• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35 
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37  * framebuffer contents in-memory, aiming at reducing the required bandwidth
38  * during in-memory transfers and, therefore, reduce the power packet.
39  *
40  * The benefits of FBC are mostly visible with solid backgrounds and
41  * variation-less patterns.
42  *
43  * FBC-related functionality can be enabled by the means of the
44  * i915.i915_enable_fbc parameter
45  */
46 
intel_crtc_active(struct drm_crtc * crtc)47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49 	/* Be paranoid as we can arrive here with only partial
50 	 * state retrieved from the hardware during setup.
51 	 */
52 	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54 
i8xx_disable_fbc(struct drm_device * dev)55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57 	struct drm_i915_private *dev_priv = dev->dev_private;
58 	u32 fbc_ctl;
59 
60 	/* Disable compression */
61 	fbc_ctl = I915_READ(FBC_CONTROL);
62 	if ((fbc_ctl & FBC_CTL_EN) == 0)
63 		return;
64 
65 	fbc_ctl &= ~FBC_CTL_EN;
66 	I915_WRITE(FBC_CONTROL, fbc_ctl);
67 
68 	/* Wait for compressing bit to clear */
69 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70 		DRM_DEBUG_KMS("FBC idle timed out\n");
71 		return;
72 	}
73 
74 	DRM_DEBUG_KMS("disabled FBC\n");
75 }
76 
i8xx_enable_fbc(struct drm_crtc * crtc,unsigned long interval)77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79 	struct drm_device *dev = crtc->dev;
80 	struct drm_i915_private *dev_priv = dev->dev_private;
81 	struct drm_framebuffer *fb = crtc->fb;
82 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83 	struct drm_i915_gem_object *obj = intel_fb->obj;
84 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85 	int cfb_pitch;
86 	int plane, i;
87 	u32 fbc_ctl, fbc_ctl2;
88 
89 	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90 	if (fb->pitches[0] < cfb_pitch)
91 		cfb_pitch = fb->pitches[0];
92 
93 	/* FBC_CTL wants 64B units */
94 	cfb_pitch = (cfb_pitch / 64) - 1;
95 	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96 
97 	/* Clear old tags */
98 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99 		I915_WRITE(FBC_TAG + (i * 4), 0);
100 
101 	/* Set it up... */
102 	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103 	fbc_ctl2 |= plane;
104 	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105 	I915_WRITE(FBC_FENCE_OFF, crtc->y);
106 
107 	/* enable it... */
108 	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109 	if (IS_I945GM(dev))
110 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112 	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113 	fbc_ctl |= obj->fence_reg;
114 	I915_WRITE(FBC_CONTROL, fbc_ctl);
115 
116 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
117 		      cfb_pitch, crtc->y, intel_crtc->plane);
118 }
119 
i8xx_fbc_enabled(struct drm_device * dev)120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122 	struct drm_i915_private *dev_priv = dev->dev_private;
123 
124 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126 
g4x_enable_fbc(struct drm_crtc * crtc,unsigned long interval)127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129 	struct drm_device *dev = crtc->dev;
130 	struct drm_i915_private *dev_priv = dev->dev_private;
131 	struct drm_framebuffer *fb = crtc->fb;
132 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133 	struct drm_i915_gem_object *obj = intel_fb->obj;
134 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136 	unsigned long stall_watermark = 200;
137 	u32 dpfc_ctl;
138 
139 	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141 	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142 
143 	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147 
148 	/* enable it... */
149 	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150 
151 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
152 }
153 
g4x_disable_fbc(struct drm_device * dev)154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156 	struct drm_i915_private *dev_priv = dev->dev_private;
157 	u32 dpfc_ctl;
158 
159 	/* Disable compression */
160 	dpfc_ctl = I915_READ(DPFC_CONTROL);
161 	if (dpfc_ctl & DPFC_CTL_EN) {
162 		dpfc_ctl &= ~DPFC_CTL_EN;
163 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164 
165 		DRM_DEBUG_KMS("disabled FBC\n");
166 	}
167 }
168 
g4x_fbc_enabled(struct drm_device * dev)169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171 	struct drm_i915_private *dev_priv = dev->dev_private;
172 
173 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175 
sandybridge_blit_fbc_update(struct drm_device * dev)176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178 	struct drm_i915_private *dev_priv = dev->dev_private;
179 	u32 blt_ecoskpd;
180 
181 	/* Make sure blitter notifies FBC of writes */
182 	gen6_gt_force_wake_get(dev_priv);
183 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185 		GEN6_BLITTER_LOCK_SHIFT;
186 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190 			 GEN6_BLITTER_LOCK_SHIFT);
191 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
193 	gen6_gt_force_wake_put(dev_priv);
194 }
195 
ironlake_enable_fbc(struct drm_crtc * crtc,unsigned long interval)196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198 	struct drm_device *dev = crtc->dev;
199 	struct drm_i915_private *dev_priv = dev->dev_private;
200 	struct drm_framebuffer *fb = crtc->fb;
201 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202 	struct drm_i915_gem_object *obj = intel_fb->obj;
203 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205 	unsigned long stall_watermark = 200;
206 	u32 dpfc_ctl;
207 
208 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209 	dpfc_ctl &= DPFC_RESERVED;
210 	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211 	/* Set persistent mode for front-buffer rendering, ala X. */
212 	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213 	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214 	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215 
216 	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220 	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221 	/* enable it... */
222 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223 
224 	if (IS_GEN6(dev)) {
225 		I915_WRITE(SNB_DPFC_CTL_SA,
226 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228 		sandybridge_blit_fbc_update(dev);
229 	}
230 
231 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
232 }
233 
ironlake_disable_fbc(struct drm_device * dev)234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236 	struct drm_i915_private *dev_priv = dev->dev_private;
237 	u32 dpfc_ctl;
238 
239 	/* Disable compression */
240 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241 	if (dpfc_ctl & DPFC_CTL_EN) {
242 		dpfc_ctl &= ~DPFC_CTL_EN;
243 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244 
245 		DRM_DEBUG_KMS("disabled FBC\n");
246 	}
247 }
248 
ironlake_fbc_enabled(struct drm_device * dev)249 static bool ironlake_fbc_enabled(struct drm_device *dev)
250 {
251 	struct drm_i915_private *dev_priv = dev->dev_private;
252 
253 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
254 }
255 
intel_fbc_enabled(struct drm_device * dev)256 bool intel_fbc_enabled(struct drm_device *dev)
257 {
258 	struct drm_i915_private *dev_priv = dev->dev_private;
259 
260 	if (!dev_priv->display.fbc_enabled)
261 		return false;
262 
263 	return dev_priv->display.fbc_enabled(dev);
264 }
265 
intel_fbc_work_fn(struct work_struct * __work)266 static void intel_fbc_work_fn(struct work_struct *__work)
267 {
268 	struct intel_fbc_work *work =
269 		container_of(to_delayed_work(__work),
270 			     struct intel_fbc_work, work);
271 	struct drm_device *dev = work->crtc->dev;
272 	struct drm_i915_private *dev_priv = dev->dev_private;
273 
274 	mutex_lock(&dev->struct_mutex);
275 	if (work == dev_priv->fbc_work) {
276 		/* Double check that we haven't switched fb without cancelling
277 		 * the prior work.
278 		 */
279 		if (work->crtc->fb == work->fb) {
280 			dev_priv->display.enable_fbc(work->crtc,
281 						     work->interval);
282 
283 			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
284 			dev_priv->cfb_fb = work->crtc->fb->base.id;
285 			dev_priv->cfb_y = work->crtc->y;
286 		}
287 
288 		dev_priv->fbc_work = NULL;
289 	}
290 	mutex_unlock(&dev->struct_mutex);
291 
292 	kfree(work);
293 }
294 
intel_cancel_fbc_work(struct drm_i915_private * dev_priv)295 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
296 {
297 	if (dev_priv->fbc_work == NULL)
298 		return;
299 
300 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
301 
302 	/* Synchronisation is provided by struct_mutex and checking of
303 	 * dev_priv->fbc_work, so we can perform the cancellation
304 	 * entirely asynchronously.
305 	 */
306 	if (cancel_delayed_work(&dev_priv->fbc_work->work))
307 		/* tasklet was killed before being run, clean up */
308 		kfree(dev_priv->fbc_work);
309 
310 	/* Mark the work as no longer wanted so that if it does
311 	 * wake-up (because the work was already running and waiting
312 	 * for our mutex), it will discover that is no longer
313 	 * necessary to run.
314 	 */
315 	dev_priv->fbc_work = NULL;
316 }
317 
intel_enable_fbc(struct drm_crtc * crtc,unsigned long interval)318 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
319 {
320 	struct intel_fbc_work *work;
321 	struct drm_device *dev = crtc->dev;
322 	struct drm_i915_private *dev_priv = dev->dev_private;
323 
324 	if (!dev_priv->display.enable_fbc)
325 		return;
326 
327 	intel_cancel_fbc_work(dev_priv);
328 
329 	work = kzalloc(sizeof *work, GFP_KERNEL);
330 	if (work == NULL) {
331 		dev_priv->display.enable_fbc(crtc, interval);
332 		return;
333 	}
334 
335 	work->crtc = crtc;
336 	work->fb = crtc->fb;
337 	work->interval = interval;
338 	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
339 
340 	dev_priv->fbc_work = work;
341 
342 	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
343 
344 	/* Delay the actual enabling to let pageflipping cease and the
345 	 * display to settle before starting the compression. Note that
346 	 * this delay also serves a second purpose: it allows for a
347 	 * vblank to pass after disabling the FBC before we attempt
348 	 * to modify the control registers.
349 	 *
350 	 * A more complicated solution would involve tracking vblanks
351 	 * following the termination of the page-flipping sequence
352 	 * and indeed performing the enable as a co-routine and not
353 	 * waiting synchronously upon the vblank.
354 	 */
355 	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
356 }
357 
intel_disable_fbc(struct drm_device * dev)358 void intel_disable_fbc(struct drm_device *dev)
359 {
360 	struct drm_i915_private *dev_priv = dev->dev_private;
361 
362 	intel_cancel_fbc_work(dev_priv);
363 
364 	if (!dev_priv->display.disable_fbc)
365 		return;
366 
367 	dev_priv->display.disable_fbc(dev);
368 	dev_priv->cfb_plane = -1;
369 }
370 
371 /**
372  * intel_update_fbc - enable/disable FBC as needed
373  * @dev: the drm_device
374  *
375  * Set up the framebuffer compression hardware at mode set time.  We
376  * enable it if possible:
377  *   - plane A only (on pre-965)
378  *   - no pixel mulitply/line duplication
379  *   - no alpha buffer discard
380  *   - no dual wide
381  *   - framebuffer <= 2048 in width, 1536 in height
382  *
383  * We can't assume that any compression will take place (worst case),
384  * so the compressed buffer has to be the same size as the uncompressed
385  * one.  It also must reside (along with the line length buffer) in
386  * stolen memory.
387  *
388  * We need to enable/disable FBC on a global basis.
389  */
intel_update_fbc(struct drm_device * dev)390 void intel_update_fbc(struct drm_device *dev)
391 {
392 	struct drm_i915_private *dev_priv = dev->dev_private;
393 	struct drm_crtc *crtc = NULL, *tmp_crtc;
394 	struct intel_crtc *intel_crtc;
395 	struct drm_framebuffer *fb;
396 	struct intel_framebuffer *intel_fb;
397 	struct drm_i915_gem_object *obj;
398 	int enable_fbc;
399 
400 	if (!i915_powersave)
401 		return;
402 
403 	if (!I915_HAS_FBC(dev))
404 		return;
405 
406 	/*
407 	 * If FBC is already on, we just have to verify that we can
408 	 * keep it that way...
409 	 * Need to disable if:
410 	 *   - more than one pipe is active
411 	 *   - changing FBC params (stride, fence, mode)
412 	 *   - new fb is too large to fit in compressed buffer
413 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
414 	 */
415 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
416 		if (intel_crtc_active(tmp_crtc) &&
417 		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
418 			if (crtc) {
419 				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
420 				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
421 				goto out_disable;
422 			}
423 			crtc = tmp_crtc;
424 		}
425 	}
426 
427 	if (!crtc || crtc->fb == NULL) {
428 		DRM_DEBUG_KMS("no output, disabling\n");
429 		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
430 		goto out_disable;
431 	}
432 
433 	intel_crtc = to_intel_crtc(crtc);
434 	fb = crtc->fb;
435 	intel_fb = to_intel_framebuffer(fb);
436 	obj = intel_fb->obj;
437 
438 	enable_fbc = i915_enable_fbc;
439 	if (enable_fbc < 0) {
440 		DRM_DEBUG_KMS("fbc set to per-chip default\n");
441 		enable_fbc = 1;
442 		if (INTEL_INFO(dev)->gen <= 6)
443 			enable_fbc = 0;
444 	}
445 	if (!enable_fbc) {
446 		DRM_DEBUG_KMS("fbc disabled per module param\n");
447 		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
448 		goto out_disable;
449 	}
450 	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
451 	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
452 		DRM_DEBUG_KMS("mode incompatible with compression, "
453 			      "disabling\n");
454 		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
455 		goto out_disable;
456 	}
457 	if ((crtc->mode.hdisplay > 2048) ||
458 	    (crtc->mode.vdisplay > 1536)) {
459 		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
460 		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
461 		goto out_disable;
462 	}
463 	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
464 		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
465 		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
466 		goto out_disable;
467 	}
468 
469 	/* The use of a CPU fence is mandatory in order to detect writes
470 	 * by the CPU to the scanout and trigger updates to the FBC.
471 	 */
472 	if (obj->tiling_mode != I915_TILING_X ||
473 	    obj->fence_reg == I915_FENCE_REG_NONE) {
474 		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
475 		dev_priv->no_fbc_reason = FBC_NOT_TILED;
476 		goto out_disable;
477 	}
478 
479 	/* If the kernel debugger is active, always disable compression */
480 	if (in_dbg_master())
481 		goto out_disable;
482 
483 	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
484 		DRM_INFO("not enough stolen space for compressed buffer (need %zd bytes), disabling\n", intel_fb->obj->base.size);
485 		DRM_INFO("hint: you may be able to increase stolen memory size in the BIOS to avoid this\n");
486 		DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
487 		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
488 		goto out_disable;
489 	}
490 
491 	/* If the scanout has not changed, don't modify the FBC settings.
492 	 * Note that we make the fundamental assumption that the fb->obj
493 	 * cannot be unpinned (and have its GTT offset and fence revoked)
494 	 * without first being decoupled from the scanout and FBC disabled.
495 	 */
496 	if (dev_priv->cfb_plane == intel_crtc->plane &&
497 	    dev_priv->cfb_fb == fb->base.id &&
498 	    dev_priv->cfb_y == crtc->y)
499 		return;
500 
501 	if (intel_fbc_enabled(dev)) {
502 		/* We update FBC along two paths, after changing fb/crtc
503 		 * configuration (modeswitching) and after page-flipping
504 		 * finishes. For the latter, we know that not only did
505 		 * we disable the FBC at the start of the page-flip
506 		 * sequence, but also more than one vblank has passed.
507 		 *
508 		 * For the former case of modeswitching, it is possible
509 		 * to switch between two FBC valid configurations
510 		 * instantaneously so we do need to disable the FBC
511 		 * before we can modify its control registers. We also
512 		 * have to wait for the next vblank for that to take
513 		 * effect. However, since we delay enabling FBC we can
514 		 * assume that a vblank has passed since disabling and
515 		 * that we can safely alter the registers in the deferred
516 		 * callback.
517 		 *
518 		 * In the scenario that we go from a valid to invalid
519 		 * and then back to valid FBC configuration we have
520 		 * no strict enforcement that a vblank occurred since
521 		 * disabling the FBC. However, along all current pipe
522 		 * disabling paths we do need to wait for a vblank at
523 		 * some point. And we wait before enabling FBC anyway.
524 		 */
525 		DRM_DEBUG_KMS("disabling active FBC for update\n");
526 		intel_disable_fbc(dev);
527 	}
528 
529 	intel_enable_fbc(crtc, 500);
530 	return;
531 
532 out_disable:
533 	/* Multiple disables should be harmless */
534 	if (intel_fbc_enabled(dev)) {
535 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
536 		intel_disable_fbc(dev);
537 	}
538 	i915_gem_stolen_cleanup_compression(dev);
539 }
540 
i915_pineview_get_mem_freq(struct drm_device * dev)541 static void i915_pineview_get_mem_freq(struct drm_device *dev)
542 {
543 	drm_i915_private_t *dev_priv = dev->dev_private;
544 	u32 tmp;
545 
546 	tmp = I915_READ(CLKCFG);
547 
548 	switch (tmp & CLKCFG_FSB_MASK) {
549 	case CLKCFG_FSB_533:
550 		dev_priv->fsb_freq = 533; /* 133*4 */
551 		break;
552 	case CLKCFG_FSB_800:
553 		dev_priv->fsb_freq = 800; /* 200*4 */
554 		break;
555 	case CLKCFG_FSB_667:
556 		dev_priv->fsb_freq =  667; /* 167*4 */
557 		break;
558 	case CLKCFG_FSB_400:
559 		dev_priv->fsb_freq = 400; /* 100*4 */
560 		break;
561 	}
562 
563 	switch (tmp & CLKCFG_MEM_MASK) {
564 	case CLKCFG_MEM_533:
565 		dev_priv->mem_freq = 533;
566 		break;
567 	case CLKCFG_MEM_667:
568 		dev_priv->mem_freq = 667;
569 		break;
570 	case CLKCFG_MEM_800:
571 		dev_priv->mem_freq = 800;
572 		break;
573 	}
574 
575 	/* detect pineview DDR3 setting */
576 	tmp = I915_READ(CSHRDDR3CTL);
577 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
578 }
579 
i915_ironlake_get_mem_freq(struct drm_device * dev)580 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
581 {
582 	drm_i915_private_t *dev_priv = dev->dev_private;
583 	u16 ddrpll, csipll;
584 
585 	ddrpll = I915_READ16(DDRMPLL1);
586 	csipll = I915_READ16(CSIPLL0);
587 
588 	switch (ddrpll & 0xff) {
589 	case 0xc:
590 		dev_priv->mem_freq = 800;
591 		break;
592 	case 0x10:
593 		dev_priv->mem_freq = 1066;
594 		break;
595 	case 0x14:
596 		dev_priv->mem_freq = 1333;
597 		break;
598 	case 0x18:
599 		dev_priv->mem_freq = 1600;
600 		break;
601 	default:
602 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
603 				 ddrpll & 0xff);
604 		dev_priv->mem_freq = 0;
605 		break;
606 	}
607 
608 	dev_priv->ips.r_t = dev_priv->mem_freq;
609 
610 	switch (csipll & 0x3ff) {
611 	case 0x00c:
612 		dev_priv->fsb_freq = 3200;
613 		break;
614 	case 0x00e:
615 		dev_priv->fsb_freq = 3733;
616 		break;
617 	case 0x010:
618 		dev_priv->fsb_freq = 4266;
619 		break;
620 	case 0x012:
621 		dev_priv->fsb_freq = 4800;
622 		break;
623 	case 0x014:
624 		dev_priv->fsb_freq = 5333;
625 		break;
626 	case 0x016:
627 		dev_priv->fsb_freq = 5866;
628 		break;
629 	case 0x018:
630 		dev_priv->fsb_freq = 6400;
631 		break;
632 	default:
633 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
634 				 csipll & 0x3ff);
635 		dev_priv->fsb_freq = 0;
636 		break;
637 	}
638 
639 	if (dev_priv->fsb_freq == 3200) {
640 		dev_priv->ips.c_m = 0;
641 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
642 		dev_priv->ips.c_m = 1;
643 	} else {
644 		dev_priv->ips.c_m = 2;
645 	}
646 }
647 
648 static const struct cxsr_latency cxsr_latency_table[] = {
649 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
650 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
651 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
652 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
653 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
654 
655 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
656 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
657 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
658 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
659 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
660 
661 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
662 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
663 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
664 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
665 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
666 
667 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
668 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
669 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
670 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
671 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
672 
673 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
674 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
675 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
676 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
677 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
678 
679 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
680 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
681 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
682 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
683 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
684 };
685 
intel_get_cxsr_latency(int is_desktop,int is_ddr3,int fsb,int mem)686 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
687 							 int is_ddr3,
688 							 int fsb,
689 							 int mem)
690 {
691 	const struct cxsr_latency *latency;
692 	int i;
693 
694 	if (fsb == 0 || mem == 0)
695 		return NULL;
696 
697 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
698 		latency = &cxsr_latency_table[i];
699 		if (is_desktop == latency->is_desktop &&
700 		    is_ddr3 == latency->is_ddr3 &&
701 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
702 			return latency;
703 	}
704 
705 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
706 
707 	return NULL;
708 }
709 
pineview_disable_cxsr(struct drm_device * dev)710 static void pineview_disable_cxsr(struct drm_device *dev)
711 {
712 	struct drm_i915_private *dev_priv = dev->dev_private;
713 
714 	/* deactivate cxsr */
715 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
716 }
717 
718 /*
719  * Latency for FIFO fetches is dependent on several factors:
720  *   - memory configuration (speed, channels)
721  *   - chipset
722  *   - current MCH state
723  * It can be fairly high in some situations, so here we assume a fairly
724  * pessimal value.  It's a tradeoff between extra memory fetches (if we
725  * set this value too high, the FIFO will fetch frequently to stay full)
726  * and power consumption (set it too low to save power and we might see
727  * FIFO underruns and display "flicker").
