1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _FPU_INTERNAL_H
11 #define _FPU_INTERNAL_H
12
13 #include <linux/kernel_stat.h>
14 #include <linux/regset.h>
15 #include <linux/compat.h>
16 #include <linux/slab.h>
17 #include <asm/asm.h>
18 #include <asm/cpufeature.h>
19 #include <asm/processor.h>
20 #include <asm/sigcontext.h>
21 #include <asm/user.h>
22 #include <asm/uaccess.h>
23 #include <asm/xsave.h>
24 #include <asm/smap.h>
25
26 #ifdef CONFIG_X86_64
27 # include <asm/sigcontext32.h>
28 # include <asm/user32.h>
29 struct ksignal;
30 int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
31 compat_sigset_t *set, struct pt_regs *regs);
32 int ia32_setup_frame(int sig, struct ksignal *ksig,
33 compat_sigset_t *set, struct pt_regs *regs);
34 #else
35 # define user_i387_ia32_struct user_i387_struct
36 # define user32_fxsr_struct user_fxsr_struct
37 # define ia32_setup_frame __setup_frame
38 # define ia32_setup_rt_frame __setup_rt_frame
39 #endif
40
41 extern unsigned int mxcsr_feature_mask;
42 extern void fpu_init(void);
43 extern void eager_fpu_init(void);
44
45 DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
46
47 extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
48 struct task_struct *tsk);
49 extern void convert_to_fxsr(struct task_struct *tsk,
50 const struct user_i387_ia32_struct *env);
51
52 extern user_regset_active_fn fpregs_active, xfpregs_active;
53 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
54 xstateregs_get;
55 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
56 xstateregs_set;
57
58 /*
59 * xstateregs_active == fpregs_active. Please refer to the comment
60 * at the definition of fpregs_active.
61 */
62 #define xstateregs_active fpregs_active
63
64 #ifdef CONFIG_MATH_EMULATION
65 # define HAVE_HWFP (boot_cpu_data.hard_math)
66 extern void finit_soft_fpu(struct i387_soft_struct *soft);
67 #else
68 # define HAVE_HWFP 1
finit_soft_fpu(struct i387_soft_struct * soft)69 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
70 #endif
71
is_ia32_compat_frame(void)72 static inline int is_ia32_compat_frame(void)
73 {
74 return config_enabled(CONFIG_IA32_EMULATION) &&
75 test_thread_flag(TIF_IA32);
76 }
77
is_ia32_frame(void)78 static inline int is_ia32_frame(void)
79 {
80 return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
81 }
82
is_x32_frame(void)83 static inline int is_x32_frame(void)
84 {
85 return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
86 }
87
88 #define X87_FSW_ES (1 << 7) /* Exception Summary */
89
use_eager_fpu(void)90 static __always_inline __pure bool use_eager_fpu(void)
91 {
92 return static_cpu_has(X86_FEATURE_EAGER_FPU);
93 }
94
use_xsaveopt(void)95 static __always_inline __pure bool use_xsaveopt(void)
96 {
97 return static_cpu_has(X86_FEATURE_XSAVEOPT);
98 }
99
use_xsave(void)100 static __always_inline __pure bool use_xsave(void)
101 {
102 return static_cpu_has(X86_FEATURE_XSAVE);
103 }
104
use_fxsr(void)105 static __always_inline __pure bool use_fxsr(void)
106 {
107 return static_cpu_has(X86_FEATURE_FXSR);
108 }
109
fx_finit(struct i387_fxsave_struct * fx)110 static inline void fx_finit(struct i387_fxsave_struct *fx)
111 {
112 memset(fx, 0, xstate_size);
113 fx->cwd = 0x37f;
114 fx->mxcsr = MXCSR_DEFAULT;
115 }
116
117 extern void __sanitize_i387_state(struct task_struct *);
118
sanitize_i387_state(struct task_struct * tsk)119 static inline void sanitize_i387_state(struct task_struct *tsk)
120 {
121 if (!use_xsaveopt())
122 return;
123 __sanitize_i387_state(tsk);
124 }
125
126 #define user_insn(insn, output, input...) \
127 ({ \
128 int err; \
129 asm volatile(ASM_STAC "\n" \
130 "1:" #insn "\n\t" \
131 "2: " ASM_CLAC "\n" \
132 ".section .fixup,\"ax\"\n" \
133 "3: movl $-1,%[err]\n" \
134 " jmp 2b\n" \
135 ".previous\n" \
136 _ASM_EXTABLE(1b, 3b) \
137 : [err] "=r" (err), output \
138 : "0"(0), input); \
139 err; \
140 })
141
142 #define check_insn(insn, output, input...) \
143 ({ \
144 int err; \
145 asm volatile("1:" #insn "\n\t" \
146 "2:\n" \
147 ".section .fixup,\"ax\"\n" \
148 "3: movl $-1,%[err]\n" \
149 " jmp 2b\n" \
150 ".previous\n" \
151 _ASM_EXTABLE(1b, 3b) \
152 : [err] "=r" (err), output \
