• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
sock_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
sock_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
sock_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /**
108  *	skb_panic - private function for out-of-line support
109  *	@skb:	buffer
110  *	@sz:	size
111  *	@addr:	address
112  *	@msg:	skb_over_panic or skb_under_panic
113  *
114  *	Out-of-line support for skb_put() and skb_push().
115  *	Called via the wrapper skb_over_panic() or skb_under_panic().
116  *	Keep out of line to prevent kernel bloat.
117  *	__builtin_return_address is not used because it is not always reliable.
118  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
120 		      const char msg[])
121 {
122 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 		 msg, addr, skb->len, sz, skb->head, skb->data,
124 		 (unsigned long)skb->tail, (unsigned long)skb->end,
125 		 skb->dev ? skb->dev->name : "<NULL>");
126 	BUG();
127 }
128 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 	skb_panic(skb, sz, addr, __func__);
132 }
133 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
135 {
136 	skb_panic(skb, sz, addr, __func__);
137 }
138 
139 /*
140  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141  * the caller if emergency pfmemalloc reserves are being used. If it is and
142  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143  * may be used. Otherwise, the packet data may be discarded until enough
144  * memory is free
145  */
146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
148 
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 			       unsigned long ip, bool *pfmemalloc)
151 {
152 	void *obj;
153 	bool ret_pfmemalloc = false;
154 
155 	/*
156 	 * Try a regular allocation, when that fails and we're not entitled
157 	 * to the reserves, fail.
158 	 */
159 	obj = kmalloc_node_track_caller(size,
160 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 					node);
162 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 		goto out;
164 
165 	/* Try again but now we are using pfmemalloc reserves */
166 	ret_pfmemalloc = true;
167 	obj = kmalloc_node_track_caller(size, flags, node);
168 
169 out:
170 	if (pfmemalloc)
171 		*pfmemalloc = ret_pfmemalloc;
172 
173 	return obj;
174 }
175 
176 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
177  *	'private' fields and also do memory statistics to find all the
178  *	[BEEP] leaks.
179  *
180  */
181 
__alloc_skb_head(gfp_t gfp_mask,int node)182 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
183 {
184 	struct sk_buff *skb;
185 
186 	/* Get the HEAD */
187 	skb = kmem_cache_alloc_node(skbuff_head_cache,
188 				    gfp_mask & ~__GFP_DMA, node);
189 	if (!skb)
190 		goto out;
191 
192 	/*
193 	 * Only clear those fields we need to clear, not those that we will
194 	 * actually initialise below. Hence, don't put any more fields after
195 	 * the tail pointer in struct sk_buff!
196 	 */
197 	memset(skb, 0, offsetof(struct sk_buff, tail));
198 	skb->head = NULL;
199 	skb->truesize = sizeof(struct sk_buff);
200 	atomic_set(&skb->users, 1);
201 
202 #ifdef NET_SKBUFF_DATA_USES_OFFSET
203 	skb->mac_header = ~0U;
204 #endif
205 out:
206 	return skb;
207 }
208 
209 /**
210  *	__alloc_skb	-	allocate a network buffer
211  *	@size: size to allocate
212  *	@gfp_mask: allocation mask
213  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
214  *		instead of head cache and allocate a cloned (child) skb.
215  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
216  *		allocations in case the data is required for writeback
217  *	@node: numa node to allocate memory on
218  *
219  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
220  *	tail room of at least size bytes. The object has a reference count
221  *	of one. The return is the buffer. On a failure the return is %NULL.
222  *
223  *	Buffers may only be allocated from interrupts using a @gfp_mask of
224  *	%GFP_ATOMIC.
225  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)226 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
227 			    int flags, int node)
228 {
229 	struct kmem_cache *cache;
230 	struct skb_shared_info *shinfo;
231 	struct sk_buff *skb;
232 	u8 *data;
233 	bool pfmemalloc;
234 
235 	cache = (flags & SKB_ALLOC_FCLONE)
236 		? skbuff_fclone_cache : skbuff_head_cache;
237 
238 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
239 		gfp_mask |= __GFP_MEMALLOC;
240 
241 	/* Get the HEAD */
242 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
243 	if (!skb)
244 		goto out;
245 	prefetchw(skb);
246 
247 	/* We do our best to align skb_shared_info on a separate cache
248 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
249 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
250 	 * Both skb->head and skb_shared_info are cache line aligned.
251 	 */
252 	size = SKB_DATA_ALIGN(size);
253 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
254 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
255 	if (!data)
256 		goto nodata;
257 	/* kmalloc(size) might give us more room than requested.
258 	 * Put skb_shared_info exactly at the end of allocated zone,
259 	 * to allow max possible filling before reallocation.
260 	 */
261 	size = SKB_WITH_OVERHEAD(ksize(data));
262 	prefetchw(data + size);
263 
264 	/*
265 	 * Only clear those fields we need to clear, not those that we will
266 	 * actually initialise below. Hence, don't put any more fields after
267 	 * the tail pointer in struct sk_buff!
268 	 */
269 	memset(skb, 0, offsetof(struct sk_buff, tail));
270 	/* Account for allocated memory : skb + skb->head */
271 	skb->truesize = SKB_TRUESIZE(size);
272 	skb->pfmemalloc = pfmemalloc;
273 	atomic_set(&skb->users, 1);
274 	skb->head = data;
275 	skb->data = data;
276 	skb_reset_tail_pointer(skb);
277 	skb->end = skb->tail + size;
278 #ifdef NET_SKBUFF_DATA_USES_OFFSET
279 	skb->mac_header = ~0U;
280 	skb->transport_header = ~0U;
281 #endif
282 
283 	/* make sure we initialize shinfo sequentially */
284 	shinfo = skb_shinfo(skb);
285 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 	atomic_set(&shinfo->dataref, 1);
287 	kmemcheck_annotate_variable(shinfo->destructor_arg);
288 
289 	if (flags & SKB_ALLOC_FCLONE) {
290 		struct sk_buff *child = skb + 1;
291 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
292 
293 		kmemcheck_annotate_bitfield(child, flags1);
294 		kmemcheck_annotate_bitfield(child, flags2);
295 		skb->fclone = SKB_FCLONE_ORIG;
296 		atomic_set(fclone_ref, 1);
297 
298 		child->fclone = SKB_FCLONE_UNAVAILABLE;
299 		child->pfmemalloc = pfmemalloc;
300 	}
301 out:
302 	return skb;
303 nodata:
304 	kmem_cache_free(cache, skb);
305 	skb = NULL;
306 	goto out;
307 }
308 EXPORT_SYMBOL(__alloc_skb);
309 
310 /**
311  * build_skb - build a network buffer
312  * @data: data buffer provided by caller
313  * @frag_size: size of fragment, or 0 if head was kmalloced
314  *
315  * Allocate a new &sk_buff. Caller provides space holding head and
316  * skb_shared_info. @data must have been allocated by kmalloc()
317  * The return is the new skb buffer.
318  * On a failure the return is %NULL, and @data is not freed.
319  * Notes :
320  *  Before IO, driver allocates only data buffer where NIC put incoming frame
321  *  Driver should add room at head (NET_SKB_PAD) and
322  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
323  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
324  *  before giving packet to stack.
325  *  RX rings only contains data buffers, not full skbs.
326  */
build_skb(void * data,unsigned int frag_size)327 struct sk_buff *build_skb(void *data, unsigned int frag_size)
328 {
329 	struct skb_shared_info *shinfo;
330 	struct sk_buff *skb;
331 	unsigned int size = frag_size ? : ksize(data);
332 
333 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
334 	if (!skb)
335 		return NULL;
336 
337 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
338 
339 	memset(skb, 0, offsetof(struct sk_buff, tail));
340 	skb->truesize = SKB_TRUESIZE(size);
341 	skb->head_frag = frag_size != 0;
342 	atomic_set(&skb->users, 1);
343 	skb->head = data;
344 	skb->data = data;
345 	skb_reset_tail_pointer(skb);
346 	skb->end = skb->tail + size;
347 #ifdef NET_SKBUFF_DATA_USES_OFFSET
348 	skb->mac_header = ~0U;
349 	skb->transport_header = ~0U;
350 #endif
351 
352 	/* make sure we initialize shinfo sequentially */
353 	shinfo = skb_shinfo(skb);
354 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
355 	atomic_set(&shinfo->dataref, 1);
356 	kmemcheck_annotate_variable(shinfo->destructor_arg);
357 
358 	return skb;
359 }
360 EXPORT_SYMBOL(build_skb);
361 
362 struct netdev_alloc_cache {
363 	struct page_frag	frag;
364 	/* we maintain a pagecount bias, so that we dont dirty cache line
365 	 * containing page->_count every time we allocate a fragment.
366 	 */
367 	unsigned int		pagecnt_bias;
368 };
369 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
370 
__netdev_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)371 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
372 {
373 	struct netdev_alloc_cache *nc;
374 	void *data = NULL;
375 	int order;
376 	unsigned long flags;
377 
378 	local_irq_save(flags);
379 	nc = &__get_cpu_var(netdev_alloc_cache);
380 	if (unlikely(!nc->frag.page)) {
381 refill:
382 		for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
383 			gfp_t gfp = gfp_mask;
384 
385 			if (order)
386 				gfp |= __GFP_COMP | __GFP_NOWARN;
387 			nc->frag.page = alloc_pages(gfp, order);
388 			if (likely(nc->frag.page))
389 				break;
390 			if (--order < 0)
391 				goto end;
392 		}
393 		nc->frag.size = PAGE_SIZE << order;
394 recycle:
395 		atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
396 		nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
397 		nc->frag.offset = 0;
398 	}
399 
400 	if (nc->frag.offset + fragsz > nc->frag.size) {
401 		/* avoid unnecessary locked operations if possible */
402 		if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
403 		    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
404 			goto recycle;
405 		goto refill;
406 	}
407 
408 	data = page_address(nc->frag.page) + nc->frag.offset;
409 	nc->frag.offset += fragsz;
410 	nc->pagecnt_bias--;
411 end:
412 	local_irq_restore(flags);
413 	return data;
414 }
415 
416 /**
417  * netdev_alloc_frag - allocate a page fragment
418  * @fragsz: fragment size
419  *
420  * Allocates a frag from a page for receive buffer.
421  * Uses GFP_ATOMIC allocations.
422  */
netdev_alloc_frag(unsigned int fragsz)423 void *netdev_alloc_frag(unsigned int fragsz)
424 {
425 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
426 }
427 EXPORT_SYMBOL(netdev_alloc_frag);
428 
429 /**
430  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
431  *	@dev: network device to receive on
432  *	@length: length to allocate
433  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
434  *
435  *	Allocate a new &sk_buff and assign it a usage count of one. The
436  *	buffer has unspecified headroom built in. Users should allocate
437  *	the headroom they think they need without accounting for the
438  *	built in space. The built in space is used for optimisations.
439  *
440  *	%NULL is returned if there is no free memory.
441  */
__netdev_alloc_skb(struct net_device * dev,unsigned int length,gfp_t gfp_mask)442 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
443 				   unsigned int length, gfp_t gfp_mask)
444 {
445 	struct sk_buff *skb = NULL;
446 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
447 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
448 
449 	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
450 		void *data;
451 
452 		if (sk_memalloc_socks())
453 			gfp_mask |= __GFP_MEMALLOC;
454 
455 		data = __netdev_alloc_frag(fragsz, gfp_mask);
456 
457 		if (likely(data)) {
458 			skb = build_skb(data, fragsz);
459 			if (unlikely(!skb))
460 				put_page(virt_to_head_page(data));
461 		}
462 	} else {
463 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
464 				  SKB_ALLOC_RX, NUMA_NO_NODE);
465 	}
466 	if (likely(skb)) {
467 		skb_reserve(skb, NET_SKB_PAD);
468 		skb->dev = dev;
469 	}
470 	return skb;
471 }
472 EXPORT_SYMBOL(__netdev_alloc_skb);
473 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)474 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
475 		     int size, unsigned int truesize)
476 {
477 	skb_fill_page_desc(skb, i, page, off, size);
478 	skb->len += size;
479 	skb->data_len += size;
480 	skb->truesize += truesize;
481 }
482 EXPORT_SYMBOL(skb_add_rx_frag);
483 
skb_drop_list(struct sk_buff ** listp)484 static void skb_drop_list(struct sk_buff **listp)
485 {
486 	kfree_skb_list(*listp);
487 	*listp = NULL;
488 }
489 
skb_drop_fraglist(struct sk_buff * skb)490 static inline void skb_drop_fraglist(struct sk_buff *skb)
491 {
492 	skb_drop_list(&skb_shinfo(skb)->frag_list);
493 }
494 
skb_clone_fraglist(struct sk_buff * skb)495 static void skb_clone_fraglist(struct sk_buff *skb)
496 {
497 	struct sk_buff *list;
498 
499 	skb_walk_frags(skb, list)
500 		skb_get(list);
501 }
502 
skb_free_head(struct sk_buff * skb)503 static void skb_free_head(struct sk_buff *skb)
504 {
505 	if (skb->head_frag)
506 		put_page(virt_to_head_page(skb->head));
507 	else
508 		kfree(skb->head);
509 }
510 
skb_release_data(struct sk_buff * skb)511 static void skb_release_data(struct sk_buff *skb)
512 {
513 	if (!skb->cloned ||
514 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
515 			       &skb_shinfo(skb)->dataref)) {
516 		if (skb_shinfo(skb)->nr_frags) {
517 			int i;
518 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
519 				skb_frag_unref(skb, i);
520 		}
521 
522 		/*
523 		 * If skb buf is from userspace, we need to notify the caller
524 		 * the lower device DMA has done;
525 		 */
526 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
527 			struct ubuf_info *uarg;
528 
529 			uarg = skb_shinfo(skb)->destructor_arg;
530 			if (uarg->callback)
531 				uarg->callback(uarg, true);
532 		}
533 
534 		if (skb_has_frag_list(skb))
535 			skb_drop_fraglist(skb);
536 
537 		skb_free_head(skb);
538 	}
539 }
540 
541 /*
542  *	Free an skbuff by memory without cleaning the state.