728  *
729  * A value of 5us seems to be a good balance; safe for very low end
730  * platforms but not overly aggressive on lower latency configs.
731  */
732 static const int latency_ns = 5000;
733 
i9xx_get_fifo_size(struct drm_device * dev,int plane)734 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
735 {
736 	struct drm_i915_private *dev_priv = dev->dev_private;
737 	uint32_t dsparb = I915_READ(DSPARB);
738 	int size;
739 
740 	size = dsparb & 0x7f;
741 	if (plane)
742 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
743 
744 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
745 		      plane ? "B" : "A", size);
746 
747 	return size;
748 }
749 
i85x_get_fifo_size(struct drm_device * dev,int plane)750 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
751 {
752 	struct drm_i915_private *dev_priv = dev->dev_private;
753 	uint32_t dsparb = I915_READ(DSPARB);
754 	int size;
755 
756 	size = dsparb & 0x1ff;
757 	if (plane)
758 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
759 	size >>= 1; /* Convert to cachelines */
760 
761 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
762 		      plane ? "B" : "A", size);
763 
764 	return size;
765 }
766 
i845_get_fifo_size(struct drm_device * dev,int plane)767 static int i845_get_fifo_size(struct drm_device *dev, int plane)
768 {
769 	struct drm_i915_private *dev_priv = dev->dev_private;
770 	uint32_t dsparb = I915_READ(DSPARB);
771 	int size;
772 
773 	size = dsparb & 0x7f;
774 	size >>= 2; /* Convert to cachelines */
775 
776 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
777 		      plane ? "B" : "A",
778 		      size);
779 
780 	return size;
781 }
782 
i830_get_fifo_size(struct drm_device * dev,int plane)783 static int i830_get_fifo_size(struct drm_device *dev, int plane)
784 {
785 	struct drm_i915_private *dev_priv = dev->dev_private;
786 	uint32_t dsparb = I915_READ(DSPARB);
787 	int size;
788 
789 	size = dsparb & 0x7f;
790 	size >>= 1; /* Convert to cachelines */
791 
792 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
793 		      plane ? "B" : "A", size);
794 
795 	return size;
796 }
797 
798 /* Pineview has different values for various configs */
799 static const struct intel_watermark_params pineview_display_wm = {
800 	PINEVIEW_DISPLAY_FIFO,
801 	PINEVIEW_MAX_WM,
802 	PINEVIEW_DFT_WM,
803 	PINEVIEW_GUARD_WM,
804 	PINEVIEW_FIFO_LINE_SIZE
805 };
806 static const struct intel_watermark_params pineview_display_hplloff_wm = {
807 	PINEVIEW_DISPLAY_FIFO,
808 	PINEVIEW_MAX_WM,
809 	PINEVIEW_DFT_HPLLOFF_WM,
810 	PINEVIEW_GUARD_WM,
811 	PINEVIEW_FIFO_LINE_SIZE
812 };
813 static const struct intel_watermark_params pineview_cursor_wm = {
814 	PINEVIEW_CURSOR_FIFO,
815 	PINEVIEW_CURSOR_MAX_WM,
816 	PINEVIEW_CURSOR_DFT_WM,
817 	PINEVIEW_CURSOR_GUARD_WM,
818 	PINEVIEW_FIFO_LINE_SIZE,
819 };
820 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
821 	PINEVIEW_CURSOR_FIFO,
822 	PINEVIEW_CURSOR_MAX_WM,
823 	PINEVIEW_CURSOR_DFT_WM,
824 	PINEVIEW_CURSOR_GUARD_WM,
825 	PINEVIEW_FIFO_LINE_SIZE
826 };
827 static const struct intel_watermark_params g4x_wm_info = {
828 	G4X_FIFO_SIZE,
829 	G4X_MAX_WM,
830 	G4X_MAX_WM,
831 	2,
832 	G4X_FIFO_LINE_SIZE,
833 };
834 static const struct intel_watermark_params g4x_cursor_wm_info = {
835 	I965_CURSOR_FIFO,
836 	I965_CURSOR_MAX_WM,
837 	I965_CURSOR_DFT_WM,
838 	2,
839 	G4X_FIFO_LINE_SIZE,
840 };
841 static const struct intel_watermark_params valleyview_wm_info = {
842 	VALLEYVIEW_FIFO_SIZE,
843 	VALLEYVIEW_MAX_WM,
844 	VALLEYVIEW_MAX_WM,
845 	2,
846 	G4X_FIFO_LINE_SIZE,
847 };
848 static const struct intel_watermark_params valleyview_cursor_wm_info = {
849 	I965_CURSOR_FIFO,
850 	VALLEYVIEW_CURSOR_MAX_WM,
851 	I965_CURSOR_DFT_WM,
852 	2,
853 	G4X_FIFO_LINE_SIZE,
854 };
855 static const struct intel_watermark_params i965_cursor_wm_info = {
856 	I965_CURSOR_FIFO,
857 	I965_CURSOR_MAX_WM,
858 	I965_CURSOR_DFT_WM,
859 	2,
860 	I915_FIFO_LINE_SIZE,
861 };
862 static const struct intel_watermark_params i945_wm_info = {
863 	I945_FIFO_SIZE,
864 	I915_MAX_WM,
865 	1,
866 	2,
867 	I915_FIFO_LINE_SIZE
868 };
869 static const struct intel_watermark_params i915_wm_info = {
870 	I915_FIFO_SIZE,
871 	I915_MAX_WM,
872 	1,
873 	2,
874 	I915_FIFO_LINE_SIZE
875 };
876 static const struct intel_watermark_params i855_wm_info = {
877 	I855GM_FIFO_SIZE,
878 	I915_MAX_WM,
879 	1,
880 	2,
881 	I830_FIFO_LINE_SIZE
882 };
883 static const struct intel_watermark_params i830_wm_info = {
884 	I830_FIFO_SIZE,
885 	I915_MAX_WM,
886 	1,
887 	2,
888 	I830_FIFO_LINE_SIZE
889 };
890 
891 static const struct intel_watermark_params ironlake_display_wm_info = {
892 	ILK_DISPLAY_FIFO,
893 	ILK_DISPLAY_MAXWM,
894 	ILK_DISPLAY_DFTWM,
895 	2,
896 	ILK_FIFO_LINE_SIZE
897 };
898 static const struct intel_watermark_params ironlake_cursor_wm_info = {
899 	ILK_CURSOR_FIFO,
900 	ILK_CURSOR_MAXWM,
901 	ILK_CURSOR_DFTWM,
902 	2,
903 	ILK_FIFO_LINE_SIZE
904 };
905 static const struct intel_watermark_params ironlake_display_srwm_info = {
906 	ILK_DISPLAY_SR_FIFO,
907 	ILK_DISPLAY_MAX_SRWM,
908 	ILK_DISPLAY_DFT_SRWM,
909 	2,
910 	ILK_FIFO_LINE_SIZE
911 };
912 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
913 	ILK_CURSOR_SR_FIFO,
914 	ILK_CURSOR_MAX_SRWM,
915 	ILK_CURSOR_DFT_SRWM,
916 	2,
917 	ILK_FIFO_LINE_SIZE
918 };
919 
920 static const struct intel_watermark_params sandybridge_display_wm_info = {
921 	SNB_DISPLAY_FIFO,
922 	SNB_DISPLAY_MAXWM,
923 	SNB_DISPLAY_DFTWM,
924 	2,
925 	SNB_FIFO_LINE_SIZE
926 };
927 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
928 	SNB_CURSOR_FIFO,
929 	SNB_CURSOR_MAXWM,
930 	SNB_CURSOR_DFTWM,
931 	2,
932 	SNB_FIFO_LINE_SIZE
933 };
934 static const struct intel_watermark_params sandybridge_display_srwm_info = {
935 	SNB_DISPLAY_SR_FIFO,
936 	SNB_DISPLAY_MAX_SRWM,
937 	SNB_DISPLAY_DFT_SRWM,
938 	2,
939 	SNB_FIFO_LINE_SIZE
940 };
941 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
942 	SNB_CURSOR_SR_FIFO,
943 	SNB_CURSOR_MAX_SRWM,
944 	SNB_CURSOR_DFT_SRWM,
945 	2,
946 	SNB_FIFO_LINE_SIZE
947 };
948 
949 
950 /**
951  * intel_calculate_wm - calculate watermark level
952  * @clock_in_khz: pixel clock
953  * @wm: chip FIFO params
954  * @pixel_size: display pixel size
955  * @latency_ns: memory latency for the platform
956  *
957  * Calculate the watermark level (the level at which the display plane will
958  * start fetching from memory again).  Each chip has a different display
959  * FIFO size and allocation, so the caller needs to figure that out and pass
960  * in the correct intel_watermark_params structure.
961  *
962  * As the pixel clock runs, the FIFO will be drained at a rate that depends
963  * on the pixel size.  When it reaches the watermark level, it'll start
964  * fetching FIFO line sized based chunks from memory until the FIFO fills
965  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
966  * will occur, and a display engine hang could result.
967  */
intel_calculate_wm(unsigned long clock_in_khz,const struct intel_watermark_params * wm,int fifo_size,int pixel_size,unsigned long latency_ns)968 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
969 					const struct intel_watermark_params *wm,
970 					int fifo_size,
971 					int pixel_size,
972 					unsigned long latency_ns)
973 {
974 	long entries_required, wm_size;
975 
976 	/*
977 	 * Note: we need to make sure we don't overflow for various clock &
978 	 * latency values.
979 	 * clocks go from a few thousand to several hundred thousand.
980 	 * latency is usually a few thousand
981 	 */
982 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
983 		1000;
984 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
985 
986 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
987 
988 	wm_size = fifo_size - (entries_required + wm->guard_size);
989 
990 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
991 
992 	/* Don't promote wm_size to unsigned... */
993 	if (wm_size > (long)wm->max_wm)
994 		wm_size = wm->max_wm;
995 	if (wm_size <= 0)
996 		wm_size = wm->default_wm;
997 	return wm_size;
998 }
999 
single_enabled_crtc(struct drm_device * dev)1000 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1001 {
1002 	struct drm_crtc *crtc, *enabled = NULL;
1003 
1004 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1005 		if (intel_crtc_active(crtc)) {
1006 			if (enabled)
1007 				return NULL;
1008 			enabled = crtc;
1009 		}
1010 	}
1011 
1012 	return enabled;
1013 }
1014 
pineview_update_wm(struct drm_device * dev)1015 static void pineview_update_wm(struct drm_device *dev)
1016 {
1017 	struct drm_i915_private *dev_priv = dev->dev_private;
1018 	struct drm_crtc *crtc;
1019 	const struct cxsr_latency *latency;
1020 	u32 reg;
1021 	unsigned long wm;
1022 
1023 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1024 					 dev_priv->fsb_freq, dev_priv->mem_freq);
1025 	if (!latency) {
1026 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1027 		pineview_disable_cxsr(dev);
1028 		return;
1029 	}
1030 
1031 	crtc = single_enabled_crtc(dev);
1032 	if (crtc) {
1033 		int clock = crtc->mode.clock;
1034 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1035 
1036 		/* Display SR */
1037 		wm = intel_calculate_wm(clock, &pineview_display_wm,
1038 					pineview_display_wm.fifo_size,
1039 					pixel_size, latency->display_sr);
1040 		reg = I915_READ(DSPFW1);
1041 		reg &= ~DSPFW_SR_MASK;
1042 		reg |= wm << DSPFW_SR_SHIFT;
1043 		I915_WRITE(DSPFW1, reg);
1044 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1045 
1046 		/* cursor SR */
1047 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1048 					pineview_display_wm.fifo_size,
1049 					pixel_size, latency->cursor_sr);
1050 		reg = I915_READ(DSPFW3);
1051 		reg &= ~DSPFW_CURSOR_SR_MASK;
1052 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1053 		I915_WRITE(DSPFW3, reg);
1054 
1055 		/* Display HPLL off SR */
1056 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1057 					pineview_display_hplloff_wm.fifo_size,
1058 					pixel_size, latency->display_hpll_disable);
1059 		reg = I915_READ(DSPFW3);
1060 		reg &= ~DSPFW_HPLL_SR_MASK;
1061 		reg |= wm & DSPFW_HPLL_SR_MASK;
1062 		I915_WRITE(DSPFW3, reg);
1063 
1064 		/* cursor HPLL off SR */
1065 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1066 					pineview_display_hplloff_wm.fifo_size,
1067 					pixel_size, latency->cursor_hpll_disable);
1068 		reg = I915_READ(DSPFW3);
1069 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1070 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1071 		I915_WRITE(DSPFW3, reg);
1072 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1073 
1074 		/* activate cxsr */
1075 		I915_WRITE(DSPFW3,
1076 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1077 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1078 	} else {
1079 		pineview_disable_cxsr(dev);
1080 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1081 	}
1082 }
1083 
g4x_compute_wm0(struct drm_device * dev,int plane,const struct intel_watermark_params * display,int display_latency_ns,const struct intel_watermark_params * cursor,int cursor_latency_ns,int * plane_wm,int * cursor_wm)1084 static bool g4x_compute_wm0(struct drm_device *dev,
1085 			    int plane,
1086 			    const struct intel_watermark_params *display,
1087 			    int display_latency_ns,
1088 			    const struct intel_watermark_params *cursor,
1089 			    int cursor_latency_ns,
1090 			    int *plane_wm,
1091 			    int *cursor_wm)
1092 {
1093 	struct drm_crtc *crtc;
1094 	int htotal, hdisplay, clock, pixel_size;
1095 	int line_time_us, line_count;
1096 	int entries, tlb_miss;
1097 
1098 	crtc = intel_get_crtc_for_plane(dev, plane);
1099 	if (!intel_crtc_active(crtc)) {
1100 		*cursor_wm = cursor->guard_size;
1101 		*plane_wm = display->guard_size;
1102 		return false;
1103 	}
1104 
1105 	htotal = crtc->mode.htotal;
1106 	hdisplay = crtc->mode.hdisplay;
1107 	clock = crtc->mode.clock;
1108 	pixel_size = crtc->fb->bits_per_pixel / 8;
1109 
1110 	/* Use the small buffer method to calculate plane watermark */
1111 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1112 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1113 	if (tlb_miss > 0)
1114 		entries += tlb_miss;
1115 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1116 	*plane_wm = entries + display->guard_size;
1117 	if (*plane_wm > (int)display->max_wm)
1118 		*plane_wm = display->max_wm;
1119 
1120 	/* Use the large buffer method to calculate cursor watermark */
1121 	line_time_us = ((htotal * 1000) / clock);
1122 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1123 	entries = line_count * 64 * pixel_size;
1124 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1125 	if (tlb_miss > 0)
1126 		entries += tlb_miss;
1127 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1128 	*cursor_wm = entries + cursor->guard_size;
1129 	if (*cursor_wm > (int)cursor->max_wm)
1130 		*cursor_wm = (int)cursor->max_wm;
1131 
1132 	return true;
1133 }
1134 
1135 /*
1136  * Check the wm result.
1137  *
1138  * If any calculated watermark values is larger than the maximum value that
1139  * can be programmed into the associated watermark register, that watermark
1140  * must be disabled.
1141  */
g4x_check_srwm(struct drm_device * dev,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)1142 static bool g4x_check_srwm(struct drm_device *dev,
1143 			   int display_wm, int cursor_wm,
1144 			   const struct intel_watermark_params *display,
1145 			   const struct intel_watermark_params *cursor)
1146 {
1147 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1148 		      display_wm, cursor_wm);
1149 
1150 	if (display_wm > display->max_wm) {
1151 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1152 			      display_wm, display->max_wm);
1153 		return false;
1154 	}
1155 
1156 	if (cursor_wm > cursor->max_wm) {
1157 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1158 			      cursor_wm, cursor->max_wm);
1159 		return false;
1160 	}
1161 
1162 	if (!(display_wm || cursor_wm)) {
1163 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1164 		return false;
1165 	}
1166 
1167 	return true;
1168 }
1169 
g4x_compute_srwm(struct drm_device * dev,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * display_wm,int * cursor_wm)1170 static bool g4x_compute_srwm(struct drm_device *dev,
1171 			     int plane,
1172 			     int latency_ns,
1173 			     const struct intel_watermark_params *display,
1174 			     const struct intel_watermark_params *cursor,
1175 			     int *display_wm, int *cursor_wm)
1176 {
1177 	struct drm_crtc *crtc;
1178 	int hdisplay, htotal, pixel_size, clock;
1179 	unsigned long line_time_us;
1180 	int line_count, line_size;
1181 	int small, large;
1182 	int entries;
1183 
1184 	if (!latency_ns) {
1185 		*display_wm = *cursor_wm = 0;
1186 		return false;
1187 	}
1188 
1189 	crtc = intel_get_crtc_for_plane(dev, plane);
1190 	hdisplay = crtc->mode.hdisplay;
1191 	htotal = crtc->mode.htotal;
1192 	clock = crtc->mode.clock;
1193 	pixel_size = crtc->fb->bits_per_pixel / 8;
1194 
1195 	line_time_us = (htotal * 1000) / clock;
1196 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1197 	line_size = hdisplay * pixel_size;
1198 
1199 	/* Use the minimum of the small and large buffer method for primary */
1200 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1201 	large = line_count * line_size;
1202 
1203 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1204 	*display_wm = entries + display->guard_size;
1205 
1206 	/* calculate the self-refresh watermark for display cursor */
1207 	entries = line_count * pixel_size * 64;
1208 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1209 	*cursor_wm = entries + cursor->guard_size;
1210 
1211 	return g4x_check_srwm(dev,
1212 			      *display_wm, *cursor_wm,
1213 			      display, cursor);
1214 }
1215 
vlv_compute_drain_latency(struct drm_device * dev,int plane,int * plane_prec_mult,int * plane_dl,int * cursor_prec_mult,int * cursor_dl)1216 static bool vlv_compute_drain_latency(struct drm_device *dev,
1217 				     int plane,
1218 				     int *plane_prec_mult,
1219 				     int *plane_dl,
1220 				     int *cursor_prec_mult,
1221 				     int *cursor_dl)
1222 {
1223 	struct drm_crtc *crtc;
1224 	int clock, pixel_size;
1225 	int entries;
1226 
1227 	crtc = intel_get_crtc_for_plane(dev, plane);
1228 	if (!intel_crtc_active(crtc))
1229 		return false;
1230 
1231 	clock = crtc->mode.clock;	/* VESA DOT Clock */
1232 	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1233 
1234 	entries = (clock / 1000) * pixel_size;
1235 	*plane_prec_mult = (entries > 256) ?
