1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
sock_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
sock_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
sock_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /**
108 * skb_panic - private function for out-of-line support
109 * @skb: buffer
110 * @sz: size
111 * @addr: address
112 * @msg: skb_over_panic or skb_under_panic
113 *
114 * Out-of-line support for skb_put() and skb_push().
115 * Called via the wrapper skb_over_panic() or skb_under_panic().
116 * Keep out of line to prevent kernel bloat.
117 * __builtin_return_address is not used because it is not always reliable.
118 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
120 const char msg[])
121 {
122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 msg, addr, skb->len, sz, skb->head, skb->data,
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
126 BUG();
127 }
128
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130 {
131 skb_panic(skb, sz, addr, __func__);
132 }
133
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
135 {
136 skb_panic(skb, sz, addr, __func__);
137 }
138
139 /*
140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141 * the caller if emergency pfmemalloc reserves are being used. If it is and
142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143 * may be used. Otherwise, the packet data may be discarded until enough
144 * memory is free
145 */
146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
148
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 unsigned long ip, bool *pfmemalloc)
151 {
152 void *obj;
153 bool ret_pfmemalloc = false;
154
155 /*
156 * Try a regular allocation, when that fails and we're not entitled
157 * to the reserves, fail.
158 */
159 obj = kmalloc_node_track_caller(size,
160 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 node);
162 if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 goto out;
164
165 /* Try again but now we are using pfmemalloc reserves */
166 ret_pfmemalloc = true;
167 obj = kmalloc_node_track_caller(size, flags, node);
168
169 out:
170 if (pfmemalloc)
171 *pfmemalloc = ret_pfmemalloc;
172
173 return obj;
174 }
175
176 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
177 * 'private' fields and also do memory statistics to find all the
178 * [BEEP] leaks.
179 *
180 */
181
__alloc_skb_head(gfp_t gfp_mask,int node)182 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
183 {
184 struct sk_buff *skb;
185
186 /* Get the HEAD */
187 skb = kmem_cache_alloc_node(skbuff_head_cache,
188 gfp_mask & ~__GFP_DMA, node);
189 if (!skb)
190 goto out;
191
192 /*
193 * Only clear those fields we need to clear, not those that we will
194 * actually initialise below. Hence, don't put any more fields after
195 * the tail pointer in struct sk_buff!
196 */
197 memset(skb, 0, offsetof(struct sk_buff, tail));
198 skb->head = NULL;
199 skb->truesize = sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
201
202 #ifdef NET_SKBUFF_DATA_USES_OFFSET
203 skb->mac_header = ~0U;
204 #endif
205 out:
206 return skb;
207 }
208
209 /**
210 * __alloc_skb - allocate a network buffer
211 * @size: size to allocate
212 * @gfp_mask: allocation mask
213 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
214 * instead of head cache and allocate a cloned (child) skb.
215 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
216 * allocations in case the data is required for writeback
217 * @node: numa node to allocate memory on
218 *
219 * Allocate a new &sk_buff. The returned buffer has no headroom and a
220 * tail room of at least size bytes. The object has a reference count
221 * of one. The return is the buffer. On a failure the return is %NULL.
222 *
223 * Buffers may only be allocated from interrupts using a @gfp_mask of
224 * %GFP_ATOMIC.
225 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)226 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
227 int flags, int node)
228 {
229 struct kmem_cache *cache;
230 struct skb_shared_info *shinfo;
231 struct sk_buff *skb;
232 u8 *data;
233 bool pfmemalloc;
234
235 cache = (flags & SKB_ALLOC_FCLONE)
236 ? skbuff_fclone_cache : skbuff_head_cache;
237
238 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
239 gfp_mask |= __GFP_MEMALLOC;
240
241 /* Get the HEAD */
242 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
243 if (!skb)
244 goto out;
245 prefetchw(skb);
246
247 /* We do our best to align skb_shared_info on a separate cache
248 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
249 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
250 * Both skb->head and skb_shared_info are cache line aligned.
251 */
252 size = SKB_DATA_ALIGN(size);
253 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
254 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
255 if (!data)
256 goto nodata;
257 /* kmalloc(size) might give us more room than requested.
258 * Put skb_shared_info exactly at the end of allocated zone,
259 * to allow max possible filling before reallocation.
260 */
261 size = SKB_WITH_OVERHEAD(ksize(data));
262 prefetchw(data + size);
263
264 /*
265 * Only clear those fields we need to clear, not those that we will
266 * actually initialise below. Hence, don't put any more fields after
267 * the tail pointer in struct sk_buff!
268 */
269 memset(skb, 0, offsetof(struct sk_buff, tail));
270 /* Account for allocated memory : skb + skb->head */
271 skb->truesize = SKB_TRUESIZE(size);
272 skb->pfmemalloc = pfmemalloc;
273 atomic_set(&skb->users, 1);
274 skb->head = data;
275 skb->data = data;
276 skb_reset_tail_pointer(skb);
277 skb->end = skb->tail + size;
278 #ifdef NET_SKBUFF_DATA_USES_OFFSET
279 skb->mac_header = ~0U;
280 skb->transport_header = ~0U;
281 #endif
282
283 /* make sure we initialize shinfo sequentially */
284 shinfo = skb_shinfo(skb);
285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 atomic_set(&shinfo->dataref, 1);
287 kmemcheck_annotate_variable(shinfo->destructor_arg);
288
289 if (flags & SKB_ALLOC_FCLONE) {
290 struct sk_buff *child = skb + 1;
291 atomic_t *fclone_ref = (atomic_t *) (child + 1);
292
293 kmemcheck_annotate_bitfield(child, flags1);
294 kmemcheck_annotate_bitfield(child, flags2);
295 skb->fclone = SKB_FCLONE_ORIG;
296 atomic_set(fclone_ref, 1);
297
298 child->fclone = SKB_FCLONE_UNAVAILABLE;
299 child->pfmemalloc = pfmemalloc;
300 }
301 out:
302 return skb;
303 nodata:
304 kmem_cache_free(cache, skb);
305 skb = NULL;
306 goto out;
307 }
308 EXPORT_SYMBOL(__alloc_skb);
309
310 /**
311 * build_skb - build a network buffer
312 * @data: data buffer provided by caller
313 * @frag_size: size of fragment, or 0 if head was kmalloced
314 *
315 * Allocate a new &sk_buff. Caller provides space holding head and
316 * skb_shared_info. @data must have been allocated by kmalloc()
317 * The return is the new skb buffer.
318 * On a failure the return is %NULL, and @data is not freed.
319 * Notes :
320 * Before IO, driver allocates only data buffer where NIC put incoming frame
321 * Driver should add room at head (NET_SKB_PAD) and
322 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
323 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
324 * before giving packet to stack.
325 * RX rings only contains data buffers, not full skbs.
326 */
build_skb(void * data,unsigned int frag_size)327 struct sk_buff *build_skb(void *data, unsigned int frag_size)
328 {
329 struct skb_shared_info *shinfo;
330 struct sk_buff *skb;
331 unsigned int size = frag_size ? : ksize(data);
332
333 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
334 if (!skb)
335 return NULL;
336
337 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
338
339 memset(skb, 0, offsetof(struct sk_buff, tail));
340 skb->truesize = SKB_TRUESIZE(size);
341 skb->head_frag = frag_size != 0;
342 atomic_set(&skb->users, 1);
343 skb->head = data;
344 skb->data = data;
345 skb_reset_tail_pointer(skb);
346 skb->end = skb->tail + size;
347 #ifdef NET_SKBUFF_DATA_USES_OFFSET
348 skb->mac_header = ~0U;
349 skb->transport_header = ~0U;
350 #endif
351
352 /* make sure we initialize shinfo sequentially */
353 shinfo = skb_shinfo(skb);
354 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
355 atomic_set(&shinfo->dataref, 1);
356 kmemcheck_annotate_variable(shinfo->destructor_arg);
357
358 return skb;
359 }
360 EXPORT_SYMBOL(build_skb);
361
362 struct netdev_alloc_cache {
363 struct page_frag frag;
364 /* we maintain a pagecount bias, so that we dont dirty cache line
365 * containing page->_count every time we allocate a fragment.
366 */
367 unsigned int pagecnt_bias;
368 };
369 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
370
__netdev_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)371 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
372 {
373 struct netdev_alloc_cache *nc;
374 void *data = NULL;
375 int order;
376 unsigned long flags;
377
378 local_irq_save(flags);
379 nc = &__get_cpu_var(netdev_alloc_cache);
380 if (unlikely(!nc->frag.page)) {
381 refill:
382 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
383 gfp_t gfp = gfp_mask;
384
385 if (order)
386 gfp |= __GFP_COMP | __GFP_NOWARN;
387 nc->frag.page = alloc_pages(gfp, order);
388 if (likely(nc->frag.page))
389 break;
390 if (--order < 0)
391 goto end;
392 }
393 nc->frag.size = PAGE_SIZE << order;
394 recycle:
395 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
396 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
397 nc->frag.offset = 0;
398 }
399
400 if (nc->frag.offset + fragsz > nc->frag.size) {
401 /* avoid unnecessary locked operations if possible */
402 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
403 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
404 goto recycle;
405 goto refill;
406 }
407
408 data = page_address(nc->frag.page) + nc->frag.offset;
409 nc->frag.offset += fragsz;
410 nc->pagecnt_bias--;
411 end:
412 local_irq_restore(flags);
413 return data;
414 }
415
416 /**
417 * netdev_alloc_frag - allocate a page fragment
418 * @fragsz: fragment size
419 *
420 * Allocates a frag from a page for receive buffer.
421 * Uses GFP_ATOMIC allocations.
422 */
netdev_alloc_frag(unsigned int fragsz)423 void *netdev_alloc_frag(unsigned int fragsz)
424 {
425 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
426 }
427 EXPORT_SYMBOL(netdev_alloc_frag);
428
429 /**
430 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
431 * @dev: network device to receive on
432 * @length: length to allocate
433 * @gfp_mask: get_free_pages mask, passed to alloc_skb
434 *
435 * Allocate a new &sk_buff and assign it a usage count of one. The
436 * buffer has unspecified headroom built in. Users should allocate
437 * the headroom they think they need without accounting for the
438 * built in space. The built in space is used for optimisations.
439 *
440 * %NULL is returned if there is no free memory.
441 */
__netdev_alloc_skb(struct net_device * dev,unsigned int length,gfp_t gfp_mask)442 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
443 unsigned int length, gfp_t gfp_mask)
444 {
445 struct sk_buff *skb = NULL;
446 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
447 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
448
449 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
450 void *data;
451
452 if (sk_memalloc_socks())
453 gfp_mask |= __GFP_MEMALLOC;
454
455 data = __netdev_alloc_frag(fragsz, gfp_mask);
456
457 if (likely(data)) {
458 skb = build_skb(data, fragsz);
459 if (unlikely(!skb))
460 put_page(virt_to_head_page(data));
461 }
462 } else {
463 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
464 SKB_ALLOC_RX, NUMA_NO_NODE);
465 }
466 if (likely(skb)) {
467 skb_reserve(skb, NET_SKB_PAD);
468 skb->dev = dev;
469 }
470 return skb;
471 }
472 EXPORT_SYMBOL(__netdev_alloc_skb);
473
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)474 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
475 int size, unsigned int truesize)
476 {
477 skb_fill_page_desc(skb, i, page, off, size);
478 skb->len += size;
479 skb->data_len += size;
480 skb->truesize += truesize;
481 }
482 EXPORT_SYMBOL(skb_add_rx_frag);
483
skb_drop_list(struct sk_buff ** listp)484 static void skb_drop_list(struct sk_buff **listp)
485 {
486 kfree_skb_list(*listp);
487 *listp = NULL;
488 }
489
skb_drop_fraglist(struct sk_buff * skb)490 static inline void skb_drop_fraglist(struct sk_buff *skb)
491 {
492 skb_drop_list(&skb_shinfo(skb)->frag_list);
493 }
494
skb_clone_fraglist(struct sk_buff * skb)495 static void skb_clone_fraglist(struct sk_buff *skb)
496 {
497 struct sk_buff *list;
498
499 skb_walk_frags(skb, list)
500 skb_get(list);
501 }
502
skb_free_head(struct sk_buff * skb)503 static void skb_free_head(struct sk_buff *skb)
504 {
505 if (skb->head_frag)
506 put_page(virt_to_head_page(skb->head));
507 else
508 kfree(skb->head);
509 }
510
skb_release_data(struct sk_buff * skb)511 static void skb_release_data(struct sk_buff *skb)
512 {
513 if (!skb->cloned ||
514 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
515 &skb_shinfo(skb)->dataref)) {
516 if (skb_shinfo(skb)->nr_frags) {
517 int i;
518 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
519 skb_frag_unref(skb, i);
520 }
521
522 /*
523 * If skb buf is from userspace, we need to notify the caller
524 * the lower device DMA has done;
525 */
526 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
527 struct ubuf_info *uarg;
528
529 uarg = skb_shinfo(skb)->destructor_arg;
530 if (uarg->callback)
531 uarg->callback(uarg, true);
532 }
533
534 if (skb_has_frag_list(skb))
535 skb_drop_fraglist(skb);
536
537 skb_free_head(skb);
538 }
539 }
540
541 /*
542 * Free an skbuff by memory without cleaning the state.