153 : "0"(0), input); \
154 err; \
155 })
156
fsave_user(struct i387_fsave_struct __user * fx)157 static inline int fsave_user(struct i387_fsave_struct __user *fx)
158 {
159 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
160 }
161
fxsave_user(struct i387_fxsave_struct __user * fx)162 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
163 {
164 if (config_enabled(CONFIG_X86_32))
165 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
166 else if (config_enabled(CONFIG_AS_FXSAVEQ))
167 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
168
169 /* See comment in fpu_fxsave() below. */
170 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
171 }
172
fxrstor_checking(struct i387_fxsave_struct * fx)173 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
174 {
175 if (config_enabled(CONFIG_X86_32))
176 return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
177 else if (config_enabled(CONFIG_AS_FXSAVEQ))
178 return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
179
180 /* See comment in fpu_fxsave() below. */
181 return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
182 "m" (*fx));
183 }
184
fxrstor_user(struct i387_fxsave_struct __user * fx)185 static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
186 {
187 if (config_enabled(CONFIG_X86_32))
188 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
189 else if (config_enabled(CONFIG_AS_FXSAVEQ))
190 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
191
192 /* See comment in fpu_fxsave() below. */
193 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
194 "m" (*fx));
195 }
196
frstor_checking(struct i387_fsave_struct * fx)197 static inline int frstor_checking(struct i387_fsave_struct *fx)
198 {
199 return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
200 }
201
frstor_user(struct i387_fsave_struct __user * fx)202 static inline int frstor_user(struct i387_fsave_struct __user *fx)
203 {
204 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
205 }
206
fpu_fxsave(struct fpu * fpu)207 static inline void fpu_fxsave(struct fpu *fpu)
208 {
209 if (config_enabled(CONFIG_X86_32))
210 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
211 else if (config_enabled(CONFIG_AS_FXSAVEQ))
212 asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
213 else {
214 /* Using "rex64; fxsave %0" is broken because, if the memory
215 * operand uses any extended registers for addressing, a second
216 * REX prefix will be generated (to the assembler, rex64
217 * followed by semicolon is a separate instruction), and hence
218 * the 64-bitness is lost.
219 *
220 * Using "fxsaveq %0" would be the ideal choice, but is only
221 * supported starting with gas 2.16.
222 *
223 * Using, as a workaround, the properly prefixed form below
224 * isn't accepted by any binutils version so far released,
225 * complaining that the same type of prefix is used twice if
226 * an extended register is needed for addressing (fix submitted
227 * to mainline 2005-11-21).
228 *
229 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
230 *
231 * This, however, we can work around by forcing the compiler to
232 * select an addressing mode that doesn't require extended
233 * registers.
234 */
235 asm volatile( "rex64/fxsave (%[fx])"
236 : "=m" (fpu->state->fxsave)
237 : [fx] "R" (&fpu->state->fxsave));
238 }
239 }
240
241 /*
242 * These must be called with preempt disabled. Returns
243 * 'true' if the FPU state is still intact.
244 */
fpu_save_init(struct fpu * fpu)245 static inline int fpu_save_init(struct fpu *fpu)
246 {
247 if (use_xsave()) {
248 fpu_xsave(fpu);
249
250 /*
251 * xsave header may indicate the init state of the FP.
252 */
253 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
254 return 1;
255 } else if (use_fxsr()) {
256 fpu_fxsave(fpu);
257 } else {
258 asm volatile("fnsave %[fx]; fwait"
259 : [fx] "=m" (fpu->state->fsave));
260 return 0;
261 }
262
263 /*
264 * If exceptions are pending, we need to clear them so
265 * that we don't randomly get exceptions later.
266 *
267 * FIXME! Is this perhaps only true for the old-style
268 * irq13 case? Maybe we could leave the x87 state
269 * intact otherwise?