543  */
kfree_skbmem(struct sk_buff * skb)544 static void kfree_skbmem(struct sk_buff *skb)
545 {
546 	struct sk_buff *other;
547 	atomic_t *fclone_ref;
548 
549 	switch (skb->fclone) {
550 	case SKB_FCLONE_UNAVAILABLE:
551 		kmem_cache_free(skbuff_head_cache, skb);
552 		break;
553 
554 	case SKB_FCLONE_ORIG:
555 		fclone_ref = (atomic_t *) (skb + 2);
556 		if (atomic_dec_and_test(fclone_ref))
557 			kmem_cache_free(skbuff_fclone_cache, skb);
558 		break;
559 
560 	case SKB_FCLONE_CLONE:
561 		fclone_ref = (atomic_t *) (skb + 1);
562 		other = skb - 1;
563 
564 		/* The clone portion is available for
565 		 * fast-cloning again.
566 		 */
567 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
568 
569 		if (atomic_dec_and_test(fclone_ref))
570 			kmem_cache_free(skbuff_fclone_cache, other);
571 		break;
572 	}
573 }
574 
skb_release_head_state(struct sk_buff * skb)575 static void skb_release_head_state(struct sk_buff *skb)
576 {
577 	skb_dst_drop(skb);
578 #ifdef CONFIG_XFRM
579 	secpath_put(skb->sp);
580 #endif
581 	if (skb->destructor) {
582 		WARN_ON(in_irq());
583 		skb->destructor(skb);
584 	}
585 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
586 	nf_conntrack_put(skb->nfct);
587 #endif
588 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
589 	nf_conntrack_put_reasm(skb->nfct_reasm);
590 #endif
591 #ifdef CONFIG_BRIDGE_NETFILTER
592 	nf_bridge_put(skb->nf_bridge);
593 #endif
594 /* XXX: IS this still necessary? - JHS */
595 #ifdef CONFIG_NET_SCHED
596 	skb->tc_index = 0;
597 #ifdef CONFIG_NET_CLS_ACT
598 	skb->tc_verd = 0;
599 #endif
600 #endif
601 }
602 
603 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)604 static void skb_release_all(struct sk_buff *skb)
605 {
606 	skb_release_head_state(skb);
607 	if (likely(skb->head))
608 		skb_release_data(skb);
609 }
610 
611 /**
612  *	__kfree_skb - private function
613  *	@skb: buffer
614  *
615  *	Free an sk_buff. Release anything attached to the buffer.
616  *	Clean the state. This is an internal helper function. Users should
617  *	always call kfree_skb
618  */
619 
__kfree_skb(struct sk_buff * skb)620 void __kfree_skb(struct sk_buff *skb)
621 {
622 	skb_release_all(skb);
623 	kfree_skbmem(skb);
624 }
625 EXPORT_SYMBOL(__kfree_skb);
626 
627 /**
628  *	kfree_skb - free an sk_buff
629  *	@skb: buffer to free
630  *
631  *	Drop a reference to the buffer and free it if the usage count has
632  *	hit zero.
633  */
kfree_skb(struct sk_buff * skb)634 void kfree_skb(struct sk_buff *skb)
635 {
636 	if (unlikely(!skb))
637 		return;
638 	if (likely(atomic_read(&skb->users) == 1))
639 		smp_rmb();
640 	else if (likely(!atomic_dec_and_test(&skb->users)))
641 		return;
642 	trace_kfree_skb(skb, __builtin_return_address(0));
643 	__kfree_skb(skb);
644 }
645 EXPORT_SYMBOL(kfree_skb);
646 
kfree_skb_list(struct sk_buff * segs)647 void kfree_skb_list(struct sk_buff *segs)
648 {
649 	while (segs) {
650 		struct sk_buff *next = segs->next;
651 
652 		kfree_skb(segs);
653 		segs = next;
654 	}
655 }
656 EXPORT_SYMBOL(kfree_skb_list);
657 
658 /**
659  *	skb_tx_error - report an sk_buff xmit error
660  *	@skb: buffer that triggered an error
661  *
662  *	Report xmit error if a device callback is tracking this skb.
663  *	skb must be freed afterwards.
664  */
skb_tx_error(struct sk_buff * skb)665 void skb_tx_error(struct sk_buff *skb)
666 {
667 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
668 		struct ubuf_info *uarg;
669 
670 		uarg = skb_shinfo(skb)->destructor_arg;
671 		if (uarg->callback)
672 			uarg->callback(uarg, false);
673 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
674 	}
675 }
676 EXPORT_SYMBOL(skb_tx_error);
677 
678 /**
679  *	consume_skb - free an skbuff
680  *	@skb: buffer to free
681  *
682  *	Drop a ref to the buffer and free it if the usage count has hit zero
683  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
684  *	is being dropped after a failure and notes that
685  */
consume_skb(struct sk_buff * skb)686 void consume_skb(struct sk_buff *skb)
687 {
688 	if (unlikely(!skb))
689 		return;
690 	if (likely(atomic_read(&skb->users) == 1))
691 		smp_rmb();
692 	else if (likely(!atomic_dec_and_test(&skb->users)))
693 		return;
694 	trace_consume_skb(skb);
695 	__kfree_skb(skb);
696 }
697 EXPORT_SYMBOL(consume_skb);
698 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)699 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
700 {
701 	new->tstamp		= old->tstamp;
702 	new->dev		= old->dev;
703 	new->transport_header	= old->transport_header;
704 	new->network_header	= old->network_header;
705 	new->mac_header		= old->mac_header;
706 	new->inner_transport_header = old->inner_transport_header;
707 	new->inner_network_header = old->inner_network_header;
708 	new->inner_mac_header = old->inner_mac_header;
709 	skb_dst_copy(new, old);
710 	new->rxhash		= old->rxhash;
711 	new->ooo_okay		= old->ooo_okay;
712 	new->l4_rxhash		= old->l4_rxhash;
713 	new->no_fcs		= old->no_fcs;
714 	new->encapsulation	= old->encapsulation;
715 #ifdef CONFIG_XFRM
716 	new->sp			= secpath_get(old->sp);
717 #endif
718 	memcpy(new->cb, old->cb, sizeof(old->cb));
719 	new->csum		= old->csum;
720 	new->local_df		= old->local_df;
721 	new->pkt_type		= old->pkt_type;
722 	new->ip_summed		= old->ip_summed;
723 	skb_copy_queue_mapping(new, old);
724 	new->priority		= old->priority;
725 #if IS_ENABLED(CONFIG_IP_VS)
726 	new->ipvs_property	= old->ipvs_property;
727 #endif
728 	new->pfmemalloc		= old->pfmemalloc;
729 	new->protocol		= old->protocol;
730 	new->mark		= old->mark;
731 	new->skb_iif		= old->skb_iif;
732 	__nf_copy(new, old);
733 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
734 	new->nf_trace		= old->nf_trace;
735 #endif
736 #ifdef CONFIG_NET_SCHED
737 	new->tc_index		= old->tc_index;
738 #ifdef CONFIG_NET_CLS_ACT
739 	new->tc_verd		= old->tc_verd;
740 #endif
741 #endif
742 	new->vlan_proto		= old->vlan_proto;
743 	new->vlan_tci		= old->vlan_tci;
744 
745 	skb_copy_secmark(new, old);
746 }
747 
748 /*
749  * You should not add any new code to this function.  Add it to
750  * __copy_skb_header above instead.
751  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)752 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
753 {
754 #define C(x) n->x = skb->x
755 
756 	n->next = n->prev = NULL;
757 	n->sk = NULL;
758 	__copy_skb_header(n, skb);
759 
760 	C(len);
761 	C(data_len);
762 	C(mac_len);
763 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
764 	n->cloned = 1;
765 	n->nohdr = 0;
766 	n->destructor = NULL;
767 	C(tail);
768 	C(end);
769 	C(head);
770 	C(head_frag);
771 	C(data);
772 	C(truesize);
773 	atomic_set(&n->users, 1);
774 
775 	atomic_inc(&(skb_shinfo(skb)->dataref));
776 	skb->cloned = 1;
777 
778 	return n;
779 #undef C
780 }
781 
782 /**
783  *	skb_morph	-	morph one skb into another
784  *	@dst: the skb to receive the contents
785  *	@src: the skb to supply the contents
786  *
787  *	This is identical to skb_clone except that the target skb is
788  *	supplied by the user.
789  *
790  *	The target skb is returned upon exit.
791  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)792 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
793 {
794 	skb_release_all(dst);
795 	return __skb_clone(dst, src);
796 }
797 EXPORT_SYMBOL_GPL(skb_morph);
798 
799 /**
800  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
801  *	@skb: the skb to modify
802  *	@gfp_mask: allocation priority
803  *
804  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
805  *	It will copy all frags into kernel and drop the reference
806  *	to userspace pages.
807  *
808  *	If this function is called from an interrupt gfp_mask() must be
809  *	%GFP_ATOMIC.
810  *
811  *	Returns 0 on success or a negative error code on failure
812  *	to allocate kernel memory to copy to.
813  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)814 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
815 {
816 	int i;
817 	int num_frags = skb_shinfo(skb)->nr_frags;
818 	struct page *page, *head = NULL;
819 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
820 
821 	for (i = 0; i < num_frags; i++) {
822 		u8 *vaddr;
823 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
824 
825 		page = alloc_page(gfp_mask);
826 		if (!page) {
827 			while (head) {
828 				struct page *next = (struct page *)head->private;
829 				put_page(head);
830 				head = next;
831 			}
832 			return -ENOMEM;
833 		}
834 		vaddr = kmap_atomic(skb_frag_page(f));
835 		memcpy(page_address(page),
836 		       vaddr + f->page_offset, skb_frag_size(f));
837 		kunmap_atomic(vaddr);
838 		page->private = (unsigned long)head;
839 		head = page;
840 	}
841 
842 	/* skb frags release userspace buffers */
843 	for (i = 0; i < num_frags; i++)
844 		skb_frag_unref(skb, i);
845 
846 	uarg->callback(uarg, false);
847 
848 	/* skb frags point to kernel buffers */
849 	for (i = num_frags - 1; i >= 0; i--) {
850 		__skb_fill_page_desc(skb, i, head, 0,
851 				     skb_shinfo(skb)->frags[i].size);
852 		head = (struct page *)head->private;
853 	}
854 
855 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
856 	return 0;
857 }
858 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
859 
860 /**
861  *	skb_clone	-	duplicate an sk_buff
862  *	@skb: buffer to clone
863  *	@gfp_mask: allocation priority
864  *
865  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
866  *	copies share the same packet data but not structure. The new
867  *	buffer has a reference count of 1. If the allocation fails the
868  *	function returns %NULL otherwise the new buffer is returned.
869  *
870  *	If this function is called from an interrupt gfp_mask() must be
871  *	%GFP_ATOMIC.
872  */
873 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)874 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
875 {
876 	struct sk_buff *n;
877 
878 	if (skb_orphan_frags(skb, gfp_mask))
879 		return NULL;
880 
881 	n = skb + 1;
882 	if (skb->fclone == SKB_FCLONE_ORIG &&
883 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
884 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
885 		n->fclone = SKB_FCLONE_CLONE;
886 		atomic_inc(fclone_ref);
887 	} else {
888 		if (skb_pfmemalloc(skb))
889 			gfp_mask |= __GFP_MEMALLOC;
890 
891 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
892 		if (!n)
893 			return NULL;
894 
895 		kmemcheck_annotate_bitfield(n, flags1);
896 		kmemcheck_annotate_bitfield(n, flags2);
897 		n->fclone = SKB_FCLONE_UNAVAILABLE;
898 	}
899 
900 	return __skb_clone(n, skb);
901 }
902 EXPORT_SYMBOL(skb_clone);
903 
skb_headers_offset_update(struct sk_buff * skb,int off)904 static void skb_headers_offset_update(struct sk_buff *skb, int off)
905 {
906 	/* {transport,network,mac}_header and tail are relative to skb->head */
907 	skb->transport_header += off;
908 	skb->network_header   += off;
909 	if (skb_mac_header_was_set(skb))
910 		skb->mac_header += off;
911 	skb->inner_transport_header += off;
912 	skb->inner_network_header += off;
913 	skb->inner_mac_header += off;
914 }
915 
copy_skb_header(struct sk_buff * new,const struct sk_buff * old)916 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
917 {
918 #ifndef NET_SKBUFF_DATA_USES_OFFSET
919 	/*
920 	 *	Shift between the two data areas in bytes
921 	 */
922 	unsigned long offset = new->data - old->data;
923 #endif
924 
925 	__copy_skb_header(new, old);
926 
927 #ifndef NET_SKBUFF_DATA_USES_OFFSET
928 	skb_headers_offset_update(new, offset);
929 #endif
930 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
931 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
932 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
933 }
934 
skb_alloc_rx_flag(const struct sk_buff * skb)935 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
936 {
937 	if (skb_pfmemalloc(skb))
938 		return SKB_ALLOC_RX;
939 	return 0;
940 }
941 
942 /**
943  *	skb_copy	-	create private copy of an sk_buff
944  *	@skb: buffer to copy
945  *	@gfp_mask: allocation priority
946  *
947  *	Make a copy of both an &sk_buff and its data. This is used when the
948  *	caller wishes to modify the data and needs a private copy of the
949  *	data to alter. Returns %NULL on failure or the pointer to the buffer
950  *	on success. The returned buffer has a reference count of 1.