543 */
kfree_skbmem(struct sk_buff * skb)544 static void kfree_skbmem(struct sk_buff *skb)
545 {
546 struct sk_buff *other;
547 atomic_t *fclone_ref;
548
549 switch (skb->fclone) {
550 case SKB_FCLONE_UNAVAILABLE:
551 kmem_cache_free(skbuff_head_cache, skb);
552 break;
553
554 case SKB_FCLONE_ORIG:
555 fclone_ref = (atomic_t *) (skb + 2);
556 if (atomic_dec_and_test(fclone_ref))
557 kmem_cache_free(skbuff_fclone_cache, skb);
558 break;
559
560 case SKB_FCLONE_CLONE:
561 fclone_ref = (atomic_t *) (skb + 1);
562 other = skb - 1;
563
564 /* The clone portion is available for
565 * fast-cloning again.
566 */
567 skb->fclone = SKB_FCLONE_UNAVAILABLE;
568
569 if (atomic_dec_and_test(fclone_ref))
570 kmem_cache_free(skbuff_fclone_cache, other);
571 break;
572 }
573 }
574
skb_release_head_state(struct sk_buff * skb)575 static void skb_release_head_state(struct sk_buff *skb)
576 {
577 skb_dst_drop(skb);
578 #ifdef CONFIG_XFRM
579 secpath_put(skb->sp);
580 #endif
581 if (skb->destructor) {
582 WARN_ON(in_irq());
583 skb->destructor(skb);
584 }
585 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
586 nf_conntrack_put(skb->nfct);
587 #endif
588 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
589 nf_conntrack_put_reasm(skb->nfct_reasm);
590 #endif
591 #ifdef CONFIG_BRIDGE_NETFILTER
592 nf_bridge_put(skb->nf_bridge);
593 #endif
594 /* XXX: IS this still necessary? - JHS */
595 #ifdef CONFIG_NET_SCHED
596 skb->tc_index = 0;
597 #ifdef CONFIG_NET_CLS_ACT
598 skb->tc_verd = 0;
599 #endif
600 #endif
601 }
602
603 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)604 static void skb_release_all(struct sk_buff *skb)
605 {
606 skb_release_head_state(skb);
607 if (likely(skb->head))
608 skb_release_data(skb);
609 }
610
611 /**
612 * __kfree_skb - private function
613 * @skb: buffer
614 *
615 * Free an sk_buff. Release anything attached to the buffer.
616 * Clean the state. This is an internal helper function. Users should
617 * always call kfree_skb
618 */
619
__kfree_skb(struct sk_buff * skb)620 void __kfree_skb(struct sk_buff *skb)
621 {
622 skb_release_all(skb);
623 kfree_skbmem(skb);
624 }
625 EXPORT_SYMBOL(__kfree_skb);
626
627 /**
628 * kfree_skb - free an sk_buff
629 * @skb: buffer to free
630 *
631 * Drop a reference to the buffer and free it if the usage count has
632 * hit zero.
633 */
kfree_skb(struct sk_buff * skb)634 void kfree_skb(struct sk_buff *skb)
635 {
636 if (unlikely(!skb))
637 return;
638 if (likely(atomic_read(&skb->users) == 1))
639 smp_rmb();
640 else if (likely(!atomic_dec_and_test(&skb->users)))
641 return;
642 trace_kfree_skb(skb, __builtin_return_address(0));
643 __kfree_skb(skb);
644 }
645 EXPORT_SYMBOL(kfree_skb);
646
kfree_skb_list(struct sk_buff * segs)647 void kfree_skb_list(struct sk_buff *segs)
648 {
649 while (segs) {
650 struct sk_buff *next = segs->next;
651
652 kfree_skb(segs);
653 segs = next;
654 }
655 }
656 EXPORT_SYMBOL(kfree_skb_list);
657
658 /**
659 * skb_tx_error - report an sk_buff xmit error
660 * @skb: buffer that triggered an error
661 *
662 * Report xmit error if a device callback is tracking this skb.
663 * skb must be freed afterwards.
664 */
skb_tx_error(struct sk_buff * skb)665 void skb_tx_error(struct sk_buff *skb)
666 {
667 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
668 struct ubuf_info *uarg;
669
670 uarg = skb_shinfo(skb)->destructor_arg;
671 if (uarg->callback)
672 uarg->callback(uarg, false);
673 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
674 }
675 }
676 EXPORT_SYMBOL(skb_tx_error);
677
678 /**
679 * consume_skb - free an skbuff
680 * @skb: buffer to free
681 *
682 * Drop a ref to the buffer and free it if the usage count has hit zero
683 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
684 * is being dropped after a failure and notes that
685 */
consume_skb(struct sk_buff * skb)686 void consume_skb(struct sk_buff *skb)
687 {
688 if (unlikely(!skb))
689 return;
690 if (likely(atomic_read(&skb->users) == 1))
691 smp_rmb();
692 else if (likely(!atomic_dec_and_test(&skb->users)))
693 return;
694 trace_consume_skb(skb);
695 __kfree_skb(skb);
696 }
697 EXPORT_SYMBOL(consume_skb);
698
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)699 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
700 {
701 new->tstamp = old->tstamp;
702 new->dev = old->dev;
703 new->transport_header = old->transport_header;
704 new->network_header = old->network_header;
705 new->mac_header = old->mac_header;
706 new->inner_transport_header = old->inner_transport_header;
707 new->inner_network_header = old->inner_network_header;
708 new->inner_mac_header = old->inner_mac_header;
709 skb_dst_copy(new, old);
710 new->rxhash = old->rxhash;
711 new->ooo_okay = old->ooo_okay;
712 new->l4_rxhash = old->l4_rxhash;
713 new->no_fcs = old->no_fcs;
714 new->encapsulation = old->encapsulation;
715 #ifdef CONFIG_XFRM
716 new->sp = secpath_get(old->sp);
717 #endif
718 memcpy(new->cb, old->cb, sizeof(old->cb));
719 new->csum = old->csum;
720 new->local_df = old->local_df;
721 new->pkt_type = old->pkt_type;
722 new->ip_summed = old->ip_summed;
723 skb_copy_queue_mapping(new, old);
724 new->priority = old->priority;
725 #if IS_ENABLED(CONFIG_IP_VS)
726 new->ipvs_property = old->ipvs_property;
727 #endif
728 new->pfmemalloc = old->pfmemalloc;
729 new->protocol = old->protocol;
730 new->mark = old->mark;
731 new->skb_iif = old->skb_iif;
732 __nf_copy(new, old);
733 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
734 new->nf_trace = old->nf_trace;
735 #endif
736 #ifdef CONFIG_NET_SCHED
737 new->tc_index = old->tc_index;
738 #ifdef CONFIG_NET_CLS_ACT
739 new->tc_verd = old->tc_verd;
740 #endif
741 #endif
742 new->vlan_proto = old->vlan_proto;
743 new->vlan_tci = old->vlan_tci;
744
745 skb_copy_secmark(new, old);
746 }
747
748 /*
749 * You should not add any new code to this function. Add it to
750 * __copy_skb_header above instead.
751 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)752 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
753 {
754 #define C(x) n->x = skb->x
755
756 n->next = n->prev = NULL;
757 n->sk = NULL;
758 __copy_skb_header(n, skb);
759
760 C(len);
761 C(data_len);
762 C(mac_len);
763 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
764 n->cloned = 1;
765 n->nohdr = 0;
766 n->destructor = NULL;
767 C(tail);
768 C(end);
769 C(head);
770 C(head_frag);
771 C(data);
772 C(truesize);
773 atomic_set(&n->users, 1);
774
775 atomic_inc(&(skb_shinfo(skb)->dataref));
776 skb->cloned = 1;
777
778 return n;
779 #undef C
780 }
781
782 /**
783 * skb_morph - morph one skb into another
784 * @dst: the skb to receive the contents
785 * @src: the skb to supply the contents
786 *
787 * This is identical to skb_clone except that the target skb is
788 * supplied by the user.
789 *
790 * The target skb is returned upon exit.
791 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)792 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
793 {
794 skb_release_all(dst);
795 return __skb_clone(dst, src);
796 }
797 EXPORT_SYMBOL_GPL(skb_morph);
798
799 /**
800 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
801 * @skb: the skb to modify
802 * @gfp_mask: allocation priority
803 *
804 * This must be called on SKBTX_DEV_ZEROCOPY skb.
805 * It will copy all frags into kernel and drop the reference
806 * to userspace pages.
807 *
808 * If this function is called from an interrupt gfp_mask() must be
809 * %GFP_ATOMIC.
810 *
811 * Returns 0 on success or a negative error code on failure
812 * to allocate kernel memory to copy to.
813 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)814 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
815 {
816 int i;
817 int num_frags = skb_shinfo(skb)->nr_frags;
818 struct page *page, *head = NULL;
819 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
820
821 for (i = 0; i < num_frags; i++) {
822 u8 *vaddr;
823 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
824
825 page = alloc_page(gfp_mask);
826 if (!page) {
827 while (head) {
828 struct page *next = (struct page *)head->private;
829 put_page(head);
830 head = next;
831 }
832 return -ENOMEM;
833 }
834 vaddr = kmap_atomic(skb_frag_page(f));
835 memcpy(page_address(page),
836 vaddr + f->page_offset, skb_frag_size(f));
837 kunmap_atomic(vaddr);
838 page->private = (unsigned long)head;
839 head = page;
840 }
841
842 /* skb frags release userspace buffers */
843 for (i = 0; i < num_frags; i++)
844 skb_frag_unref(skb, i);
845
846 uarg->callback(uarg, false);
847
848 /* skb frags point to kernel buffers */
849 for (i = num_frags - 1; i >= 0; i--) {
850 __skb_fill_page_desc(skb, i, head, 0,
851 skb_shinfo(skb)->frags[i].size);
852 head = (struct page *)head->private;
853 }
854
855 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
856 return 0;
857 }
858 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
859
860 /**
861 * skb_clone - duplicate an sk_buff
862 * @skb: buffer to clone
863 * @gfp_mask: allocation priority
864 *
865 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
866 * copies share the same packet data but not structure. The new
867 * buffer has a reference count of 1. If the allocation fails the
868 * function returns %NULL otherwise the new buffer is returned.
869 *
870 * If this function is called from an interrupt gfp_mask() must be
871 * %GFP_ATOMIC.
872 */
873
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)874 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
875 {
876 struct sk_buff *n;
877
878 if (skb_orphan_frags(skb, gfp_mask))
879 return NULL;
880
881 n = skb + 1;
882 if (skb->fclone == SKB_FCLONE_ORIG &&
883 n->fclone == SKB_FCLONE_UNAVAILABLE) {
884 atomic_t *fclone_ref = (atomic_t *) (n + 1);
885 n->fclone = SKB_FCLONE_CLONE;
886 atomic_inc(fclone_ref);
887 } else {
888 if (skb_pfmemalloc(skb))
889 gfp_mask |= __GFP_MEMALLOC;
890
891 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
892 if (!n)
893 return NULL;
894
895 kmemcheck_annotate_bitfield(n, flags1);
896 kmemcheck_annotate_bitfield(n, flags2);
897 n->fclone = SKB_FCLONE_UNAVAILABLE;
898 }
899
900 return __skb_clone(n, skb);
901 }
902 EXPORT_SYMBOL(skb_clone);
903
skb_headers_offset_update(struct sk_buff * skb,int off)904 static void skb_headers_offset_update(struct sk_buff *skb, int off)
905 {
906 /* {transport,network,mac}_header and tail are relative to skb->head */
907 skb->transport_header += off;
908 skb->network_header += off;
909 if (skb_mac_header_was_set(skb))
910 skb->mac_header += off;
911 skb->inner_transport_header += off;
912 skb->inner_network_header += off;
913 skb->inner_mac_header += off;
914 }
915
copy_skb_header(struct sk_buff * new,const struct sk_buff * old)916 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
917 {
918 #ifndef NET_SKBUFF_DATA_USES_OFFSET
919 /*
920 * Shift between the two data areas in bytes
921 */
922 unsigned long offset = new->data - old->data;
923 #endif
924
925 __copy_skb_header(new, old);
926
927 #ifndef NET_SKBUFF_DATA_USES_OFFSET
928 skb_headers_offset_update(new, offset);
929 #endif
930 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
931 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
932 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
933 }
934
skb_alloc_rx_flag(const struct sk_buff * skb)935 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
936 {
937 if (skb_pfmemalloc(skb))
938 return SKB_ALLOC_RX;
939 return 0;
940 }
941
942 /**
943 * skb_copy - create private copy of an sk_buff
944 * @skb: buffer to copy
945 * @gfp_mask: allocation priority
946 *
947 * Make a copy of both an &sk_buff and its data. This is used when the
948 * caller wishes to modify the data and needs a private copy of the
949 * data to alter. Returns %NULL on failure or the pointer to the buffer
950 * on success. The returned buffer has a reference count of 1.