1236 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1237 	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1238 						     pixel_size);
1239 
1240 	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1241 	*cursor_prec_mult = (entries > 256) ?
1242 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1243 	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1244 
1245 	return true;
1246 }
1247 
1248 /*
1249  * Update drain latency registers of memory arbiter
1250  *
1251  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1252  * to be programmed. Each plane has a drain latency multiplier and a drain
1253  * latency value.
1254  */
1255 
vlv_update_drain_latency(struct drm_device * dev)1256 static void vlv_update_drain_latency(struct drm_device *dev)
1257 {
1258 	struct drm_i915_private *dev_priv = dev->dev_private;
1259 	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1260 	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1261 	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1262 							either 16 or 32 */
1263 
1264 	/* For plane A, Cursor A */
1265 	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1266 				      &cursor_prec_mult, &cursora_dl)) {
1267 		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1268 			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1269 		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1270 			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1271 
1272 		I915_WRITE(VLV_DDL1, cursora_prec |
1273 				(cursora_dl << DDL_CURSORA_SHIFT) |
1274 				planea_prec | planea_dl);
1275 	}
1276 
1277 	/* For plane B, Cursor B */
1278 	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1279 				      &cursor_prec_mult, &cursorb_dl)) {
1280 		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1281 			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1282 		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1283 			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1284 
1285 		I915_WRITE(VLV_DDL2, cursorb_prec |
1286 				(cursorb_dl << DDL_CURSORB_SHIFT) |
1287 				planeb_prec | planeb_dl);
1288 	}
1289 }
1290 
1291 #define single_plane_enabled(mask) is_power_of_2(mask)
1292 
valleyview_update_wm(struct drm_device * dev)1293 static void valleyview_update_wm(struct drm_device *dev)
1294 {
1295 	static const int sr_latency_ns = 12000;
1296 	struct drm_i915_private *dev_priv = dev->dev_private;
1297 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1298 	int plane_sr, cursor_sr;
1299 	int ignore_plane_sr, ignore_cursor_sr;
1300 	unsigned int enabled = 0;
1301 
1302 	vlv_update_drain_latency(dev);
1303 
1304 	if (g4x_compute_wm0(dev, PIPE_A,
1305 			    &valleyview_wm_info, latency_ns,
1306 			    &valleyview_cursor_wm_info, latency_ns,
1307 			    &planea_wm, &cursora_wm))
1308 		enabled |= 1 << PIPE_A;
1309 
1310 	if (g4x_compute_wm0(dev, PIPE_B,
1311 			    &valleyview_wm_info, latency_ns,
1312 			    &valleyview_cursor_wm_info, latency_ns,
1313 			    &planeb_wm, &cursorb_wm))
1314 		enabled |= 1 << PIPE_B;
1315 
1316 	if (single_plane_enabled(enabled) &&
1317 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1318 			     sr_latency_ns,
1319 			     &valleyview_wm_info,
1320 			     &valleyview_cursor_wm_info,
1321 			     &plane_sr, &ignore_cursor_sr) &&
1322 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1323 			     2*sr_latency_ns,
1324 			     &valleyview_wm_info,
1325 			     &valleyview_cursor_wm_info,
1326 			     &ignore_plane_sr, &cursor_sr)) {
1327 		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1328 	} else {
1329 		I915_WRITE(FW_BLC_SELF_VLV,
1330 			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1331 		plane_sr = cursor_sr = 0;
1332 	}
1333 
1334 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1335 		      planea_wm, cursora_wm,
1336 		      planeb_wm, cursorb_wm,
1337 		      plane_sr, cursor_sr);
1338 
1339 	I915_WRITE(DSPFW1,
1340 		   (plane_sr << DSPFW_SR_SHIFT) |
1341 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1342 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1343 		   planea_wm);
1344 	I915_WRITE(DSPFW2,
1345 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1346 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1347 	I915_WRITE(DSPFW3,
1348 		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1349 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1350 }
1351 
g4x_update_wm(struct drm_device * dev)1352 static void g4x_update_wm(struct drm_device *dev)
1353 {
1354 	static const int sr_latency_ns = 12000;
1355 	struct drm_i915_private *dev_priv = dev->dev_private;
1356 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1357 	int plane_sr, cursor_sr;
1358 	unsigned int enabled = 0;
1359 
1360 	if (g4x_compute_wm0(dev, PIPE_A,
1361 			    &g4x_wm_info, latency_ns,
1362 			    &g4x_cursor_wm_info, latency_ns,
1363 			    &planea_wm, &cursora_wm))
1364 		enabled |= 1 << PIPE_A;
1365 
1366 	if (g4x_compute_wm0(dev, PIPE_B,
1367 			    &g4x_wm_info, latency_ns,
1368 			    &g4x_cursor_wm_info, latency_ns,
1369 			    &planeb_wm, &cursorb_wm))
1370 		enabled |= 1 << PIPE_B;
1371 
1372 	if (single_plane_enabled(enabled) &&
1373 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1374 			     sr_latency_ns,
1375 			     &g4x_wm_info,
1376 			     &g4x_cursor_wm_info,
1377 			     &plane_sr, &cursor_sr)) {
1378 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1379 	} else {
1380 		I915_WRITE(FW_BLC_SELF,
1381 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1382 		plane_sr = cursor_sr = 0;
1383 	}
1384 
1385 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1386 		      planea_wm, cursora_wm,
1387 		      planeb_wm, cursorb_wm,
1388 		      plane_sr, cursor_sr);
1389 
1390 	I915_WRITE(DSPFW1,
1391 		   (plane_sr << DSPFW_SR_SHIFT) |
1392 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1393 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1394 		   planea_wm);
1395 	I915_WRITE(DSPFW2,
1396 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1397 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1398 	/* HPLL off in SR has some issues on G4x... disable it */
1399 	I915_WRITE(DSPFW3,
1400 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1401 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1402 }
1403 
i965_update_wm(struct drm_device * dev)1404 static void i965_update_wm(struct drm_device *dev)
1405 {
1406 	struct drm_i915_private *dev_priv = dev->dev_private;
1407 	struct drm_crtc *crtc;
1408 	int srwm = 1;
1409 	int cursor_sr = 16;
1410 
1411 	/* Calc sr entries for one plane configs */
1412 	crtc = single_enabled_crtc(dev);
1413 	if (crtc) {
1414 		/* self-refresh has much higher latency */
1415 		static const int sr_latency_ns = 12000;
1416 		int clock = crtc->mode.clock;
1417 		int htotal = crtc->mode.htotal;
1418 		int hdisplay = crtc->mode.hdisplay;
1419 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1420 		unsigned long line_time_us;
1421 		int entries;
1422 
1423 		line_time_us = ((htotal * 1000) / clock);
1424 
1425 		/* Use ns/us then divide to preserve precision */
1426 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1427 			pixel_size * hdisplay;
1428 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1429 		srwm = I965_FIFO_SIZE - entries;
1430 		if (srwm < 0)
1431 			srwm = 1;
1432 		srwm &= 0x1ff;
1433 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1434 			      entries, srwm);
1435 
1436 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1437 			pixel_size * 64;
1438 		entries = DIV_ROUND_UP(entries,
1439 					  i965_cursor_wm_info.cacheline_size);
1440 		cursor_sr = i965_cursor_wm_info.fifo_size -
1441 			(entries + i965_cursor_wm_info.guard_size);
1442 
1443 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1444 			cursor_sr = i965_cursor_wm_info.max_wm;
1445 
1446 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1447 			      "cursor %d\n", srwm, cursor_sr);
1448 
1449 		if (IS_CRESTLINE(dev))
1450 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1451 	} else {
1452 		/* Turn off self refresh if both pipes are enabled */
1453 		if (IS_CRESTLINE(dev))
1454 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1455 				   & ~FW_BLC_SELF_EN);
1456 	}
1457 
1458 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1459 		      srwm);
1460 
1461 	/* 965 has limitations... */
1462 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1463 		   (8 << 16) | (8 << 8) | (8 << 0));
1464 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1465 	/* update cursor SR watermark */
1466 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1467 }
1468 
i9xx_update_wm(struct drm_device * dev)1469 static void i9xx_update_wm(struct drm_device *dev)
1470 {
1471 	struct drm_i915_private *dev_priv = dev->dev_private;
1472 	const struct intel_watermark_params *wm_info;
1473 	uint32_t fwater_lo;
1474 	uint32_t fwater_hi;
1475 	int cwm, srwm = 1;
1476 	int fifo_size;
1477 	int planea_wm, planeb_wm;
1478 	struct drm_crtc *crtc, *enabled = NULL;
1479 
1480 	if (IS_I945GM(dev))
1481 		wm_info = &i945_wm_info;
1482 	else if (!IS_GEN2(dev))
1483 		wm_info = &i915_wm_info;
1484 	else
1485 		wm_info = &i855_wm_info;
1486 
1487 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1488 	crtc = intel_get_crtc_for_plane(dev, 0);
1489 	if (intel_crtc_active(crtc)) {
1490 		int cpp = crtc->fb->bits_per_pixel / 8;
1491 		if (IS_GEN2(dev))
1492 			cpp = 4;
1493 
1494 		planea_wm = intel_calculate_wm(crtc->mode.clock,
1495 					       wm_info, fifo_size, cpp,
1496 					       latency_ns);
1497 		enabled = crtc;
1498 	} else
1499 		planea_wm = fifo_size - wm_info->guard_size;
1500 
1501 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1502 	crtc = intel_get_crtc_for_plane(dev, 1);
1503 	if (intel_crtc_active(crtc)) {
1504 		int cpp = crtc->fb->bits_per_pixel / 8;
1505 		if (IS_GEN2(dev))
1506 			cpp = 4;
1507 
1508 		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1509 					       wm_info, fifo_size, cpp,
1510 					       latency_ns);
1511 		if (enabled == NULL)
1512 			enabled = crtc;
1513 		else
1514 			enabled = NULL;
1515 	} else
1516 		planeb_wm = fifo_size - wm_info->guard_size;
1517 
1518 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1519 
1520 	/*
1521 	 * Overlay gets an aggressive default since video jitter is bad.
1522 	 */
1523 	cwm = 2;
1524 
1525 	/* Play safe and disable self-refresh before adjusting watermarks. */
1526 	if (IS_I945G(dev) || IS_I945GM(dev))
1527 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1528 	else if (IS_I915GM(dev))
1529 		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1530 
1531 	/* Calc sr entries for one plane configs */
1532 	if (HAS_FW_BLC(dev) && enabled) {
1533 		/* self-refresh has much higher latency */
1534 		static const int sr_latency_ns = 6000;
1535 		int clock = enabled->mode.clock;
1536 		int htotal = enabled->mode.htotal;
1537 		int hdisplay = enabled->mode.hdisplay;
1538 		int pixel_size = enabled->fb->bits_per_pixel / 8;
1539 		unsigned long line_time_us;
1540 		int entries;
1541 
1542 		line_time_us = (htotal * 1000) / clock;
1543 
1544 		/* Use ns/us then divide to preserve precision */
1545 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1546 			pixel_size * hdisplay;
1547 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1548 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1549 		srwm = wm_info->fifo_size - entries;
1550 		if (srwm < 0)
1551 			srwm = 1;
1552 
1553 		if (IS_I945G(dev) || IS_I945GM(dev))
1554 			I915_WRITE(FW_BLC_SELF,
1555 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1556 		else if (IS_I915GM(dev))
1557 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1558 	}
1559 
1560 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1561 		      planea_wm, planeb_wm, cwm, srwm);
1562 
1563 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1564 	fwater_hi = (cwm & 0x1f);
1565 
1566 	/* Set request length to 8 cachelines per fetch */
1567 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1568 	fwater_hi = fwater_hi | (1 << 8);
1569 
1570 	I915_WRITE(FW_BLC, fwater_lo);
1571 	I915_WRITE(FW_BLC2, fwater_hi);
1572 
1573 	if (HAS_FW_BLC(dev)) {
1574 		if (enabled) {
1575 			if (IS_I945G(dev) || IS_I945GM(dev))
1576 				I915_WRITE(FW_BLC_SELF,
1577 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1578 			else if (IS_I915GM(dev))
1579 				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1580 			DRM_DEBUG_KMS("memory self refresh enabled\n");
1581 		} else
1582 			DRM_DEBUG_KMS("memory self refresh disabled\n");
1583 	}
1584 }
1585 
i830_update_wm(struct drm_device * dev)1586 static void i830_update_wm(struct drm_device *dev)
1587 {
1588 	struct drm_i915_private *dev_priv = dev->dev_private;
1589 	struct drm_crtc *crtc;
1590 	uint32_t fwater_lo;
1591 	int planea_wm;
1592 
1593 	crtc = single_enabled_crtc(dev);
1594 	if (crtc == NULL)
1595 		return;
1596 
1597 	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1598 				       dev_priv->display.get_fifo_size(dev, 0),
1599 				       4, latency_ns);
1600 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1601 	fwater_lo |= (3<<8) | planea_wm;
1602 
1603 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1604 
1605 	I915_WRITE(FW_BLC, fwater_lo);
1606 }
1607 
1608 #define ILK_LP0_PLANE_LATENCY		700
1609 #define ILK_LP0_CURSOR_LATENCY		1300
1610 
1611 /*
1612  * Check the wm result.
1613  *
1614  * If any calculated watermark values is larger than the maximum value that
1615  * can be programmed into the associated watermark register, that watermark
1616  * must be disabled.
1617  */
ironlake_check_srwm(struct drm_device * dev,int level,int fbc_wm,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)1618 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1619 				int fbc_wm, int display_wm, int cursor_wm,
1620 				const struct intel_watermark_params *display,
1621 				const struct intel_watermark_params *cursor)
1622 {
1623 	struct drm_i915_private *dev_priv = dev->dev_private;
1624 
1625 	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1626 		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1627 
1628 	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1629 		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1630 			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1631 
1632 		/* fbc has it's own way to disable FBC WM */
1633 		I915_WRITE(DISP_ARB_CTL,
1634 			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1635 		return false;
1636 	}
1637 
1638 	if (display_wm > display->max_wm) {
1639 		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1640 			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1641 		return false;
1642 	}
1643 
1644 	if (cursor_wm > cursor->max_wm) {
1645 		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1646 			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1647 		return false;
1648 	}
1649 
1650 	if (!(fbc_wm || display_wm || cursor_wm)) {
1651 		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1652 		return false;
1653 	}
1654 
1655 	return true;
1656 }
1657 
1658 /*
1659  * Compute watermark values of WM[1-3],
1660  */
ironlake_compute_srwm(struct drm_device * dev,int level,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * fbc_wm,int * display_wm,int * cursor_wm)1661 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1662 				  int latency_ns,
1663 				  const struct intel_watermark_params *display,
1664 				  const struct intel_watermark_params *cursor,
1665 				  int *fbc_wm, int *display_wm, int *cursor_wm)
1666 {
1667 	struct drm_crtc *crtc;
1668 	unsigned long line_time_us;
1669 	int hdisplay, htotal, pixel_size, clock;
1670 	int line_count, line_size;
1671 	int small, large;
1672 	int entries;
1673 
1674 	if (!latency_ns) {
1675 		*fbc_wm = *display_wm = *cursor_wm = 0;
1676 		return false;
1677 	}
1678 
1679 	crtc = intel_get_crtc_for_plane(dev, plane);
1680 	hdisplay = crtc->mode.hdisplay;
1681 	htotal = crtc->mode.htotal;
1682 	clock = crtc->mode.clock;
1683 	pixel_size = crtc->fb->bits_per_pixel / 8;
1684 
1685 	line_time_us = (htotal * 1000) / clock;
1686 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1687 	line_size = hdisplay * pixel_size;
1688 
1689 	/* Use the minimum of the small and large buffer method for primary */
1690 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1691 	large = line_count * line_size;
1692 
1693 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1694 	*display_wm = entries + display->guard_size;
1695 
1696 	/*
1697 	 * Spec says:
1698 	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1699 	 */
1700 	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1701 
1702 	/* calculate the self-refresh watermark for display cursor */
1703 	entries = line_count * pixel_size * 64;
1704 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1705 	*cursor_wm = entries + cursor->guard_size;
1706 
1707 	return ironlake_check_srwm(dev, level,
1708 				   *fbc_wm, *display_wm, *cursor_wm,
1709 				   display, cursor);
1710 }
1711 
ironlake_update_wm(struct drm_device * dev)1712 static void ironlake_update_wm(struct drm_device *dev)
1713 {
1714 	struct drm_i915_private *dev_priv = dev->dev_private;
1715 	int fbc_wm, plane_wm, cursor_wm;
1716 	unsigned int enabled;
1717 
1718 	enabled = 0;
1719 	if (g4x_compute_wm0(dev, PIPE_A,
1720 			    &ironlake_display_wm_info,
1721 			    ILK_LP0_PLANE_LATENCY,
1722 			    &ironlake_cursor_wm_info,
1723 			    ILK_LP0_CURSOR_LATENCY,
1724 			    &plane_wm, &cursor_wm)) {
1725 		I915_WRITE(WM0_PIPEA_ILK,
1726 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1727 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1728 			      " plane %d, " "cursor: %d\n",
1729 			      plane_wm, cursor_wm);
1730 		enabled |= 1 << PIPE_A;
1731 	}
1732 
1733 	if (g4x_compute_wm0(dev, PIPE_B,
1734 			    &ironlake_display_wm_info,
1735 			    ILK_LP0_PLANE_LATENCY,
1736 			    &ironlake_cursor_wm_info,
1737 			    ILK_LP0_CURSOR_LATENCY,
1738 			    &plane_wm, &cursor_wm)) {
1739 		I915_WRITE(WM0_PIPEB_ILK,
1740 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1741 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1742 			      " plane %d, cursor: %d\n",
1743 			      plane_wm, cursor_wm);
1744 		enabled |= 1 << PIPE_B;
1745 	}
1746 
1747 	/*
1748 	 * Calculate and update the self-refresh watermark only when one
1749 	 * display plane is used.