951  *
952  *	As by-product this function converts non-linear &sk_buff to linear
953  *	one, so that &sk_buff becomes completely private and caller is allowed
954  *	to modify all the data of returned buffer. This means that this
955  *	function is not recommended for use in circumstances when only
956  *	header is going to be modified. Use pskb_copy() instead.
957  */
958 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)959 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
960 {
961 	int headerlen = skb_headroom(skb);
962 	unsigned int size = skb_end_offset(skb) + skb->data_len;
963 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
964 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
965 
966 	if (!n)
967 		return NULL;
968 
969 	/* Set the data pointer */
970 	skb_reserve(n, headerlen);
971 	/* Set the tail pointer and length */
972 	skb_put(n, skb->len);
973 
974 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
975 		BUG();
976 
977 	copy_skb_header(n, skb);
978 	return n;
979 }
980 EXPORT_SYMBOL(skb_copy);
981 
982 /**
983  *	__pskb_copy	-	create copy of an sk_buff with private head.
984  *	@skb: buffer to copy
985  *	@headroom: headroom of new skb
986  *	@gfp_mask: allocation priority
987  *
988  *	Make a copy of both an &sk_buff and part of its data, located
989  *	in header. Fragmented data remain shared. This is used when
990  *	the caller wishes to modify only header of &sk_buff and needs
991  *	private copy of the header to alter. Returns %NULL on failure
992  *	or the pointer to the buffer on success.
993  *	The returned buffer has a reference count of 1.
994  */
995 
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)996 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
997 {
998 	unsigned int size = skb_headlen(skb) + headroom;
999 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1000 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1001 
1002 	if (!n)
1003 		goto out;
1004 
1005 	/* Set the data pointer */
1006 	skb_reserve(n, headroom);
1007 	/* Set the tail pointer and length */
1008 	skb_put(n, skb_headlen(skb));
1009 	/* Copy the bytes */
1010 	skb_copy_from_linear_data(skb, n->data, n->len);
1011 
1012 	n->truesize += skb->data_len;
1013 	n->data_len  = skb->data_len;
1014 	n->len	     = skb->len;
1015 
1016 	if (skb_shinfo(skb)->nr_frags) {
1017 		int i;
1018 
1019 		if (skb_orphan_frags(skb, gfp_mask)) {
1020 			kfree_skb(n);
1021 			n = NULL;
1022 			goto out;
1023 		}
1024 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1025 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1026 			skb_frag_ref(skb, i);
1027 		}
1028 		skb_shinfo(n)->nr_frags = i;
1029 	}
1030 
1031 	if (skb_has_frag_list(skb)) {
1032 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1033 		skb_clone_fraglist(n);
1034 	}
1035 
1036 	copy_skb_header(n, skb);
1037 out:
1038 	return n;
1039 }
1040 EXPORT_SYMBOL(__pskb_copy);
1041 
1042 /**
1043  *	pskb_expand_head - reallocate header of &sk_buff
1044  *	@skb: buffer to reallocate
1045  *	@nhead: room to add at head
1046  *	@ntail: room to add at tail
1047  *	@gfp_mask: allocation priority
1048  *
1049  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
1050  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1051  *	reference count of 1. Returns zero in the case of success or error,
1052  *	if expansion failed. In the last case, &sk_buff is not changed.
1053  *
1054  *	All the pointers pointing into skb header may change and must be
1055  *	reloaded after call to this function.
1056  */
1057 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1058 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1059 		     gfp_t gfp_mask)
1060 {
1061 	int i;
1062 	u8 *data;
1063 	int size = nhead + skb_end_offset(skb) + ntail;
1064 	long off;
1065 
1066 	BUG_ON(nhead < 0);
1067 
1068 	if (skb_shared(skb))
1069 		BUG();
1070 
1071 	size = SKB_DATA_ALIGN(size);
1072 
1073 	if (skb_pfmemalloc(skb))
1074 		gfp_mask |= __GFP_MEMALLOC;
1075 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1076 			       gfp_mask, NUMA_NO_NODE, NULL);
1077 	if (!data)
1078 		goto nodata;
1079 	size = SKB_WITH_OVERHEAD(ksize(data));
1080 
1081 	/* Copy only real data... and, alas, header. This should be
1082 	 * optimized for the cases when header is void.
1083 	 */
1084 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1085 
1086 	memcpy((struct skb_shared_info *)(data + size),
1087 	       skb_shinfo(skb),
1088 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1089 
1090 	/*
1091 	 * if shinfo is shared we must drop the old head gracefully, but if it
1092 	 * is not we can just drop the old head and let the existing refcount
1093 	 * be since all we did is relocate the values
1094 	 */
1095 	if (skb_cloned(skb)) {
1096 		/* copy this zero copy skb frags */
1097 		if (skb_orphan_frags(skb, gfp_mask))
1098 			goto nofrags;
1099 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1100 			skb_frag_ref(skb, i);
1101 
1102 		if (skb_has_frag_list(skb))
1103 			skb_clone_fraglist(skb);
1104 
1105 		skb_release_data(skb);
1106 	} else {
1107 		skb_free_head(skb);
1108 	}
1109 	off = (data + nhead) - skb->head;
1110 
1111 	skb->head     = data;
1112 	skb->head_frag = 0;
1113 	skb->data    += off;
1114 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1115 	skb->end      = size;
1116 	off           = nhead;
1117 #else
1118 	skb->end      = skb->head + size;
1119 #endif
1120 	skb->tail	      += off;
1121 	skb_headers_offset_update(skb, off);
1122 	/* Only adjust this if it actually is csum_start rather than csum */
1123 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1124 		skb->csum_start += nhead;
1125 	skb->cloned   = 0;
1126 	skb->hdr_len  = 0;
1127 	skb->nohdr    = 0;
1128 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1129 	return 0;
1130 
1131 nofrags:
1132 	kfree(data);
1133 nodata:
1134 	return -ENOMEM;
1135 }
1136 EXPORT_SYMBOL(pskb_expand_head);
1137 
1138 /* Make private copy of skb with writable head and some headroom */
1139 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1140 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1141 {
1142 	struct sk_buff *skb2;
1143 	int delta = headroom - skb_headroom(skb);
1144 
1145 	if (delta <= 0)
1146 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1147 	else {
1148 		skb2 = skb_clone(skb, GFP_ATOMIC);
1149 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1150 					     GFP_ATOMIC)) {
1151 			kfree_skb(skb2);
1152 			skb2 = NULL;
1153 		}
1154 	}
1155 	return skb2;
1156 }
1157 EXPORT_SYMBOL(skb_realloc_headroom);
1158 
1159 /**
1160  *	skb_copy_expand	-	copy and expand sk_buff
1161  *	@skb: buffer to copy
1162  *	@newheadroom: new free bytes at head
1163  *	@newtailroom: new free bytes at tail
1164  *	@gfp_mask: allocation priority
1165  *
1166  *	Make a copy of both an &sk_buff and its data and while doing so
1167  *	allocate additional space.
1168  *
1169  *	This is used when the caller wishes to modify the data and needs a
1170  *	private copy of the data to alter as well as more space for new fields.
1171  *	Returns %NULL on failure or the pointer to the buffer
1172  *	on success. The returned buffer has a reference count of 1.
1173  *
1174  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1175  *	is called from an interrupt.
1176  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1177 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1178 				int newheadroom, int newtailroom,
1179 				gfp_t gfp_mask)
1180 {
1181 	/*
1182 	 *	Allocate the copy buffer
1183 	 */
1184 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1185 					gfp_mask, skb_alloc_rx_flag(skb),
1186 					NUMA_NO_NODE);
1187 	int oldheadroom = skb_headroom(skb);
1188 	int head_copy_len, head_copy_off;
1189 	int off;
1190 
1191 	if (!n)
1192 		return NULL;
1193 
1194 	skb_reserve(n, newheadroom);
1195 
1196 	/* Set the tail pointer and length */
1197 	skb_put(n, skb->len);
1198 
1199 	head_copy_len = oldheadroom;
1200 	head_copy_off = 0;
1201 	if (newheadroom <= head_copy_len)
1202 		head_copy_len = newheadroom;
1203 	else
1204 		head_copy_off = newheadroom - head_copy_len;
1205 
1206 	/* Copy the linear header and data. */
1207 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1208 			  skb->len + head_copy_len))
1209 		BUG();
1210 
1211 	copy_skb_header(n, skb);
1212 
1213 	off                  = newheadroom - oldheadroom;
1214 	if (n->ip_summed == CHECKSUM_PARTIAL)
1215 		n->csum_start += off;
1216 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1217 	skb_headers_offset_update(n, off);
1218 #endif
1219 
1220 	return n;
1221 }
1222 EXPORT_SYMBOL(skb_copy_expand);
1223 
1224 /**
1225  *	skb_pad			-	zero pad the tail of an skb
1226  *	@skb: buffer to pad
1227  *	@pad: space to pad
1228  *
1229  *	Ensure that a buffer is followed by a padding area that is zero
1230  *	filled. Used by network drivers which may DMA or transfer data
1231  *	beyond the buffer end onto the wire.
1232  *
1233  *	May return error in out of memory cases. The skb is freed on error.
1234  */
1235 
skb_pad(struct sk_buff * skb,int pad)1236 int skb_pad(struct sk_buff *skb, int pad)
1237 {
1238 	int err;
1239 	int ntail;
1240 
1241 	/* If the skbuff is non linear tailroom is always zero.. */
1242 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1243 		memset(skb->data+skb->len, 0, pad);
1244 		return 0;
1245 	}
1246 
1247 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1248 	if (likely(skb_cloned(skb) || ntail > 0)) {
1249 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1250 		if (unlikely(err))
1251 			goto free_skb;
1252 	}
1253 
1254 	/* FIXME: The use of this function with non-linear skb's really needs
1255 	 * to be audited.
1256 	 */
1257 	err = skb_linearize(skb);
1258 	if (unlikely(err))
1259 		goto free_skb;
1260 
1261 	memset(skb->data + skb->len, 0, pad);
1262 	return 0;
1263 
1264 free_skb:
1265 	kfree_skb(skb);
1266 	return err;
1267 }
1268 EXPORT_SYMBOL(skb_pad);
1269 
1270 /**
1271  *	skb_put - add data to a buffer
1272  *	@skb: buffer to use
1273  *	@len: amount of data to add
1274  *
1275  *	This function extends the used data area of the buffer. If this would
1276  *	exceed the total buffer size the kernel will panic. A pointer to the
1277  *	first byte of the extra data is returned.
1278  */
skb_put(struct sk_buff * skb,unsigned int len)1279 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1280 {
1281 	unsigned char *tmp = skb_tail_pointer(skb);
1282 	SKB_LINEAR_ASSERT(skb);
1283 	skb->tail += len;
1284 	skb->len  += len;
1285 	if (unlikely(skb->tail > skb->end))
1286 		skb_over_panic(skb, len, __builtin_return_address(0));
1287 	return tmp;
1288 }
1289 EXPORT_SYMBOL(skb_put);
1290 
1291 /**
1292  *	skb_push - add data to the start of a buffer
1293  *	@skb: buffer to use
1294  *	@len: amount of data to add
1295  *
1296  *	This function extends the used data area of the buffer at the buffer
1297  *	start. If this would exceed the total buffer headroom the kernel will
1298  *	panic. A pointer to the first byte of the extra data is returned.
1299  */
skb_push(struct sk_buff * skb,unsigned int len)1300 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1301 {
1302 	skb->data -= len;
1303 	skb->len  += len;
1304 	if (unlikely(skb->data<skb->head))
1305 		skb_under_panic(skb, len, __builtin_return_address(0));
1306 	return skb->data;
1307 }
1308 EXPORT_SYMBOL(skb_push);
1309 
1310 /**
1311  *	skb_pull - remove data from the start of a buffer
1312  *	@skb: buffer to use
1313  *	@len: amount of data to remove
1314  *
1315  *	This function removes data from the start of a buffer, returning
1316  *	the memory to the headroom. A pointer to the next data in the buffer
1317  *	is returned. Once the data has been pulled future pushes will overwrite
1318  *	the old data.
1319  */
skb_pull(struct sk_buff * skb,unsigned int len)1320 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1321 {
1322 	return skb_pull_inline(skb, len);
1323 }
1324 EXPORT_SYMBOL(skb_pull);
1325 
1326 /**
1327  *	skb_trim - remove end from a buffer
1328  *	@skb: buffer to alter
1329  *	@len: new length
1330  *
1331  *	Cut the length of a buffer down by removing data from the tail. If
1332  *	the buffer is already under the length specified it is not modified.
1333  *	The skb must be linear.
1334  */
skb_trim(struct sk_buff * skb,unsigned int len)1335 void skb_trim(struct sk_buff *skb, unsigned int len)
1336 {
1337 	if (skb->len > len)
1338 		__skb_trim(skb, len);
1339 }
1340 EXPORT_SYMBOL(skb_trim);
1341 
1342 /* Trims skb to length len. It can change skb pointers.