951 *
952 * As by-product this function converts non-linear &sk_buff to linear
953 * one, so that &sk_buff becomes completely private and caller is allowed
954 * to modify all the data of returned buffer. This means that this
955 * function is not recommended for use in circumstances when only
956 * header is going to be modified. Use pskb_copy() instead.
957 */
958
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)959 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
960 {
961 int headerlen = skb_headroom(skb);
962 unsigned int size = skb_end_offset(skb) + skb->data_len;
963 struct sk_buff *n = __alloc_skb(size, gfp_mask,
964 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
965
966 if (!n)
967 return NULL;
968
969 /* Set the data pointer */
970 skb_reserve(n, headerlen);
971 /* Set the tail pointer and length */
972 skb_put(n, skb->len);
973
974 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
975 BUG();
976
977 copy_skb_header(n, skb);
978 return n;
979 }
980 EXPORT_SYMBOL(skb_copy);
981
982 /**
983 * __pskb_copy - create copy of an sk_buff with private head.
984 * @skb: buffer to copy
985 * @headroom: headroom of new skb
986 * @gfp_mask: allocation priority
987 *
988 * Make a copy of both an &sk_buff and part of its data, located
989 * in header. Fragmented data remain shared. This is used when
990 * the caller wishes to modify only header of &sk_buff and needs
991 * private copy of the header to alter. Returns %NULL on failure
992 * or the pointer to the buffer on success.
993 * The returned buffer has a reference count of 1.
994 */
995
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)996 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
997 {
998 unsigned int size = skb_headlen(skb) + headroom;
999 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1000 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1001
1002 if (!n)
1003 goto out;
1004
1005 /* Set the data pointer */
1006 skb_reserve(n, headroom);
1007 /* Set the tail pointer and length */
1008 skb_put(n, skb_headlen(skb));
1009 /* Copy the bytes */
1010 skb_copy_from_linear_data(skb, n->data, n->len);
1011
1012 n->truesize += skb->data_len;
1013 n->data_len = skb->data_len;
1014 n->len = skb->len;
1015
1016 if (skb_shinfo(skb)->nr_frags) {
1017 int i;
1018
1019 if (skb_orphan_frags(skb, gfp_mask)) {
1020 kfree_skb(n);
1021 n = NULL;
1022 goto out;
1023 }
1024 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1025 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1026 skb_frag_ref(skb, i);
1027 }
1028 skb_shinfo(n)->nr_frags = i;
1029 }
1030
1031 if (skb_has_frag_list(skb)) {
1032 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1033 skb_clone_fraglist(n);
1034 }
1035
1036 copy_skb_header(n, skb);
1037 out:
1038 return n;
1039 }
1040 EXPORT_SYMBOL(__pskb_copy);
1041
1042 /**
1043 * pskb_expand_head - reallocate header of &sk_buff
1044 * @skb: buffer to reallocate
1045 * @nhead: room to add at head
1046 * @ntail: room to add at tail
1047 * @gfp_mask: allocation priority
1048 *
1049 * Expands (or creates identical copy, if &nhead and &ntail are zero)
1050 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1051 * reference count of 1. Returns zero in the case of success or error,
1052 * if expansion failed. In the last case, &sk_buff is not changed.
1053 *
1054 * All the pointers pointing into skb header may change and must be
1055 * reloaded after call to this function.
1056 */
1057
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1058 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1059 gfp_t gfp_mask)
1060 {
1061 int i;
1062 u8 *data;
1063 int size = nhead + skb_end_offset(skb) + ntail;
1064 long off;
1065
1066 BUG_ON(nhead < 0);
1067
1068 if (skb_shared(skb))
1069 BUG();
1070
1071 size = SKB_DATA_ALIGN(size);
1072
1073 if (skb_pfmemalloc(skb))
1074 gfp_mask |= __GFP_MEMALLOC;
1075 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1076 gfp_mask, NUMA_NO_NODE, NULL);
1077 if (!data)
1078 goto nodata;
1079 size = SKB_WITH_OVERHEAD(ksize(data));
1080
1081 /* Copy only real data... and, alas, header. This should be
1082 * optimized for the cases when header is void.
1083 */
1084 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1085
1086 memcpy((struct skb_shared_info *)(data + size),
1087 skb_shinfo(skb),
1088 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1089
1090 /*
1091 * if shinfo is shared we must drop the old head gracefully, but if it
1092 * is not we can just drop the old head and let the existing refcount
1093 * be since all we did is relocate the values
1094 */
1095 if (skb_cloned(skb)) {
1096 /* copy this zero copy skb frags */
1097 if (skb_orphan_frags(skb, gfp_mask))
1098 goto nofrags;
1099 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1100 skb_frag_ref(skb, i);
1101
1102 if (skb_has_frag_list(skb))
1103 skb_clone_fraglist(skb);
1104
1105 skb_release_data(skb);
1106 } else {
1107 skb_free_head(skb);
1108 }
1109 off = (data + nhead) - skb->head;
1110
1111 skb->head = data;
1112 skb->head_frag = 0;
1113 skb->data += off;
1114 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1115 skb->end = size;
1116 off = nhead;
1117 #else
1118 skb->end = skb->head + size;
1119 #endif
1120 skb->tail += off;
1121 skb_headers_offset_update(skb, off);
1122 /* Only adjust this if it actually is csum_start rather than csum */
1123 if (skb->ip_summed == CHECKSUM_PARTIAL)
1124 skb->csum_start += nhead;
1125 skb->cloned = 0;
1126 skb->hdr_len = 0;
1127 skb->nohdr = 0;
1128 atomic_set(&skb_shinfo(skb)->dataref, 1);
1129 return 0;
1130
1131 nofrags:
1132 kfree(data);
1133 nodata:
1134 return -ENOMEM;
1135 }
1136 EXPORT_SYMBOL(pskb_expand_head);
1137
1138 /* Make private copy of skb with writable head and some headroom */
1139
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1140 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1141 {
1142 struct sk_buff *skb2;
1143 int delta = headroom - skb_headroom(skb);
1144
1145 if (delta <= 0)
1146 skb2 = pskb_copy(skb, GFP_ATOMIC);
1147 else {
1148 skb2 = skb_clone(skb, GFP_ATOMIC);
1149 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1150 GFP_ATOMIC)) {
1151 kfree_skb(skb2);
1152 skb2 = NULL;
1153 }
1154 }
1155 return skb2;
1156 }
1157 EXPORT_SYMBOL(skb_realloc_headroom);
1158
1159 /**
1160 * skb_copy_expand - copy and expand sk_buff
1161 * @skb: buffer to copy
1162 * @newheadroom: new free bytes at head
1163 * @newtailroom: new free bytes at tail
1164 * @gfp_mask: allocation priority
1165 *
1166 * Make a copy of both an &sk_buff and its data and while doing so
1167 * allocate additional space.
1168 *
1169 * This is used when the caller wishes to modify the data and needs a
1170 * private copy of the data to alter as well as more space for new fields.
1171 * Returns %NULL on failure or the pointer to the buffer
1172 * on success. The returned buffer has a reference count of 1.
1173 *
1174 * You must pass %GFP_ATOMIC as the allocation priority if this function
1175 * is called from an interrupt.
1176 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1177 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1178 int newheadroom, int newtailroom,
1179 gfp_t gfp_mask)
1180 {
1181 /*
1182 * Allocate the copy buffer
1183 */
1184 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1185 gfp_mask, skb_alloc_rx_flag(skb),
1186 NUMA_NO_NODE);
1187 int oldheadroom = skb_headroom(skb);
1188 int head_copy_len, head_copy_off;
1189 int off;
1190
1191 if (!n)
1192 return NULL;
1193
1194 skb_reserve(n, newheadroom);
1195
1196 /* Set the tail pointer and length */
1197 skb_put(n, skb->len);
1198
1199 head_copy_len = oldheadroom;
1200 head_copy_off = 0;
1201 if (newheadroom <= head_copy_len)
1202 head_copy_len = newheadroom;
1203 else
1204 head_copy_off = newheadroom - head_copy_len;
1205
1206 /* Copy the linear header and data. */
1207 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1208 skb->len + head_copy_len))
1209 BUG();
1210
1211 copy_skb_header(n, skb);
1212
1213 off = newheadroom - oldheadroom;
1214 if (n->ip_summed == CHECKSUM_PARTIAL)
1215 n->csum_start += off;
1216 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1217 skb_headers_offset_update(n, off);
1218 #endif
1219
1220 return n;
1221 }
1222 EXPORT_SYMBOL(skb_copy_expand);
1223
1224 /**
1225 * skb_pad - zero pad the tail of an skb
1226 * @skb: buffer to pad
1227 * @pad: space to pad
1228 *
1229 * Ensure that a buffer is followed by a padding area that is zero
1230 * filled. Used by network drivers which may DMA or transfer data
1231 * beyond the buffer end onto the wire.
1232 *
1233 * May return error in out of memory cases. The skb is freed on error.
1234 */
1235
skb_pad(struct sk_buff * skb,int pad)1236 int skb_pad(struct sk_buff *skb, int pad)
1237 {
1238 int err;
1239 int ntail;
1240
1241 /* If the skbuff is non linear tailroom is always zero.. */
1242 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1243 memset(skb->data+skb->len, 0, pad);
1244 return 0;
1245 }
1246
1247 ntail = skb->data_len + pad - (skb->end - skb->tail);
1248 if (likely(skb_cloned(skb) || ntail > 0)) {
1249 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1250 if (unlikely(err))
1251 goto free_skb;
1252 }
1253
1254 /* FIXME: The use of this function with non-linear skb's really needs
1255 * to be audited.
1256 */
1257 err = skb_linearize(skb);
1258 if (unlikely(err))
1259 goto free_skb;
1260
1261 memset(skb->data + skb->len, 0, pad);
1262 return 0;
1263
1264 free_skb:
1265 kfree_skb(skb);
1266 return err;
1267 }
1268 EXPORT_SYMBOL(skb_pad);
1269
1270 /**
1271 * skb_put - add data to a buffer
1272 * @skb: buffer to use
1273 * @len: amount of data to add
1274 *
1275 * This function extends the used data area of the buffer. If this would
1276 * exceed the total buffer size the kernel will panic. A pointer to the
1277 * first byte of the extra data is returned.
1278 */
skb_put(struct sk_buff * skb,unsigned int len)1279 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1280 {
1281 unsigned char *tmp = skb_tail_pointer(skb);
1282 SKB_LINEAR_ASSERT(skb);
1283 skb->tail += len;
1284 skb->len += len;
1285 if (unlikely(skb->tail > skb->end))
1286 skb_over_panic(skb, len, __builtin_return_address(0));
1287 return tmp;
1288 }
1289 EXPORT_SYMBOL(skb_put);
1290
1291 /**
1292 * skb_push - add data to the start of a buffer
1293 * @skb: buffer to use
1294 * @len: amount of data to add
1295 *
1296 * This function extends the used data area of the buffer at the buffer
1297 * start. If this would exceed the total buffer headroom the kernel will
1298 * panic. A pointer to the first byte of the extra data is returned.
1299 */
skb_push(struct sk_buff * skb,unsigned int len)1300 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1301 {
1302 skb->data -= len;
1303 skb->len += len;
1304 if (unlikely(skb->data<skb->head))
1305 skb_under_panic(skb, len, __builtin_return_address(0));
1306 return skb->data;
1307 }
1308 EXPORT_SYMBOL(skb_push);
1309
1310 /**
1311 * skb_pull - remove data from the start of a buffer
1312 * @skb: buffer to use
1313 * @len: amount of data to remove
1314 *
1315 * This function removes data from the start of a buffer, returning
1316 * the memory to the headroom. A pointer to the next data in the buffer
1317 * is returned. Once the data has been pulled future pushes will overwrite
1318 * the old data.
1319 */
skb_pull(struct sk_buff * skb,unsigned int len)1320 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1321 {
1322 return skb_pull_inline(skb, len);
1323 }
1324 EXPORT_SYMBOL(skb_pull);
1325
1326 /**
1327 * skb_trim - remove end from a buffer
1328 * @skb: buffer to alter
1329 * @len: new length
1330 *
1331 * Cut the length of a buffer down by removing data from the tail. If
1332 * the buffer is already under the length specified it is not modified.
1333 * The skb must be linear.
1334 */
skb_trim(struct sk_buff * skb,unsigned int len)1335 void skb_trim(struct sk_buff *skb, unsigned int len)
1336 {
1337 if (skb->len > len)
1338 __skb_trim(skb, len);
1339 }
1340 EXPORT_SYMBOL(skb_trim);
1341
1342 /* Trims skb to length len. It can change skb pointers.
