page_order, keys = 0;
1038 	struct btree_iter iter;
1039 	__bch_btree_iter_init(b, &iter, NULL, &b->sets[start]);
1040 
1041 	BUG_ON(b->sets[b->nsets].data == write_block(b) &&
1042 	       (b->sets[b->nsets].size || b->nsets));
1043 
1044 	if (b->written)
1045 		oldsize = bch_count_data(b);
1046 
1047 	if (start) {
1048 		unsigned i;
1049 
1050 		for (i = start; i <= b->nsets; i++)
1051 			keys += b->sets[i].data->keys;
1052 
1053 		order = roundup_pow_of_two(__set_bytes(b->sets->data,
1054 						       keys)) / PAGE_SIZE;
1055 		if (order)
1056 			order = ilog2(order);
1057 	}
1058 
1059 	__btree_sort(b, &iter, start, order, false);
1060 
1061 	EBUG_ON(b->written && bch_count_data(b) != oldsize);
1062 }
1063 
bch_btree_sort_and_fix_extents(struct btree * b,struct btree_iter * iter)1064 void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter)
1065 {
1066 	BUG_ON(!b->written);
1067 	__btree_sort(b, iter, 0, b->page_order, true);
1068 }
1069 
bch_btree_sort_into(struct btree * b,struct btree * new)1070 void bch_btree_sort_into(struct btree *b, struct btree *new)
1071 {
1072 	uint64_t start_time = local_clock();
1073 
1074 	struct btree_iter iter;
1075 	bch_btree_iter_init(b, &iter, NULL);
1076 
1077 	btree_mergesort(b, new->sets->data, &iter, false, true);
1078 
1079 	spin_lock(&b->c->sort_time_lock);
1080 	bch_time_stats_update(&b->c->sort_time, start_time);
1081 	spin_unlock(&b->c->sort_time_lock);
1082 
1083 	bkey_copy_key(&new->key, &b->key);
1084 	new->sets->size = 0;
1085 }
1086 
bch_btree_sort_lazy(struct btree * b)1087 void bch_btree_sort_lazy(struct btree *b)
1088 {
1089 	if (b->nsets) {
1090 		unsigned i, j, keys = 0, total;
1091 
1092 		for (i = 0; i <= b->nsets; i++)
1093 			keys += b->sets[i].data->keys;
1094 
1095 		total = keys;
1096 
1097 		for (j = 0; j < b->nsets; j++) {
1098 			if (keys * 2 < total ||
1099 			    keys < 1000) {
1100 				bch_btree_sort_partial(b, j);
1101 				return;
1102 			}
1103 
1104 			keys -= b->sets[j].data->keys;
1105 		}
1106 
1107 		/* Must sort if b->nsets == 3 or we'll overflow */
1108 		if (b->nsets >= (MAX_BSETS - 1) - b->level) {
1109 			bch_btree_sort(b);
1110 			return;
1111 		}
1112 	}
1113 
1114 	bset_build_written_tree(b);
1115 }
1116 
1117 /* Sysfs stuff */
1118 
1119 struct bset_stats {
1120 	size_t nodes;
1121 	size_t sets_written, sets_unwritten;
1122 	size_t bytes_written, bytes_unwritten;
1123 	size_t floats, failed;
1124 };
1125 
bch_btree_bset_stats(struct btree * b,struct btree_op * op,struct bset_stats * stats)1126 static int bch_btree_bset_stats(struct btree *b, struct btree_op *op,
1127 			    struct bset_stats *stats)
1128 {
1129 	struct bkey *k;
1130 	unsigned i;
1131 
1132 	stats->nodes++;
1133 
1134 	for (i = 0; i <= b->nsets; i++) {
1135 		struct bset_tree *t = &b->sets[i];
1136 		size_t bytes = t->data->keys * sizeof(uint64_t);
1137 		size_t j;
1138 
1139 		if (bset_written(b, t)) {
1140 			stats->sets_written++;
1141 			stats->bytes_written += bytes;
1142 
1143 			stats->floats += t->size - 1;
1144 
1145 			for (j = 1; j < t->size; j++)
1146 				if (t->tree[j].exponent == 127)
1147 					stats->failed++;
1148 		} else {
1149 			stats->sets_unwritten++;
1150 			stats->bytes_unwritten += bytes;
1151 		}
1152 	}
1153 
1154 	if (b->level) {
1155 		struct btree_iter iter;
1156 
1157 		for_each_key_filter(b, k, &iter, bch_ptr_bad) {
1158 			int ret = btree(bset_stats, k, b, op, stats);
1159 			if (ret)
1160 				return ret;
1161 		}
1162 	}
1163 
1164 	return 0;
1165 }
1166 
bch_bset_print_stats(struct cache_set * c,char * buf)1167 int bch_bset_print_stats(struct cache_set *c, char *buf)
1168 {
1169 	struct btree_op op;
1170 	struct bset_stats t;
1171 	int ret;
1172 
1173 	bch_btree_op_init_stack(&op);
1174 	memset(&t, 0, sizeof(struct bset_stats));
1175 
1176 	ret = btree_root(bset_stats, c, &op, &t);
1177 	if (ret)
1178 		return ret;
1179 
1180 	return snprintf(buf, PAGE_SIZE,
1181 			"btree nodes:		%zu\n"
1182 			"written sets:		%zu\n"
1183 			"unwritten sets:		%zu\n"
1184 			"written key bytes:	%zu\n"
1185 			"unwritten key bytes:	%zu\n"
1186 			"floats:			%zu\n"
1187 			"failed:			%zu\n",
1188 			t.nodes,
1189 			t.sets_written, t.sets_unwritten,
1190 			t.bytes_written, t.bytes_unwritten,
1191 			t.floats, t.failed);
1192 }
1193