1343  */
1344 
___pskb_trim(struct sk_buff * skb,unsigned int len)1345 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1346 {
1347 	struct sk_buff **fragp;
1348 	struct sk_buff *frag;
1349 	int offset = skb_headlen(skb);
1350 	int nfrags = skb_shinfo(skb)->nr_frags;
1351 	int i;
1352 	int err;
1353 
1354 	if (skb_cloned(skb) &&
1355 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1356 		return err;
1357 
1358 	i = 0;
1359 	if (offset >= len)
1360 		goto drop_pages;
1361 
1362 	for (; i < nfrags; i++) {
1363 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1364 
1365 		if (end < len) {
1366 			offset = end;
1367 			continue;
1368 		}
1369 
1370 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1371 
1372 drop_pages:
1373 		skb_shinfo(skb)->nr_frags = i;
1374 
1375 		for (; i < nfrags; i++)
1376 			skb_frag_unref(skb, i);
1377 
1378 		if (skb_has_frag_list(skb))
1379 			skb_drop_fraglist(skb);
1380 		goto done;
1381 	}
1382 
1383 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1384 	     fragp = &frag->next) {
1385 		int end = offset + frag->len;
1386 
1387 		if (skb_shared(frag)) {
1388 			struct sk_buff *nfrag;
1389 
1390 			nfrag = skb_clone(frag, GFP_ATOMIC);
1391 			if (unlikely(!nfrag))
1392 				return -ENOMEM;
1393 
1394 			nfrag->next = frag->next;
1395 			consume_skb(frag);
1396 			frag = nfrag;
1397 			*fragp = frag;
1398 		}
1399 
1400 		if (end < len) {
1401 			offset = end;
1402 			continue;
1403 		}
1404 
1405 		if (end > len &&
1406 		    unlikely((err = pskb_trim(frag, len - offset))))
1407 			return err;
1408 
1409 		if (frag->next)
1410 			skb_drop_list(&frag->next);
1411 		break;
1412 	}
1413 
1414 done:
1415 	if (len > skb_headlen(skb)) {
1416 		skb->data_len -= skb->len - len;
1417 		skb->len       = len;
1418 	} else {
1419 		skb->len       = len;
1420 		skb->data_len  = 0;
1421 		skb_set_tail_pointer(skb, len);
1422 	}
1423 
1424 	return 0;
1425 }
1426 EXPORT_SYMBOL(___pskb_trim);
1427 
1428 /**
1429  *	__pskb_pull_tail - advance tail of skb header
1430  *	@skb: buffer to reallocate
1431  *	@delta: number of bytes to advance tail
1432  *
1433  *	The function makes a sense only on a fragmented &sk_buff,
1434  *	it expands header moving its tail forward and copying necessary
1435  *	data from fragmented part.
1436  *
1437  *	&sk_buff MUST have reference count of 1.
1438  *
1439  *	Returns %NULL (and &sk_buff does not change) if pull failed
1440  *	or value of new tail of skb in the case of success.
1441  *
1442  *	All the pointers pointing into skb header may change and must be
1443  *	reloaded after call to this function.
1444  */
1445 
1446 /* Moves tail of skb head forward, copying data from fragmented part,
1447  * when it is necessary.
1448  * 1. It may fail due to malloc failure.
1449  * 2. It may change skb pointers.
1450  *
1451  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1452  */
__pskb_pull_tail(struct sk_buff * skb,int delta)1453 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1454 {
1455 	/* If skb has not enough free space at tail, get new one
1456 	 * plus 128 bytes for future expansions. If we have enough
1457 	 * room at tail, reallocate without expansion only if skb is cloned.
1458 	 */
1459 	int i, k, eat = (skb->tail + delta) - skb->end;
1460 
1461 	if (eat > 0 || skb_cloned(skb)) {
1462 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1463 				     GFP_ATOMIC))
1464 			return NULL;
1465 	}
1466 
1467 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1468 		BUG();
1469 
1470 	/* Optimization: no fragments, no reasons to preestimate
1471 	 * size of pulled pages. Superb.
1472 	 */
1473 	if (!skb_has_frag_list(skb))
1474 		goto pull_pages;
1475 
1476 	/* Estimate size of pulled pages. */
1477 	eat = delta;
1478 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1479 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1480 
1481 		if (size >= eat)
1482 			goto pull_pages;
1483 		eat -= size;
1484 	}
1485 
1486 	/* If we need update frag list, we are in troubles.
1487 	 * Certainly, it possible to add an offset to skb data,
1488 	 * but taking into account that pulling is expected to
1489 	 * be very rare operation, it is worth to fight against
1490 	 * further bloating skb head and crucify ourselves here instead.
1491 	 * Pure masohism, indeed. 8)8)
1492 	 */
1493 	if (eat) {
1494 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1495 		struct sk_buff *clone = NULL;
1496 		struct sk_buff *insp = NULL;
1497 
1498 		do {
1499 			BUG_ON(!list);
1500 
1501 			if (list->len <= eat) {
1502 				/* Eaten as whole. */
1503 				eat -= list->len;
1504 				list = list->next;
1505 				insp = list;
1506 			} else {
1507 				/* Eaten partially. */
1508 
1509 				if (skb_shared(list)) {
1510 					/* Sucks! We need to fork list. :-( */
1511 					clone = skb_clone(list, GFP_ATOMIC);
1512 					if (!clone)
1513 						return NULL;
1514 					insp = list->next;
1515 					list = clone;
1516 				} else {
1517 					/* This may be pulled without
1518 					 * problems. */
1519 					insp = list;
1520 				}
1521 				if (!pskb_pull(list, eat)) {
1522 					kfree_skb(clone);
1523 					return NULL;
1524 				}
1525 				break;
1526 			}
1527 		} while (eat);
1528 
1529 		/* Free pulled out fragments. */
1530 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1531 			skb_shinfo(skb)->frag_list = list->next;
1532 			kfree_skb(list);
1533 		}
1534 		/* And insert new clone at head. */
1535 		if (clone) {
1536 			clone->next = list;
1537 			skb_shinfo(skb)->frag_list = clone;
1538 		}
1539 	}
1540 	/* Success! Now we may commit changes to skb data. */
1541 
1542 pull_pages:
1543 	eat = delta;
1544 	k = 0;
1545 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1546 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1547 
1548 		if (size <= eat) {
1549 			skb_frag_unref(skb, i);
1550 			eat -= size;
1551 		} else {
1552 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1553 			if (eat) {
1554 				skb_shinfo(skb)->frags[k].page_offset += eat;
1555 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1556 				eat = 0;
1557 			}
1558 			k++;
1559 		}
1560 	}
1561 	skb_shinfo(skb)->nr_frags = k;
1562 
1563 	skb->tail     += delta;
1564 	skb->data_len -= delta;
1565 
1566 	return skb_tail_pointer(skb);
1567 }
1568 EXPORT_SYMBOL(__pskb_pull_tail);
1569 
1570 /**
1571  *	skb_copy_bits - copy bits from skb to kernel buffer
1572  *	@skb: source skb
1573  *	@offset: offset in source
1574  *	@to: destination buffer
1575  *	@len: number of bytes to copy
1576  *
1577  *	Copy the specified number of bytes from the source skb to the
1578  *	destination buffer.
1579  *
1580  *	CAUTION ! :
1581  *		If its prototype is ever changed,
1582  *		check arch/{*}/net/{*}.S files,
1583  *		since it is called from BPF assembly code.
1584  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1585 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1586 {
1587 	int start = skb_headlen(skb);
1588 	struct sk_buff *frag_iter;
1589 	int i, copy;
1590 
1591 	if (offset > (int)skb->len - len)
1592 		goto fault;
1593 
1594 	/* Copy header. */
1595 	if ((copy = start - offset) > 0) {
1596 		if (copy > len)
1597 			copy = len;
1598 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1599 		if ((len -= copy) == 0)
1600 			return 0;
1601 		offset += copy;
1602 		to     += copy;
1603 	}
1604 
1605 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1606 		int end;
1607 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1608 
1609 		WARN_ON(start > offset + len);
1610 
1611 		end = start + skb_frag_size(f);
1612 		if ((copy = end - offset) > 0) {
1613 			u8 *vaddr;
1614 
1615 			if (copy > len)
1616 				copy = len;
1617 
1618 			vaddr = kmap_atomic(skb_frag_page(f));
1619 			memcpy(to,
1620 			       vaddr + f->page_offset + offset - start,
1621 			       copy);
1622 			kunmap_atomic(vaddr);
1623 
1624 			if ((len -= copy) == 0)
1625 				return 0;
1626 			offset += copy;
1627 			to     += copy;
1628 		}
1629 		start = end;
1630 	}
1631 
1632 	skb_walk_frags(skb, frag_iter) {
1633 		int end;
1634 
1635 		WARN_ON(start > offset + len);
1636 
1637 		end = start + frag_iter->len;
1638 		if ((copy = end - offset) > 0) {
1639 			if (copy > len)
1640 				copy = len;
1641 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1642 				goto fault;
1643 			if ((len -= copy) == 0)
1644 				return 0;
1645 			offset += copy;
1646 			to     += copy;
1647 		}
1648 		start = end;
1649 	}
1650 
1651 	if (!len)
1652 		return 0;
1653 
1654 fault:
1655 	return -EFAULT;
1656 }
1657 EXPORT_SYMBOL(skb_copy_bits);
1658 
1659 /*
1660  * Callback from splice_to_pipe(), if we need to release some pages
1661  * at the end of the spd in case we error'ed out in filling the pipe.
1662  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)1663 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1664 {
1665 	put_page(spd->pages[i]);
1666 }
1667 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)1668 static struct page *linear_to_page(struct page *page, unsigned int *len,
1669 				   unsigned int *offset,
1670 				   struct sock *sk)
1671 {
1672 	struct page_frag *pfrag = sk_page_frag(sk);
1673 
1674 	if (!sk_page_frag_refill(sk, pfrag))
1675 		return NULL;
1676 
1677 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1678 
1679 	memcpy(page_address(pfrag->page) + pfrag->offset,
1680 	       page_address(page) + *offset, *len);
1681 	*offset = pfrag->offset;
1682 	pfrag->offset += *len;
1683 
1684 	return pfrag->page;
1685 }
1686 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)1687 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1688 			     struct page *page,
1689 			     unsigned int offset)
1690 {
1691 	return	spd->nr_pages &&
1692 		spd->pages[spd->nr_pages - 1] == page &&
1693 		(spd->partial[spd->nr_pages - 1].offset +
1694 		 spd->partial[spd->nr_pages - 1].len == offset);
1695 }
1696 
1697 /*
1698  * Fill page/offset/length into spd, if it can hold more pages.
1699  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)1700 static bool spd_fill_page(struct splice_pipe_desc *spd,
1701 			  struct pipe_inode_info *pipe, struct page *page,
1702 			  unsigned int *len, unsigned int offset,
1703 			  bool linear,
1704 			  struct sock *sk)
1705 {
1706 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1707 		return true;
1708 
1709 	if (linear) {
1710 		page = linear_to_page(page, len, &offset, sk);
1711 		if (!page)
1712 			return true;
1713 	}
1714 	if (spd_can_coalesce(spd, page, offset)) {
1715 		spd->partial[spd->nr_pages - 1].len += *len;
1716 		return false;
1717 	}
1718 	get_page(page);
1719 	spd->pages[spd->nr_pages] = page;
1720 	spd->partial[spd->nr_pages].len = *len;
1721 	spd->partial[spd->nr_pages].offset = offset;
1722 	spd->nr_pages++;
1723 
1724 	return false;
1725 }
1726 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)1727 static bool __splice_segment(struct page *page, unsigned int poff,
1728 			     unsigned int plen, unsigned int *off,
1729 			     unsigned int *len,
1730 			     struct splice_pipe_desc *spd, bool linear,
1731 			     struct sock *sk,
1732 			     struct pipe_inode_info *pipe)
1733 {
1734 	if (!*len)
1735 		return true;
1736 
1737 	/* skip this segment if already processed */
1738 	if (*off >= plen) {
1739 		*off -= plen;
1740 		return false;
1741 	}
1742 
1743 	/* ignore any bits we already processed */
1744 	poff += *off;
1745 	plen -= *off;
1746 	*off = 0;
1747 
1748 	do {
1749 		unsigned int flen = min(*len, plen);
1750 
1751 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1752 				  linear, sk))
1753 			return true;
1754 		poff += flen;
1755 		plen -= flen;
1756 		*len -= flen;
1757 	} while (*len && plen);
1758 
1759 	return false;
1760 }
1761 
1762 /*
1763  * Map linear and fragment data from the skb to spd. It reports true if the
1764  * pipe is full or if we already spliced the requested length.
1765  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)1766 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1767 			      unsigned int *offset, unsigned int *len,
1768 			      struct splice_pipe_desc *spd, struct sock *sk)
1769 {
1770 	int seg;
1771 
1772 	/* map the linear part :
1773 	 * If skb->head_frag is set, this 'linear' part is backed by a
1774 	 * fragment, and if the head is not shared with any clones then
1775 	 * we can avoid a copy since we own the head portion of this page.
1776 	 */
1777 	if (__splice_segment(virt_to_page(skb->data),
1778 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1779 			     skb_headlen(skb),
1780 			     offset, len, spd,
1781 			     skb_head_is_locked(skb),
1782 			     sk, pipe))
1783 		return true;
1784 
1785 	/*
1786 	 * then map the fragments
1787 	 */
1788 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1789 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1790 
1791 		if (__splice_segment(skb_frag_page(f),
1792 				     f->page_offset, skb_frag_size(f),
1793 				     offset, len, spd, false, sk, pipe))
1794 			return true;
1795 	}
1796 
1797 	return false;
1798 }
1799 
1800 /*
1801  * Map data from the skb to a pipe. Should handle both the linear part,
1802  * the fragments, and the frag list. It does NOT handle frag lists within
1803  * the frag list, if such a thing exists. We'd probably need to recurse to
1804  * handle that cleanly.