1343 */
1344
___pskb_trim(struct sk_buff * skb,unsigned int len)1345 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1346 {
1347 struct sk_buff **fragp;
1348 struct sk_buff *frag;
1349 int offset = skb_headlen(skb);
1350 int nfrags = skb_shinfo(skb)->nr_frags;
1351 int i;
1352 int err;
1353
1354 if (skb_cloned(skb) &&
1355 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1356 return err;
1357
1358 i = 0;
1359 if (offset >= len)
1360 goto drop_pages;
1361
1362 for (; i < nfrags; i++) {
1363 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1364
1365 if (end < len) {
1366 offset = end;
1367 continue;
1368 }
1369
1370 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1371
1372 drop_pages:
1373 skb_shinfo(skb)->nr_frags = i;
1374
1375 for (; i < nfrags; i++)
1376 skb_frag_unref(skb, i);
1377
1378 if (skb_has_frag_list(skb))
1379 skb_drop_fraglist(skb);
1380 goto done;
1381 }
1382
1383 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1384 fragp = &frag->next) {
1385 int end = offset + frag->len;
1386
1387 if (skb_shared(frag)) {
1388 struct sk_buff *nfrag;
1389
1390 nfrag = skb_clone(frag, GFP_ATOMIC);
1391 if (unlikely(!nfrag))
1392 return -ENOMEM;
1393
1394 nfrag->next = frag->next;
1395 consume_skb(frag);
1396 frag = nfrag;
1397 *fragp = frag;
1398 }
1399
1400 if (end < len) {
1401 offset = end;
1402 continue;
1403 }
1404
1405 if (end > len &&
1406 unlikely((err = pskb_trim(frag, len - offset))))
1407 return err;
1408
1409 if (frag->next)
1410 skb_drop_list(&frag->next);
1411 break;
1412 }
1413
1414 done:
1415 if (len > skb_headlen(skb)) {
1416 skb->data_len -= skb->len - len;
1417 skb->len = len;
1418 } else {
1419 skb->len = len;
1420 skb->data_len = 0;
1421 skb_set_tail_pointer(skb, len);
1422 }
1423
1424 return 0;
1425 }
1426 EXPORT_SYMBOL(___pskb_trim);
1427
1428 /**
1429 * __pskb_pull_tail - advance tail of skb header
1430 * @skb: buffer to reallocate
1431 * @delta: number of bytes to advance tail
1432 *
1433 * The function makes a sense only on a fragmented &sk_buff,
1434 * it expands header moving its tail forward and copying necessary
1435 * data from fragmented part.
1436 *
1437 * &sk_buff MUST have reference count of 1.
1438 *
1439 * Returns %NULL (and &sk_buff does not change) if pull failed
1440 * or value of new tail of skb in the case of success.
1441 *
1442 * All the pointers pointing into skb header may change and must be
1443 * reloaded after call to this function.
1444 */
1445
1446 /* Moves tail of skb head forward, copying data from fragmented part,
1447 * when it is necessary.
1448 * 1. It may fail due to malloc failure.
1449 * 2. It may change skb pointers.
1450 *
1451 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1452 */
__pskb_pull_tail(struct sk_buff * skb,int delta)1453 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1454 {
1455 /* If skb has not enough free space at tail, get new one
1456 * plus 128 bytes for future expansions. If we have enough
1457 * room at tail, reallocate without expansion only if skb is cloned.
1458 */
1459 int i, k, eat = (skb->tail + delta) - skb->end;
1460
1461 if (eat > 0 || skb_cloned(skb)) {
1462 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1463 GFP_ATOMIC))
1464 return NULL;
1465 }
1466
1467 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1468 BUG();
1469
1470 /* Optimization: no fragments, no reasons to preestimate
1471 * size of pulled pages. Superb.
1472 */
1473 if (!skb_has_frag_list(skb))
1474 goto pull_pages;
1475
1476 /* Estimate size of pulled pages. */
1477 eat = delta;
1478 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1479 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1480
1481 if (size >= eat)
1482 goto pull_pages;
1483 eat -= size;
1484 }
1485
1486 /* If we need update frag list, we are in troubles.
1487 * Certainly, it possible to add an offset to skb data,
1488 * but taking into account that pulling is expected to
1489 * be very rare operation, it is worth to fight against
1490 * further bloating skb head and crucify ourselves here instead.
1491 * Pure masohism, indeed. 8)8)
1492 */
1493 if (eat) {
1494 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1495 struct sk_buff *clone = NULL;
1496 struct sk_buff *insp = NULL;
1497
1498 do {
1499 BUG_ON(!list);
1500
1501 if (list->len <= eat) {
1502 /* Eaten as whole. */
1503 eat -= list->len;
1504 list = list->next;
1505 insp = list;
1506 } else {
1507 /* Eaten partially. */
1508
1509 if (skb_shared(list)) {
1510 /* Sucks! We need to fork list. :-( */
1511 clone = skb_clone(list, GFP_ATOMIC);
1512 if (!clone)
1513 return NULL;
1514 insp = list->next;
1515 list = clone;
1516 } else {
1517 /* This may be pulled without
1518 * problems. */
1519 insp = list;
1520 }
1521 if (!pskb_pull(list, eat)) {
1522 kfree_skb(clone);
1523 return NULL;
1524 }
1525 break;
1526 }
1527 } while (eat);
1528
1529 /* Free pulled out fragments. */
1530 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1531 skb_shinfo(skb)->frag_list = list->next;
1532 kfree_skb(list);
1533 }
1534 /* And insert new clone at head. */
1535 if (clone) {
1536 clone->next = list;
1537 skb_shinfo(skb)->frag_list = clone;
1538 }
1539 }
1540 /* Success! Now we may commit changes to skb data. */
1541
1542 pull_pages:
1543 eat = delta;
1544 k = 0;
1545 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1546 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1547
1548 if (size <= eat) {
1549 skb_frag_unref(skb, i);
1550 eat -= size;
1551 } else {
1552 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1553 if (eat) {
1554 skb_shinfo(skb)->frags[k].page_offset += eat;
1555 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1556 eat = 0;
1557 }
1558 k++;
1559 }
1560 }
1561 skb_shinfo(skb)->nr_frags = k;
1562
1563 skb->tail += delta;
1564 skb->data_len -= delta;
1565
1566 return skb_tail_pointer(skb);
1567 }
1568 EXPORT_SYMBOL(__pskb_pull_tail);
1569
1570 /**
1571 * skb_copy_bits - copy bits from skb to kernel buffer
1572 * @skb: source skb
1573 * @offset: offset in source
1574 * @to: destination buffer
1575 * @len: number of bytes to copy
1576 *
1577 * Copy the specified number of bytes from the source skb to the
1578 * destination buffer.
1579 *
1580 * CAUTION ! :
1581 * If its prototype is ever changed,
1582 * check arch/{*}/net/{*}.S files,
1583 * since it is called from BPF assembly code.
1584 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1585 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1586 {
1587 int start = skb_headlen(skb);
1588 struct sk_buff *frag_iter;
1589 int i, copy;
1590
1591 if (offset > (int)skb->len - len)
1592 goto fault;
1593
1594 /* Copy header. */
1595 if ((copy = start - offset) > 0) {
1596 if (copy > len)
1597 copy = len;
1598 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1599 if ((len -= copy) == 0)
1600 return 0;
1601 offset += copy;
1602 to += copy;
1603 }
1604
1605 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1606 int end;
1607 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1608
1609 WARN_ON(start > offset + len);
1610
1611 end = start + skb_frag_size(f);
1612 if ((copy = end - offset) > 0) {
1613 u8 *vaddr;
1614
1615 if (copy > len)
1616 copy = len;
1617
1618 vaddr = kmap_atomic(skb_frag_page(f));
1619 memcpy(to,
1620 vaddr + f->page_offset + offset - start,
1621 copy);
1622 kunmap_atomic(vaddr);
1623
1624 if ((len -= copy) == 0)
1625 return 0;
1626 offset += copy;
1627 to += copy;
1628 }
1629 start = end;
1630 }
1631
1632 skb_walk_frags(skb, frag_iter) {
1633 int end;
1634
1635 WARN_ON(start > offset + len);
1636
1637 end = start + frag_iter->len;
1638 if ((copy = end - offset) > 0) {
1639 if (copy > len)
1640 copy = len;
1641 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1642 goto fault;
1643 if ((len -= copy) == 0)
1644 return 0;
1645 offset += copy;
1646 to += copy;
1647 }
1648 start = end;
1649 }
1650
1651 if (!len)
1652 return 0;
1653
1654 fault:
1655 return -EFAULT;
1656 }
1657 EXPORT_SYMBOL(skb_copy_bits);
1658
1659 /*
1660 * Callback from splice_to_pipe(), if we need to release some pages
1661 * at the end of the spd in case we error'ed out in filling the pipe.
1662 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)1663 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1664 {
1665 put_page(spd->pages[i]);
1666 }
1667
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)1668 static struct page *linear_to_page(struct page *page, unsigned int *len,
1669 unsigned int *offset,
1670 struct sock *sk)
1671 {
1672 struct page_frag *pfrag = sk_page_frag(sk);
1673
1674 if (!sk_page_frag_refill(sk, pfrag))
1675 return NULL;
1676
1677 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1678
1679 memcpy(page_address(pfrag->page) + pfrag->offset,
1680 page_address(page) + *offset, *len);
1681 *offset = pfrag->offset;
1682 pfrag->offset += *len;
1683
1684 return pfrag->page;
1685 }
1686
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)1687 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1688 struct page *page,
1689 unsigned int offset)
1690 {
1691 return spd->nr_pages &&
1692 spd->pages[spd->nr_pages - 1] == page &&
1693 (spd->partial[spd->nr_pages - 1].offset +
1694 spd->partial[spd->nr_pages - 1].len == offset);
1695 }
1696
1697 /*
1698 * Fill page/offset/length into spd, if it can hold more pages.
1699 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)1700 static bool spd_fill_page(struct splice_pipe_desc *spd,
1701 struct pipe_inode_info *pipe, struct page *page,
1702 unsigned int *len, unsigned int offset,
1703 bool linear,
1704 struct sock *sk)
1705 {
1706 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1707 return true;
1708
1709 if (linear) {
1710 page = linear_to_page(page, len, &offset, sk);
1711 if (!page)
1712 return true;
1713 }
1714 if (spd_can_coalesce(spd, page, offset)) {
1715 spd->partial[spd->nr_pages - 1].len += *len;
1716 return false;
1717 }
1718 get_page(page);
1719 spd->pages[spd->nr_pages] = page;
1720 spd->partial[spd->nr_pages].len = *len;
1721 spd->partial[spd->nr_pages].offset = offset;
1722 spd->nr_pages++;
1723
1724 return false;
1725 }
1726
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)1727 static bool __splice_segment(struct page *page, unsigned int poff,
1728 unsigned int plen, unsigned int *off,
1729 unsigned int *len,
1730 struct splice_pipe_desc *spd, bool linear,
1731 struct sock *sk,
1732 struct pipe_inode_info *pipe)
1733 {
1734 if (!*len)
1735 return true;
1736
1737 /* skip this segment if already processed */
1738 if (*off >= plen) {
1739 *off -= plen;
1740 return false;
1741 }
1742
1743 /* ignore any bits we already processed */
1744 poff += *off;
1745 plen -= *off;
1746 *off = 0;
1747
1748 do {
1749 unsigned int flen = min(*len, plen);
1750
1751 if (spd_fill_page(spd, pipe, page, &flen, poff,
1752 linear, sk))
1753 return true;
1754 poff += flen;
1755 plen -= flen;
1756 *len -= flen;
1757 } while (*len && plen);
1758
1759 return false;
1760 }
1761
1762 /*
1763 * Map linear and fragment data from the skb to spd. It reports true if the
1764 * pipe is full or if we already spliced the requested length.
1765 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)1766 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1767 unsigned int *offset, unsigned int *len,
1768 struct splice_pipe_desc *spd, struct sock *sk)
1769 {
1770 int seg;
1771
1772 /* map the linear part :
1773 * If skb->head_frag is set, this 'linear' part is backed by a
1774 * fragment, and if the head is not shared with any clones then
1775 * we can avoid a copy since we own the head portion of this page.
1776 */
1777 if (__splice_segment(virt_to_page(skb->data),
1778 (unsigned long) skb->data & (PAGE_SIZE - 1),
1779 skb_headlen(skb),
1780 offset, len, spd,
1781 skb_head_is_locked(skb),
1782 sk, pipe))
1783 return true;
1784
1785 /*
1786 * then map the fragments
1787 */
1788 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1789 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1790
1791 if (__splice_segment(skb_frag_page(f),
1792 f->page_offset, skb_frag_size(f),
1793 offset, len, spd, false, sk, pipe))
1794 return true;
1795 }
1796
1797 return false;
1798 }
1799
1800 /*
1801 * Map data from the skb to a pipe. Should handle both the linear part,
1802 * the fragments, and the frag list. It does NOT handle frag lists within
1803 * the frag list, if such a thing exists. We'd probably need to recurse to
1804 * handle that cleanly.