1750 	 */
1751 	I915_WRITE(WM3_LP_ILK, 0);
1752 	I915_WRITE(WM2_LP_ILK, 0);
1753 	I915_WRITE(WM1_LP_ILK, 0);
1754 
1755 	if (!single_plane_enabled(enabled))
1756 		return;
1757 	enabled = ffs(enabled) - 1;
1758 
1759 	/* WM1 */
1760 	if (!ironlake_compute_srwm(dev, 1, enabled,
1761 				   ILK_READ_WM1_LATENCY() * 500,
1762 				   &ironlake_display_srwm_info,
1763 				   &ironlake_cursor_srwm_info,
1764 				   &fbc_wm, &plane_wm, &cursor_wm))
1765 		return;
1766 
1767 	I915_WRITE(WM1_LP_ILK,
1768 		   WM1_LP_SR_EN |
1769 		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1770 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1771 		   (plane_wm << WM1_LP_SR_SHIFT) |
1772 		   cursor_wm);
1773 
1774 	/* WM2 */
1775 	if (!ironlake_compute_srwm(dev, 2, enabled,
1776 				   ILK_READ_WM2_LATENCY() * 500,
1777 				   &ironlake_display_srwm_info,
1778 				   &ironlake_cursor_srwm_info,
1779 				   &fbc_wm, &plane_wm, &cursor_wm))
1780 		return;
1781 
1782 	I915_WRITE(WM2_LP_ILK,
1783 		   WM2_LP_EN |
1784 		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1785 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1786 		   (plane_wm << WM1_LP_SR_SHIFT) |
1787 		   cursor_wm);
1788 
1789 	/*
1790 	 * WM3 is unsupported on ILK, probably because we don't have latency
1791 	 * data for that power state
1792 	 */
1793 }
1794 
sandybridge_update_wm(struct drm_device * dev)1795 static void sandybridge_update_wm(struct drm_device *dev)
1796 {
1797 	struct drm_i915_private *dev_priv = dev->dev_private;
1798 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1799 	u32 val;
1800 	int fbc_wm, plane_wm, cursor_wm;
1801 	unsigned int enabled;
1802 
1803 	enabled = 0;
1804 	if (g4x_compute_wm0(dev, PIPE_A,
1805 			    &sandybridge_display_wm_info, latency,
1806 			    &sandybridge_cursor_wm_info, latency,
1807 			    &plane_wm, &cursor_wm)) {
1808 		val = I915_READ(WM0_PIPEA_ILK);
1809 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1810 		I915_WRITE(WM0_PIPEA_ILK, val |
1811 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1812 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1813 			      " plane %d, " "cursor: %d\n",
1814 			      plane_wm, cursor_wm);
1815 		enabled |= 1 << PIPE_A;
1816 	}
1817 
1818 	if (g4x_compute_wm0(dev, PIPE_B,
1819 			    &sandybridge_display_wm_info, latency,
1820 			    &sandybridge_cursor_wm_info, latency,
1821 			    &plane_wm, &cursor_wm)) {
1822 		val = I915_READ(WM0_PIPEB_ILK);
1823 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1824 		I915_WRITE(WM0_PIPEB_ILK, val |
1825 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1826 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1827 			      " plane %d, cursor: %d\n",
1828 			      plane_wm, cursor_wm);
1829 		enabled |= 1 << PIPE_B;
1830 	}
1831 
1832 	/*
1833 	 * Calculate and update the self-refresh watermark only when one
1834 	 * display plane is used.
1835 	 *
1836 	 * SNB support 3 levels of watermark.
1837 	 *
1838 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1839 	 * and disabled in the descending order
1840 	 *
1841 	 */
1842 	I915_WRITE(WM3_LP_ILK, 0);
1843 	I915_WRITE(WM2_LP_ILK, 0);
1844 	I915_WRITE(WM1_LP_ILK, 0);
1845 
1846 	if (!single_plane_enabled(enabled) ||
1847 	    dev_priv->sprite_scaling_enabled)
1848 		return;
1849 	enabled = ffs(enabled) - 1;
1850 
1851 	/* WM1 */
1852 	if (!ironlake_compute_srwm(dev, 1, enabled,
1853 				   SNB_READ_WM1_LATENCY() * 500,
1854 				   &sandybridge_display_srwm_info,
1855 				   &sandybridge_cursor_srwm_info,
1856 				   &fbc_wm, &plane_wm, &cursor_wm))
1857 		return;
1858 
1859 	I915_WRITE(WM1_LP_ILK,
1860 		   WM1_LP_SR_EN |
1861 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1862 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1863 		   (plane_wm << WM1_LP_SR_SHIFT) |
1864 		   cursor_wm);
1865 
1866 	/* WM2 */
1867 	if (!ironlake_compute_srwm(dev, 2, enabled,
1868 				   SNB_READ_WM2_LATENCY() * 500,
1869 				   &sandybridge_display_srwm_info,
1870 				   &sandybridge_cursor_srwm_info,
1871 				   &fbc_wm, &plane_wm, &cursor_wm))
1872 		return;
1873 
1874 	I915_WRITE(WM2_LP_ILK,
1875 		   WM2_LP_EN |
1876 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1877 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1878 		   (plane_wm << WM1_LP_SR_SHIFT) |
1879 		   cursor_wm);
1880 
1881 	/* WM3 */
1882 	if (!ironlake_compute_srwm(dev, 3, enabled,
1883 				   SNB_READ_WM3_LATENCY() * 500,
1884 				   &sandybridge_display_srwm_info,
1885 				   &sandybridge_cursor_srwm_info,
1886 				   &fbc_wm, &plane_wm, &cursor_wm))
1887 		return;
1888 
1889 	I915_WRITE(WM3_LP_ILK,
1890 		   WM3_LP_EN |
1891 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1892 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1893 		   (plane_wm << WM1_LP_SR_SHIFT) |
1894 		   cursor_wm);
1895 }
1896 
ivybridge_update_wm(struct drm_device * dev)1897 static void ivybridge_update_wm(struct drm_device *dev)
1898 {
1899 	struct drm_i915_private *dev_priv = dev->dev_private;
1900 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1901 	u32 val;
1902 	int fbc_wm, plane_wm, cursor_wm;
1903 	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1904 	unsigned int enabled;
1905 
1906 	enabled = 0;
1907 	if (g4x_compute_wm0(dev, PIPE_A,
1908 			    &sandybridge_display_wm_info, latency,
1909 			    &sandybridge_cursor_wm_info, latency,
1910 			    &plane_wm, &cursor_wm)) {
1911 		val = I915_READ(WM0_PIPEA_ILK);
1912 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1913 		I915_WRITE(WM0_PIPEA_ILK, val |
1914 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1915 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1916 			      " plane %d, " "cursor: %d\n",
1917 			      plane_wm, cursor_wm);
1918 		enabled |= 1 << PIPE_A;
1919 	}
1920 
1921 	if (g4x_compute_wm0(dev, PIPE_B,
1922 			    &sandybridge_display_wm_info, latency,
1923 			    &sandybridge_cursor_wm_info, latency,
1924 			    &plane_wm, &cursor_wm)) {
1925 		val = I915_READ(WM0_PIPEB_ILK);
1926 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1927 		I915_WRITE(WM0_PIPEB_ILK, val |
1928 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1929 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1930 			      " plane %d, cursor: %d\n",
1931 			      plane_wm, cursor_wm);
1932 		enabled |= 1 << PIPE_B;
1933 	}
1934 
1935 	if (g4x_compute_wm0(dev, PIPE_C,
1936 			    &sandybridge_display_wm_info, latency,
1937 			    &sandybridge_cursor_wm_info, latency,
1938 			    &plane_wm, &cursor_wm)) {
1939 		val = I915_READ(WM0_PIPEC_IVB);
1940 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1941 		I915_WRITE(WM0_PIPEC_IVB, val |
1942 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1943 		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1944 			      " plane %d, cursor: %d\n",
1945 			      plane_wm, cursor_wm);
1946 		enabled |= 1 << PIPE_C;
1947 	}
1948 
1949 	/*
1950 	 * Calculate and update the self-refresh watermark only when one
1951 	 * display plane is used.
1952 	 *
1953 	 * SNB support 3 levels of watermark.
1954 	 *
1955 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1956 	 * and disabled in the descending order
1957 	 *
1958 	 */
1959 	I915_WRITE(WM3_LP_ILK, 0);
1960 	I915_WRITE(WM2_LP_ILK, 0);
1961 	I915_WRITE(WM1_LP_ILK, 0);
1962 
1963 	if (!single_plane_enabled(enabled) ||
1964 	    dev_priv->sprite_scaling_enabled)
1965 		return;
1966 	enabled = ffs(enabled) - 1;
1967 
1968 	/* WM1 */
1969 	if (!ironlake_compute_srwm(dev, 1, enabled,
1970 				   SNB_READ_WM1_LATENCY() * 500,
1971 				   &sandybridge_display_srwm_info,
1972 				   &sandybridge_cursor_srwm_info,
1973 				   &fbc_wm, &plane_wm, &cursor_wm))
1974 		return;
1975 
1976 	I915_WRITE(WM1_LP_ILK,
1977 		   WM1_LP_SR_EN |
1978 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1979 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1980 		   (plane_wm << WM1_LP_SR_SHIFT) |
1981 		   cursor_wm);
1982 
1983 	/* WM2 */
1984 	if (!ironlake_compute_srwm(dev, 2, enabled,
1985 				   SNB_READ_WM2_LATENCY() * 500,
1986 				   &sandybridge_display_srwm_info,
1987 				   &sandybridge_cursor_srwm_info,
1988 				   &fbc_wm, &plane_wm, &cursor_wm))
1989 		return;
1990 
1991 	I915_WRITE(WM2_LP_ILK,
1992 		   WM2_LP_EN |
1993 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1994 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1995 		   (plane_wm << WM1_LP_SR_SHIFT) |
1996 		   cursor_wm);
1997 
1998 	/* WM3, note we have to correct the cursor latency */
1999 	if (!ironlake_compute_srwm(dev, 3, enabled,
2000 				   SNB_READ_WM3_LATENCY() * 500,
2001 				   &sandybridge_display_srwm_info,
2002 				   &sandybridge_cursor_srwm_info,
2003 				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2004 	    !ironlake_compute_srwm(dev, 3, enabled,
2005 				   2 * SNB_READ_WM3_LATENCY() * 500,
2006 				   &sandybridge_display_srwm_info,
2007 				   &sandybridge_cursor_srwm_info,
2008 				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2009 		return;
2010 
2011 	I915_WRITE(WM3_LP_ILK,
2012 		   WM3_LP_EN |
2013 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2014 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2015 		   (plane_wm << WM1_LP_SR_SHIFT) |
2016 		   cursor_wm);
2017 }
2018 
2019 static void
haswell_update_linetime_wm(struct drm_device * dev,int pipe,struct drm_display_mode * mode)2020 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2021 				 struct drm_display_mode *mode)
2022 {
2023 	struct drm_i915_private *dev_priv = dev->dev_private;
2024 	u32 temp;
2025 
2026 	temp = I915_READ(PIPE_WM_LINETIME(pipe));
2027 	temp &= ~PIPE_WM_LINETIME_MASK;
2028 
2029 	/* The WM are computed with base on how long it takes to fill a single
2030 	 * row at the given clock rate, multiplied by 8.
2031 	 * */
2032 	temp |= PIPE_WM_LINETIME_TIME(
2033 		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2034 
2035 	/* IPS watermarks are only used by pipe A, and are ignored by
2036 	 * pipes B and C.  They are calculated similarly to the common
2037 	 * linetime values, except that we are using CD clock frequency
2038 	 * in MHz instead of pixel rate for the division.
2039 	 *
2040 	 * This is a placeholder for the IPS watermark calculation code.
2041 	 */
2042 
2043 	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2044 }
2045 
2046 static bool
sandybridge_compute_sprite_wm(struct drm_device * dev,int plane,uint32_t sprite_width,int pixel_size,const struct intel_watermark_params * display,int display_latency_ns,int * sprite_wm)2047 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2048 			      uint32_t sprite_width, int pixel_size,
2049 			      const struct intel_watermark_params *display,
2050 			      int display_latency_ns, int *sprite_wm)
2051 {
2052 	struct drm_crtc *crtc;
2053 	int clock;
2054 	int entries, tlb_miss;
2055 
2056 	crtc = intel_get_crtc_for_plane(dev, plane);
2057 	if (!intel_crtc_active(crtc)) {
2058 		*sprite_wm = display->guard_size;
2059 		return false;
2060 	}
2061 
2062 	clock = crtc->mode.clock;
2063 
2064 	/* Use the small buffer method to calculate the sprite watermark */
2065 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2066 	tlb_miss = display->fifo_size*display->cacheline_size -
2067 		sprite_width * 8;
2068 	if (tlb_miss > 0)
2069 		entries += tlb_miss;
2070 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
2071 	*sprite_wm = entries + display->guard_size;
2072 	if (*sprite_wm > (int)display->max_wm)
2073 		*sprite_wm = display->max_wm;
2074 
2075 	return true;
2076 }
2077 
2078 static bool
sandybridge_compute_sprite_srwm(struct drm_device * dev,int plane,uint32_t sprite_width,int pixel_size,const struct intel_watermark_params * display,int latency_ns,int * sprite_wm)2079 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2080 				uint32_t sprite_width, int pixel_size,
2081 				const struct intel_watermark_params *display,
2082 				int latency_ns, int *sprite_wm)
2083 {
2084 	struct drm_crtc *crtc;
2085 	unsigned long line_time_us;
2086 	int clock;
2087 	int line_count, line_size;
2088 	int small, large;
2089 	int entries;
2090 
2091 	if (!latency_ns) {
2092 		*sprite_wm = 0;
2093 		return false;
2094 	}
2095 
2096 	crtc = intel_get_crtc_for_plane(dev, plane);
2097 	clock = crtc->mode.clock;
2098 	if (!clock) {
2099 		*sprite_wm = 0;
2100 		return false;
2101 	}
2102 
2103 	line_time_us = (sprite_width * 1000) / clock;
2104 	if (!line_time_us) {
2105 		*sprite_wm = 0;
2106 		return false;
2107 	}
2108 
2109 	line_count = (latency_ns / line_time_us + 1000) / 1000;
2110 	line_size = sprite_width * pixel_size;
2111 
2112 	/* Use the minimum of the small and large buffer method for primary */
2113 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2114 	large = line_count * line_size;
2115 
2116 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2117 	*sprite_wm = entries + display->guard_size;
2118 
2119 	return *sprite_wm > 0x3ff ? false : true;
2120 }
2121 
sandybridge_update_sprite_wm(struct drm_device * dev,int pipe,uint32_t sprite_width,int pixel_size)2122 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2123 					 uint32_t sprite_width, int pixel_size)
2124 {
2125 	struct drm_i915_private *dev_priv = dev->dev_private;
2126 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
2127 	u32 val;
2128 	int sprite_wm, reg;
2129 	int ret;
2130 
2131 	switch (pipe) {
2132 	case 0:
2133 		reg = WM0_PIPEA_ILK;
2134 		break;
2135 	case 1:
2136 		reg = WM0_PIPEB_ILK;
2137 		break;
2138 	case 2:
2139 		reg = WM0_PIPEC_IVB;
2140 		break;
2141 	default:
2142 		return; /* bad pipe */
2143 	}
2144 
2145 	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2146 					    &sandybridge_display_wm_info,
2147 					    latency, &sprite_wm);
2148 	if (!ret) {
2149 		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2150 			      pipe);
2151 		return;
2152 	}
2153 
2154 	val = I915_READ(reg);
2155 	val &= ~WM0_PIPE_SPRITE_MASK;
2156 	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2157 	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2158 
2159 
2160 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2161 					      pixel_size,
2162 					      &sandybridge_display_srwm_info,
2163 					      SNB_READ_WM1_LATENCY() * 500,
2164 					      &sprite_wm);
2165 	if (!ret) {
2166 		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2167 			      pipe);
2168 		return;
2169 	}
2170 	I915_WRITE(WM1S_LP_ILK, sprite_wm);
2171 
2172 	/* Only IVB has two more LP watermarks for sprite */
2173 	if (!IS_IVYBRIDGE(dev))
2174 		return;
2175 
2176 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2177 					      pixel_size,
2178 					      &sandybridge_display_srwm_info,
2179 					      SNB_READ_WM2_LATENCY() * 500,
2180 					      &sprite_wm);
2181 	if (!ret) {
2182 		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2183 			      pipe);
2184 		return;
2185 	}
2186 	I915_WRITE(WM2S_LP_IVB, sprite_wm);
2187 
2188 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2189 					      pixel_size,
2190 					      &sandybridge_display_srwm_info,
2191 					      SNB_READ_WM3_LATENCY() * 500,
2192 					      &sprite_wm);
2193 	if (!ret) {
2194 		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2195 			      pipe);
2196 		return;
2197 	}
2198 	I915_WRITE(WM3S_LP_IVB, sprite_wm);
2199 }
2200 
2201 /**
2202  * intel_update_watermarks - update FIFO watermark values based on current modes
2203  *
2204  * Calculate watermark values for the various WM regs based on current mode
2205  * and plane configuration.
2206  *
2207  * There are several cases to deal with here:
2208  *   - normal (i.e. non-self-refresh)
2209  *   - self-refresh (SR) mode
2210  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2211  *   - lines are small relative to FIFO size (buffer can hold more than 2
2212  *     lines), so need to account for TLB latency
2213  *
2214  *   The normal calculation is:
2215  *     watermark = dotclock * bytes per pixel * latency
2216  *   where latency is platform & configuration dependent (we assume pessimal
2217  *   values here).
2218  *
2219  *   The SR calculation is:
2220  *     watermark = (trunc(latency/line time)+1) * surface width *
2221  *       bytes per pixel
2222  *   where
2223  *     line time = htotal / dotclock
2224  *     surface width = hdisplay for normal plane and 64 for cursor
2225  *   and latency is assumed to be high, as above.
2226  *
2227  * The final value programmed to the register should always be rounded up,
2228  * and include an extra 2 entries to account for clock crossings.
2229  *
2230  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2231  * to set the non-SR watermarks to 8.