1805  */
skb_splice_bits(struct sk_buff * skb,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)1806 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1807 		    struct pipe_inode_info *pipe, unsigned int tlen,
1808 		    unsigned int flags)
1809 {
1810 	struct partial_page partial[MAX_SKB_FRAGS];
1811 	struct page *pages[MAX_SKB_FRAGS];
1812 	struct splice_pipe_desc spd = {
1813 		.pages = pages,
1814 		.partial = partial,
1815 		.nr_pages_max = MAX_SKB_FRAGS,
1816 		.flags = flags,
1817 		.ops = &sock_pipe_buf_ops,
1818 		.spd_release = sock_spd_release,
1819 	};
1820 	struct sk_buff *frag_iter;
1821 	struct sock *sk = skb->sk;
1822 	int ret = 0;
1823 
1824 	/*
1825 	 * __skb_splice_bits() only fails if the output has no room left,
1826 	 * so no point in going over the frag_list for the error case.
1827 	 */
1828 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1829 		goto done;
1830 	else if (!tlen)
1831 		goto done;
1832 
1833 	/*
1834 	 * now see if we have a frag_list to map
1835 	 */
1836 	skb_walk_frags(skb, frag_iter) {
1837 		if (!tlen)
1838 			break;
1839 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1840 			break;
1841 	}
1842 
1843 done:
1844 	if (spd.nr_pages) {
1845 		/*
1846 		 * Drop the socket lock, otherwise we have reverse
1847 		 * locking dependencies between sk_lock and i_mutex
1848 		 * here as compared to sendfile(). We enter here
1849 		 * with the socket lock held, and splice_to_pipe() will
1850 		 * grab the pipe inode lock. For sendfile() emulation,
1851 		 * we call into ->sendpage() with the i_mutex lock held
1852 		 * and networking will grab the socket lock.
1853 		 */
1854 		release_sock(sk);
1855 		ret = splice_to_pipe(pipe, &spd);
1856 		lock_sock(sk);
1857 	}
1858 
1859 	return ret;
1860 }
1861 
1862 /**
1863  *	skb_store_bits - store bits from kernel buffer to skb
1864  *	@skb: destination buffer
1865  *	@offset: offset in destination
1866  *	@from: source buffer
1867  *	@len: number of bytes to copy
1868  *
1869  *	Copy the specified number of bytes from the source buffer to the
1870  *	destination skb.  This function handles all the messy bits of
1871  *	traversing fragment lists and such.
1872  */
1873 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)1874 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1875 {
1876 	int start = skb_headlen(skb);
1877 	struct sk_buff *frag_iter;
1878 	int i, copy;
1879 
1880 	if (offset > (int)skb->len - len)
1881 		goto fault;
1882 
1883 	if ((copy = start - offset) > 0) {
1884 		if (copy > len)
1885 			copy = len;
1886 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1887 		if ((len -= copy) == 0)
1888 			return 0;
1889 		offset += copy;
1890 		from += copy;
1891 	}
1892 
1893 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1894 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1895 		int end;
1896 
1897 		WARN_ON(start > offset + len);
1898 
1899 		end = start + skb_frag_size(frag);
1900 		if ((copy = end - offset) > 0) {
1901 			u8 *vaddr;
1902 
1903 			if (copy > len)
1904 				copy = len;
1905 
1906 			vaddr = kmap_atomic(skb_frag_page(frag));
1907 			memcpy(vaddr + frag->page_offset + offset - start,
1908 			       from, copy);
1909 			kunmap_atomic(vaddr);
1910 
1911 			if ((len -= copy) == 0)
1912 				return 0;
1913 			offset += copy;
1914 			from += copy;
1915 		}
1916 		start = end;
1917 	}
1918 
1919 	skb_walk_frags(skb, frag_iter) {
1920 		int end;
1921 
1922 		WARN_ON(start > offset + len);
1923 
1924 		end = start + frag_iter->len;
1925 		if ((copy = end - offset) > 0) {
1926 			if (copy > len)
1927 				copy = len;
1928 			if (skb_store_bits(frag_iter, offset - start,
1929 					   from, copy))
1930 				goto fault;
1931 			if ((len -= copy) == 0)
1932 				return 0;
1933 			offset += copy;
1934 			from += copy;
1935 		}
1936 		start = end;
1937 	}
1938 	if (!len)
1939 		return 0;
1940 
1941 fault:
1942 	return -EFAULT;
1943 }
1944 EXPORT_SYMBOL(skb_store_bits);
1945 
1946 /* Checksum skb data. */
1947 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)1948 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1949 			  int len, __wsum csum)
1950 {
1951 	int start = skb_headlen(skb);
1952 	int i, copy = start - offset;
1953 	struct sk_buff *frag_iter;
1954 	int pos = 0;
1955 
1956 	/* Checksum header. */
1957 	if (copy > 0) {
1958 		if (copy > len)
1959 			copy = len;
1960 		csum = csum_partial(skb->data + offset, copy, csum);
1961 		if ((len -= copy) == 0)
1962 			return csum;
1963 		offset += copy;
1964 		pos	= copy;
1965 	}
1966 
1967 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1968 		int end;
1969 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1970 
1971 		WARN_ON(start > offset + len);
1972 
1973 		end = start + skb_frag_size(frag);
1974 		if ((copy = end - offset) > 0) {
1975 			__wsum csum2;
1976 			u8 *vaddr;
1977 
1978 			if (copy > len)
1979 				copy = len;
1980 			vaddr = kmap_atomic(skb_frag_page(frag));
1981 			csum2 = csum_partial(vaddr + frag->page_offset +
1982 					     offset - start, copy, 0);
1983 			kunmap_atomic(vaddr);
1984 			csum = csum_block_add(csum, csum2, pos);
1985 			if (!(len -= copy))
1986 				return csum;
1987 			offset += copy;
1988 			pos    += copy;
1989 		}
1990 		start = end;
1991 	}
1992 
1993 	skb_walk_frags(skb, frag_iter) {
1994 		int end;
1995 
1996 		WARN_ON(start > offset + len);
1997 
1998 		end = start + frag_iter->len;
1999 		if ((copy = end - offset) > 0) {
2000 			__wsum csum2;
2001 			if (copy > len)
2002 				copy = len;
2003 			csum2 = skb_checksum(frag_iter, offset - start,
2004 					     copy, 0);
2005 			csum = csum_block_add(csum, csum2, pos);
2006 			if ((len -= copy) == 0)
2007 				return csum;
2008 			offset += copy;
2009 			pos    += copy;
2010 		}
2011 		start = end;
2012 	}
2013 	BUG_ON(len);
2014 
2015 	return csum;
2016 }
2017 EXPORT_SYMBOL(skb_checksum);
2018 
2019 /* Both of above in one bottle. */
2020 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)2021 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2022 				    u8 *to, int len, __wsum csum)
2023 {
2024 	int start = skb_headlen(skb);
2025 	int i, copy = start - offset;
2026 	struct sk_buff *frag_iter;
2027 	int pos = 0;
2028 
2029 	/* Copy header. */
2030 	if (copy > 0) {
2031 		if (copy > len)
2032 			copy = len;
2033 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2034 						 copy, csum);
2035 		if ((len -= copy) == 0)
2036 			return csum;
2037 		offset += copy;
2038 		to     += copy;
2039 		pos	= copy;
2040 	}
2041 
2042 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043 		int end;
2044 
2045 		WARN_ON(start > offset + len);
2046 
2047 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2048 		if ((copy = end - offset) > 0) {
2049 			__wsum csum2;
2050 			u8 *vaddr;
2051 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2052 
2053 			if (copy > len)
2054 				copy = len;
2055 			vaddr = kmap_atomic(skb_frag_page(frag));
2056 			csum2 = csum_partial_copy_nocheck(vaddr +
2057 							  frag->page_offset +
2058 							  offset - start, to,
2059 							  copy, 0);
2060 			kunmap_atomic(vaddr);
2061 			csum = csum_block_add(csum, csum2, pos);
2062 			if (!(len -= copy))
2063 				return csum;
2064 			offset += copy;
2065 			to     += copy;
2066 			pos    += copy;
2067 		}
2068 		start = end;
2069 	}
2070 
2071 	skb_walk_frags(skb, frag_iter) {
2072 		__wsum csum2;
2073 		int end;
2074 
2075 		WARN_ON(start > offset + len);
2076 
2077 		end = start + frag_iter->len;
2078 		if ((copy = end - offset) > 0) {
2079 			if (copy > len)
2080 				copy = len;
2081 			csum2 = skb_copy_and_csum_bits(frag_iter,
2082 						       offset - start,
2083 						       to, copy, 0);
2084 			csum = csum_block_add(csum, csum2, pos);
2085 			if ((len -= copy) == 0)
2086 				return csum;
2087 			offset += copy;
2088 			to     += copy;
2089 			pos    += copy;
2090 		}
2091 		start = end;
2092 	}
2093 	BUG_ON(len);
2094 	return csum;
2095 }
2096 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2097 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2098 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2099 {
2100 	__wsum csum;
2101 	long csstart;
2102 
2103 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2104 		csstart = skb_checksum_start_offset(skb);
2105 	else
2106 		csstart = skb_headlen(skb);
2107 
2108 	BUG_ON(csstart > skb_headlen(skb));
2109 
2110 	skb_copy_from_linear_data(skb, to, csstart);
2111 
2112 	csum = 0;
2113 	if (csstart != skb->len)
2114 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2115 					      skb->len - csstart, 0);
2116 
2117 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2118 		long csstuff = csstart + skb->csum_offset;
2119 
2120 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2121 	}
2122 }
2123 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2124 
2125 /**
2126  *	skb_dequeue - remove from the head of the queue
2127  *	@list: list to dequeue from
2128  *
2129  *	Remove the head of the list. The list lock is taken so the function
2130  *	may be used safely with other locking list functions. The head item is
2131  *	returned or %NULL if the list is empty.
2132  */
2133 
skb_dequeue(struct sk_buff_head * list)2134 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2135 {
2136 	unsigned long flags;
2137 	struct sk_buff *result;
2138 
2139 	spin_lock_irqsave(&list->lock, flags);
2140 	result = __skb_dequeue(list);
2141 	spin_unlock_irqrestore(&list->lock, flags);
2142 	return result;
2143 }
2144 EXPORT_SYMBOL(skb_dequeue);
2145 
2146 /**
2147  *	skb_dequeue_tail - remove from the tail of the queue
2148  *	@list: list to dequeue from
2149  *
2150  *	Remove the tail of the list. The list lock is taken so the function
2151  *	may be used safely with other locking list functions. The tail item is
2152  *	returned or %NULL if the list is empty.
2153  */
skb_dequeue_tail(struct sk_buff_head * list)2154 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2155 {
2156 	unsigned long flags;
2157 	struct sk_buff *result;
2158 
2159 	spin_lock_irqsave(&list->lock, flags);
2160 	result = __skb_dequeue_tail(list);
2161 	spin_unlock_irqrestore(&list->lock, flags);
2162 	return result;
2163 }
2164 EXPORT_SYMBOL(skb_dequeue_tail);
2165 
2166 /**
2167  *	skb_queue_purge - empty a list
2168  *	@list: list to empty
2169  *
2170  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2171  *	the list and one reference dropped. This function takes the list
2172  *	lock and is atomic with respect to other list locking functions.
2173  */
skb_queue_purge(struct sk_buff_head * list)2174 void skb_queue_purge(struct sk_buff_head *list)
2175 {
2176 	struct sk_buff *skb;
2177 	while ((skb = skb_dequeue(list)) != NULL)
2178 		kfree_skb(skb);
2179 }
2180 EXPORT_SYMBOL(skb_queue_purge);
2181 
2182 /**
2183  *	skb_queue_head - queue a buffer at the list head
2184  *	@list: list to use
2185  *	@newsk: buffer to queue
2186  *
2187  *	Queue a buffer at the start of the list. This function takes the
2188  *	list lock and can be used safely with other locking &sk_buff functions
2189  *	safely.
2190  *
2191  *	A buffer cannot be placed on two lists at the same time.
2192  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2193 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2194 {
2195 	unsigned long flags;
2196 
2197 	spin_lock_irqsave(&list->lock, flags);
2198 	__skb_queue_head(list, newsk);
2199 	spin_unlock_irqrestore(&list->lock, flags);
2200 }
2201 EXPORT_SYMBOL(skb_queue_head);
2202 
2203 /**
2204  *	skb_queue_tail - queue a buffer at the list tail
2205  *	@list: list to use
2206  *	@newsk: buffer to queue
2207  *
2208  *	Queue a buffer at the tail of the list. This function takes the
2209  *	list lock and can be used safely with other locking &sk_buff functions
2210  *	safely.
2211  *
2212  *	A buffer cannot be placed on two lists at the same time.
2213  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2214 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2215 {
2216 	unsigned long flags;
2217 
2218 	spin_lock_irqsave(&list->lock, flags);
2219 	__skb_queue_tail(list, newsk);
2220 	spin_unlock_irqrestore(&list->lock, flags);
2221 }
2222 EXPORT_SYMBOL(skb_queue_tail);
2223 
2224 /**
2225  *	skb_unlink	-	remove a buffer from a list
2226  *	@skb: buffer to remove
2227  *	@list: list to use
2228  *
2229  *	Remove a packet from a list. The list locks are taken and this
2230  *	function is atomic with respect to other list locked calls
2231  *
2232  *	You must know what list the SKB is on.