1805 */
skb_splice_bits(struct sk_buff * skb,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)1806 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1807 struct pipe_inode_info *pipe, unsigned int tlen,
1808 unsigned int flags)
1809 {
1810 struct partial_page partial[MAX_SKB_FRAGS];
1811 struct page *pages[MAX_SKB_FRAGS];
1812 struct splice_pipe_desc spd = {
1813 .pages = pages,
1814 .partial = partial,
1815 .nr_pages_max = MAX_SKB_FRAGS,
1816 .flags = flags,
1817 .ops = &sock_pipe_buf_ops,
1818 .spd_release = sock_spd_release,
1819 };
1820 struct sk_buff *frag_iter;
1821 struct sock *sk = skb->sk;
1822 int ret = 0;
1823
1824 /*
1825 * __skb_splice_bits() only fails if the output has no room left,
1826 * so no point in going over the frag_list for the error case.
1827 */
1828 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1829 goto done;
1830 else if (!tlen)
1831 goto done;
1832
1833 /*
1834 * now see if we have a frag_list to map
1835 */
1836 skb_walk_frags(skb, frag_iter) {
1837 if (!tlen)
1838 break;
1839 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1840 break;
1841 }
1842
1843 done:
1844 if (spd.nr_pages) {
1845 /*
1846 * Drop the socket lock, otherwise we have reverse
1847 * locking dependencies between sk_lock and i_mutex
1848 * here as compared to sendfile(). We enter here
1849 * with the socket lock held, and splice_to_pipe() will
1850 * grab the pipe inode lock. For sendfile() emulation,
1851 * we call into ->sendpage() with the i_mutex lock held
1852 * and networking will grab the socket lock.
1853 */
1854 release_sock(sk);
1855 ret = splice_to_pipe(pipe, &spd);
1856 lock_sock(sk);
1857 }
1858
1859 return ret;
1860 }
1861
1862 /**
1863 * skb_store_bits - store bits from kernel buffer to skb
1864 * @skb: destination buffer
1865 * @offset: offset in destination
1866 * @from: source buffer
1867 * @len: number of bytes to copy
1868 *
1869 * Copy the specified number of bytes from the source buffer to the
1870 * destination skb. This function handles all the messy bits of
1871 * traversing fragment lists and such.
1872 */
1873
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)1874 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1875 {
1876 int start = skb_headlen(skb);
1877 struct sk_buff *frag_iter;
1878 int i, copy;
1879
1880 if (offset > (int)skb->len - len)
1881 goto fault;
1882
1883 if ((copy = start - offset) > 0) {
1884 if (copy > len)
1885 copy = len;
1886 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1887 if ((len -= copy) == 0)
1888 return 0;
1889 offset += copy;
1890 from += copy;
1891 }
1892
1893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1894 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1895 int end;
1896
1897 WARN_ON(start > offset + len);
1898
1899 end = start + skb_frag_size(frag);
1900 if ((copy = end - offset) > 0) {
1901 u8 *vaddr;
1902
1903 if (copy > len)
1904 copy = len;
1905
1906 vaddr = kmap_atomic(skb_frag_page(frag));
1907 memcpy(vaddr + frag->page_offset + offset - start,
1908 from, copy);
1909 kunmap_atomic(vaddr);
1910
1911 if ((len -= copy) == 0)
1912 return 0;
1913 offset += copy;
1914 from += copy;
1915 }
1916 start = end;
1917 }
1918
1919 skb_walk_frags(skb, frag_iter) {
1920 int end;
1921
1922 WARN_ON(start > offset + len);
1923
1924 end = start + frag_iter->len;
1925 if ((copy = end - offset) > 0) {
1926 if (copy > len)
1927 copy = len;
1928 if (skb_store_bits(frag_iter, offset - start,
1929 from, copy))
1930 goto fault;
1931 if ((len -= copy) == 0)
1932 return 0;
1933 offset += copy;
1934 from += copy;
1935 }
1936 start = end;
1937 }
1938 if (!len)
1939 return 0;
1940
1941 fault:
1942 return -EFAULT;
1943 }
1944 EXPORT_SYMBOL(skb_store_bits);
1945
1946 /* Checksum skb data. */
1947
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)1948 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1949 int len, __wsum csum)
1950 {
1951 int start = skb_headlen(skb);
1952 int i, copy = start - offset;
1953 struct sk_buff *frag_iter;
1954 int pos = 0;
1955
1956 /* Checksum header. */
1957 if (copy > 0) {
1958 if (copy > len)
1959 copy = len;
1960 csum = csum_partial(skb->data + offset, copy, csum);
1961 if ((len -= copy) == 0)
1962 return csum;
1963 offset += copy;
1964 pos = copy;
1965 }
1966
1967 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1968 int end;
1969 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1970
1971 WARN_ON(start > offset + len);
1972
1973 end = start + skb_frag_size(frag);
1974 if ((copy = end - offset) > 0) {
1975 __wsum csum2;
1976 u8 *vaddr;
1977
1978 if (copy > len)
1979 copy = len;
1980 vaddr = kmap_atomic(skb_frag_page(frag));
1981 csum2 = csum_partial(vaddr + frag->page_offset +
1982 offset - start, copy, 0);
1983 kunmap_atomic(vaddr);
1984 csum = csum_block_add(csum, csum2, pos);
1985 if (!(len -= copy))
1986 return csum;
1987 offset += copy;
1988 pos += copy;
1989 }
1990 start = end;
1991 }
1992
1993 skb_walk_frags(skb, frag_iter) {
1994 int end;
1995
1996 WARN_ON(start > offset + len);
1997
1998 end = start + frag_iter->len;
1999 if ((copy = end - offset) > 0) {
2000 __wsum csum2;
2001 if (copy > len)
2002 copy = len;
2003 csum2 = skb_checksum(frag_iter, offset - start,
2004 copy, 0);
2005 csum = csum_block_add(csum, csum2, pos);
2006 if ((len -= copy) == 0)
2007 return csum;
2008 offset += copy;
2009 pos += copy;
2010 }
2011 start = end;
2012 }
2013 BUG_ON(len);
2014
2015 return csum;
2016 }
2017 EXPORT_SYMBOL(skb_checksum);
2018
2019 /* Both of above in one bottle. */
2020
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)2021 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2022 u8 *to, int len, __wsum csum)
2023 {
2024 int start = skb_headlen(skb);
2025 int i, copy = start - offset;
2026 struct sk_buff *frag_iter;
2027 int pos = 0;
2028
2029 /* Copy header. */
2030 if (copy > 0) {
2031 if (copy > len)
2032 copy = len;
2033 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2034 copy, csum);
2035 if ((len -= copy) == 0)
2036 return csum;
2037 offset += copy;
2038 to += copy;
2039 pos = copy;
2040 }
2041
2042 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043 int end;
2044
2045 WARN_ON(start > offset + len);
2046
2047 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2048 if ((copy = end - offset) > 0) {
2049 __wsum csum2;
2050 u8 *vaddr;
2051 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2052
2053 if (copy > len)
2054 copy = len;
2055 vaddr = kmap_atomic(skb_frag_page(frag));
2056 csum2 = csum_partial_copy_nocheck(vaddr +
2057 frag->page_offset +
2058 offset - start, to,
2059 copy, 0);
2060 kunmap_atomic(vaddr);
2061 csum = csum_block_add(csum, csum2, pos);
2062 if (!(len -= copy))
2063 return csum;
2064 offset += copy;
2065 to += copy;
2066 pos += copy;
2067 }
2068 start = end;
2069 }
2070
2071 skb_walk_frags(skb, frag_iter) {
2072 __wsum csum2;
2073 int end;
2074
2075 WARN_ON(start > offset + len);
2076
2077 end = start + frag_iter->len;
2078 if ((copy = end - offset) > 0) {
2079 if (copy > len)
2080 copy = len;
2081 csum2 = skb_copy_and_csum_bits(frag_iter,
2082 offset - start,
2083 to, copy, 0);
2084 csum = csum_block_add(csum, csum2, pos);
2085 if ((len -= copy) == 0)
2086 return csum;
2087 offset += copy;
2088 to += copy;
2089 pos += copy;
2090 }
2091 start = end;
2092 }
2093 BUG_ON(len);
2094 return csum;
2095 }
2096 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2097
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2098 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2099 {
2100 __wsum csum;
2101 long csstart;
2102
2103 if (skb->ip_summed == CHECKSUM_PARTIAL)
2104 csstart = skb_checksum_start_offset(skb);
2105 else
2106 csstart = skb_headlen(skb);
2107
2108 BUG_ON(csstart > skb_headlen(skb));
2109
2110 skb_copy_from_linear_data(skb, to, csstart);
2111
2112 csum = 0;
2113 if (csstart != skb->len)
2114 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2115 skb->len - csstart, 0);
2116
2117 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2118 long csstuff = csstart + skb->csum_offset;
2119
2120 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2121 }
2122 }
2123 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2124
2125 /**
2126 * skb_dequeue - remove from the head of the queue
2127 * @list: list to dequeue from
2128 *
2129 * Remove the head of the list. The list lock is taken so the function
2130 * may be used safely with other locking list functions. The head item is
2131 * returned or %NULL if the list is empty.
2132 */
2133
skb_dequeue(struct sk_buff_head * list)2134 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2135 {
2136 unsigned long flags;
2137 struct sk_buff *result;
2138
2139 spin_lock_irqsave(&list->lock, flags);
2140 result = __skb_dequeue(list);
2141 spin_unlock_irqrestore(&list->lock, flags);
2142 return result;
2143 }
2144 EXPORT_SYMBOL(skb_dequeue);
2145
2146 /**
2147 * skb_dequeue_tail - remove from the tail of the queue
2148 * @list: list to dequeue from
2149 *
2150 * Remove the tail of the list. The list lock is taken so the function
2151 * may be used safely with other locking list functions. The tail item is
2152 * returned or %NULL if the list is empty.
2153 */
skb_dequeue_tail(struct sk_buff_head * list)2154 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2155 {
2156 unsigned long flags;
2157 struct sk_buff *result;
2158
2159 spin_lock_irqsave(&list->lock, flags);
2160 result = __skb_dequeue_tail(list);
2161 spin_unlock_irqrestore(&list->lock, flags);
2162 return result;
2163 }
2164 EXPORT_SYMBOL(skb_dequeue_tail);
2165
2166 /**
2167 * skb_queue_purge - empty a list
2168 * @list: list to empty
2169 *
2170 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2171 * the list and one reference dropped. This function takes the list
2172 * lock and is atomic with respect to other list locking functions.
2173 */
skb_queue_purge(struct sk_buff_head * list)2174 void skb_queue_purge(struct sk_buff_head *list)
2175 {
2176 struct sk_buff *skb;
2177 while ((skb = skb_dequeue(list)) != NULL)
2178 kfree_skb(skb);
2179 }
2180 EXPORT_SYMBOL(skb_queue_purge);
2181
2182 /**
2183 * skb_queue_head - queue a buffer at the list head
2184 * @list: list to use
2185 * @newsk: buffer to queue
2186 *
2187 * Queue a buffer at the start of the list. This function takes the
2188 * list lock and can be used safely with other locking &sk_buff functions
2189 * safely.
2190 *
2191 * A buffer cannot be placed on two lists at the same time.
2192 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2193 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2194 {
2195 unsigned long flags;
2196
2197 spin_lock_irqsave(&list->lock, flags);
2198 __skb_queue_head(list, newsk);
2199 spin_unlock_irqrestore(&list->lock, flags);
2200 }
2201 EXPORT_SYMBOL(skb_queue_head);
2202
2203 /**
2204 * skb_queue_tail - queue a buffer at the list tail
2205 * @list: list to use
2206 * @newsk: buffer to queue
2207 *
2208 * Queue a buffer at the tail of the list. This function takes the
2209 * list lock and can be used safely with other locking &sk_buff functions
2210 * safely.
2211 *
2212 * A buffer cannot be placed on two lists at the same time.
2213 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2214 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2215 {
2216 unsigned long flags;
2217
2218 spin_lock_irqsave(&list->lock, flags);
2219 __skb_queue_tail(list, newsk);
2220 spin_unlock_irqrestore(&list->lock, flags);
2221 }
2222 EXPORT_SYMBOL(skb_queue_tail);
2223
2224 /**
2225 * skb_unlink - remove a buffer from a list
2226 * @skb: buffer to remove
2227 * @list: list to use
2228 *
2229 * Remove a packet from a list. The list locks are taken and this
2230 * function is atomic with respect to other list locked calls
2231 *
2232 * You must know what list the SKB is on.
2233 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2234 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2235 {
2236 unsigned long flags;
2237
2238 spin_lock_irqsave(&list->lock, flags);
2239 __skb_unlink(skb, list);
2240 spin_unlock_irqrestore(&list->lock, flags);
2241 }
2242 EXPORT_SYMBOL(skb_unlink);
2243
2244 /**
2245 * skb_append - append a buffer
2246 * @old: buffer to insert after
2247 * @newsk: buffer to insert
2248 * @list: list to use
2249 *
2250 * Place a packet after a given packet in a list. The list locks are taken
2251 * and this function is atomic with respect to other list locked calls.