270 */
271 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
272 asm volatile("fnclex");
273 return 0;
274 }
275 return 1;
276 }
277
__save_init_fpu(struct task_struct * tsk)278 static inline int __save_init_fpu(struct task_struct *tsk)
279 {
280 return fpu_save_init(&tsk->thread.fpu);
281 }
282
fpu_restore_checking(struct fpu * fpu)283 static inline int fpu_restore_checking(struct fpu *fpu)
284 {
285 if (use_xsave())
286 return fpu_xrstor_checking(&fpu->state->xsave);
287 else if (use_fxsr())
288 return fxrstor_checking(&fpu->state->fxsave);
289 else
290 return frstor_checking(&fpu->state->fsave);
291 }
292
restore_fpu_checking(struct task_struct * tsk)293 static inline int restore_fpu_checking(struct task_struct *tsk)
294 {
295 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
296 is pending. Clear the x87 state here by setting it to fixed
297 values. "m" is a random variable that should be in L1 */
298 alternative_input(
299 ASM_NOP8 ASM_NOP2,
300 "emms\n\t" /* clear stack tags */
301 "fildl %P[addr]", /* set F?P to defined value */
302 X86_FEATURE_FXSAVE_LEAK,
303 [addr] "m" (tsk->thread.fpu.has_fpu));
304
305 return fpu_restore_checking(&tsk->thread.fpu);
306 }
307
308 /*
309 * Software FPU state helpers. Careful: these need to
310 * be preemption protection *and* they need to be
311 * properly paired with the CR0.TS changes!
312 */
__thread_has_fpu(struct task_struct * tsk)313 static inline int __thread_has_fpu(struct task_struct *tsk)
314 {
315 return tsk->thread.fpu.has_fpu;
316 }
317
318 /* Must be paired with an 'stts' after! */
__thread_clear_has_fpu(struct task_struct * tsk)319 static inline void __thread_clear_has_fpu(struct task_struct *tsk)
320 {
321 tsk->thread.fpu.has_fpu = 0;
322 this_cpu_write(fpu_owner_task, NULL);
323 }
324
325 /* Must be paired with a 'clts' before! */
__thread_set_has_fpu(struct task_struct * tsk)326 static inline void __thread_set_has_fpu(struct task_struct *tsk)
327 {
328 tsk->thread.fpu.has_fpu = 1;
329 this_cpu_write(fpu_owner_task, tsk);
330 }
331
332 /*
333 * Encapsulate the CR0.TS handling together with the
334 * software flag.
335 *
336 * These generally need preemption protection to work,
337 * do try to avoid using these on their own.
338 */
__thread_fpu_end(struct task_struct * tsk)339 static inline void __thread_fpu_end(struct task_struct *tsk)
340 {
341 __thread_clear_has_fpu(tsk);
342 if (!use_eager_fpu())
343 stts();
344 }
345
__thread_fpu_begin(struct task_struct * tsk)346 static inline void __thread_fpu_begin(struct task_struct *tsk)
347 {
348 if (!use_eager_fpu())
349 clts();
350 __thread_set_has_fpu(tsk);
351 }
352
__drop_fpu(struct task_struct * tsk)353 static inline void __drop_fpu(struct task_struct *tsk)
354 {
355 if (__thread_has_fpu(tsk)) {
356 /* Ignore delayed exceptions from user space */
357 asm volatile("1: fwait\n"
358 "2:\n"
359 _ASM_EXTABLE(1b, 2b));
360 __thread_fpu_end(tsk);
361 }
362 }
363
drop_fpu(struct task_struct * tsk)364 static inline void drop_fpu(struct task_struct *tsk)
365 {
366 /*
367 * Forget coprocessor state..
368 */
369 preempt_disable();
370 tsk->fpu_counter = 0;
371 __drop_fpu(tsk);
372 clear_used_math();
373 preempt_enable();
374 }
375
drop_init_fpu(struct task_struct * tsk)376 static inline void drop_init_fpu(struct task_struct *tsk)
377 {
378 if (!use_eager_fpu())
379 drop_fpu(tsk);
380 else {
381 if (use_xsave())
382 xrstor_state(init_xstate_buf, -1);
383 else
384 fxrstor_checking(&init_xstate_buf->i387);
385 }
386 }
387
388 /*
389 * FPU state switching for scheduling.
390 *
391 * This is a two-stage process:
392 *
393 * - switch_fpu_prepare() saves the old state and
394 * sets the new state of the CR0.TS bit. This is
395 * done within the context of the old process.
396 *
397 * - switch_fpu_finish() restores the new state as
398 * necessary.
399 */
400 typedef struct { int preload; } fpu_switch_t;
401
402 /*
403 * Must be run with preemption disabled: this clears the fpu_owner_task,
404 * on this CPU.
405 *
406 * This will disable any lazy FPU state restore of the current FPU state,
407 * but if the current thread owns the FPU, it will still be saved by.