2233  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2234 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2235 {
2236 	unsigned long flags;
2237 
2238 	spin_lock_irqsave(&list->lock, flags);
2239 	__skb_unlink(skb, list);
2240 	spin_unlock_irqrestore(&list->lock, flags);
2241 }
2242 EXPORT_SYMBOL(skb_unlink);
2243 
2244 /**
2245  *	skb_append	-	append a buffer
2246  *	@old: buffer to insert after
2247  *	@newsk: buffer to insert
2248  *	@list: list to use
2249  *
2250  *	Place a packet after a given packet in a list. The list locks are taken
2251  *	and this function is atomic with respect to other list locked calls.
2252  *	A buffer cannot be placed on two lists at the same time.
2253  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2254 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2255 {
2256 	unsigned long flags;
2257 
2258 	spin_lock_irqsave(&list->lock, flags);
2259 	__skb_queue_after(list, old, newsk);
2260 	spin_unlock_irqrestore(&list->lock, flags);
2261 }
2262 EXPORT_SYMBOL(skb_append);
2263 
2264 /**
2265  *	skb_insert	-	insert a buffer
2266  *	@old: buffer to insert before
2267  *	@newsk: buffer to insert
2268  *	@list: list to use
2269  *
2270  *	Place a packet before a given packet in a list. The list locks are
2271  * 	taken and this function is atomic with respect to other list locked
2272  *	calls.
2273  *
2274  *	A buffer cannot be placed on two lists at the same time.
2275  */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2276 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2277 {
2278 	unsigned long flags;
2279 
2280 	spin_lock_irqsave(&list->lock, flags);
2281 	__skb_insert(newsk, old->prev, old, list);
2282 	spin_unlock_irqrestore(&list->lock, flags);
2283 }
2284 EXPORT_SYMBOL(skb_insert);
2285 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)2286 static inline void skb_split_inside_header(struct sk_buff *skb,
2287 					   struct sk_buff* skb1,
2288 					   const u32 len, const int pos)
2289 {
2290 	int i;
2291 
2292 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2293 					 pos - len);
2294 	/* And move data appendix as is. */
2295 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2296 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2297 
2298 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2299 	skb_shinfo(skb)->nr_frags  = 0;
2300 	skb1->data_len		   = skb->data_len;
2301 	skb1->len		   += skb1->data_len;
2302 	skb->data_len		   = 0;
2303 	skb->len		   = len;
2304 	skb_set_tail_pointer(skb, len);
2305 }
2306 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)2307 static inline void skb_split_no_header(struct sk_buff *skb,
2308 				       struct sk_buff* skb1,
2309 				       const u32 len, int pos)
2310 {
2311 	int i, k = 0;
2312 	const int nfrags = skb_shinfo(skb)->nr_frags;
2313 
2314 	skb_shinfo(skb)->nr_frags = 0;
2315 	skb1->len		  = skb1->data_len = skb->len - len;
2316 	skb->len		  = len;
2317 	skb->data_len		  = len - pos;
2318 
2319 	for (i = 0; i < nfrags; i++) {
2320 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2321 
2322 		if (pos + size > len) {
2323 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2324 
2325 			if (pos < len) {
2326 				/* Split frag.
2327 				 * We have two variants in this case:
2328 				 * 1. Move all the frag to the second
2329 				 *    part, if it is possible. F.e.
2330 				 *    this approach is mandatory for TUX,
2331 				 *    where splitting is expensive.
2332 				 * 2. Split is accurately. We make this.
2333 				 */
2334 				skb_frag_ref(skb, i);
2335 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2336 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2337 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2338 				skb_shinfo(skb)->nr_frags++;
2339 			}
2340 			k++;
2341 		} else
2342 			skb_shinfo(skb)->nr_frags++;
2343 		pos += size;
2344 	}
2345 	skb_shinfo(skb1)->nr_frags = k;
2346 }
2347 
2348 /**
2349  * skb_split - Split fragmented skb to two parts at length len.
2350  * @skb: the buffer to split
2351  * @skb1: the buffer to receive the second part
2352  * @len: new length for skb
2353  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)2354 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2355 {
2356 	int pos = skb_headlen(skb);
2357 
2358 	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2359 	if (len < pos)	/* Split line is inside header. */
2360 		skb_split_inside_header(skb, skb1, len, pos);
2361 	else		/* Second chunk has no header, nothing to copy. */
2362 		skb_split_no_header(skb, skb1, len, pos);
2363 }
2364 EXPORT_SYMBOL(skb_split);
2365 
2366 /* Shifting from/to a cloned skb is a no-go.
2367  *
2368  * Caller cannot keep skb_shinfo related pointers past calling here!
2369  */
skb_prepare_for_shift(struct sk_buff * skb)2370 static int skb_prepare_for_shift(struct sk_buff *skb)
2371 {
2372 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2373 }
2374 
2375 /**
2376  * skb_shift - Shifts paged data partially from skb to another
2377  * @tgt: buffer into which tail data gets added
2378  * @skb: buffer from which the paged data comes from
2379  * @shiftlen: shift up to this many bytes
2380  *
2381  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2382  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2383  * It's up to caller to free skb if everything was shifted.
2384  *
2385  * If @tgt runs out of frags, the whole operation is aborted.
2386  *
2387  * Skb cannot include anything else but paged data while tgt is allowed
2388  * to have non-paged data as well.
2389  *
2390  * TODO: full sized shift could be optimized but that would need
2391  * specialized skb free'er to handle frags without up-to-date nr_frags.
2392  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)2393 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2394 {
2395 	int from, to, merge, todo;
2396 	struct skb_frag_struct *fragfrom, *fragto;
2397 
2398 	BUG_ON(shiftlen > skb->len);
2399 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2400 
2401 	todo = shiftlen;
2402 	from = 0;
2403 	to = skb_shinfo(tgt)->nr_frags;
2404 	fragfrom = &skb_shinfo(skb)->frags[from];
2405 
2406 	/* Actual merge is delayed until the point when we know we can
2407 	 * commit all, so that we don't have to undo partial changes
2408 	 */
2409 	if (!to ||
2410 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2411 			      fragfrom->page_offset)) {
2412 		merge = -1;
2413 	} else {
2414 		merge = to - 1;
2415 
2416 		todo -= skb_frag_size(fragfrom);
2417 		if (todo < 0) {
2418 			if (skb_prepare_for_shift(skb) ||
2419 			    skb_prepare_for_shift(tgt))
2420 				return 0;
2421 
2422 			/* All previous frag pointers might be stale! */
2423 			fragfrom = &skb_shinfo(skb)->frags[from];
2424 			fragto = &skb_shinfo(tgt)->frags[merge];
2425 
2426 			skb_frag_size_add(fragto, shiftlen);
2427 			skb_frag_size_sub(fragfrom, shiftlen);
2428 			fragfrom->page_offset += shiftlen;
2429 
2430 			goto onlymerged;
2431 		}
2432 
2433 		from++;
2434 	}
2435 
2436 	/* Skip full, not-fitting skb to avoid expensive operations */
2437 	if ((shiftlen == skb->len) &&
2438 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2439 		return 0;
2440 
2441 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2442 		return 0;
2443 
2444 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2445 		if (to == MAX_SKB_FRAGS)
2446 			return 0;
2447 
2448 		fragfrom = &skb_shinfo(skb)->frags[from];
2449 		fragto = &skb_shinfo(tgt)->frags[to];
2450 
2451 		if (todo >= skb_frag_size(fragfrom)) {
2452 			*fragto = *fragfrom;
2453 			todo -= skb_frag_size(fragfrom);
2454 			from++;
2455 			to++;
2456 
2457 		} else {
2458 			__skb_frag_ref(fragfrom);
2459 			fragto->page = fragfrom->page;
2460 			fragto->page_offset = fragfrom->page_offset;
2461 			skb_frag_size_set(fragto, todo);
2462 
2463 			fragfrom->page_offset += todo;
2464 			skb_frag_size_sub(fragfrom, todo);
2465 			todo = 0;
2466 
2467 			to++;
2468 			break;
2469 		}
2470 	}
2471 
2472 	/* Ready to "commit" this state change to tgt */
2473 	skb_shinfo(tgt)->nr_frags = to;
2474 
2475 	if (merge >= 0) {
2476 		fragfrom = &skb_shinfo(skb)->frags[0];
2477 		fragto = &skb_shinfo(tgt)->frags[merge];
2478 
2479 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2480 		__skb_frag_unref(fragfrom);
2481 	}
2482 
2483 	/* Reposition in the original skb */
2484 	to = 0;
2485 	while (from < skb_shinfo(skb)->nr_frags)
2486 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2487 	skb_shinfo(skb)->nr_frags = to;
2488 
2489 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2490 
2491 onlymerged:
2492 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2493 	 * the other hand might need it if it needs to be resent
2494 	 */
2495 	tgt->ip_summed = CHECKSUM_PARTIAL;
2496 	skb->ip_summed = CHECKSUM_PARTIAL;
2497 
2498 	/* Yak, is it really working this way? Some helper please? */
2499 	skb->len -= shiftlen;
2500 	skb->data_len -= shiftlen;
2501 	skb->truesize -= shiftlen;
2502 	tgt->len += shiftlen;
2503 	tgt->data_len += shiftlen;
2504 	tgt->truesize += shiftlen;
2505 
2506 	return shiftlen;
2507 }
2508 
2509 /**
2510  * skb_prepare_seq_read - Prepare a sequential read of skb data
2511  * @skb: the buffer to read
2512  * @from: lower offset of data to be read
2513  * @to: upper offset of data to be read
2514  * @st: state variable
2515  *
2516  * Initializes the specified state variable. Must be called before
2517  * invoking skb_seq_read() for the first time.
2518  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)2519 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2520 			  unsigned int to, struct skb_seq_state *st)
2521 {
2522 	st->lower_offset = from;
2523 	st->upper_offset = to;
2524 	st->root_skb = st->cur_skb = skb;
2525 	st->frag_idx = st->stepped_offset = 0;
2526 	st->frag_data = NULL;
2527 }
2528 EXPORT_SYMBOL(skb_prepare_seq_read);
2529 
2530 /**
2531  * skb_seq_read - Sequentially read skb data
2532  * @consumed: number of bytes consumed by the caller so far
2533  * @data: destination pointer for data to be returned
2534  * @st: state variable
2535  *
2536  * Reads a block of skb data at &consumed relative to the
2537  * lower offset specified to skb_prepare_seq_read(). Assigns
2538  * the head of the data block to &data and returns the length
2539  * of the block or 0 if the end of the skb data or the upper
2540  * offset has been reached.
2541  *
2542  * The caller is not required to consume all of the data
2543  * returned, i.e. &consumed is typically set to the number
2544  * of bytes already consumed and the next call to
2545  * skb_seq_read() will return the remaining part of the block.
2546  *
2547  * Note 1: The size of each block of data returned can be arbitrary,
2548  *       this limitation is the cost for zerocopy seqeuental
2549  *       reads of potentially non linear data.
2550  *
2551  * Note 2: Fragment lists within fragments are not implemented
2552  *       at the moment, state->root_skb could be replaced with
2553  *       a stack for this purpose.
2554  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)2555 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2556 			  struct skb_seq_state *st)
2557 {
2558 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2559 	skb_frag_t *frag;
2560 
2561 	if (unlikely(abs_offset >= st->upper_offset))
2562 		return 0;
2563 
2564 next_skb:
2565 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2566 
2567 	if (abs_offset < block_limit && !st->frag_data) {
2568 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2569 		return block_limit - abs_offset;
2570 	}
2571 
2572 	if (st->frag_idx == 0 && !st->frag_data)
2573 		st->stepped_offset += skb_headlen(st->cur_skb);
2574 
2575 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2576 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2577 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2578 
2579 		if (abs_offset < block_limit) {
2580 			if (!st->frag_data)
2581 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2582 
2583 			*data = (u8 *) st->frag_data + frag->page_offset +
2584 				(abs_offset - st->stepped_offset);
2585 
2586 			return block_limit - abs_offset;
2587 		}
2588 
2589 		if (st->frag_data) {
2590 			kunmap_atomic(st->frag_data);
2591 			st->frag_data = NULL;
2592 		}
2593 
2594 		st->frag_idx++;
2595 		st->stepped_offset += skb_frag_size(frag);
2596 	}
2597 
2598 	if (st->frag_data) {
2599 		kunmap_atomic(st->frag_data);
2600 		st->frag_data = NULL;
2601 	}
2602 
2603 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2604 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2605 		st->frag_idx = 0;
2606 		goto next_skb;
2607 	} else if (st->cur_skb->next) {
2608 		st->cur_skb = st->cur_skb->next;
2609 		st->frag_idx = 0;
2610 		goto next_skb;
2611 	}
2612 
2613 	return 0;
2614 }
2615 EXPORT_SYMBOL(skb_seq_read);
2616 
2617 /**
2618  * skb_abort_seq_read - Abort a sequential read of skb data
2619  * @st: state variable
2620  *
2621  * Must be called if skb_seq_read() was not called until it
2622  * returned 0.
2623  */
skb_abort_seq_read(struct skb_seq_state * st)2624 void skb_abort_seq_read(struct skb_seq_state *st)
2625 {
2626 	if (st->frag_data)
2627 		kunmap_atomic(st->frag_data);
2628 }
2629 EXPORT_SYMBOL(skb_abort_seq_read);
2630 
2631 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2632 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)2633 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2634 					  struct ts_config *conf,
2635 					  struct ts_state *state)
2636 {
2637 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2638 }
2639 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)2640 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2641 {
2642 	skb_abort_seq_read(TS_SKB_CB(state));
2643 }
2644 
2645 /**
2646  * skb_find_text - Find a text pattern in skb data
2647  * @skb: the buffer to look in
2648  * @from: search offset
2649  * @to: search limit
2650  * @config: textsearch configuration
2651  * @state: uninitialized textsearch state variable
2652  *
2653  * Finds a pattern in the skb data according to the specified
2654  * textsearch configuration. Use textsearch_next() to retrieve
2655  * subsequent occurrences of the pattern. Returns the offset
2656  * to the first occurrence or UINT_MAX if no match was found.