2252 * A buffer cannot be placed on two lists at the same time.
2253 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2254 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2255 {
2256 unsigned long flags;
2257
2258 spin_lock_irqsave(&list->lock, flags);
2259 __skb_queue_after(list, old, newsk);
2260 spin_unlock_irqrestore(&list->lock, flags);
2261 }
2262 EXPORT_SYMBOL(skb_append);
2263
2264 /**
2265 * skb_insert - insert a buffer
2266 * @old: buffer to insert before
2267 * @newsk: buffer to insert
2268 * @list: list to use
2269 *
2270 * Place a packet before a given packet in a list. The list locks are
2271 * taken and this function is atomic with respect to other list locked
2272 * calls.
2273 *
2274 * A buffer cannot be placed on two lists at the same time.
2275 */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2276 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2277 {
2278 unsigned long flags;
2279
2280 spin_lock_irqsave(&list->lock, flags);
2281 __skb_insert(newsk, old->prev, old, list);
2282 spin_unlock_irqrestore(&list->lock, flags);
2283 }
2284 EXPORT_SYMBOL(skb_insert);
2285
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)2286 static inline void skb_split_inside_header(struct sk_buff *skb,
2287 struct sk_buff* skb1,
2288 const u32 len, const int pos)
2289 {
2290 int i;
2291
2292 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2293 pos - len);
2294 /* And move data appendix as is. */
2295 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2296 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2297
2298 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2299 skb_shinfo(skb)->nr_frags = 0;
2300 skb1->data_len = skb->data_len;
2301 skb1->len += skb1->data_len;
2302 skb->data_len = 0;
2303 skb->len = len;
2304 skb_set_tail_pointer(skb, len);
2305 }
2306
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)2307 static inline void skb_split_no_header(struct sk_buff *skb,
2308 struct sk_buff* skb1,
2309 const u32 len, int pos)
2310 {
2311 int i, k = 0;
2312 const int nfrags = skb_shinfo(skb)->nr_frags;
2313
2314 skb_shinfo(skb)->nr_frags = 0;
2315 skb1->len = skb1->data_len = skb->len - len;
2316 skb->len = len;
2317 skb->data_len = len - pos;
2318
2319 for (i = 0; i < nfrags; i++) {
2320 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2321
2322 if (pos + size > len) {
2323 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2324
2325 if (pos < len) {
2326 /* Split frag.
2327 * We have two variants in this case:
2328 * 1. Move all the frag to the second
2329 * part, if it is possible. F.e.
2330 * this approach is mandatory for TUX,
2331 * where splitting is expensive.
2332 * 2. Split is accurately. We make this.
2333 */
2334 skb_frag_ref(skb, i);
2335 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2336 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2337 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2338 skb_shinfo(skb)->nr_frags++;
2339 }
2340 k++;
2341 } else
2342 skb_shinfo(skb)->nr_frags++;
2343 pos += size;
2344 }
2345 skb_shinfo(skb1)->nr_frags = k;
2346 }
2347
2348 /**
2349 * skb_split - Split fragmented skb to two parts at length len.
2350 * @skb: the buffer to split
2351 * @skb1: the buffer to receive the second part
2352 * @len: new length for skb
2353 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)2354 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2355 {
2356 int pos = skb_headlen(skb);
2357
2358 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2359 if (len < pos) /* Split line is inside header. */
2360 skb_split_inside_header(skb, skb1, len, pos);
2361 else /* Second chunk has no header, nothing to copy. */
2362 skb_split_no_header(skb, skb1, len, pos);
2363 }
2364 EXPORT_SYMBOL(skb_split);
2365
2366 /* Shifting from/to a cloned skb is a no-go.
2367 *
2368 * Caller cannot keep skb_shinfo related pointers past calling here!
2369 */
skb_prepare_for_shift(struct sk_buff * skb)2370 static int skb_prepare_for_shift(struct sk_buff *skb)
2371 {
2372 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2373 }
2374
2375 /**
2376 * skb_shift - Shifts paged data partially from skb to another
2377 * @tgt: buffer into which tail data gets added
2378 * @skb: buffer from which the paged data comes from
2379 * @shiftlen: shift up to this many bytes
2380 *
2381 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2382 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2383 * It's up to caller to free skb if everything was shifted.
2384 *
2385 * If @tgt runs out of frags, the whole operation is aborted.
2386 *
2387 * Skb cannot include anything else but paged data while tgt is allowed
2388 * to have non-paged data as well.
2389 *
2390 * TODO: full sized shift could be optimized but that would need
2391 * specialized skb free'er to handle frags without up-to-date nr_frags.
2392 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)2393 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2394 {
2395 int from, to, merge, todo;
2396 struct skb_frag_struct *fragfrom, *fragto;
2397
2398 BUG_ON(shiftlen > skb->len);
2399 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2400
2401 todo = shiftlen;
2402 from = 0;
2403 to = skb_shinfo(tgt)->nr_frags;
2404 fragfrom = &skb_shinfo(skb)->frags[from];
2405
2406 /* Actual merge is delayed until the point when we know we can
2407 * commit all, so that we don't have to undo partial changes
2408 */
2409 if (!to ||
2410 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2411 fragfrom->page_offset)) {
2412 merge = -1;
2413 } else {
2414 merge = to - 1;
2415
2416 todo -= skb_frag_size(fragfrom);
2417 if (todo < 0) {
2418 if (skb_prepare_for_shift(skb) ||
2419 skb_prepare_for_shift(tgt))
2420 return 0;
2421
2422 /* All previous frag pointers might be stale! */
2423 fragfrom = &skb_shinfo(skb)->frags[from];
2424 fragto = &skb_shinfo(tgt)->frags[merge];
2425
2426 skb_frag_size_add(fragto, shiftlen);
2427 skb_frag_size_sub(fragfrom, shiftlen);
2428 fragfrom->page_offset += shiftlen;
2429
2430 goto onlymerged;
2431 }
2432
2433 from++;
2434 }
2435
2436 /* Skip full, not-fitting skb to avoid expensive operations */
2437 if ((shiftlen == skb->len) &&
2438 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2439 return 0;
2440
2441 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2442 return 0;
2443
2444 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2445 if (to == MAX_SKB_FRAGS)
2446 return 0;
2447
2448 fragfrom = &skb_shinfo(skb)->frags[from];
2449 fragto = &skb_shinfo(tgt)->frags[to];
2450
2451 if (todo >= skb_frag_size(fragfrom)) {
2452 *fragto = *fragfrom;
2453 todo -= skb_frag_size(fragfrom);
2454 from++;
2455 to++;
2456
2457 } else {
2458 __skb_frag_ref(fragfrom);
2459 fragto->page = fragfrom->page;
2460 fragto->page_offset = fragfrom->page_offset;
2461 skb_frag_size_set(fragto, todo);
2462
2463 fragfrom->page_offset += todo;
2464 skb_frag_size_sub(fragfrom, todo);
2465 todo = 0;
2466
2467 to++;
2468 break;
2469 }
2470 }
2471
2472 /* Ready to "commit" this state change to tgt */
2473 skb_shinfo(tgt)->nr_frags = to;
2474
2475 if (merge >= 0) {
2476 fragfrom = &skb_shinfo(skb)->frags[0];
2477 fragto = &skb_shinfo(tgt)->frags[merge];
2478
2479 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2480 __skb_frag_unref(fragfrom);
2481 }
2482
2483 /* Reposition in the original skb */
2484 to = 0;
2485 while (from < skb_shinfo(skb)->nr_frags)
2486 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2487 skb_shinfo(skb)->nr_frags = to;
2488
2489 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2490
2491 onlymerged:
2492 /* Most likely the tgt won't ever need its checksum anymore, skb on
2493 * the other hand might need it if it needs to be resent
2494 */
2495 tgt->ip_summed = CHECKSUM_PARTIAL;
2496 skb->ip_summed = CHECKSUM_PARTIAL;
2497
2498 /* Yak, is it really working this way? Some helper please? */
2499 skb->len -= shiftlen;
2500 skb->data_len -= shiftlen;
2501 skb->truesize -= shiftlen;
2502 tgt->len += shiftlen;
2503 tgt->data_len += shiftlen;
2504 tgt->truesize += shiftlen;
2505
2506 return shiftlen;
2507 }
2508
2509 /**
2510 * skb_prepare_seq_read - Prepare a sequential read of skb data
2511 * @skb: the buffer to read
2512 * @from: lower offset of data to be read
2513 * @to: upper offset of data to be read
2514 * @st: state variable
2515 *
2516 * Initializes the specified state variable. Must be called before
2517 * invoking skb_seq_read() for the first time.
2518 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)2519 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2520 unsigned int to, struct skb_seq_state *st)
2521 {
2522 st->lower_offset = from;
2523 st->upper_offset = to;
2524 st->root_skb = st->cur_skb = skb;
2525 st->frag_idx = st->stepped_offset = 0;
2526 st->frag_data = NULL;
2527 }
2528 EXPORT_SYMBOL(skb_prepare_seq_read);
2529
2530 /**
2531 * skb_seq_read - Sequentially read skb data
2532 * @consumed: number of bytes consumed by the caller so far
2533 * @data: destination pointer for data to be returned
2534 * @st: state variable
2535 *
2536 * Reads a block of skb data at &consumed relative to the
2537 * lower offset specified to skb_prepare_seq_read(). Assigns
2538 * the head of the data block to &data and returns the length
2539 * of the block or 0 if the end of the skb data or the upper
2540 * offset has been reached.
2541 *
2542 * The caller is not required to consume all of the data
2543 * returned, i.e. &consumed is typically set to the number
2544 * of bytes already consumed and the next call to
2545 * skb_seq_read() will return the remaining part of the block.
2546 *
2547 * Note 1: The size of each block of data returned can be arbitrary,
2548 * this limitation is the cost for zerocopy seqeuental
2549 * reads of potentially non linear data.
2550 *
2551 * Note 2: Fragment lists within fragments are not implemented
2552 * at the moment, state->root_skb could be replaced with
2553 * a stack for this purpose.
2554 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)2555 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2556 struct skb_seq_state *st)
2557 {
2558 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2559 skb_frag_t *frag;
2560
2561 if (unlikely(abs_offset >= st->upper_offset))
2562 return 0;
2563
2564 next_skb:
2565 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2566
2567 if (abs_offset < block_limit && !st->frag_data) {
2568 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2569 return block_limit - abs_offset;
2570 }
2571
2572 if (st->frag_idx == 0 && !st->frag_data)
2573 st->stepped_offset += skb_headlen(st->cur_skb);
2574
2575 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2576 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2577 block_limit = skb_frag_size(frag) + st->stepped_offset;
2578
2579 if (abs_offset < block_limit) {
2580 if (!st->frag_data)
2581 st->frag_data = kmap_atomic(skb_frag_page(frag));
2582
2583 *data = (u8 *) st->frag_data + frag->page_offset +
2584 (abs_offset - st->stepped_offset);
2585
2586 return block_limit - abs_offset;
2587 }
2588
2589 if (st->frag_data) {
2590 kunmap_atomic(st->frag_data);
2591 st->frag_data = NULL;
2592 }
2593
2594 st->frag_idx++;
2595 st->stepped_offset += skb_frag_size(frag);
2596 }
2597
2598 if (st->frag_data) {
2599 kunmap_atomic(st->frag_data);
2600 st->frag_data = NULL;
2601 }
2602
2603 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2604 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2605 st->frag_idx = 0;
2606 goto next_skb;
2607 } else if (st->cur_skb->next) {
2608 st->cur_skb = st->cur_skb->next;
2609 st->frag_idx = 0;
2610 goto next_skb;
2611 }
2612
2613 return 0;
2614 }
2615 EXPORT_SYMBOL(skb_seq_read);
2616
2617 /**
2618 * skb_abort_seq_read - Abort a sequential read of skb data
2619 * @st: state variable
2620 *
2621 * Must be called if skb_seq_read() was not called until it
2622 * returned 0.
2623 */
skb_abort_seq_read(struct skb_seq_state * st)2624 void skb_abort_seq_read(struct skb_seq_state *st)
2625 {
2626 if (st->frag_data)
2627 kunmap_atomic(st->frag_data);
2628 }
2629 EXPORT_SYMBOL(skb_abort_seq_read);
2630
2631 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2632
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)2633 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2634 struct ts_config *conf,
2635 struct ts_state *state)
2636 {
2637 return skb_seq_read(offset, text, TS_SKB_CB(state));
2638 }
2639
skb_ts_finish(struct ts_config * conf,struct ts_state * state)2640 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2641 {
2642 skb_abort_seq_read(TS_SKB_CB(state));
2643 }
2644
2645 /**
2646 * skb_find_text - Find a text pattern in skb data
2647 * @skb: the buffer to look in
2648 * @from: search offset
2649 * @to: search limit
2650 * @config: textsearch configuration
2651 * @state: uninitialized textsearch state variable
2652 *
2653 * Finds a pattern in the skb data according to the specified
2654 * textsearch configuration. Use textsearch_next() to retrieve
2655 * subsequent occurrences of the pattern. Returns the offset
2656 * to the first occurrence or UINT_MAX if no match was found.