2232  */
intel_update_watermarks(struct drm_device * dev)2233 void intel_update_watermarks(struct drm_device *dev)
2234 {
2235 	struct drm_i915_private *dev_priv = dev->dev_private;
2236 
2237 	if (dev_priv->display.update_wm)
2238 		dev_priv->display.update_wm(dev);
2239 }
2240 
intel_update_linetime_watermarks(struct drm_device * dev,int pipe,struct drm_display_mode * mode)2241 void intel_update_linetime_watermarks(struct drm_device *dev,
2242 		int pipe, struct drm_display_mode *mode)
2243 {
2244 	struct drm_i915_private *dev_priv = dev->dev_private;
2245 
2246 	if (dev_priv->display.update_linetime_wm)
2247 		dev_priv->display.update_linetime_wm(dev, pipe, mode);
2248 }
2249 
intel_update_sprite_watermarks(struct drm_device * dev,int pipe,uint32_t sprite_width,int pixel_size)2250 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2251 				    uint32_t sprite_width, int pixel_size)
2252 {
2253 	struct drm_i915_private *dev_priv = dev->dev_private;
2254 
2255 	if (dev_priv->display.update_sprite_wm)
2256 		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2257 						   pixel_size);
2258 }
2259 
2260 static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device * dev)2261 intel_alloc_context_page(struct drm_device *dev)
2262 {
2263 	struct drm_i915_gem_object *ctx;
2264 	int ret;
2265 
2266 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2267 
2268 	ctx = i915_gem_alloc_object(dev, 4096);
2269 	if (!ctx) {
2270 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2271 		return NULL;
2272 	}
2273 
2274 	ret = i915_gem_object_pin(ctx, 4096, true, false);
2275 	if (ret) {
2276 		DRM_ERROR("failed to pin power context: %d\n", ret);
2277 		goto err_unref;
2278 	}
2279 
2280 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2281 	if (ret) {
2282 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2283 		goto err_unpin;
2284 	}
2285 
2286 	return ctx;
2287 
2288 err_unpin:
2289 	i915_gem_object_unpin(ctx);
2290 err_unref:
2291 	drm_gem_object_unreference(&ctx->base);
2292 	return NULL;
2293 }
2294 
2295 /**
2296  * Lock protecting IPS related data structures
2297  */
2298 DEFINE_SPINLOCK(mchdev_lock);
2299 
2300 /* Global for IPS driver to get at the current i915 device. Protected by
2301  * mchdev_lock. */
2302 static struct drm_i915_private *i915_mch_dev;
2303 
ironlake_set_drps(struct drm_device * dev,u8 val)2304 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2305 {
2306 	struct drm_i915_private *dev_priv = dev->dev_private;
2307 	u16 rgvswctl;
2308 
2309 	assert_spin_locked(&mchdev_lock);
2310 
2311 	rgvswctl = I915_READ16(MEMSWCTL);
2312 	if (rgvswctl & MEMCTL_CMD_STS) {
2313 		DRM_DEBUG("gpu busy, RCS change rejected\n");
2314 		return false; /* still busy with another command */
2315 	}
2316 
2317 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2318 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2319 	I915_WRITE16(MEMSWCTL, rgvswctl);
2320 	POSTING_READ16(MEMSWCTL);
2321 
2322 	rgvswctl |= MEMCTL_CMD_STS;
2323 	I915_WRITE16(MEMSWCTL, rgvswctl);
2324 
2325 	return true;
2326 }
2327 
ironlake_enable_drps(struct drm_device * dev)2328 static void ironlake_enable_drps(struct drm_device *dev)
2329 {
2330 	struct drm_i915_private *dev_priv = dev->dev_private;
2331 	u32 rgvmodectl = I915_READ(MEMMODECTL);
2332 	u8 fmax, fmin, fstart, vstart;
2333 
2334 	spin_lock_irq(&mchdev_lock);
2335 
2336 	/* Enable temp reporting */
2337 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2338 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2339 
2340 	/* 100ms RC evaluation intervals */
2341 	I915_WRITE(RCUPEI, 100000);
2342 	I915_WRITE(RCDNEI, 100000);
2343 
2344 	/* Set max/min thresholds to 90ms and 80ms respectively */
2345 	I915_WRITE(RCBMAXAVG, 90000);
2346 	I915_WRITE(RCBMINAVG, 80000);
2347 
2348 	I915_WRITE(MEMIHYST, 1);
2349 
2350 	/* Set up min, max, and cur for interrupt handling */
2351 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2352 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2353 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2354 		MEMMODE_FSTART_SHIFT;
2355 
2356 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2357 		PXVFREQ_PX_SHIFT;
2358 
2359 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2360 	dev_priv->ips.fstart = fstart;
2361 
2362 	dev_priv->ips.max_delay = fstart;
2363 	dev_priv->ips.min_delay = fmin;
2364 	dev_priv->ips.cur_delay = fstart;
2365 
2366 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2367 			 fmax, fmin, fstart);
2368 
2369 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2370 
2371 	/*
2372 	 * Interrupts will be enabled in ironlake_irq_postinstall
2373 	 */
2374 
2375 	I915_WRITE(VIDSTART, vstart);
2376 	POSTING_READ(VIDSTART);
2377 
2378 	rgvmodectl |= MEMMODE_SWMODE_EN;
2379 	I915_WRITE(MEMMODECTL, rgvmodectl);
2380 
2381 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2382 		DRM_ERROR("stuck trying to change perf mode\n");
2383 	mdelay(1);
2384 
2385 	ironlake_set_drps(dev, fstart);
2386 
2387 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2388 		I915_READ(0x112e0);
2389 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2390 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
2391 	getrawmonotonic(&dev_priv->ips.last_time2);
2392 
2393 	spin_unlock_irq(&mchdev_lock);
2394 }
2395 
ironlake_disable_drps(struct drm_device * dev)2396 static void ironlake_disable_drps(struct drm_device *dev)
2397 {
2398 	struct drm_i915_private *dev_priv = dev->dev_private;
2399 	u16 rgvswctl;
2400 
2401 	spin_lock_irq(&mchdev_lock);
2402 
2403 	rgvswctl = I915_READ16(MEMSWCTL);
2404 
2405 	/* Ack interrupts, disable EFC interrupt */
2406 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2407 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2408 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2409 	I915_WRITE(DEIIR, DE_PCU_EVENT);
2410 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2411 
2412 	/* Go back to the starting frequency */
2413 	ironlake_set_drps(dev, dev_priv->ips.fstart);
2414 	mdelay(1);
2415 	rgvswctl |= MEMCTL_CMD_STS;
2416 	I915_WRITE(MEMSWCTL, rgvswctl);
2417 	mdelay(1);
2418 
2419 	spin_unlock_irq(&mchdev_lock);
2420 }
2421 
2422 /* There's a funny hw issue where the hw returns all 0 when reading from
2423  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2424  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2425  * all limits and the gpu stuck at whatever frequency it is at atm).
2426  */
gen6_rps_limits(struct drm_i915_private * dev_priv,u8 * val)2427 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2428 {
2429 	u32 limits;
2430 
2431 	limits = 0;
2432 
2433 	if (*val >= dev_priv->rps.max_delay)
2434 		*val = dev_priv->rps.max_delay;
2435 	limits |= dev_priv->rps.max_delay << 24;
2436 
2437 	/* Only set the down limit when we've reached the lowest level to avoid
2438 	 * getting more interrupts, otherwise leave this clear. This prevents a
2439 	 * race in the hw when coming out of rc6: There's a tiny window where
2440 	 * the hw runs at the minimal clock before selecting the desired
2441 	 * frequency, if the down threshold expires in that window we will not
2442 	 * receive a down interrupt. */
2443 	if (*val <= dev_priv->rps.min_delay) {
2444 		*val = dev_priv->rps.min_delay;
2445 		limits |= dev_priv->rps.min_delay << 16;
2446 	}
2447 
2448 	return limits;
2449 }
2450 
gen6_set_rps(struct drm_device * dev,u8 val)2451 void gen6_set_rps(struct drm_device *dev, u8 val)
2452 {
2453 	struct drm_i915_private *dev_priv = dev->dev_private;
2454 	u32 limits = gen6_rps_limits(dev_priv, &val);
2455 
2456 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2457 	WARN_ON(val > dev_priv->rps.max_delay);
2458 	WARN_ON(val < dev_priv->rps.min_delay);
2459 
2460 	if (val == dev_priv->rps.cur_delay)
2461 		return;
2462 
2463 	if (IS_HASWELL(dev))
2464 		I915_WRITE(GEN6_RPNSWREQ,
2465 			   HSW_FREQUENCY(val));
2466 	else
2467 		I915_WRITE(GEN6_RPNSWREQ,
2468 			   GEN6_FREQUENCY(val) |
2469 			   GEN6_OFFSET(0) |
2470 			   GEN6_AGGRESSIVE_TURBO);
2471 
2472 	/* Make sure we continue to get interrupts
2473 	 * until we hit the minimum or maximum frequencies.
2474 	 */
2475 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2476 
2477 	POSTING_READ(GEN6_RPNSWREQ);
2478 
2479 	dev_priv->rps.cur_delay = val;
2480 
2481 	trace_intel_gpu_freq_change(val * 50);
2482 }
2483 
gen6_disable_rps(struct drm_device * dev)2484 static void gen6_disable_rps(struct drm_device *dev)
2485 {
2486 	struct drm_i915_private *dev_priv = dev->dev_private;
2487 
2488 	I915_WRITE(GEN6_RC_CONTROL, 0);
2489 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2490 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2491 	I915_WRITE(GEN6_PMIER, 0);
2492 	/* Complete PM interrupt masking here doesn't race with the rps work
2493 	 * item again unmasking PM interrupts because that is using a different
2494 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2495 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2496 
2497 	spin_lock_irq(&dev_priv->rps.lock);
2498 	dev_priv->rps.pm_iir = 0;
2499 	spin_unlock_irq(&dev_priv->rps.lock);
2500 
2501 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2502 }
2503 
intel_enable_rc6(const struct drm_device * dev)2504 int intel_enable_rc6(const struct drm_device *dev)
2505 {
2506 	/* Respect the kernel parameter if it is set */
2507 	if (i915_enable_rc6 >= 0)
2508 		return i915_enable_rc6;
2509 
2510 	/* Disable RC6 on Ironlake */
2511 	if (INTEL_INFO(dev)->gen == 5)
2512 		return 0;
2513 
2514 	if (IS_HASWELL(dev)) {
2515 		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2516 		return INTEL_RC6_ENABLE;
2517 	}
2518 
2519 	/* snb/ivb have more than one rc6 state. */
2520 	if (INTEL_INFO(dev)->gen == 6) {
2521 		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2522 		return INTEL_RC6_ENABLE;
2523 	}
2524 
2525 	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2526 	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2527 }
2528 
gen6_enable_rps(struct drm_device * dev)2529 static void gen6_enable_rps(struct drm_device *dev)
2530 {
2531 	struct drm_i915_private *dev_priv = dev->dev_private;
2532 	struct intel_ring_buffer *ring;
2533 	u32 rp_state_cap;
2534 	u32 gt_perf_status;
2535 	u32 rc6vids, pcu_mbox, rc6_mask = 0;
2536 	u32 gtfifodbg;
2537 	int rc6_mode;
2538 	int i, ret;
2539 
2540 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2541 
2542 	/* Here begins a magic sequence of register writes to enable
2543 	 * auto-downclocking.
2544 	 *
2545 	 * Perhaps there might be some value in exposing these to
2546 	 * userspace...
2547 	 */
2548 	I915_WRITE(GEN6_RC_STATE, 0);
2549 
2550 	/* Clear the DBG now so we don't confuse earlier errors */
2551 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2552 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2553 		I915_WRITE(GTFIFODBG, gtfifodbg);
2554 	}
2555 
2556 	gen6_gt_force_wake_get(dev_priv);
2557 
2558 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2559 	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2560 
2561 	/* In units of 50MHz */
2562 	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
2563 	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2564 	dev_priv->rps.cur_delay = 0;
2565 
2566 	/* disable the counters and set deterministic thresholds */
2567 	I915_WRITE(GEN6_RC_CONTROL, 0);
2568 
2569 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2570 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2571 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2572 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2573 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2574 
2575 	for_each_ring(ring, dev_priv, i)
2576 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2577 
2578 	I915_WRITE(GEN6_RC_SLEEP, 0);
2579 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2580 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2581 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2582 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2583 
2584 	/* Check if we are enabling RC6 */
2585 	rc6_mode = intel_enable_rc6(dev_priv->dev);
2586 	if (rc6_mode & INTEL_RC6_ENABLE)
2587 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2588 
2589 	/* We don't use those on Haswell */
2590 	if (!IS_HASWELL(dev)) {
2591 		if (rc6_mode & INTEL_RC6p_ENABLE)
2592 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2593 
2594 		if (rc6_mode & INTEL_RC6pp_ENABLE)
2595 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2596 	}
2597 
2598 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2599 			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2600 			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2601 			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2602 
2603 	I915_WRITE(GEN6_RC_CONTROL,
2604 		   rc6_mask |
2605 		   GEN6_RC_CTL_EI_MODE(1) |
2606 		   GEN6_RC_CTL_HW_ENABLE);
2607 
2608 	if (IS_HASWELL(dev)) {
2609 		I915_WRITE(GEN6_RPNSWREQ,
2610 			   HSW_FREQUENCY(10));
2611 		I915_WRITE(GEN6_RC_VIDEO_FREQ,
2612 			   HSW_FREQUENCY(12));
2613 	} else {
2614 		I915_WRITE(GEN6_RPNSWREQ,
2615 			   GEN6_FREQUENCY(10) |
2616 			   GEN6_OFFSET(0) |
2617 			   GEN6_AGGRESSIVE_TURBO);
2618 		I915_WRITE(GEN6_RC_VIDEO_FREQ,
2619 			   GEN6_FREQUENCY(12));
2620 	}
2621 
2622 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2623 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2624 		   dev_priv->rps.max_delay << 24 |
2625 		   dev_priv->rps.min_delay << 16);
2626 
2627 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2628 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2629 	I915_WRITE(GEN6_RP_UP_EI, 66000);
2630 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2631 
2632 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2633 	I915_WRITE(GEN6_RP_CONTROL,
2634 		   GEN6_RP_MEDIA_TURBO |
2635 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2636 		   GEN6_RP_MEDIA_IS_GFX |
2637 		   GEN6_RP_ENABLE |
2638 		   GEN6_RP_UP_BUSY_AVG |
2639 		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2640 
2641 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2642 	if (!ret) {
2643 		pcu_mbox = 0;
2644 		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2645 		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
2646 			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
2647 					 (dev_priv->rps.max_delay & 0xff) * 50,
2648 					 (pcu_mbox & 0xff) * 50);
2649 			dev_priv->rps.hw_max = pcu_mbox & 0xff;
2650 		}
2651 	} else {
2652 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2653 	}
2654 
2655 	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2656 
2657 	/* requires MSI enabled */
2658 	I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2659 	spin_lock_irq(&dev_priv->rps.lock);
2660 	WARN_ON(dev_priv->rps.pm_iir != 0);
2661 	I915_WRITE(GEN6_PMIMR, 0);
2662 	spin_unlock_irq(&dev_priv->rps.lock);
2663 	/* enable all PM interrupts */
2664 	I915_WRITE(GEN6_PMINTRMSK, 0);
2665 
2666 	rc6vids = 0;
2667 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2668 	if (IS_GEN6(dev) && ret) {
2669 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2670 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2671 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2672 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2673 		rc6vids &= 0xffff00;
2674 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
2675 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2676 		if (ret)
2677 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2678 	}
2679 
2680 	gen6_gt_force_wake_put(dev_priv);
2681 }
2682 
gen6_update_ring_freq(struct drm_device * dev)2683 static void gen6_update_ring_freq(struct drm_device *dev)
2684 {
2685 	struct drm_i915_private *dev_priv = dev->dev_private;
2686 	int min_freq = 15;
2687 	unsigned int gpu_freq;
2688 	unsigned int max_ia_freq, min_ring_freq;
2689 	int scaling_factor = 180;
2690 
2691 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2692 
2693 	max_ia_freq = cpufreq_quick_get_max(0);
2694 	/*
2695 	 * Default to measured freq if none found, PCU will ensure we don't go
2696 	 * over
2697 	 */
2698 	if (!max_ia_freq)
2699 		max_ia_freq = tsc_khz;
2700 
2701 	/* Convert from kHz to MHz */
2702 	max_ia_freq /= 1000;
2703 
2704 	min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
2705 	/* convert DDR frequency from units of 133.3MHz to bandwidth */
2706 	min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
2707 
2708 	/*
2709 	 * For each potential GPU frequency, load a ring frequency we'd like
2710 	 * to use for memory access.  We do this by specifying the IA frequency
2711 	 * the PCU should use as a reference to determine the ring frequency.
2712 	 */
2713 	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2714 	     gpu_freq--) {
2715 		int diff = dev_priv->rps.max_delay - gpu_freq;
2716 		unsigned int ia_freq = 0, ring_freq = 0;
2717 
2718 		if (IS_HASWELL(dev)) {
2719 			ring_freq = (gpu_freq * 5 + 3) / 4;
2720 			ring_freq = max(min_ring_freq, ring_freq);
2721 			/* leave ia_freq as the default, chosen by cpufreq */
2722 		} else {
2723 			/* On older processors, there is no separate ring
2724 			 * clock domain, so in order to boost the bandwidth
2725 			 * of the ring, we need to upclock the CPU (ia_freq).
2726 			 *
2727 			 * For GPU frequencies less than 750MHz,
2728 			 * just use the lowest ring freq.
2729 			 */
2730 			if (gpu_freq < min_freq)
2731 				ia_freq = 800;
2732 			else
2733 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2734 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2735 		}
2736 
2737 		sandybridge_pcode_write(dev_priv,
2738 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2739 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
2740 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
2741 					gpu_freq);
2742 	}
2743 }
2744 
ironlake_teardown_rc6(struct drm_device * dev)2745 void ironlake_teardown_rc6(struct drm_device *dev)
2746 {
2747 	struct drm_i915_private *dev_priv = dev->dev_private;
2748 
2749 	if (dev_priv->ips.renderctx) {
2750 		i915_gem_object_unpin(dev_priv->ips.renderctx);
2751 		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2752 		dev_priv->ips.renderctx = NULL;
2753 	}
2754 
2755 	if (dev_priv->ips.pwrctx) {
2756 		i915_gem_object_unpin(dev_priv->ips.pwrctx);
2757 		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2758 		dev_priv->ips.pwrctx = NULL;
2759 	}
2760 }
2761 
ironlake_disable_rc6(struct drm_device * dev)2762 static void ironlake_disable_rc6(struct drm_device *dev)
2763 {
2764 	struct drm_i915_private *dev_priv = dev->dev_private;
2765 
2766 	if (I915_READ(PWRCTXA)) {
2767 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2768 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2769 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2770 			 50);
2771 
2772 		I915_WRITE(PWRCTXA, 0);
2773 		POSTING_READ(PWRCTXA);
2774 
2775 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2776 		POSTING_READ(RSTDBYCTL);
2777 	}
2778 }
2779 
ironlake_setup_rc6(struct drm_device * dev)2780 static int ironlake_setup_rc6(struct drm_device *dev)
2781 {
2782 	struct drm_i915_private *dev_priv = dev->dev_private;
2783 
2784 	if (dev_priv->ips.renderctx == NULL)
2785 		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2786 	if (!dev_priv->ips.renderctx)
2787 		return -ENOMEM;
2788 
2789 	if (dev_priv->ips.pwrctx == NULL)
2790 		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2791 	if (!dev_priv->ips.pwrctx) {
2792 		ironlake_teardown_rc6(dev);
2793 		return -ENOMEM;
2794 	}
2795 
2796 	return 0;
2797 }
2798 
ironlake_enable_rc6(struct drm_device * dev)2799 static void ironlake_enable_rc6(struct drm_device *dev)
2800 {
2801 	struct drm_i915_private *dev_priv = dev->dev_private;
2802 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2803 	bool was_interruptible;
2804 	int ret;
2805 
2806 	/* rc6 disabled by default due to repeated reports of hanging during
2807 	 * boot and resume.
2808 	 */
2809 	if (!intel_enable_rc6(dev))
2810 		return;
2811 
2812 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2813 
2814 	ret = ironlake_setup_rc6(dev);
2815 	if (ret)
2816 		return;
2817 
2818 	was_interruptible = dev_priv->mm.interruptible;
2819 	dev_priv->mm.interruptible = false;
2820 
2821 	/*
2822 	 * GPU can automatically power down the render unit if given a page
2823 	 * to save state.
2824 	 */
2825 	ret = intel_ring_begin(ring, 6);
2826 	if (ret) {
2827 		ironlake_teardown_rc6(dev);
2828 		dev_priv->mm.interruptible = was_interruptible;
2829 		return;
2830 	}
2831 
2832 	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2833 	intel_ring_emit(ring, MI_SET_CONTEXT);
2834 	intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2835 			MI_MM_SPACE_GTT |
2836 			MI_SAVE_EXT_STATE_EN |
2837 			MI_RESTORE_EXT_STATE_EN |
2838 			MI_RESTORE_INHIBIT);
2839 	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2840 	intel_ring_emit(ring, MI_NOOP);
2841 	intel_ring_emit(ring, MI_FLUSH);
2842 	intel_ring_advance(ring);
2843 
2844 	/*
2845 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2846 	 * does an implicit flush, combined with MI_FLUSH above, it should be
2847 	 * safe to assume that renderctx is valid
2848 	 */
2849 	ret = intel_ring_idle(ring);
2850 	dev_priv->mm.interruptible = was_interruptible;
2851 	if (ret) {
2852 		DRM_ERROR("failed to enable ironlake power savings\n");
2853 		ironlake_teardown_rc6(dev);
2854 		return;
2855 	}
2856 
2857 	I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2858 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2859 }
2860 
intel_pxfreq(u32 vidfreq)2861 static unsigned long intel_pxfreq(u32 vidfreq)
2862 {
2863 	unsigned long freq;
2864 	int div = (vidfreq & 0x3f0000) >> 16;
2865 	int post = (vidfreq & 0x3000) >> 12;
2866 	int pre = (vidfreq & 0x7);
2867 
2868 	if (!pre)
2869 		return 0;
2870 
2871 	freq = ((div * 133333) / ((1<<post) * pre));
2872 
2873 	return freq;
2874 }
2875 
2876 static const struct cparams {
2877 	u16 i;
2878 	u16 t;
2879 	u16 m;
2880 	u16 c;
2881 } cparams[] = {
2882 	{ 1, 1333, 301, 28664 },
2883 	{ 1, 1066, 294, 24460 },
2884 	{ 1, 800, 294, 25192 },
2885 	{ 0, 1333, 276, 27605 },
2886 	{ 0, 1066, 276, 27605 },
2887 	{ 0, 800, 231, 23784 },
2888 };
2889 
__i915_chipset_val(struct drm_i915_private * dev_priv)2890 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2891 {
2892 	u64 total_count, diff, ret;
2893 	u32 count1, count2, count3, m = 0, c = 0;
2894 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
2895 	int i;
2896 
2897 	assert_spin_locked(&mchdev_lock);
2898 
2899 	diff1 = now - dev_priv->ips.last_time1;
2900 
2901 	/* Prevent division-by-zero if we are asking too fast.