2657  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config,struct ts_state * state)2658 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2659 			   unsigned int to, struct ts_config *config,
2660 			   struct ts_state *state)
2661 {
2662 	unsigned int ret;
2663 
2664 	config->get_next_block = skb_ts_get_next_block;
2665 	config->finish = skb_ts_finish;
2666 
2667 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2668 
2669 	ret = textsearch_find(config, state);
2670 	return (ret <= to - from ? ret : UINT_MAX);
2671 }
2672 EXPORT_SYMBOL(skb_find_text);
2673 
2674 /**
2675  * skb_append_datato_frags - append the user data to a skb
2676  * @sk: sock  structure
2677  * @skb: skb structure to be appened with user data.
2678  * @getfrag: call back function to be used for getting the user data
2679  * @from: pointer to user message iov
2680  * @length: length of the iov message
2681  *
2682  * Description: This procedure append the user data in the fragment part
2683  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2684  */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)2685 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2686 			int (*getfrag)(void *from, char *to, int offset,
2687 					int len, int odd, struct sk_buff *skb),
2688 			void *from, int length)
2689 {
2690 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2691 	int copy;
2692 	int offset = 0;
2693 	int ret;
2694 	struct page_frag *pfrag = &current->task_frag;
2695 
2696 	do {
2697 		/* Return error if we don't have space for new frag */
2698 		if (frg_cnt >= MAX_SKB_FRAGS)
2699 			return -EMSGSIZE;
2700 
2701 		if (!sk_page_frag_refill(sk, pfrag))
2702 			return -ENOMEM;
2703 
2704 		/* copy the user data to page */
2705 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2706 
2707 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2708 			      offset, copy, 0, skb);
2709 		if (ret < 0)
2710 			return -EFAULT;
2711 
2712 		/* copy was successful so update the size parameters */
2713 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2714 				   copy);
2715 		frg_cnt++;
2716 		pfrag->offset += copy;
2717 		get_page(pfrag->page);
2718 
2719 		skb->truesize += copy;
2720 		atomic_add(copy, &sk->sk_wmem_alloc);
2721 		skb->len += copy;
2722 		skb->data_len += copy;
2723 		offset += copy;
2724 		length -= copy;
2725 
2726 	} while (length > 0);
2727 
2728 	return 0;
2729 }
2730 EXPORT_SYMBOL(skb_append_datato_frags);
2731 
2732 /**
2733  *	skb_pull_rcsum - pull skb and update receive checksum
2734  *	@skb: buffer to update
2735  *	@len: length of data pulled
2736  *
2737  *	This function performs an skb_pull on the packet and updates
2738  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2739  *	receive path processing instead of skb_pull unless you know
2740  *	that the checksum difference is zero (e.g., a valid IP header)
2741  *	or you are setting ip_summed to CHECKSUM_NONE.
2742  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)2743 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2744 {
2745 	BUG_ON(len > skb->len);
2746 	skb->len -= len;
2747 	BUG_ON(skb->len < skb->data_len);
2748 	skb_postpull_rcsum(skb, skb->data, len);
2749 	return skb->data += len;
2750 }
2751 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2752 
2753 /**
2754  *	skb_segment - Perform protocol segmentation on skb.
2755  *	@skb: buffer to segment
2756  *	@features: features for the output path (see dev->features)
2757  *
2758  *	This function performs segmentation on the given skb.  It returns
2759  *	a pointer to the first in a list of new skbs for the segments.
2760  *	In case of error it returns ERR_PTR(err).
2761  */
skb_segment(struct sk_buff * skb,netdev_features_t features)2762 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2763 {
2764 	struct sk_buff *segs = NULL;
2765 	struct sk_buff *tail = NULL;
2766 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2767 	unsigned int mss = skb_shinfo(skb)->gso_size;
2768 	unsigned int doffset = skb->data - skb_mac_header(skb);
2769 	unsigned int offset = doffset;
2770 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
2771 	unsigned int headroom;
2772 	unsigned int len;
2773 	__be16 proto;
2774 	bool csum;
2775 	int sg = !!(features & NETIF_F_SG);
2776 	int nfrags = skb_shinfo(skb)->nr_frags;
2777 	int err = -ENOMEM;
2778 	int i = 0;
2779 	int pos;
2780 
2781 	proto = skb_network_protocol(skb);
2782 	if (unlikely(!proto))
2783 		return ERR_PTR(-EINVAL);
2784 
2785 	csum = !!can_checksum_protocol(features, proto);
2786 	__skb_push(skb, doffset);
2787 	headroom = skb_headroom(skb);
2788 	pos = skb_headlen(skb);
2789 
2790 	do {
2791 		struct sk_buff *nskb;
2792 		skb_frag_t *frag;
2793 		int hsize;
2794 		int size;
2795 
2796 		len = skb->len - offset;
2797 		if (len > mss)
2798 			len = mss;
2799 
2800 		hsize = skb_headlen(skb) - offset;
2801 		if (hsize < 0)
2802 			hsize = 0;
2803 		if (hsize > len || !sg)
2804 			hsize = len;
2805 
2806 		if (!hsize && i >= nfrags) {
2807 			BUG_ON(fskb->len != len);
2808 
2809 			pos += len;
2810 			nskb = skb_clone(fskb, GFP_ATOMIC);
2811 			fskb = fskb->next;
2812 
2813 			if (unlikely(!nskb))
2814 				goto err;
2815 
2816 			hsize = skb_end_offset(nskb);
2817 			if (skb_cow_head(nskb, doffset + headroom)) {
2818 				kfree_skb(nskb);
2819 				goto err;
2820 			}
2821 
2822 			nskb->truesize += skb_end_offset(nskb) - hsize;
2823 			skb_release_head_state(nskb);
2824 			__skb_push(nskb, doffset);
2825 		} else {
2826 			nskb = __alloc_skb(hsize + doffset + headroom,
2827 					   GFP_ATOMIC, skb_alloc_rx_flag(skb),
2828 					   NUMA_NO_NODE);
2829 
2830 			if (unlikely(!nskb))
2831 				goto err;
2832 
2833 			skb_reserve(nskb, headroom);
2834 			__skb_put(nskb, doffset);
2835 		}
2836 
2837 		if (segs)
2838 			tail->next = nskb;
2839 		else
2840 			segs = nskb;
2841 		tail = nskb;
2842 
2843 		__copy_skb_header(nskb, skb);
2844 		nskb->mac_len = skb->mac_len;
2845 
2846 		/* nskb and skb might have different headroom */
2847 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2848 			nskb->csum_start += skb_headroom(nskb) - headroom;
2849 
2850 		skb_reset_mac_header(nskb);
2851 		skb_set_network_header(nskb, skb->mac_len);
2852 		nskb->transport_header = (nskb->network_header +
2853 					  skb_network_header_len(skb));
2854 
2855 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2856 						 nskb->data - tnl_hlen,
2857 						 doffset + tnl_hlen);
2858 
2859 		if (fskb != skb_shinfo(skb)->frag_list)
2860 			continue;
2861 
2862 		if (!sg) {
2863 			nskb->ip_summed = CHECKSUM_NONE;
2864 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2865 							    skb_put(nskb, len),
2866 							    len, 0);
2867 			continue;
2868 		}
2869 
2870 		frag = skb_shinfo(nskb)->frags;
2871 
2872 		skb_copy_from_linear_data_offset(skb, offset,
2873 						 skb_put(nskb, hsize), hsize);
2874 
2875 		skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2876 
2877 		while (pos < offset + len && i < nfrags) {
2878 			*frag = skb_shinfo(skb)->frags[i];
2879 			__skb_frag_ref(frag);
2880 			size = skb_frag_size(frag);
2881 
2882 			if (pos < offset) {
2883 				frag->page_offset += offset - pos;
2884 				skb_frag_size_sub(frag, offset - pos);
2885 			}
2886 
2887 			skb_shinfo(nskb)->nr_frags++;
2888 
2889 			if (pos + size <= offset + len) {
2890 				i++;
2891 				pos += size;
2892 			} else {
2893 				skb_frag_size_sub(frag, pos + size - (offset + len));
2894 				goto skip_fraglist;
2895 			}
2896 
2897 			frag++;
2898 		}
2899 
2900 		if (pos < offset + len) {
2901 			struct sk_buff *fskb2 = fskb;
2902 
2903 			BUG_ON(pos + fskb->len != offset + len);
2904 
2905 			pos += fskb->len;
2906 			fskb = fskb->next;
2907 
2908 			if (fskb2->next) {
2909 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2910 				if (!fskb2)
2911 					goto err;
2912 			} else
2913 				skb_get(fskb2);
2914 
2915 			SKB_FRAG_ASSERT(nskb);
2916 			skb_shinfo(nskb)->frag_list = fskb2;
2917 		}
2918 
2919 skip_fraglist:
2920 		nskb->data_len = len - hsize;
2921 		nskb->len += nskb->data_len;
2922 		nskb->truesize += nskb->data_len;
2923 
2924 		if (!csum) {
2925 			nskb->csum = skb_checksum(nskb, doffset,
2926 						  nskb->len - doffset, 0);
2927 			nskb->ip_summed = CHECKSUM_NONE;
2928 		}
2929 	} while ((offset += len) < skb->len);
2930 
2931 	return segs;
2932 
2933 err:
2934 	while ((skb = segs)) {
2935 		segs = skb->next;
2936 		kfree_skb(skb);
2937 	}
2938 	return ERR_PTR(err);
2939 }
2940 EXPORT_SYMBOL_GPL(skb_segment);
2941 
skb_gro_receive(struct sk_buff ** head,struct sk_buff * skb)2942 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2943 {
2944 	struct sk_buff *p = *head;
2945 	struct sk_buff *nskb;
2946 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2947 	struct skb_shared_info *pinfo = skb_shinfo(p);
2948 	unsigned int headroom;
2949 	unsigned int len = skb_gro_len(skb);
2950 	unsigned int offset = skb_gro_offset(skb);
2951 	unsigned int headlen = skb_headlen(skb);
2952 	unsigned int delta_truesize;
2953 
2954 	if (p->len + len >= 65536)
2955 		return -E2BIG;
2956 
2957 	if (pinfo->frag_list)
2958 		goto merge;
2959 	else if (headlen <= offset) {
2960 		skb_frag_t *frag;
2961 		skb_frag_t *frag2;
2962 		int i = skbinfo->nr_frags;
2963 		int nr_frags = pinfo->nr_frags + i;
2964 
2965 		offset -= headlen;
2966 
2967 		if (nr_frags > MAX_SKB_FRAGS)
2968 			return -E2BIG;
2969 
2970 		pinfo->nr_frags = nr_frags;
2971 		skbinfo->nr_frags = 0;
2972 
2973 		frag = pinfo->frags + nr_frags;
2974 		frag2 = skbinfo->frags + i;
2975 		do {
2976 			*--frag = *--frag2;
2977 		} while (--i);
2978 
2979 		frag->page_offset += offset;
2980 		skb_frag_size_sub(frag, offset);
2981 
2982 		/* all fragments truesize : remove (head size + sk_buff) */
2983 		delta_truesize = skb->truesize -
2984 				 SKB_TRUESIZE(skb_end_offset(skb));
2985 
2986 		skb->truesize -= skb->data_len;
2987 		skb->len -= skb->data_len;
2988 		skb->data_len = 0;
2989 
2990 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2991 		goto done;
2992 	} else if (skb->head_frag) {
2993 		int nr_frags = pinfo->nr_frags;
2994 		skb_frag_t *frag = pinfo->frags + nr_frags;
2995 		struct page *page = virt_to_head_page(skb->head);
2996 		unsigned int first_size = headlen - offset;
2997 		unsigned int first_offset;
2998 
2999 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3000 			return -E2BIG;
3001 
3002 		first_offset = skb->data -
3003 			       (unsigned char *)page_address(page) +
3004 			       offset;
3005 
3006 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3007 
3008 		frag->page.p	  = page;
3009 		frag->page_offset = first_offset;
3010 		skb_frag_size_set(frag, first_size);
3011 
3012 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3013 		/* We dont need to clear skbinfo->nr_frags here */
3014 
3015 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3016 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3017 		goto done;
3018 	} else if (skb_gro_len(p) != pinfo->gso_size)
3019 		return -E2BIG;
3020 
3021 	headroom = skb_headroom(p);
3022 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3023 	if (unlikely(!nskb))
3024 		return -ENOMEM;
3025 
3026 	__copy_skb_header(nskb, p);
3027 	nskb->mac_len = p->mac_len;
3028 
3029 	skb_reserve(nskb, headroom);
3030 	__skb_put(nskb, skb_gro_offset(p));
3031 
3032 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3033 	skb_set_network_header(nskb, skb_network_offset(p));
3034 	skb_set_transport_header(nskb, skb_transport_offset(p));
3035 
3036 	__skb_pull(p, skb_gro_offset(p));
3037 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
3038 	       p->data - skb_mac_header(p));
3039 
3040 	skb_shinfo(nskb)->frag_list = p;
3041 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3042 	pinfo->gso_size = 0;
3043 	skb_header_release(p);
3044 	NAPI_GRO_CB(nskb)->last = p;
3045 
3046 	nskb->data_len += p->len;
3047 	nskb->truesize += p->truesize;
3048 	nskb->len += p->len;
3049 
3050 	*head = nskb;
3051 	nskb->next = p->next;
3052 	p->next = NULL;
3053 
3054 	p = nskb;
3055 
3056 merge:
3057 	delta_truesize = skb->truesize;
3058 	if (offset > headlen) {
3059 		unsigned int eat = offset - headlen;
3060 
3061 		skbinfo->frags[0].page_offset += eat;
3062 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3063 		skb->data_len -= eat;
3064 		skb->len -= eat;
3065 		offset = headlen;
3066 	}
3067 
3068 	__skb_pull(skb, offset);
3069 
3070 	NAPI_GRO_CB(p)->last->next = skb;
3071 	NAPI_GRO_CB(p)->last = skb;
3072 	skb_header_release(skb);
3073 
3074 done:
3075 	NAPI_GRO_CB(p)->count++;
3076 	p->data_len += len;
3077 	p->truesize += delta_truesize;
3078 	p->len += len;
3079 
3080 	NAPI_GRO_CB(skb)->same_flow = 1;
3081 	return 0;
3082 }
3083 EXPORT_SYMBOL_GPL(skb_gro_receive);
3084 
skb_init(void)3085 void __init skb_init(void)
3086 {
3087 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3088 					      sizeof(struct sk_buff),
3089 					      0,
3090 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3091 					      NULL);
3092 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3093 						(2*sizeof(struct sk_buff)) +
3094 						sizeof(atomic_t),
3095 						0,
3096 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3097 						NULL);
3098 }
3099 
3100 /**
3101  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3102  *	@skb: Socket buffer containing the buffers to be mapped
3103  *	@sg: The scatter-gather list to map into
3104  *	@offset: The offset into the buffer's contents to start mapping
3105  *	@len: Length of buffer space to be mapped
3106  *
3107  *	Fill the specified scatter-gather list with mappings/pointers into a
3108  *	region of the buffer space attached to a socket buffer.