2657 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config,struct ts_state * state)2658 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2659 unsigned int to, struct ts_config *config,
2660 struct ts_state *state)
2661 {
2662 unsigned int ret;
2663
2664 config->get_next_block = skb_ts_get_next_block;
2665 config->finish = skb_ts_finish;
2666
2667 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2668
2669 ret = textsearch_find(config, state);
2670 return (ret <= to - from ? ret : UINT_MAX);
2671 }
2672 EXPORT_SYMBOL(skb_find_text);
2673
2674 /**
2675 * skb_append_datato_frags - append the user data to a skb
2676 * @sk: sock structure
2677 * @skb: skb structure to be appened with user data.
2678 * @getfrag: call back function to be used for getting the user data
2679 * @from: pointer to user message iov
2680 * @length: length of the iov message
2681 *
2682 * Description: This procedure append the user data in the fragment part
2683 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2684 */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)2685 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2686 int (*getfrag)(void *from, char *to, int offset,
2687 int len, int odd, struct sk_buff *skb),
2688 void *from, int length)
2689 {
2690 int frg_cnt = skb_shinfo(skb)->nr_frags;
2691 int copy;
2692 int offset = 0;
2693 int ret;
2694 struct page_frag *pfrag = ¤t->task_frag;
2695
2696 do {
2697 /* Return error if we don't have space for new frag */
2698 if (frg_cnt >= MAX_SKB_FRAGS)
2699 return -EMSGSIZE;
2700
2701 if (!sk_page_frag_refill(sk, pfrag))
2702 return -ENOMEM;
2703
2704 /* copy the user data to page */
2705 copy = min_t(int, length, pfrag->size - pfrag->offset);
2706
2707 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2708 offset, copy, 0, skb);
2709 if (ret < 0)
2710 return -EFAULT;
2711
2712 /* copy was successful so update the size parameters */
2713 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2714 copy);
2715 frg_cnt++;
2716 pfrag->offset += copy;
2717 get_page(pfrag->page);
2718
2719 skb->truesize += copy;
2720 atomic_add(copy, &sk->sk_wmem_alloc);
2721 skb->len += copy;
2722 skb->data_len += copy;
2723 offset += copy;
2724 length -= copy;
2725
2726 } while (length > 0);
2727
2728 return 0;
2729 }
2730 EXPORT_SYMBOL(skb_append_datato_frags);
2731
2732 /**
2733 * skb_pull_rcsum - pull skb and update receive checksum
2734 * @skb: buffer to update
2735 * @len: length of data pulled
2736 *
2737 * This function performs an skb_pull on the packet and updates
2738 * the CHECKSUM_COMPLETE checksum. It should be used on
2739 * receive path processing instead of skb_pull unless you know
2740 * that the checksum difference is zero (e.g., a valid IP header)
2741 * or you are setting ip_summed to CHECKSUM_NONE.
2742 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)2743 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2744 {
2745 BUG_ON(len > skb->len);
2746 skb->len -= len;
2747 BUG_ON(skb->len < skb->data_len);
2748 skb_postpull_rcsum(skb, skb->data, len);
2749 return skb->data += len;
2750 }
2751 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2752
2753 /**
2754 * skb_segment - Perform protocol segmentation on skb.
2755 * @skb: buffer to segment
2756 * @features: features for the output path (see dev->features)
2757 *
2758 * This function performs segmentation on the given skb. It returns
2759 * a pointer to the first in a list of new skbs for the segments.
2760 * In case of error it returns ERR_PTR(err).
2761 */
skb_segment(struct sk_buff * skb,netdev_features_t features)2762 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2763 {
2764 struct sk_buff *segs = NULL;
2765 struct sk_buff *tail = NULL;
2766 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2767 unsigned int mss = skb_shinfo(skb)->gso_size;
2768 unsigned int doffset = skb->data - skb_mac_header(skb);
2769 unsigned int offset = doffset;
2770 unsigned int tnl_hlen = skb_tnl_header_len(skb);
2771 unsigned int headroom;
2772 unsigned int len;
2773 __be16 proto;
2774 bool csum;
2775 int sg = !!(features & NETIF_F_SG);
2776 int nfrags = skb_shinfo(skb)->nr_frags;
2777 int err = -ENOMEM;
2778 int i = 0;
2779 int pos;
2780
2781 proto = skb_network_protocol(skb);
2782 if (unlikely(!proto))
2783 return ERR_PTR(-EINVAL);
2784
2785 csum = !!can_checksum_protocol(features, proto);
2786 __skb_push(skb, doffset);
2787 headroom = skb_headroom(skb);
2788 pos = skb_headlen(skb);
2789
2790 do {
2791 struct sk_buff *nskb;
2792 skb_frag_t *frag;
2793 int hsize;
2794 int size;
2795
2796 len = skb->len - offset;
2797 if (len > mss)
2798 len = mss;
2799
2800 hsize = skb_headlen(skb) - offset;
2801 if (hsize < 0)
2802 hsize = 0;
2803 if (hsize > len || !sg)
2804 hsize = len;
2805
2806 if (!hsize && i >= nfrags) {
2807 BUG_ON(fskb->len != len);
2808
2809 pos += len;
2810 nskb = skb_clone(fskb, GFP_ATOMIC);
2811 fskb = fskb->next;
2812
2813 if (unlikely(!nskb))
2814 goto err;
2815
2816 hsize = skb_end_offset(nskb);
2817 if (skb_cow_head(nskb, doffset + headroom)) {
2818 kfree_skb(nskb);
2819 goto err;
2820 }
2821
2822 nskb->truesize += skb_end_offset(nskb) - hsize;
2823 skb_release_head_state(nskb);
2824 __skb_push(nskb, doffset);
2825 } else {
2826 nskb = __alloc_skb(hsize + doffset + headroom,
2827 GFP_ATOMIC, skb_alloc_rx_flag(skb),
2828 NUMA_NO_NODE);
2829
2830 if (unlikely(!nskb))
2831 goto err;
2832
2833 skb_reserve(nskb, headroom);
2834 __skb_put(nskb, doffset);
2835 }
2836
2837 if (segs)
2838 tail->next = nskb;
2839 else
2840 segs = nskb;
2841 tail = nskb;
2842
2843 __copy_skb_header(nskb, skb);
2844 nskb->mac_len = skb->mac_len;
2845
2846 /* nskb and skb might have different headroom */
2847 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2848 nskb->csum_start += skb_headroom(nskb) - headroom;
2849
2850 skb_reset_mac_header(nskb);
2851 skb_set_network_header(nskb, skb->mac_len);
2852 nskb->transport_header = (nskb->network_header +
2853 skb_network_header_len(skb));
2854
2855 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2856 nskb->data - tnl_hlen,
2857 doffset + tnl_hlen);
2858
2859 if (fskb != skb_shinfo(skb)->frag_list)
2860 continue;
2861
2862 if (!sg) {
2863 nskb->ip_summed = CHECKSUM_NONE;
2864 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2865 skb_put(nskb, len),
2866 len, 0);
2867 continue;
2868 }
2869
2870 frag = skb_shinfo(nskb)->frags;
2871
2872 skb_copy_from_linear_data_offset(skb, offset,
2873 skb_put(nskb, hsize), hsize);
2874
2875 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2876
2877 while (pos < offset + len && i < nfrags) {
2878 *frag = skb_shinfo(skb)->frags[i];
2879 __skb_frag_ref(frag);
2880 size = skb_frag_size(frag);
2881
2882 if (pos < offset) {
2883 frag->page_offset += offset - pos;
2884 skb_frag_size_sub(frag, offset - pos);
2885 }
2886
2887 skb_shinfo(nskb)->nr_frags++;
2888
2889 if (pos + size <= offset + len) {
2890 i++;
2891 pos += size;
2892 } else {
2893 skb_frag_size_sub(frag, pos + size - (offset + len));
2894 goto skip_fraglist;
2895 }
2896
2897 frag++;
2898 }
2899
2900 if (pos < offset + len) {
2901 struct sk_buff *fskb2 = fskb;
2902
2903 BUG_ON(pos + fskb->len != offset + len);
2904
2905 pos += fskb->len;
2906 fskb = fskb->next;
2907
2908 if (fskb2->next) {
2909 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2910 if (!fskb2)
2911 goto err;
2912 } else
2913 skb_get(fskb2);
2914
2915 SKB_FRAG_ASSERT(nskb);
2916 skb_shinfo(nskb)->frag_list = fskb2;
2917 }
2918
2919 skip_fraglist:
2920 nskb->data_len = len - hsize;
2921 nskb->len += nskb->data_len;
2922 nskb->truesize += nskb->data_len;
2923
2924 if (!csum) {
2925 nskb->csum = skb_checksum(nskb, doffset,
2926 nskb->len - doffset, 0);
2927 nskb->ip_summed = CHECKSUM_NONE;
2928 }
2929 } while ((offset += len) < skb->len);
2930
2931 return segs;
2932
2933 err:
2934 while ((skb = segs)) {
2935 segs = skb->next;
2936 kfree_skb(skb);
2937 }
2938 return ERR_PTR(err);
2939 }
2940 EXPORT_SYMBOL_GPL(skb_segment);
2941
skb_gro_receive(struct sk_buff ** head,struct sk_buff * skb)2942 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2943 {
2944 struct sk_buff *p = *head;
2945 struct sk_buff *nskb;
2946 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2947 struct skb_shared_info *pinfo = skb_shinfo(p);
2948 unsigned int headroom;
2949 unsigned int len = skb_gro_len(skb);
2950 unsigned int offset = skb_gro_offset(skb);
2951 unsigned int headlen = skb_headlen(skb);
2952 unsigned int delta_truesize;
2953
2954 if (p->len + len >= 65536)
2955 return -E2BIG;
2956
2957 if (pinfo->frag_list)
2958 goto merge;
2959 else if (headlen <= offset) {
2960 skb_frag_t *frag;
2961 skb_frag_t *frag2;
2962 int i = skbinfo->nr_frags;
2963 int nr_frags = pinfo->nr_frags + i;
2964
2965 offset -= headlen;
2966
2967 if (nr_frags > MAX_SKB_FRAGS)
2968 return -E2BIG;
2969
2970 pinfo->nr_frags = nr_frags;
2971 skbinfo->nr_frags = 0;
2972
2973 frag = pinfo->frags + nr_frags;
2974 frag2 = skbinfo->frags + i;
2975 do {
2976 *--frag = *--frag2;
2977 } while (--i);
2978
2979 frag->page_offset += offset;
2980 skb_frag_size_sub(frag, offset);
2981
2982 /* all fragments truesize : remove (head size + sk_buff) */
2983 delta_truesize = skb->truesize -
2984 SKB_TRUESIZE(skb_end_offset(skb));
2985
2986 skb->truesize -= skb->data_len;
2987 skb->len -= skb->data_len;
2988 skb->data_len = 0;
2989
2990 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2991 goto done;
2992 } else if (skb->head_frag) {
2993 int nr_frags = pinfo->nr_frags;
2994 skb_frag_t *frag = pinfo->frags + nr_frags;
2995 struct page *page = virt_to_head_page(skb->head);
2996 unsigned int first_size = headlen - offset;
2997 unsigned int first_offset;
2998
2999 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3000 return -E2BIG;
3001
3002 first_offset = skb->data -
3003 (unsigned char *)page_address(page) +
3004 offset;
3005
3006 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3007
3008 frag->page.p = page;
3009 frag->page_offset = first_offset;
3010 skb_frag_size_set(frag, first_size);
3011
3012 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3013 /* We dont need to clear skbinfo->nr_frags here */
3014
3015 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3016 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3017 goto done;
3018 } else if (skb_gro_len(p) != pinfo->gso_size)
3019 return -E2BIG;
3020
3021 headroom = skb_headroom(p);
3022 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3023 if (unlikely(!nskb))
3024 return -ENOMEM;
3025
3026 __copy_skb_header(nskb, p);
3027 nskb->mac_len = p->mac_len;
3028
3029 skb_reserve(nskb, headroom);
3030 __skb_put(nskb, skb_gro_offset(p));
3031
3032 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3033 skb_set_network_header(nskb, skb_network_offset(p));
3034 skb_set_transport_header(nskb, skb_transport_offset(p));
3035
3036 __skb_pull(p, skb_gro_offset(p));
3037 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3038 p->data - skb_mac_header(p));
3039
3040 skb_shinfo(nskb)->frag_list = p;
3041 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3042 pinfo->gso_size = 0;
3043 skb_header_release(p);
3044 NAPI_GRO_CB(nskb)->last = p;
3045
3046 nskb->data_len += p->len;
3047 nskb->truesize += p->truesize;
3048 nskb->len += p->len;
3049
3050 *head = nskb;
3051 nskb->next = p->next;
3052 p->next = NULL;
3053
3054 p = nskb;
3055
3056 merge:
3057 delta_truesize = skb->truesize;
3058 if (offset > headlen) {
3059 unsigned int eat = offset - headlen;
3060
3061 skbinfo->frags[0].page_offset += eat;
3062 skb_frag_size_sub(&skbinfo->frags[0], eat);
3063 skb->data_len -= eat;
3064 skb->len -= eat;
3065 offset = headlen;
3066 }
3067
3068 __skb_pull(skb, offset);
3069
3070 NAPI_GRO_CB(p)->last->next = skb;
3071 NAPI_GRO_CB(p)->last = skb;
3072 skb_header_release(skb);
3073
3074 done:
3075 NAPI_GRO_CB(p)->count++;
3076 p->data_len += len;
3077 p->truesize += delta_truesize;
3078 p->len += len;
3079
3080 NAPI_GRO_CB(skb)->same_flow = 1;
3081 return 0;
3082 }
3083 EXPORT_SYMBOL_GPL(skb_gro_receive);
3084
skb_init(void)3085 void __init skb_init(void)
3086 {
3087 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3088 sizeof(struct sk_buff),
3089 0,
3090 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3091 NULL);
3092 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3093 (2*sizeof(struct sk_buff)) +
3094 sizeof(atomic_t),
3095 0,
3096 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3097 NULL);
3098 }
3099
3100 /**
3101 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3102 * @skb: Socket buffer containing the buffers to be mapped
3103 * @sg: The scatter-gather list to map into
3104 * @offset: The offset into the buffer's contents to start mapping
3105 * @len: Length of buffer space to be mapped
3106 *
3107 * Fill the specified scatter-gather list with mappings/pointers into a
3108 * region of the buffer space attached to a socket buffer.