2902 	 * Also, we don't get interesting results if we are polling
2903 	 * faster than once in 10ms, so just return the saved value
2904 	 * in such cases.
2905 	 */
2906 	if (diff1 <= 10)
2907 		return dev_priv->ips.chipset_power;
2908 
2909 	count1 = I915_READ(DMIEC);
2910 	count2 = I915_READ(DDREC);
2911 	count3 = I915_READ(CSIEC);
2912 
2913 	total_count = count1 + count2 + count3;
2914 
2915 	/* FIXME: handle per-counter overflow */
2916 	if (total_count < dev_priv->ips.last_count1) {
2917 		diff = ~0UL - dev_priv->ips.last_count1;
2918 		diff += total_count;
2919 	} else {
2920 		diff = total_count - dev_priv->ips.last_count1;
2921 	}
2922 
2923 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2924 		if (cparams[i].i == dev_priv->ips.c_m &&
2925 		    cparams[i].t == dev_priv->ips.r_t) {
2926 			m = cparams[i].m;
2927 			c = cparams[i].c;
2928 			break;
2929 		}
2930 	}
2931 
2932 	diff = div_u64(diff, diff1);
2933 	ret = ((m * diff) + c);
2934 	ret = div_u64(ret, 10);
2935 
2936 	dev_priv->ips.last_count1 = total_count;
2937 	dev_priv->ips.last_time1 = now;
2938 
2939 	dev_priv->ips.chipset_power = ret;
2940 
2941 	return ret;
2942 }
2943 
i915_chipset_val(struct drm_i915_private * dev_priv)2944 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2945 {
2946 	unsigned long val;
2947 
2948 	if (dev_priv->info->gen != 5)
2949 		return 0;
2950 
2951 	spin_lock_irq(&mchdev_lock);
2952 
2953 	val = __i915_chipset_val(dev_priv);
2954 
2955 	spin_unlock_irq(&mchdev_lock);
2956 
2957 	return val;
2958 }
2959 
i915_mch_val(struct drm_i915_private * dev_priv)2960 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2961 {
2962 	unsigned long m, x, b;
2963 	u32 tsfs;
2964 
2965 	tsfs = I915_READ(TSFS);
2966 
2967 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2968 	x = I915_READ8(TR1);
2969 
2970 	b = tsfs & TSFS_INTR_MASK;
2971 
2972 	return ((m * x) / 127) - b;
2973 }
2974 
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)2975 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2976 {
2977 	static const struct v_table {
2978 		u16 vd; /* in .1 mil */
2979 		u16 vm; /* in .1 mil */
2980 	} v_table[] = {
2981 		{ 0, 0, },
2982 		{ 375, 0, },
2983 		{ 500, 0, },
2984 		{ 625, 0, },
2985 		{ 750, 0, },
2986 		{ 875, 0, },
2987 		{ 1000, 0, },
2988 		{ 1125, 0, },
2989 		{ 4125, 3000, },
2990 		{ 4125, 3000, },
2991 		{ 4125, 3000, },
2992 		{ 4125, 3000, },
2993 		{ 4125, 3000, },
2994 		{ 4125, 3000, },
2995 		{ 4125, 3000, },
2996 		{ 4125, 3000, },
2997 		{ 4125, 3000, },
2998 		{ 4125, 3000, },
2999 		{ 4125, 3000, },
3000 		{ 4125, 3000, },
3001 		{ 4125, 3000, },
3002 		{ 4125, 3000, },
3003 		{ 4125, 3000, },
3004 		{ 4125, 3000, },
3005 		{ 4125, 3000, },
3006 		{ 4125, 3000, },
3007 		{ 4125, 3000, },
3008 		{ 4125, 3000, },
3009 		{ 4125, 3000, },
3010 		{ 4125, 3000, },
3011 		{ 4125, 3000, },
3012 		{ 4125, 3000, },
3013 		{ 4250, 3125, },
3014 		{ 4375, 3250, },
3015 		{ 4500, 3375, },
3016 		{ 4625, 3500, },
3017 		{ 4750, 3625, },
3018 		{ 4875, 3750, },
3019 		{ 5000, 3875, },
3020 		{ 5125, 4000, },
3021 		{ 5250, 4125, },
3022 		{ 5375, 4250, },
3023 		{ 5500, 4375, },
3024 		{ 5625, 4500, },
3025 		{ 5750, 4625, },
3026 		{ 5875, 4750, },
3027 		{ 6000, 4875, },
3028 		{ 6125, 5000, },
3029 		{ 6250, 5125, },
3030 		{ 6375, 5250, },
3031 		{ 6500, 5375, },
3032 		{ 6625, 5500, },
3033 		{ 6750, 5625, },
3034 		{ 6875, 5750, },
3035 		{ 7000, 5875, },
3036 		{ 7125, 6000, },
3037 		{ 7250, 6125, },
3038 		{ 7375, 6250, },
3039 		{ 7500, 6375, },
3040 		{ 7625, 6500, },
3041 		{ 7750, 6625, },
3042 		{ 7875, 6750, },
3043 		{ 8000, 6875, },
3044 		{ 8125, 7000, },
3045 		{ 8250, 7125, },
3046 		{ 8375, 7250, },
3047 		{ 8500, 7375, },
3048 		{ 8625, 7500, },
3049 		{ 8750, 7625, },
3050 		{ 8875, 7750, },
3051 		{ 9000, 7875, },
3052 		{ 9125, 8000, },
3053 		{ 9250, 8125, },
3054 		{ 9375, 8250, },
3055 		{ 9500, 8375, },
3056 		{ 9625, 8500, },
3057 		{ 9750, 8625, },
3058 		{ 9875, 8750, },
3059 		{ 10000, 8875, },
3060 		{ 10125, 9000, },
3061 		{ 10250, 9125, },
3062 		{ 10375, 9250, },
3063 		{ 10500, 9375, },
3064 		{ 10625, 9500, },
3065 		{ 10750, 9625, },
3066 		{ 10875, 9750, },
3067 		{ 11000, 9875, },
3068 		{ 11125, 10000, },
3069 		{ 11250, 10125, },
3070 		{ 11375, 10250, },
3071 		{ 11500, 10375, },
3072 		{ 11625, 10500, },
3073 		{ 11750, 10625, },
3074 		{ 11875, 10750, },
3075 		{ 12000, 10875, },
3076 		{ 12125, 11000, },
3077 		{ 12250, 11125, },
3078 		{ 12375, 11250, },
3079 		{ 12500, 11375, },
3080 		{ 12625, 11500, },
3081 		{ 12750, 11625, },
3082 		{ 12875, 11750, },
3083 		{ 13000, 11875, },
3084 		{ 13125, 12000, },
3085 		{ 13250, 12125, },
3086 		{ 13375, 12250, },
3087 		{ 13500, 12375, },
3088 		{ 13625, 12500, },
3089 		{ 13750, 12625, },
3090 		{ 13875, 12750, },
3091 		{ 14000, 12875, },
3092 		{ 14125, 13000, },
3093 		{ 14250, 13125, },
3094 		{ 14375, 13250, },
3095 		{ 14500, 13375, },
3096 		{ 14625, 13500, },
3097 		{ 14750, 13625, },
3098 		{ 14875, 13750, },
3099 		{ 15000, 13875, },
3100 		{ 15125, 14000, },
3101 		{ 15250, 14125, },
3102 		{ 15375, 14250, },
3103 		{ 15500, 14375, },
3104 		{ 15625, 14500, },
3105 		{ 15750, 14625, },
3106 		{ 15875, 14750, },
3107 		{ 16000, 14875, },
3108 		{ 16125, 15000, },
3109 	};
3110 	if (dev_priv->info->is_mobile)
3111 		return v_table[pxvid].vm;
3112 	else
3113 		return v_table[pxvid].vd;
3114 }
3115 
__i915_update_gfx_val(struct drm_i915_private * dev_priv)3116 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3117 {
3118 	struct timespec now, diff1;
3119 	u64 diff;
3120 	unsigned long diffms;
3121 	u32 count;
3122 
3123 	assert_spin_locked(&mchdev_lock);
3124 
3125 	getrawmonotonic(&now);
3126 	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3127 
3128 	/* Don't divide by 0 */
3129 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3130 	if (!diffms)
3131 		return;
3132 
3133 	count = I915_READ(GFXEC);
3134 
3135 	if (count < dev_priv->ips.last_count2) {
3136 		diff = ~0UL - dev_priv->ips.last_count2;
3137 		diff += count;
3138 	} else {
3139 		diff = count - dev_priv->ips.last_count2;
3140 	}
3141 
3142 	dev_priv->ips.last_count2 = count;
3143 	dev_priv->ips.last_time2 = now;
3144 
3145 	/* More magic constants... */
3146 	diff = diff * 1181;
3147 	diff = div_u64(diff, diffms * 10);
3148 	dev_priv->ips.gfx_power = diff;
3149 }
3150 
i915_update_gfx_val(struct drm_i915_private * dev_priv)3151 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3152 {
3153 	if (dev_priv->info->gen != 5)
3154 		return;
3155 
3156 	spin_lock_irq(&mchdev_lock);
3157 
3158 	__i915_update_gfx_val(dev_priv);
3159 
3160 	spin_unlock_irq(&mchdev_lock);
3161 }
3162 
__i915_gfx_val(struct drm_i915_private * dev_priv)3163 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3164 {
3165 	unsigned long t, corr, state1, corr2, state2;
3166 	u32 pxvid, ext_v;
3167 
3168 	assert_spin_locked(&mchdev_lock);
3169 
3170 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3171 	pxvid = (pxvid >> 24) & 0x7f;
3172 	ext_v = pvid_to_extvid(dev_priv, pxvid);
3173 
3174 	state1 = ext_v;
3175 
3176 	t = i915_mch_val(dev_priv);
3177 
3178 	/* Revel in the empirically derived constants */
3179 
3180 	/* Correction factor in 1/100000 units */
3181 	if (t > 80)
3182 		corr = ((t * 2349) + 135940);
3183 	else if (t >= 50)
3184 		corr = ((t * 964) + 29317);
3185 	else /* < 50 */
3186 		corr = ((t * 301) + 1004);
3187 
3188 	corr = corr * ((150142 * state1) / 10000 - 78642);
3189 	corr /= 100000;
3190 	corr2 = (corr * dev_priv->ips.corr);
3191 
3192 	state2 = (corr2 * state1) / 10000;
3193 	state2 /= 100; /* convert to mW */
3194 
3195 	__i915_update_gfx_val(dev_priv);
3196 
3197 	return dev_priv->ips.gfx_power + state2;
3198 }
3199 
i915_gfx_val(struct drm_i915_private * dev_priv)3200 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3201 {
3202 	unsigned long val;
3203 
3204 	if (dev_priv->info->gen != 5)
3205 		return 0;
3206 
3207 	spin_lock_irq(&mchdev_lock);
3208 
3209 	val = __i915_gfx_val(dev_priv);
3210 
3211 	spin_unlock_irq(&mchdev_lock);
3212 
3213 	return val;
3214 }
3215 
3216 /**
3217  * i915_read_mch_val - return value for IPS use
3218  *
3219  * Calculate and return a value for the IPS driver to use when deciding whether
3220  * we have thermal and power headroom to increase CPU or GPU power budget.
3221  */
i915_read_mch_val(void)3222 unsigned long i915_read_mch_val(void)
3223 {
3224 	struct drm_i915_private *dev_priv;
3225 	unsigned long chipset_val, graphics_val, ret = 0;
3226 
3227 	spin_lock_irq(&mchdev_lock);
3228 	if (!i915_mch_dev)
3229 		goto out_unlock;
3230 	dev_priv = i915_mch_dev;
3231 
3232 	chipset_val = __i915_chipset_val(dev_priv);
3233 	graphics_val = __i915_gfx_val(dev_priv);
3234 
3235 	ret = chipset_val + graphics_val;
3236 
3237 out_unlock:
3238 	spin_unlock_irq(&mchdev_lock);
3239 
3240 	return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3243 
3244 /**
3245  * i915_gpu_raise - raise GPU frequency limit
3246  *
3247  * Raise the limit; IPS indicates we have thermal headroom.
3248  */
i915_gpu_raise(void)3249 bool i915_gpu_raise(void)
3250 {
3251 	struct drm_i915_private *dev_priv;
3252 	bool ret = true;
3253 
3254 	spin_lock_irq(&mchdev_lock);
3255 	if (!i915_mch_dev) {
3256 		ret = false;
3257 		goto out_unlock;
3258 	}
3259 	dev_priv = i915_mch_dev;
3260 
3261 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3262 		dev_priv->ips.max_delay--;
3263 
3264 out_unlock:
3265 	spin_unlock_irq(&mchdev_lock);
3266 
3267 	return ret;
3268 }
3269 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3270 
3271 /**
3272  * i915_gpu_lower - lower GPU frequency limit
3273  *
3274  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3275  * frequency maximum.
3276  */
i915_gpu_lower(void)3277 bool i915_gpu_lower(void)
3278 {
3279 	struct drm_i915_private *dev_priv;
3280 	bool ret = true;
3281 
3282 	spin_lock_irq(&mchdev_lock);
3283 	if (!i915_mch_dev) {
3284 		ret = false;
3285 		goto out_unlock;
3286 	}
3287 	dev_priv = i915_mch_dev;
3288 
3289 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3290 		dev_priv->ips.max_delay++;
3291 
3292 out_unlock:
3293 	spin_unlock_irq(&mchdev_lock);
3294 
3295 	return ret;
3296 }
3297 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3298 
3299 /**
3300  * i915_gpu_busy - indicate GPU business to IPS
3301  *
3302  * Tell the IPS driver whether or not the GPU is busy.
3303  */
i915_gpu_busy(void)3304 bool i915_gpu_busy(void)
3305 {
3306 	struct drm_i915_private *dev_priv;
3307 	struct intel_ring_buffer *ring;
3308 	bool ret = false;
3309 	int i;
3310 
3311 	spin_lock_irq(&mchdev_lock);
3312 	if (!i915_mch_dev)
3313 		goto out_unlock;
3314 	dev_priv = i915_mch_dev;
3315 
3316 	for_each_ring(ring, dev_priv, i)
3317 		ret |= !list_empty(&ring->request_list);
3318 
3319 out_unlock:
3320 	spin_unlock_irq(&mchdev_lock);
3321 
3322 	return ret;
3323 }
3324 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3325 
3326 /**
3327  * i915_gpu_turbo_disable - disable graphics turbo
3328  *
3329  * Disable graphics turbo by resetting the max frequency and setting the
3330  * current frequency to the default.
3331  */
i915_gpu_turbo_disable(void)3332 bool i915_gpu_turbo_disable(void)
3333 {
3334 	struct drm_i915_private *dev_priv;
3335 	bool ret = true;
3336 
3337 	spin_lock_irq(&mchdev_lock);
3338 	if (!i915_mch_dev) {
3339 		ret = false;
3340 		goto out_unlock;
3341 	}
3342 	dev_priv = i915_mch_dev;
3343 
3344 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
3345 
3346 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3347 		ret = false;
3348 
3349 out_unlock:
3350 	spin_unlock_irq(&mchdev_lock);
3351 
3352 	return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3355 
3356 /**
3357  * Tells the intel_ips driver that the i915 driver is now loaded, if
3358  * IPS got loaded first.
3359  *
3360  * This awkward dance is so that neither module has to depend on the
3361  * other in order for IPS to do the appropriate communication of
3362  * GPU turbo limits to i915.
3363  */
3364 static void
ips_ping_for_i915_load(void)3365 ips_ping_for_i915_load(void)
3366 {
3367 	void (*link)(void);
3368 
3369 	link = symbol_get(ips_link_to_i915_driver);
3370 	if (link) {
3371 		link();
3372 		symbol_put(ips_link_to_i915_driver);
3373 	}
3374 }
3375 
intel_gpu_ips_init(struct drm_i915_private * dev_priv)3376 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3377 {
3378 	/* We only register the i915 ips part with intel-ips once everything is
3379 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3380 	spin_lock_irq(&mchdev_lock);
3381 	i915_mch_dev = dev_priv;
3382 	spin_unlock_irq(&mchdev_lock);
3383 
3384 	ips_ping_for_i915_load();
3385 }
3386 
intel_gpu_ips_teardown(void)3387 void intel_gpu_ips_teardown(void)
3388 {
3389 	spin_lock_irq(&mchdev_lock);
3390 	i915_mch_dev = NULL;
3391 	spin_unlock_irq(&mchdev_lock);
3392 }
intel_init_emon(struct drm_device * dev)3393 static void intel_init_emon(struct drm_device *dev)
3394 {
3395 	struct drm_i915_private *dev_priv = dev->dev_private;
3396 	u32 lcfuse;
3397 	u8 pxw[16];
3398 	int i;
3399 
3400 	/* Disable to program */
3401 	I915_WRITE(ECR, 0);
3402 	POSTING_READ(ECR);
3403 
3404 	/* Program energy weights for various events */
3405 	I915_WRITE(SDEW, 0x15040d00);
3406 	I915_WRITE(CSIEW0, 0x007f0000);
3407 	I915_WRITE(CSIEW1, 0x1e220004);
3408 	I915_WRITE(CSIEW2, 0x04000004);
3409 
3410 	for (i = 0; i < 5; i++)
3411 		I915_WRITE(PEW + (i * 4), 0);
3412 	for (i = 0; i < 3; i++)
3413 		I915_WRITE(DEW + (i * 4), 0);
3414 
3415 	/* Program P-state weights to account for frequency power adjustment */
3416 	for (i = 0; i < 16; i++) {
3417 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3418 		unsigned long freq = intel_pxfreq(pxvidfreq);
3419 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3420 			PXVFREQ_PX_SHIFT;
3421 		unsigned long val;
3422 
3423 		val = vid * vid;
3424 		val *= (freq / 1000);
3425 		val *= 255;
3426 		val /= (127*127*900);
3427 		if (val > 0xff)
3428 			DRM_ERROR("bad pxval: %ld\n", val);
3429 		pxw[i] = val;
3430 	}
3431 	/* Render standby states get 0 weight */
3432 	pxw[14] = 0;
3433 	pxw[15] = 0;
3434 
3435 	for (i = 0; i < 4; i++) {
3436 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3437 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3438 		I915_WRITE(PXW + (i * 4), val);
3439 	}
3440 
3441 	/* Adjust magic regs to magic values (more experimental results) */
3442 	I915_WRITE(OGW0, 0);
3443 	I915_WRITE(OGW1, 0);
3444 	I915_WRITE(EG0, 0x00007f00);
3445 	I915_WRITE(EG1, 0x0000000e);
3446 	I915_WRITE(EG2, 0x000e0000);
3447 	I915_WRITE(EG3, 0x68000300);
3448 	I915_WRITE(EG4, 0x42000000);
3449 	I915_WRITE(EG5, 0x00140031);
3450 	I915_WRITE(EG6, 0);
3451 	I915_WRITE(EG7, 0);
3452 
3453 	for (i = 0; i < 8; i++)
3454 		I915_WRITE(PXWL + (i * 4), 0);
3455 
3456 	/* Enable PMON + select events */
3457 	I915_WRITE(ECR, 0x80000019);
3458 
3459 	lcfuse = I915_READ(LCFUSE02);
3460 
3461 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3462 }
3463 
intel_disable_gt_powersave(struct drm_device * dev)3464 void intel_disable_gt_powersave(struct drm_device *dev)
3465 {
3466 	struct drm_i915_private *dev_priv = dev->dev_private;
3467 
3468 	if (IS_IRONLAKE_M(dev)) {
3469 		ironlake_disable_drps(dev);
3470 		ironlake_disable_rc6(dev);
3471 	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3472 		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3473 		mutex_lock(&dev_priv->rps.hw_lock);
3474 		gen6_disable_rps(dev);
3475 		mutex_unlock(&dev_priv->rps.hw_lock);
3476 	}
3477 }
3478 
intel_gen6_powersave_work(struct work_struct * work)3479 static void intel_gen6_powersave_work(struct work_struct *work)
3480 {
3481 	struct drm_i915_private *dev_priv =
3482 		container_of(work, struct drm_i915_private,
3483 			     rps.delayed_resume_work.work);
3484 	struct drm_device *dev = dev_priv->dev;
3485 
3486 	mutex_lock(&dev_priv->rps.hw_lock);
3487 	gen6_enable_rps(dev);
3488 	gen6_update_ring_freq(dev);
3489 	mutex_unlock(&dev_priv->rps.hw_lock);
3490 }
3491 
intel_enable_gt_powersave(struct drm_device * dev)3492 void intel_enable_gt_powersave(struct drm_device *dev)
3493 {
3494 	struct drm_i915_private *dev_priv = dev->dev_private;
3495 
3496 	if (IS_IRONLAKE_M(dev)) {
3497 		ironlake_enable_drps(dev);
3498 		ironlake_enable_rc6(dev);
3499 		intel_init_emon(dev);
3500 	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3501 		/*
3502 		 * PCU communication is slow and this doesn't need to be
3503 		 * done at any specific time, so do this out of our fast path
3504 		 * to make resume and init faster.