3109  */
3110 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3111 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3112 {
3113 	int start = skb_headlen(skb);
3114 	int i, copy = start - offset;
3115 	struct sk_buff *frag_iter;
3116 	int elt = 0;
3117 
3118 	if (copy > 0) {
3119 		if (copy > len)
3120 			copy = len;
3121 		sg_set_buf(sg, skb->data + offset, copy);
3122 		elt++;
3123 		if ((len -= copy) == 0)
3124 			return elt;
3125 		offset += copy;
3126 	}
3127 
3128 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3129 		int end;
3130 
3131 		WARN_ON(start > offset + len);
3132 
3133 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3134 		if ((copy = end - offset) > 0) {
3135 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3136 
3137 			if (copy > len)
3138 				copy = len;
3139 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3140 					frag->page_offset+offset-start);
3141 			elt++;
3142 			if (!(len -= copy))
3143 				return elt;
3144 			offset += copy;
3145 		}
3146 		start = end;
3147 	}
3148 
3149 	skb_walk_frags(skb, frag_iter) {
3150 		int end;
3151 
3152 		WARN_ON(start > offset + len);
3153 
3154 		end = start + frag_iter->len;
3155 		if ((copy = end - offset) > 0) {
3156 			if (copy > len)
3157 				copy = len;
3158 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3159 					      copy);
3160 			if ((len -= copy) == 0)
3161 				return elt;
3162 			offset += copy;
3163 		}
3164 		start = end;
3165 	}
3166 	BUG_ON(len);
3167 	return elt;
3168 }
3169 
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3170 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3171 {
3172 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3173 
3174 	sg_mark_end(&sg[nsg - 1]);
3175 
3176 	return nsg;
3177 }
3178 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3179 
3180 /**
3181  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3182  *	@skb: The socket buffer to check.
3183  *	@tailbits: Amount of trailing space to be added
3184  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3185  *
3186  *	Make sure that the data buffers attached to a socket buffer are
3187  *	writable. If they are not, private copies are made of the data buffers
3188  *	and the socket buffer is set to use these instead.
3189  *
3190  *	If @tailbits is given, make sure that there is space to write @tailbits
3191  *	bytes of data beyond current end of socket buffer.  @trailer will be
3192  *	set to point to the skb in which this space begins.
3193  *
3194  *	The number of scatterlist elements required to completely map the
3195  *	COW'd and extended socket buffer will be returned.
3196  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)3197 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3198 {
3199 	int copyflag;
3200 	int elt;
3201 	struct sk_buff *skb1, **skb_p;
3202 
3203 	/* If skb is cloned or its head is paged, reallocate
3204 	 * head pulling out all the pages (pages are considered not writable
3205 	 * at the moment even if they are anonymous).
3206 	 */
3207 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3208 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3209 		return -ENOMEM;
3210 
3211 	/* Easy case. Most of packets will go this way. */
3212 	if (!skb_has_frag_list(skb)) {
3213 		/* A little of trouble, not enough of space for trailer.
3214 		 * This should not happen, when stack is tuned to generate
3215 		 * good frames. OK, on miss we reallocate and reserve even more
3216 		 * space, 128 bytes is fair. */
3217 
3218 		if (skb_tailroom(skb) < tailbits &&
3219 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3220 			return -ENOMEM;
3221 
3222 		/* Voila! */
3223 		*trailer = skb;
3224 		return 1;
3225 	}
3226 
3227 	/* Misery. We are in troubles, going to mincer fragments... */
3228 
3229 	elt = 1;
3230 	skb_p = &skb_shinfo(skb)->frag_list;
3231 	copyflag = 0;
3232 
3233 	while ((skb1 = *skb_p) != NULL) {
3234 		int ntail = 0;
3235 
3236 		/* The fragment is partially pulled by someone,
3237 		 * this can happen on input. Copy it and everything
3238 		 * after it. */
3239 
3240 		if (skb_shared(skb1))
3241 			copyflag = 1;
3242 
3243 		/* If the skb is the last, worry about trailer. */
3244 
3245 		if (skb1->next == NULL && tailbits) {
3246 			if (skb_shinfo(skb1)->nr_frags ||
3247 			    skb_has_frag_list(skb1) ||
3248 			    skb_tailroom(skb1) < tailbits)
3249 				ntail = tailbits + 128;
3250 		}
3251 
3252 		if (copyflag ||
3253 		    skb_cloned(skb1) ||
3254 		    ntail ||
3255 		    skb_shinfo(skb1)->nr_frags ||
3256 		    skb_has_frag_list(skb1)) {
3257 			struct sk_buff *skb2;
3258 
3259 			/* Fuck, we are miserable poor guys... */
3260 			if (ntail == 0)
3261 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3262 			else
3263 				skb2 = skb_copy_expand(skb1,
3264 						       skb_headroom(skb1),
3265 						       ntail,
3266 						       GFP_ATOMIC);
3267 			if (unlikely(skb2 == NULL))
3268 				return -ENOMEM;
3269 
3270 			if (skb1->sk)
3271 				skb_set_owner_w(skb2, skb1->sk);
3272 
3273 			/* Looking around. Are we still alive?
3274 			 * OK, link new skb, drop old one */
3275 
3276 			skb2->next = skb1->next;
3277 			*skb_p = skb2;
3278 			kfree_skb(skb1);
3279 			skb1 = skb2;
3280 		}
3281 		elt++;
3282 		*trailer = skb1;
3283 		skb_p = &skb1->next;
3284 	}
3285 
3286 	return elt;
3287 }
3288 EXPORT_SYMBOL_GPL(skb_cow_data);
3289 
sock_rmem_free(struct sk_buff * skb)3290 static void sock_rmem_free(struct sk_buff *skb)
3291 {
3292 	struct sock *sk = skb->sk;
3293 
3294 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3295 }
3296 
3297 /*
3298  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3299  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)3300 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3301 {
3302 	int len = skb->len;
3303 
3304 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3305 	    (unsigned int)sk->sk_rcvbuf)
3306 		return -ENOMEM;
3307 
3308 	skb_orphan(skb);
3309 	skb->sk = sk;
3310 	skb->destructor = sock_rmem_free;
3311 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3312 
3313 	/* before exiting rcu section, make sure dst is refcounted */
3314 	skb_dst_force(skb);
3315 
3316 	skb_queue_tail(&sk->sk_error_queue, skb);
3317 	if (!sock_flag(sk, SOCK_DEAD))
3318 		sk->sk_data_ready(sk, len);
3319 	return 0;
3320 }
3321 EXPORT_SYMBOL(sock_queue_err_skb);
3322 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)3323 void skb_tstamp_tx(struct sk_buff *orig_skb,
3324 		struct skb_shared_hwtstamps *hwtstamps)
3325 {
3326 	struct sock *sk = orig_skb->sk;
3327 	struct sock_exterr_skb *serr;
3328 	struct sk_buff *skb;
3329 	int err;
3330 
3331 	if (!sk)
3332 		return;
3333 
3334 	if (hwtstamps) {
3335 		*skb_hwtstamps(orig_skb) =
3336 			*hwtstamps;
3337 	} else {
3338 		/*
3339 		 * no hardware time stamps available,
3340 		 * so keep the shared tx_flags and only
3341 		 * store software time stamp
3342 		 */
3343 		orig_skb->tstamp = ktime_get_real();
3344 	}
3345 
3346 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3347 	if (!skb)
3348 		return;
3349 
3350 	serr = SKB_EXT_ERR(skb);
3351 	memset(serr, 0, sizeof(*serr));
3352 	serr->ee.ee_errno = ENOMSG;
3353 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3354 
3355 	err = sock_queue_err_skb(sk, skb);
3356 
3357 	if (err)
3358 		kfree_skb(skb);
3359 }
3360 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3361 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)3362 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3363 {
3364 	struct sock *sk = skb->sk;
3365 	struct sock_exterr_skb *serr;
3366 	int err;
3367 
3368 	skb->wifi_acked_valid = 1;
3369 	skb->wifi_acked = acked;
3370 
3371 	serr = SKB_EXT_ERR(skb);
3372 	memset(serr, 0, sizeof(*serr));
3373 	serr->ee.ee_errno = ENOMSG;
3374 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3375 
3376 	err = sock_queue_err_skb(sk, skb);
3377 	if (err)
3378 		kfree_skb(skb);
3379 }
3380 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3381 
3382 
3383 /**
3384  * skb_partial_csum_set - set up and verify partial csum values for packet
3385  * @skb: the skb to set
3386  * @start: the number of bytes after skb->data to start checksumming.
3387  * @off: the offset from start to place the checksum.
3388  *
3389  * For untrusted partially-checksummed packets, we need to make sure the values
3390  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3391  *
3392  * This function checks and sets those values and skb->ip_summed: if this
3393  * returns false you should drop the packet.
3394  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)3395 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3396 {
3397 	if (unlikely(start > skb_headlen(skb)) ||
3398 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3399 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3400 				     start, off, skb_headlen(skb));
3401 		return false;
3402 	}
3403 	skb->ip_summed = CHECKSUM_PARTIAL;
3404 	skb->csum_start = skb_headroom(skb) + start;
3405 	skb->csum_offset = off;
3406 	skb_set_transport_header(skb, start);
3407 	return true;
3408 }
3409 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3410 
__skb_warn_lro_forwarding(const struct sk_buff * skb)3411 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3412 {
3413 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3414 			     skb->dev->name);
3415 }
3416 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3417 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)3418 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3419 {
3420 	if (head_stolen) {
3421 		skb_release_head_state(skb);
3422 		kmem_cache_free(skbuff_head_cache, skb);
3423 	} else {
3424 		__kfree_skb(skb);
3425 	}
3426 }
3427 EXPORT_SYMBOL(kfree_skb_partial);
3428 
3429 /**
3430  * skb_try_coalesce - try to merge skb to prior one
3431  * @to: prior buffer
3432  * @from: buffer to add
3433  * @fragstolen: pointer to boolean
3434  * @delta_truesize: how much more was allocated than was requested
3435  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)3436 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3437 		      bool *fragstolen, int *delta_truesize)
3438 {
3439 	int i, delta, len = from->len;
3440 
3441 	*fragstolen = false;
3442 
3443 	if (skb_cloned(to))
3444 		return false;
3445 
3446 	if (len <= skb_tailroom(to)) {
3447 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3448 		*delta_truesize = 0;
3449 		return true;
3450 	}
3451 
3452 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3453 		return false;
3454 
3455 	if (skb_headlen(from) != 0) {
3456 		struct page *page;
3457 		unsigned int offset;
3458 
3459 		if (skb_shinfo(to)->nr_frags +
3460 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3461 			return false;
3462 
3463 		if (skb_head_is_locked(from))
3464 			return false;
3465 
3466 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3467 
3468 		page = virt_to_head_page(from->head);
3469 		offset = from->data - (unsigned char *)page_address(page);
3470 
3471 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3472 				   page, offset, skb_headlen(from));
3473 		*fragstolen = true;
3474 	} else {
3475 		if (skb_shinfo(to)->nr_frags +
3476 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3477 			return false;
3478 
3479 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3480 	}
3481 
3482 	WARN_ON_ONCE(delta < len);
3483 
3484 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3485 	       skb_shinfo(from)->frags,
3486 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3487 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3488 
3489 	if (!skb_cloned(from))
3490 		skb_shinfo(from)->nr_frags = 0;
3491 
3492 	/* if the skb is not cloned this does nothing
3493 	 * since we set nr_frags to 0.
3494 	 */
3495 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3496 		skb_frag_ref(from, i);
3497 
3498 	to->truesize += delta;
3499 	to->len += len;
3500 	to->data_len += len;
3501 
3502 	*delta_truesize = delta;
3503 	return true;
3504 }
3505 EXPORT_SYMBOL(skb_try_coalesce);
3506