3109 */
3110 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3111 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3112 {
3113 int start = skb_headlen(skb);
3114 int i, copy = start - offset;
3115 struct sk_buff *frag_iter;
3116 int elt = 0;
3117
3118 if (copy > 0) {
3119 if (copy > len)
3120 copy = len;
3121 sg_set_buf(sg, skb->data + offset, copy);
3122 elt++;
3123 if ((len -= copy) == 0)
3124 return elt;
3125 offset += copy;
3126 }
3127
3128 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3129 int end;
3130
3131 WARN_ON(start > offset + len);
3132
3133 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3134 if ((copy = end - offset) > 0) {
3135 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3136
3137 if (copy > len)
3138 copy = len;
3139 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3140 frag->page_offset+offset-start);
3141 elt++;
3142 if (!(len -= copy))
3143 return elt;
3144 offset += copy;
3145 }
3146 start = end;
3147 }
3148
3149 skb_walk_frags(skb, frag_iter) {
3150 int end;
3151
3152 WARN_ON(start > offset + len);
3153
3154 end = start + frag_iter->len;
3155 if ((copy = end - offset) > 0) {
3156 if (copy > len)
3157 copy = len;
3158 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3159 copy);
3160 if ((len -= copy) == 0)
3161 return elt;
3162 offset += copy;
3163 }
3164 start = end;
3165 }
3166 BUG_ON(len);
3167 return elt;
3168 }
3169
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3170 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3171 {
3172 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3173
3174 sg_mark_end(&sg[nsg - 1]);
3175
3176 return nsg;
3177 }
3178 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3179
3180 /**
3181 * skb_cow_data - Check that a socket buffer's data buffers are writable
3182 * @skb: The socket buffer to check.
3183 * @tailbits: Amount of trailing space to be added
3184 * @trailer: Returned pointer to the skb where the @tailbits space begins
3185 *
3186 * Make sure that the data buffers attached to a socket buffer are
3187 * writable. If they are not, private copies are made of the data buffers
3188 * and the socket buffer is set to use these instead.
3189 *
3190 * If @tailbits is given, make sure that there is space to write @tailbits
3191 * bytes of data beyond current end of socket buffer. @trailer will be
3192 * set to point to the skb in which this space begins.
3193 *
3194 * The number of scatterlist elements required to completely map the
3195 * COW'd and extended socket buffer will be returned.
3196 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)3197 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3198 {
3199 int copyflag;
3200 int elt;
3201 struct sk_buff *skb1, **skb_p;
3202
3203 /* If skb is cloned or its head is paged, reallocate
3204 * head pulling out all the pages (pages are considered not writable
3205 * at the moment even if they are anonymous).
3206 */
3207 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3208 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3209 return -ENOMEM;
3210
3211 /* Easy case. Most of packets will go this way. */
3212 if (!skb_has_frag_list(skb)) {
3213 /* A little of trouble, not enough of space for trailer.
3214 * This should not happen, when stack is tuned to generate
3215 * good frames. OK, on miss we reallocate and reserve even more
3216 * space, 128 bytes is fair. */
3217
3218 if (skb_tailroom(skb) < tailbits &&
3219 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3220 return -ENOMEM;
3221
3222 /* Voila! */
3223 *trailer = skb;
3224 return 1;
3225 }
3226
3227 /* Misery. We are in troubles, going to mincer fragments... */
3228
3229 elt = 1;
3230 skb_p = &skb_shinfo(skb)->frag_list;
3231 copyflag = 0;
3232
3233 while ((skb1 = *skb_p) != NULL) {
3234 int ntail = 0;
3235
3236 /* The fragment is partially pulled by someone,
3237 * this can happen on input. Copy it and everything
3238 * after it. */
3239
3240 if (skb_shared(skb1))
3241 copyflag = 1;
3242
3243 /* If the skb is the last, worry about trailer. */
3244
3245 if (skb1->next == NULL && tailbits) {
3246 if (skb_shinfo(skb1)->nr_frags ||
3247 skb_has_frag_list(skb1) ||
3248 skb_tailroom(skb1) < tailbits)
3249 ntail = tailbits + 128;
3250 }
3251
3252 if (copyflag ||
3253 skb_cloned(skb1) ||
3254 ntail ||
3255 skb_shinfo(skb1)->nr_frags ||
3256 skb_has_frag_list(skb1)) {
3257 struct sk_buff *skb2;
3258
3259 /* Fuck, we are miserable poor guys... */
3260 if (ntail == 0)
3261 skb2 = skb_copy(skb1, GFP_ATOMIC);
3262 else
3263 skb2 = skb_copy_expand(skb1,
3264 skb_headroom(skb1),
3265 ntail,
3266 GFP_ATOMIC);
3267 if (unlikely(skb2 == NULL))
3268 return -ENOMEM;
3269
3270 if (skb1->sk)
3271 skb_set_owner_w(skb2, skb1->sk);
3272
3273 /* Looking around. Are we still alive?
3274 * OK, link new skb, drop old one */
3275
3276 skb2->next = skb1->next;
3277 *skb_p = skb2;
3278 kfree_skb(skb1);
3279 skb1 = skb2;
3280 }
3281 elt++;
3282 *trailer = skb1;
3283 skb_p = &skb1->next;
3284 }
3285
3286 return elt;
3287 }
3288 EXPORT_SYMBOL_GPL(skb_cow_data);
3289
sock_rmem_free(struct sk_buff * skb)3290 static void sock_rmem_free(struct sk_buff *skb)
3291 {
3292 struct sock *sk = skb->sk;
3293
3294 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3295 }
3296
3297 /*
3298 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3299 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)3300 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3301 {
3302 int len = skb->len;
3303
3304 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3305 (unsigned int)sk->sk_rcvbuf)
3306 return -ENOMEM;
3307
3308 skb_orphan(skb);
3309 skb->sk = sk;
3310 skb->destructor = sock_rmem_free;
3311 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3312
3313 /* before exiting rcu section, make sure dst is refcounted */
3314 skb_dst_force(skb);
3315
3316 skb_queue_tail(&sk->sk_error_queue, skb);
3317 if (!sock_flag(sk, SOCK_DEAD))
3318 sk->sk_data_ready(sk, len);
3319 return 0;
3320 }
3321 EXPORT_SYMBOL(sock_queue_err_skb);
3322
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)3323 void skb_tstamp_tx(struct sk_buff *orig_skb,
3324 struct skb_shared_hwtstamps *hwtstamps)
3325 {
3326 struct sock *sk = orig_skb->sk;
3327 struct sock_exterr_skb *serr;
3328 struct sk_buff *skb;
3329 int err;
3330
3331 if (!sk)
3332 return;
3333
3334 if (hwtstamps) {
3335 *skb_hwtstamps(orig_skb) =
3336 *hwtstamps;
3337 } else {
3338 /*
3339 * no hardware time stamps available,
3340 * so keep the shared tx_flags and only
3341 * store software time stamp
3342 */
3343 orig_skb->tstamp = ktime_get_real();
3344 }
3345
3346 skb = skb_clone(orig_skb, GFP_ATOMIC);
3347 if (!skb)
3348 return;
3349
3350 serr = SKB_EXT_ERR(skb);
3351 memset(serr, 0, sizeof(*serr));
3352 serr->ee.ee_errno = ENOMSG;
3353 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3354
3355 err = sock_queue_err_skb(sk, skb);
3356
3357 if (err)
3358 kfree_skb(skb);
3359 }
3360 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3361
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)3362 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3363 {
3364 struct sock *sk = skb->sk;
3365 struct sock_exterr_skb *serr;
3366 int err;
3367
3368 skb->wifi_acked_valid = 1;
3369 skb->wifi_acked = acked;
3370
3371 serr = SKB_EXT_ERR(skb);
3372 memset(serr, 0, sizeof(*serr));
3373 serr->ee.ee_errno = ENOMSG;
3374 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3375
3376 err = sock_queue_err_skb(sk, skb);
3377 if (err)
3378 kfree_skb(skb);
3379 }
3380 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3381
3382
3383 /**
3384 * skb_partial_csum_set - set up and verify partial csum values for packet
3385 * @skb: the skb to set
3386 * @start: the number of bytes after skb->data to start checksumming.
3387 * @off: the offset from start to place the checksum.
3388 *
3389 * For untrusted partially-checksummed packets, we need to make sure the values
3390 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3391 *
3392 * This function checks and sets those values and skb->ip_summed: if this
3393 * returns false you should drop the packet.
3394 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)3395 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3396 {
3397 if (unlikely(start > skb_headlen(skb)) ||
3398 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3399 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3400 start, off, skb_headlen(skb));
3401 return false;
3402 }
3403 skb->ip_summed = CHECKSUM_PARTIAL;
3404 skb->csum_start = skb_headroom(skb) + start;
3405 skb->csum_offset = off;
3406 skb_set_transport_header(skb, start);
3407 return true;
3408 }
3409 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3410
__skb_warn_lro_forwarding(const struct sk_buff * skb)3411 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3412 {
3413 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3414 skb->dev->name);
3415 }
3416 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3417
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)3418 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3419 {
3420 if (head_stolen) {
3421 skb_release_head_state(skb);
3422 kmem_cache_free(skbuff_head_cache, skb);
3423 } else {
3424 __kfree_skb(skb);
3425 }
3426 }
3427 EXPORT_SYMBOL(kfree_skb_partial);
3428
3429 /**
3430 * skb_try_coalesce - try to merge skb to prior one
3431 * @to: prior buffer
3432 * @from: buffer to add
3433 * @fragstolen: pointer to boolean
3434 * @delta_truesize: how much more was allocated than was requested
3435 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)3436 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3437 bool *fragstolen, int *delta_truesize)
3438 {
3439 int i, delta, len = from->len;
3440
3441 *fragstolen = false;
3442
3443 if (skb_cloned(to))
3444 return false;
3445
3446 if (len <= skb_tailroom(to)) {
3447 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3448 *delta_truesize = 0;
3449 return true;
3450 }
3451
3452 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3453 return false;
3454
3455 if (skb_headlen(from) != 0) {
3456 struct page *page;
3457 unsigned int offset;
3458
3459 if (skb_shinfo(to)->nr_frags +
3460 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3461 return false;
3462
3463 if (skb_head_is_locked(from))
3464 return false;
3465
3466 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3467
3468 page = virt_to_head_page(from->head);
3469 offset = from->data - (unsigned char *)page_address(page);
3470
3471 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3472 page, offset, skb_headlen(from));
3473 *fragstolen = true;
3474 } else {
3475 if (skb_shinfo(to)->nr_frags +
3476 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3477 return false;
3478
3479 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3480 }
3481
3482 WARN_ON_ONCE(delta < len);
3483
3484 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3485 skb_shinfo(from)->frags,
3486 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3487 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3488
3489 if (!skb_cloned(from))
3490 skb_shinfo(from)->nr_frags = 0;
3491
3492 /* if the skb is not cloned this does nothing
3493 * since we set nr_frags to 0.
3494 */
3495 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3496 skb_frag_ref(from, i);
3497
3498 to->truesize += delta;
3499 to->len += len;
3500 to->data_len += len;
3501
3502 *delta_truesize = delta;
3503 return true;
3504 }
3505 EXPORT_SYMBOL(skb_try_coalesce);
3506