3505 		 */
3506 		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3507 				      round_jiffies_up_relative(HZ));
3508 	}
3509 }
3510 
ibx_init_clock_gating(struct drm_device * dev)3511 static void ibx_init_clock_gating(struct drm_device *dev)
3512 {
3513 	struct drm_i915_private *dev_priv = dev->dev_private;
3514 
3515 	/*
3516 	 * On Ibex Peak and Cougar Point, we need to disable clock
3517 	 * gating for the panel power sequencer or it will fail to
3518 	 * start up when no ports are active.
3519 	 */
3520 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3521 }
3522 
ironlake_init_clock_gating(struct drm_device * dev)3523 static void ironlake_init_clock_gating(struct drm_device *dev)
3524 {
3525 	struct drm_i915_private *dev_priv = dev->dev_private;
3526 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3527 
3528 	/* Required for FBC */
3529 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3530 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3531 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3532 
3533 	I915_WRITE(PCH_3DCGDIS0,
3534 		   MARIUNIT_CLOCK_GATE_DISABLE |
3535 		   SVSMUNIT_CLOCK_GATE_DISABLE);
3536 	I915_WRITE(PCH_3DCGDIS1,
3537 		   VFMUNIT_CLOCK_GATE_DISABLE);
3538 
3539 	/*
3540 	 * According to the spec the following bits should be set in
3541 	 * order to enable memory self-refresh
3542 	 * The bit 22/21 of 0x42004
3543 	 * The bit 5 of 0x42020
3544 	 * The bit 15 of 0x45000
3545 	 */
3546 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3547 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3548 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3549 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3550 	I915_WRITE(DISP_ARB_CTL,
3551 		   (I915_READ(DISP_ARB_CTL) |
3552 		    DISP_FBC_WM_DIS));
3553 	I915_WRITE(WM3_LP_ILK, 0);
3554 	I915_WRITE(WM2_LP_ILK, 0);
3555 	I915_WRITE(WM1_LP_ILK, 0);
3556 
3557 	/*
3558 	 * Based on the document from hardware guys the following bits
3559 	 * should be set unconditionally in order to enable FBC.
3560 	 * The bit 22 of 0x42000
3561 	 * The bit 22 of 0x42004
3562 	 * The bit 7,8,9 of 0x42020.
3563 	 */
3564 	if (IS_IRONLAKE_M(dev)) {
3565 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
3566 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
3567 			   ILK_FBCQ_DIS);
3568 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
3569 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
3570 			   ILK_DPARB_GATE);
3571 	}
3572 
3573 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3574 
3575 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3576 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3577 		   ILK_ELPIN_409_SELECT);
3578 	I915_WRITE(_3D_CHICKEN2,
3579 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3580 		   _3D_CHICKEN2_WM_READ_PIPELINED);
3581 
3582 	/* WaDisableRenderCachePipelinedFlush */
3583 	I915_WRITE(CACHE_MODE_0,
3584 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3585 
3586 	ibx_init_clock_gating(dev);
3587 }
3588 
cpt_init_clock_gating(struct drm_device * dev)3589 static void cpt_init_clock_gating(struct drm_device *dev)
3590 {
3591 	struct drm_i915_private *dev_priv = dev->dev_private;
3592 	int pipe;
3593 	uint32_t val;
3594 
3595 	/*
3596 	 * On Ibex Peak and Cougar Point, we need to disable clock
3597 	 * gating for the panel power sequencer or it will fail to
3598 	 * start up when no ports are active.
3599 	 */
3600 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3601 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3602 		   DPLS_EDP_PPS_FIX_DIS);
3603 	/* The below fixes the weird display corruption, a few pixels shifted
3604 	 * downward, on (only) LVDS of some HP laptops with IVY.
3605 	 */
3606 	for_each_pipe(pipe) {
3607 		val = I915_READ(TRANS_CHICKEN2(pipe));
3608 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
3609 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3610 		if (dev_priv->fdi_rx_polarity_inverted)
3611 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3612 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
3613 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
3614 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3615 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
3616 	}
3617 	/* WADP0ClockGatingDisable */
3618 	for_each_pipe(pipe) {
3619 		I915_WRITE(TRANS_CHICKEN1(pipe),
3620 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3621 	}
3622 }
3623 
gen6_check_mch_setup(struct drm_device * dev)3624 static void gen6_check_mch_setup(struct drm_device *dev)
3625 {
3626 	struct drm_i915_private *dev_priv = dev->dev_private;
3627 	uint32_t tmp;
3628 
3629 	tmp = I915_READ(MCH_SSKPD);
3630 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3631 		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3632 		DRM_INFO("This can cause pipe underruns and display issues.\n");
3633 		DRM_INFO("Please upgrade your BIOS to fix this.\n");
3634 	}
3635 }
3636 
gen6_init_clock_gating(struct drm_device * dev)3637 static void gen6_init_clock_gating(struct drm_device *dev)
3638 {
3639 	struct drm_i915_private *dev_priv = dev->dev_private;
3640 	int pipe;
3641 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3642 
3643 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3644 
3645 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3646 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3647 		   ILK_ELPIN_409_SELECT);
3648 
3649 	/* WaDisableHiZPlanesWhenMSAAEnabled */
3650 	I915_WRITE(_3D_CHICKEN,
3651 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3652 
3653 	/* WaSetupGtModeTdRowDispatch */
3654 	if (IS_SNB_GT1(dev))
3655 		I915_WRITE(GEN6_GT_MODE,
3656 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3657 
3658 	I915_WRITE(WM3_LP_ILK, 0);
3659 	I915_WRITE(WM2_LP_ILK, 0);
3660 	I915_WRITE(WM1_LP_ILK, 0);
3661 
3662 	I915_WRITE(CACHE_MODE_0,
3663 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3664 
3665 	I915_WRITE(GEN6_UCGCTL1,
3666 		   I915_READ(GEN6_UCGCTL1) |
3667 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3668 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3669 
3670 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3671 	 * gating disable must be set.  Failure to set it results in
3672 	 * flickering pixels due to Z write ordering failures after
3673 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3674 	 * Sanctuary and Tropics, and apparently anything else with
3675 	 * alpha test or pixel discard.
3676 	 *
3677 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3678 	 * but we didn't debug actual testcases to find it out.
3679 	 *
3680 	 * Also apply WaDisableVDSUnitClockGating and
3681 	 * WaDisableRCPBUnitClockGating.
3682 	 */
3683 	I915_WRITE(GEN6_UCGCTL2,
3684 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3685 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3686 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3687 
3688 	/* Bspec says we need to always set all mask bits. */
3689 	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3690 		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3691 
3692 	/*
3693 	 * According to the spec the following bits should be
3694 	 * set in order to enable memory self-refresh and fbc:
3695 	 * The bit21 and bit22 of 0x42000
3696 	 * The bit21 and bit22 of 0x42004
3697 	 * The bit5 and bit7 of 0x42020
3698 	 * The bit14 of 0x70180
3699 	 * The bit14 of 0x71180
3700 	 */
3701 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3702 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3703 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3704 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3705 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3706 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3707 	I915_WRITE(ILK_DSPCLK_GATE_D,
3708 		   I915_READ(ILK_DSPCLK_GATE_D) |
3709 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3710 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3711 
3712 	/* WaMbcDriverBootEnable */
3713 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3714 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3715 
3716 	for_each_pipe(pipe) {
3717 		I915_WRITE(DSPCNTR(pipe),
3718 			   I915_READ(DSPCNTR(pipe)) |
3719 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3720 		intel_flush_display_plane(dev_priv, pipe);
3721 	}
3722 
3723 	/* The default value should be 0x200 according to docs, but the two
3724 	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3725 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3726 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3727 
3728 	cpt_init_clock_gating(dev);
3729 
3730 	gen6_check_mch_setup(dev);
3731 }
3732 
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)3733 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3734 {
3735 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3736 
3737 	reg &= ~GEN7_FF_SCHED_MASK;
3738 	reg |= GEN7_FF_TS_SCHED_HW;
3739 	reg |= GEN7_FF_VS_SCHED_HW;
3740 	reg |= GEN7_FF_DS_SCHED_HW;
3741 
3742 	/* WaVSRefCountFullforceMissDisable */
3743 	if (IS_HASWELL(dev_priv->dev))
3744 		reg &= ~GEN7_FF_VS_REF_CNT_FFME;
3745 
3746 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3747 }
3748 
lpt_init_clock_gating(struct drm_device * dev)3749 static void lpt_init_clock_gating(struct drm_device *dev)
3750 {
3751 	struct drm_i915_private *dev_priv = dev->dev_private;
3752 
3753 	/*
3754 	 * TODO: this bit should only be enabled when really needed, then
3755 	 * disabled when not needed anymore in order to save power.
3756 	 */
3757 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3758 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
3759 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
3760 			   PCH_LP_PARTITION_LEVEL_DISABLE);
3761 }
3762 
haswell_init_clock_gating(struct drm_device * dev)3763 static void haswell_init_clock_gating(struct drm_device *dev)
3764 {
3765 	struct drm_i915_private *dev_priv = dev->dev_private;
3766 	int pipe;
3767 
3768 	I915_WRITE(WM3_LP_ILK, 0);
3769 	I915_WRITE(WM2_LP_ILK, 0);
3770 	I915_WRITE(WM1_LP_ILK, 0);
3771 
3772 	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3773 	 * This implements the WaDisableRCZUnitClockGating workaround.
3774 	 */
3775 	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3776 
3777 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3778 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3779 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3780 
3781 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3782 	I915_WRITE(GEN7_L3CNTLREG1,
3783 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3784 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3785 			GEN7_WA_L3_CHICKEN_MODE);
3786 
3787 	/* This is required by WaCatErrorRejectionIssue */
3788 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3789 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3790 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3791 
3792 	for_each_pipe(pipe) {
3793 		I915_WRITE(DSPCNTR(pipe),
3794 			   I915_READ(DSPCNTR(pipe)) |
3795 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3796 		intel_flush_display_plane(dev_priv, pipe);
3797 	}
3798 
3799 	gen7_setup_fixed_func_scheduler(dev_priv);
3800 
3801 	/* WaDisable4x2SubspanOptimization */
3802 	I915_WRITE(CACHE_MODE_1,
3803 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3804 
3805 	/* WaMbcDriverBootEnable */
3806 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3807 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3808 
3809 	/* WaSwitchSolVfFArbitrationPriority */
3810 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
3811 
3812 	/* XXX: This is a workaround for early silicon revisions and should be
3813 	 * removed later.
3814 	 */
3815 	I915_WRITE(WM_DBG,
3816 			I915_READ(WM_DBG) |
3817 			WM_DBG_DISALLOW_MULTIPLE_LP |
3818 			WM_DBG_DISALLOW_SPRITE |
3819 			WM_DBG_DISALLOW_MAXFIFO);
3820 
3821 	lpt_init_clock_gating(dev);
3822 }
3823 
ivybridge_init_clock_gating(struct drm_device * dev)3824 static void ivybridge_init_clock_gating(struct drm_device *dev)
3825 {
3826 	struct drm_i915_private *dev_priv = dev->dev_private;
3827 	int pipe;
3828 	uint32_t snpcr;
3829 
3830 	I915_WRITE(WM3_LP_ILK, 0);
3831 	I915_WRITE(WM2_LP_ILK, 0);
3832 	I915_WRITE(WM1_LP_ILK, 0);
3833 
3834 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3835 
3836 	/* WaDisableEarlyCull */
3837 	I915_WRITE(_3D_CHICKEN3,
3838 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3839 
3840 	/* WaDisableBackToBackFlipFix */
3841 	I915_WRITE(IVB_CHICKEN3,
3842 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3843 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3844 
3845 	/* WaDisablePSDDualDispatchEnable */
3846 	if (IS_IVB_GT1(dev))
3847 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3848 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3849 	else
3850 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3851 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3852 
3853 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3854 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3855 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3856 
3857 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3858 	I915_WRITE(GEN7_L3CNTLREG1,
3859 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3860 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3861 		   GEN7_WA_L3_CHICKEN_MODE);
3862 	if (IS_IVB_GT1(dev))
3863 		I915_WRITE(GEN7_ROW_CHICKEN2,
3864 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3865 	else
3866 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3867 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3868 
3869 
3870 	/* WaForceL3Serialization */
3871 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3872 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3873 
3874 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3875 	 * gating disable must be set.  Failure to set it results in
3876 	 * flickering pixels due to Z write ordering failures after
3877 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3878 	 * Sanctuary and Tropics, and apparently anything else with
3879 	 * alpha test or pixel discard.
3880 	 *
3881 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3882 	 * but we didn't debug actual testcases to find it out.
3883 	 *
3884 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3885 	 * This implements the WaDisableRCZUnitClockGating workaround.
3886 	 */
3887 	I915_WRITE(GEN6_UCGCTL2,
3888 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3889 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3890 
3891 	/* This is required by WaCatErrorRejectionIssue */
3892 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3893 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3894 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3895 
3896 	for_each_pipe(pipe) {
3897 		I915_WRITE(DSPCNTR(pipe),
3898 			   I915_READ(DSPCNTR(pipe)) |
3899 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3900 		intel_flush_display_plane(dev_priv, pipe);
3901 	}
3902 
3903 	/* WaMbcDriverBootEnable */
3904 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3905 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3906 
3907 	gen7_setup_fixed_func_scheduler(dev_priv);
3908 
3909 	/* WaDisable4x2SubspanOptimization */
3910 	I915_WRITE(CACHE_MODE_1,
3911 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3912 
3913 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3914 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
3915 	snpcr |= GEN6_MBC_SNPCR_MED;
3916 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3917 
3918 	if (!HAS_PCH_NOP(dev))
3919 		cpt_init_clock_gating(dev);
3920 
3921 	gen6_check_mch_setup(dev);
3922 }
3923 
valleyview_init_clock_gating(struct drm_device * dev)3924 static void valleyview_init_clock_gating(struct drm_device *dev)
3925 {
3926 	struct drm_i915_private *dev_priv = dev->dev_private;
3927 	int pipe;
3928 
3929 	I915_WRITE(WM3_LP_ILK, 0);
3930 	I915_WRITE(WM2_LP_ILK, 0);
3931 	I915_WRITE(WM1_LP_ILK, 0);
3932 
3933 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3934 
3935 	/* WaDisableEarlyCull */
3936 	I915_WRITE(_3D_CHICKEN3,
3937 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3938 
3939 	/* WaDisableBackToBackFlipFix */
3940 	I915_WRITE(IVB_CHICKEN3,
3941 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3942 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3943 
3944 	/* WaDisablePSDDualDispatchEnable */
3945 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3946 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
3947 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3948 
3949 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3950 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3951 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3952 
3953 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3954 	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3955 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3956 
3957 	/* WaForceL3Serialization */
3958 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3959 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3960 
3961 	/* WaDisableDopClockGating */
3962 	I915_WRITE(GEN7_ROW_CHICKEN2,
3963 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3964 
3965 	/* WaForceL3Serialization */
3966 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3967 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3968 
3969 	/* This is required by WaCatErrorRejectionIssue */
3970 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3971 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3972 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3973 
3974 	/* WaMbcDriverBootEnable */
3975 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3976 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3977 
3978 
3979 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3980 	 * gating disable must be set.  Failure to set it results in
3981 	 * flickering pixels due to Z write ordering failures after
3982 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3983 	 * Sanctuary and Tropics, and apparently anything else with
3984 	 * alpha test or pixel discard.
3985 	 *
3986 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3987 	 * but we didn't debug actual testcases to find it out.
3988 	 *
3989 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3990 	 * This implements the WaDisableRCZUnitClockGating workaround.
3991 	 *
3992 	 * Also apply WaDisableVDSUnitClockGating and
3993 	 * WaDisableRCPBUnitClockGating.
3994 	 */
3995 	I915_WRITE(GEN6_UCGCTL2,
3996 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3997 		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3998 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3999 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4000 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4001 
4002 	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4003 
4004 	for_each_pipe(pipe) {
4005 		I915_WRITE(DSPCNTR(pipe),
4006 			   I915_READ(DSPCNTR(pipe)) |
4007 			   DISPPLANE_TRICKLE_FEED_DISABLE);
4008 		intel_flush_display_plane(dev_priv, pipe);
4009 	}
4010 
4011 	I915_WRITE(CACHE_MODE_1,
4012 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4013 
4014 	/*
4015 	 * WaDisableVLVClockGating_VBIIssue
4016 	 * Disable clock gating on th GCFG unit to prevent a delay
4017 	 * in the reporting of vblank events.
4018 	 */
4019 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4020 
4021 	/* Conservative clock gating settings for now */
4022 	I915_WRITE(0x9400, 0xffffffff);
4023 	I915_WRITE(0x9404, 0xffffffff);
4024 	I915_WRITE(0x9408, 0xffffffff);
4025 	I915_WRITE(0x940c, 0xffffffff);
4026 	I915_WRITE(0x9410, 0xffffffff);
4027 	I915_WRITE(0x9414, 0xffffffff);
4028 	I915_WRITE(0x9418, 0xffffffff);
4029 }
4030 
g4x_init_clock_gating(struct drm_device * dev)4031 static void g4x_init_clock_gating(struct drm_device *dev)
4032 {
4033 	struct drm_i915_private *dev_priv = dev->dev_private;
4034 	uint32_t dspclk_gate;
4035 
4036 	I915_WRITE(RENCLK_GATE_D1, 0);
4037 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4038 		   GS_UNIT_CLOCK_GATE_DISABLE |
4039 		   CL_UNIT_CLOCK_GATE_DISABLE);
4040 	I915_WRITE(RAMCLK_GATE_D, 0);
4041 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4042 		OVRUNIT_CLOCK_GATE_DISABLE |
4043 		OVCUNIT_CLOCK_GATE_DISABLE;
4044 	if (IS_GM45(dev))
4045 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4046 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4047 
4048 	/* WaDisableRenderCachePipelinedFlush */
4049 	I915_WRITE(CACHE_MODE_0,
4050 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4051 }
4052 
crestline_init_clock_gating(struct drm_device * dev)4053 static void crestline_init_clock_gating(struct drm_device *dev)
4054 {
4055 	struct drm_i915_private *dev_priv = dev->dev_private;
4056 
4057 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4058 	I915_WRITE(RENCLK_GATE_D2, 0);
4059 	I915_WRITE(DSPCLK_GATE_D, 0);
4060 	I915_WRITE(RAMCLK_GATE_D, 0);
4061 	I915_WRITE16(DEUC, 0);
4062 }
4063 
broadwater_init_clock_gating(struct drm_device * dev)4064 static void broadwater_init_clock_gating(struct drm_device *dev)
4065 {
4066 	struct drm_i915_private *dev_priv = dev->dev_private;
4067 
4068 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4069 		   I965_RCC_CLOCK_GATE_DISABLE |
4070 		   I965_RCPB_CLOCK_GATE_DISABLE |
4071 		   I965_ISC_CLOCK_GATE_DISABLE |
4072 		   I965_FBC_CLOCK_GATE_DISABLE);
4073 	I915_WRITE(RENCLK_GATE_D2, 0);
4074 }
4075 
gen3_init_clock_gating(struct drm_device * dev)4076 static void gen3_init_clock_gating(struct drm_device *dev)
4077 {
4078 	struct drm_i915_private *dev_priv = dev->dev_private;
4079 	u32 dstate = I915_READ(D_STATE);
4080 
4081 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4082 		DSTATE_DOT_CLOCK_GATING;
4083 	I915_WRITE(D_STATE, dstate);
4084 
4085 	if (IS_PINEVIEW(dev))
4086 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4087 
4088 	/* IIR "flip pending" means done if this bit is set */
4089 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4090 }
4091 
i85x_init_clock_gating(struct drm_device * dev)4092 static void i85x_init_clock_gating(struct drm_device *dev)
4093 {
4094 	struct drm_i915_private *dev_priv = dev->dev_private;
4095 
4096 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4097 }
4098 
i830_init_clock_gating(struct drm_device * dev)4099 static void i830_init_clock_gating(struct drm_device *dev)
4100 {
4101 	struct drm_i915_private *dev_priv = dev->dev_private;
4102 
4103 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4104 }
4105 
intel_init_clock_gating(struct drm_device * dev)4106 void intel_init_clock_gating(struct drm_device *dev)
4107 {
4108 	struct drm_i915_private *dev_priv = dev->dev_private;
4109 
4110 	dev_priv->display.init_clock_gating(dev);
4111 }
4112 
4113 /**
4114  * We should only use the power well if we explicitly asked the hardware to
4115  * enable it, so check if it's enabled and also check if we've requested it to
4116  * be enabled.
4117  */
intel_using_power_well(struct drm_device * dev)4118 bool intel_using_power_well(struct drm_device *dev)
4119 {
4120 	struct drm_i915_private *dev_priv = dev->dev_private;
4121 
4122 	if (IS_HASWELL(dev))
4123 		return I915_READ(HSW_PWR_WELL_DRIVER) ==
4124 		       (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
4125 	else
4126 		return true;
4127 }
4128 
intel_set_power_well(struct drm_device * dev,bool enable)4129 void intel_set_power_well(struct drm_device *dev, bool enable)
4130 {
4131 	struct drm_i915_private *dev_priv = dev->dev_private;
4132 	bool is_enabled, enable_requested;
4133 	uint32_t tmp;
4134 
4135 	if (!HAS_POWER_WELL(dev))
4136 		return;
4137 
4138 	if (!i915_disable_power_well && !enable)
4139 		return;
4140 
4141 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4142 	is_enabled = tmp & HSW_PWR_WELL_STATE;
4143 	enable_requested = tmp & HSW_PWR_WELL_ENABLE;
4144 
4145 	if (enable) {
4146 		if (!enable_requested)
4147 			I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
4148 
4149 		if (!is_enabled) {
4150 			DRM_DEBUG_KMS("Enabling power well\n");
4151 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4152 				      HSW_PWR_WELL_STATE), 20))
4153 				DRM_ERROR("Timeout enabling power well\n");
4154 		}
4155 	} else {
4156 		if (enable_requested) {
4157 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4158 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
4159 		}
4160 	}
4161 }
4162 
4163 /*
4164  * Starting with Haswell, we have a "Power Down Well" that can be turned off
4165  * when not needed anymore. We have 4 registers that can request the power well
4166  * to be enabled, and it will only be disabled if none of the registers is
4167  * requesting it to be enabled.
4168  */
intel_init_power_well(struct drm_device * dev)4169 void intel_init_power_well(struct drm_device *dev)
4170 {
4171 	struct drm_i915_private *dev_priv = dev->dev_private;
4172 
4173 	if (!HAS_POWER_WELL(dev))
4174 		return;
4175 
4176 	/* For now, we need the power well to be always enabled. */
4177 	intel_set_power_well(dev, true);
4178 
4179 	/* We're taking over the BIOS, so clear any requests made by it since
4180 	 * the driver is in charge now. */
4181 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4182 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
4183 }
4184 
4185 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_device * dev)4186 void intel_init_pm(struct drm_device *dev)
4187 {
4188 	struct drm_i915_private *dev_priv = dev->dev_private;
4189 
4190 	if (I915_HAS_FBC(dev)) {
4191 		if (HAS_PCH_SPLIT(dev)) {
4192 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4193 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
4194 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
4195 		} else if (IS_GM45(dev)) {
4196 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4197 			dev_priv->display.enable_fbc = g4x_enable_fbc;
4198 			dev_priv->display.disable_fbc = g4x_disable_fbc;
4199 		} else if (IS_CRESTLINE(dev)) {
4200 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4201 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
4202 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
4203 		}
4204 		/* 855GM needs testing */
4205 	}
4206 
4207 	/* For cxsr */
4208 	if (IS_PINEVIEW(dev))
4209 		i915_pineview_get_mem_freq(dev);
4210 	else if (IS_GEN5(dev))
4211 		i915_ironlake_get_mem_freq(dev);
4212 
4213 	/* For FIFO watermark updates */
4214 	if (HAS_PCH_SPLIT(dev)) {
4215 		if (IS_GEN5(dev)) {
4216 			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4217 				dev_priv->display.update_wm = ironlake_update_wm;
4218 			else {
4219 				DRM_DEBUG_KMS("Failed to get proper latency. "
4220 					      "Disable CxSR\n");
4221 				dev_priv->display.update_wm = NULL;
4222 			}
4223 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4224 		} else if (IS_GEN6(dev)) {
4225 			if (SNB_READ_WM0_LATENCY()) {
4226 				dev_priv->display.update_wm = sandybridge_update_wm;
4227 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4228 			} else {
4229 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4230 					      "Disable CxSR\n");
4231 				dev_priv->display.update_wm = NULL;
4232 			}
4233 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4234 		} else if (IS_IVYBRIDGE(dev)) {
4235 			if (SNB_READ_WM0_LATENCY()) {
4236 				dev_priv->display.update_wm = ivybridge_update_wm;
4237 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4238 			} else {
4239 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4240 					      "Disable CxSR\n");
4241 				dev_priv->display.update_wm = NULL;
4242 			}
4243 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4244 		} else if (IS_HASWELL(dev)) {
4245 			if (SNB_READ_WM0_LATENCY()) {
4246 				dev_priv->display.update_wm = sandybridge_update_wm;
4247 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4248 				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4249 			} else {
4250 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4251 					      "Disable CxSR\n");
4252 				dev_priv->display.update_wm = NULL;
4253 			}
4254 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4255 		} else
4256 			dev_priv->display.update_wm = NULL;
4257 	} else if (IS_VALLEYVIEW(dev)) {
4258 		dev_priv->display.update_wm = valleyview_update_wm;
4259 		dev_priv->display.init_clock_gating =
4260 			valleyview_init_clock_gating;
4261 	} else if (IS_PINEVIEW(dev)) {
4262 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4263 					    dev_priv->is_ddr3,
4264 					    dev_priv->fsb_freq,
4265 					    dev_priv->mem_freq)) {
4266 			DRM_INFO("failed to find known CxSR latency "
4267 				 "(found ddr%s fsb freq %d, mem freq %d), "
4268 				 "disabling CxSR\n",
4269 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4270 				 dev_priv->fsb_freq, dev_priv->mem_freq);
4271 			/* Disable CxSR and never update its watermark again */
4272 			pineview_disable_cxsr(dev);
4273 			dev_priv->display.update_wm = NULL;
4274 		} else
4275 			dev_priv->display.update_wm = pineview_update_wm;
4276 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4277 	} else if (IS_G4X(dev)) {
4278 		dev_priv->display.update_wm = g4x_update_wm;
4279 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4280 	} else if (IS_GEN4(dev)) {
4281 		dev_priv->display.update_wm = i965_update_wm;
4282 		if (IS_CRESTLINE(dev))
4283 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4284 		else if (IS_BROADWATER(dev))
4285 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4286 	} else if (IS_GEN3(dev)) {
4287 		dev_priv->display.update_wm = i9xx_update_wm;
4288 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4289 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4290 	} else if (IS_I865G(dev)) {
4291 		dev_priv->display.update_wm = i830_update_wm;
4292 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4293 		dev_priv->display.get_fifo_size = i830_get_fifo_size;
4294 	} else if (IS_I85X(dev)) {
4295 		dev_priv->display.update_wm = i9xx_update_wm;
4296 		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4297 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4298 	} else {
4299 		dev_priv->display.update_wm = i830_update_wm;
4300 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
4301 		if (IS_845G(dev))
4302 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
4303 		else
4304 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4305 	}
4306 }
4307 
__gen6_gt_wait_for_thread_c0(struct drm_i915_private * dev_priv)4308 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4309 {
4310 	u32 gt_thread_status_mask;
4311 
4312 	if (IS_HASWELL(dev_priv->dev))
4313 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4314 	else
4315 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4316 
4317 	/* w/a for a sporadic read returning 0 by waiting for the GT
4318 	 * thread to wake up.
4319 	 */
4320 	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4321 		DRM_ERROR("GT thread status wait timed out\n");
4322 }
4323 
__gen6_gt_force_wake_reset(struct drm_i915_private * dev_priv)4324 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4325 {
4326 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4327 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4328 }
4329 
__gen6_gt_force_wake_get(struct drm_i915_private * dev_priv)4330 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4331 {
4332 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
4333 			    FORCEWAKE_ACK_TIMEOUT_MS))
4334 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4335 
4336 	I915_WRITE_NOTRACE(FORCEWAKE, 1);
4337 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4338 
4339 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
4340 			    FORCEWAKE_ACK_TIMEOUT_MS))
4341 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4342 
4343 	__gen6_gt_wait_for_thread_c0(dev_priv);
4344 }
4345 
__gen6_gt_force_wake_mt_reset(struct drm_i915_private * dev_priv)4346 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4347 {
4348 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4349 	/* something from same cacheline, but !FORCEWAKE_MT */
4350 	POSTING_READ(ECOBUS);
4351 }
4352 
__gen6_gt_force_wake_mt_get(struct drm_i915_private * dev_priv)4353 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4354 {
4355 	u32 forcewake_ack;
4356 
4357 	if (IS_HASWELL(dev_priv->dev))
4358 		forcewake_ack = FORCEWAKE_ACK_HSW;
4359 	else
4360 		forcewake_ack = FORCEWAKE_MT_ACK;
4361 
4362 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
4363 			    FORCEWAKE_ACK_TIMEOUT_MS))
4364 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4365 
4366 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4367 	/* something from same cacheline, but !FORCEWAKE_MT */
4368 	POSTING_READ(ECOBUS);
4369 
4370 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
4371 			    FORCEWAKE_ACK_TIMEOUT_MS))
4372 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4373 
4374 	__gen6_gt_wait_for_thread_c0(dev_priv);
4375 }
4376 
4377 /*
4378  * Generally this is called implicitly by the register read function. However,
4379  * if some sequence requires the GT to not power down then this function should
4380  * be called at the beginning of the sequence followed by a call to
4381  * gen6_gt_force_wake_put() at the end of the sequence.
4382  */
gen6_gt_force_wake_get(struct drm_i915_private * dev_priv)4383 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4384 {
4385 	unsigned long irqflags;
4386 
4387 	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4388 	if (dev_priv->forcewake_count++ == 0)
4389 		dev_priv->gt.force_wake_get(dev_priv);
4390 	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4391 }
4392 
gen6_gt_check_fifodbg(struct drm_i915_private * dev_priv)4393 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4394 {
4395 	u32 gtfifodbg;
4396 	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4397 	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4398 	     "MMIO read or write has been dropped %x\n", gtfifodbg))
4399 		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4400 }
4401 
__gen6_gt_force_wake_put(struct drm_i915_private * dev_priv)4402 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4403 {
4404 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4405 	/* something from same cacheline, but !FORCEWAKE */
4406 	POSTING_READ(ECOBUS);
4407 	gen6_gt_check_fifodbg(dev_priv);
4408 }
4409 
__gen6_gt_force_wake_mt_put(struct drm_i915_private * dev_priv)4410 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4411 {
4412 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4413 	/* something from same cacheline, but !FORCEWAKE_MT */
4414 	POSTING_READ(ECOBUS);
4415 	gen6_gt_check_fifodbg(dev_priv);
4416 }
4417 
4418 /*
4419  * see gen6_gt_force_wake_get()
4420  */
gen6_gt_force_wake_put(struct drm_i915_private * dev_priv)4421 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4422 {
4423 	unsigned long irqflags;
4424 
4425 	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4426 	if (--dev_priv->forcewake_count == 0)
4427 		dev_priv->gt.force_wake_put(dev_priv);
4428 	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4429 }
4430 
__gen6_gt_wait_for_fifo(struct drm_i915_private * dev_priv)4431 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4432 {
4433 	int ret = 0;
4434 
4435 	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4436 		int loop = 500;
4437 		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4438 		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4439 			udelay(10);
4440 			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4441 		}
4442 		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4443 			++ret;
4444 		dev_priv->gt_fifo_count = fifo;
4445 	}
4446 	dev_priv->gt_fifo_count--;
4447 
4448 	return ret;
4449 }
4450 
vlv_force_wake_reset(struct drm_i915_private * dev_priv)4451 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4452 {
4453 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4454 	/* something from same cacheline, but !FORCEWAKE_VLV */
4455 	POSTING_READ(FORCEWAKE_ACK_VLV);
4456 }
4457 
vlv_force_wake_get(struct drm_i915_private * dev_priv)4458 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4459 {
4460 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
4461 			    FORCEWAKE_ACK_TIMEOUT_MS))
4462 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4463 
4464 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4465 	I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4466 			   _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4467 
4468 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
4469 			    FORCEWAKE_ACK_TIMEOUT_MS))
4470 		DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
4471 
4472 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
4473 			     FORCEWAKE_KERNEL),
4474 			    FORCEWAKE_ACK_TIMEOUT_MS))
4475 		DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
4476 
4477 	__gen6_gt_wait_for_thread_c0(dev_priv);
4478 }
4479 
vlv_force_wake_put(struct drm_i915_private * dev_priv)4480 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4481 {
4482 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4483 	I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4484 			   _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4485 	/* The below doubles as a POSTING_READ */
4486 	gen6_gt_check_fifodbg(dev_priv);
4487 }
4488 
intel_gt_reset(struct drm_device * dev)4489 void intel_gt_reset(struct drm_device *dev)
4490 {
4491 	struct drm_i915_private *dev_priv = dev->dev_private;
4492 
4493 	if (IS_VALLEYVIEW(dev)) {
4494 		vlv_force_wake_reset(dev_priv);
4495 	} else if (INTEL_INFO(dev)->gen >= 6) {
4496 		__gen6_gt_force_wake_reset(dev_priv);
4497 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4498 			__gen6_gt_force_wake_mt_reset(dev_priv);
4499 	}
4500 }
4501 
intel_gt_init(struct drm_device * dev)4502 void intel_gt_init(struct drm_device *dev)
4503 {
4504 	struct drm_i915_private *dev_priv = dev->dev_private;
4505 
4506 	spin_lock_init(&dev_priv->gt_lock);
4507 
4508 	intel_gt_reset(dev);
4509 
4510 	if (IS_VALLEYVIEW(dev)) {
4511 		dev_priv->gt.force_wake_get = vlv_force_wake_get;
4512 		dev_priv->gt.force_wake_put = vlv_force_wake_put;
4513 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4514 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4515 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4516 	} else if (IS_GEN6(dev)) {
4517 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4518 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4519 	}
4520 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4521 			  intel_gen6_powersave_work);
4522 }
4523 
sandybridge_pcode_read(struct drm_i915_private * dev_priv,u8 mbox,u32 * val)4524 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4525 {
4526 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4527 
4528 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4529 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4530 		return -EAGAIN;
4531 	}
4532 
4533 	I915_WRITE(GEN6_PCODE_DATA, *val);
4534 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4535 
4536 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4537 		     500)) {
4538 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4539 		return -ETIMEDOUT;
4540 	}
4541 
4542 	*val = I915_READ(GEN6_PCODE_DATA);
4543 	I915_WRITE(GEN6_PCODE_DATA, 0);
4544 
4545 	return 0;
4546 }
4547 
sandybridge_pcode_write(struct drm_i915_private * dev_priv,u8 mbox,u32 val)4548 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4549 {
4550 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4551 
4552 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4553 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4554 		return -EAGAIN;
4555 	}
4556 
4557 	I915_WRITE(GEN6_PCODE_DATA, val);
4558 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4559 
4560 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4561 		     500)) {
4562 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4563 		return -ETIMEDOUT;
4564 	}
4565 
4566 	I915_WRITE(GEN6_PCODE_DATA, 0);
4567 
4568 	return 0;
4569 }
4570 
vlv_punit_rw(struct drm_i915_private * dev_priv,u8 opcode,u8 addr,u32 * val)4571 static int vlv_punit_rw(struct drm_i915_private *dev_priv, u8 opcode,
4572 			u8 addr, u32 *val)
4573 {
4574 	u32 cmd, devfn, port, be, bar;
4575 
4576 	bar = 0;
4577 	be = 0xf;
4578 	port = IOSF_PORT_PUNIT;
4579 	devfn = PCI_DEVFN(2, 0);
4580 
4581 	cmd = (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) |
4582 		(port << IOSF_PORT_SHIFT) | (be << IOSF_BYTE_ENABLES_SHIFT) |
4583 		(bar << IOSF_BAR_SHIFT);
4584 
4585 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4586 
4587 	if (I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) {
4588 		DRM_DEBUG_DRIVER("warning: pcode (%s) mailbox access failed\n",
4589 				 opcode == PUNIT_OPCODE_REG_READ ?
4590 				 "read" : "write");
4591 		return -EAGAIN;
4592 	}
4593 
4594 	I915_WRITE(VLV_IOSF_ADDR, addr);
4595 	if (opcode == PUNIT_OPCODE_REG_WRITE)
4596 		I915_WRITE(VLV_IOSF_DATA, *val);
4597 	I915_WRITE(VLV_IOSF_DOORBELL_REQ, cmd);
4598 
4599 	if (wait_for((I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) == 0,
4600 		     500)) {
4601 		DRM_ERROR("timeout waiting for pcode %s (%d) to finish\n",
4602 			  opcode == PUNIT_OPCODE_REG_READ ? "read" : "write",
4603 			  addr);
4604 		return -ETIMEDOUT;
4605 	}
4606 
4607 	if (opcode == PUNIT_OPCODE_REG_READ)
4608 		*val = I915_READ(VLV_IOSF_DATA);
4609 	I915_WRITE(VLV_IOSF_DATA, 0);
4610 
4611 	return 0;
4612 }
4613 
valleyview_punit_read(struct drm_i915_private * dev_priv,u8 addr,u32 * val)4614 int valleyview_punit_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
4615 {
4616 	return vlv_punit_rw(dev_priv, PUNIT_OPCODE_REG_READ, addr, val);
4617 }
4618 
valleyview_punit_write(struct drm_i915_private * dev_priv,u8 addr,u32 val)4619 int valleyview_punit_write(struct drm_i915_private *dev_priv, u8 addr, u32 val)
4620 {
4621 	return vlv_punit_rw(dev_priv, PUNIT_OPCODE_REG_WRITE, addr, &val);
4622 }
4623