408 */
__cpu_disable_lazy_restore(unsigned int cpu)409 static inline void __cpu_disable_lazy_restore(unsigned int cpu)
410 {
411 per_cpu(fpu_owner_task, cpu) = NULL;
412 }
413
fpu_lazy_restore(struct task_struct * new,unsigned int cpu)414 static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
415 {
416 return new == this_cpu_read_stable(fpu_owner_task) &&
417 cpu == new->thread.fpu.last_cpu;
418 }
419
switch_fpu_prepare(struct task_struct * old,struct task_struct * new,int cpu)420 static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
421 {
422 fpu_switch_t fpu;
423
424 /*
425 * If the task has used the math, pre-load the FPU on xsave processors
426 * or if the past 5 consecutive context-switches used math.
427 */
428 fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
429 new->fpu_counter > 5);
430 if (__thread_has_fpu(old)) {
431 if (!__save_init_fpu(old))
432 cpu = ~0;
433 old->thread.fpu.last_cpu = cpu;
434 old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
435
436 /* Don't change CR0.TS if we just switch! */
437 if (fpu.preload) {
438 new->fpu_counter++;
439 __thread_set_has_fpu(new);
440 prefetch(new->thread.fpu.state);
441 } else if (!use_eager_fpu())
442 stts();
443 } else {
444 old->fpu_counter = 0;
445 old->thread.fpu.last_cpu = ~0;
446 if (fpu.preload) {
447 new->fpu_counter++;
448 if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
449 fpu.preload = 0;
450 else
451 prefetch(new->thread.fpu.state);
452 __thread_fpu_begin(new);
453 }
454 }
455 return fpu;
456 }
457
458 /*
459 * By the time this gets called, we've already cleared CR0.TS and
460 * given the process the FPU if we are going to preload the FPU
461 * state - all we need to do is to conditionally restore the register
462 * state itself.
463 */
switch_fpu_finish(struct task_struct * new,fpu_switch_t fpu)464 static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
465 {
466 if (fpu.preload) {
467 if (unlikely(restore_fpu_checking(new)))
468 drop_init_fpu(new);
469 }
470 }
471
472 /*
473 * Signal frame handlers...
474 */
475 extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
476 extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
477
xstate_sigframe_size(void)478 static inline int xstate_sigframe_size(void)
479 {
480 return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
481 }
482
restore_xstate_sig(void __user * buf,int ia32_frame)483 static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
484 {
485 void __user *buf_fx = buf;
486 int size = xstate_sigframe_size();
487
488 if (ia32_frame && use_fxsr()) {
489 buf_fx = buf + sizeof(struct i387_fsave_struct);
490 size += sizeof(struct i387_fsave_struct);
491 }
492
493 return __restore_xstate_sig(buf, buf_fx, size);
494 }
495
496 /*
497 * Need to be preemption-safe.
498 *
499 * NOTE! user_fpu_begin() must be used only immediately before restoring
500 * it. This function does not do any save/restore on their own.
501 */
user_fpu_begin(void)502 static inline void user_fpu_begin(void)
503 {
504 preempt_disable();
505 if (!user_has_fpu())
506 __thread_fpu_begin(current);
507 preempt_enable();
508 }
509
__save_fpu(struct task_struct * tsk)510 static inline void __save_fpu(struct task_struct *tsk)
511 {
512 if (use_xsave())
513 xsave_state(&tsk->thread.fpu.state->xsave, -1);
514 else
515 fpu_fxsave(&tsk->thread.fpu);
516 }
517
518 /*
519 * These disable preemption on their own and are safe
520 */
save_init_fpu(struct task_struct * tsk)521 static inline void save_init_fpu(struct task_struct *tsk)
522 {
523 WARN_ON_ONCE(!__thread_has_fpu(tsk));
524
525 if (use_eager_fpu()) {
526 __save_fpu(tsk);
527 return;
528 }
529
530 preempt_disable();
531 __save_init_fpu(tsk);
532 __thread_fpu_end(tsk);
533 preempt_enable();
534 }
535
536 /*
537 * i387 state interaction
538 */
get_fpu_cwd(struct task_struct * tsk)539 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
540 {
541 if (cpu_has_fxsr) {
542 return tsk->thread.fpu.state->fxsave.cwd;
543 } else {
544 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
545 }
546 }
547
get_fpu_swd(struct task_struct * tsk)548 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
549 {
550 if (cpu_has_fxsr) {
551 return tsk->thread.fpu.state->fxsave.swd;
552 } else {
553 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
554 }
555 }
556
get_fpu_mxcsr(struct task_struct * tsk)557 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
558 {
559 if (cpu_has_xmm) {
560 return tsk->thread.fpu.state->fxsave.mxcsr;
561 } else {
562 return MXCSR_DEFAULT;
563 }
564 }
565
fpu_allocated(struct fpu * fpu)566 static bool fpu_allocated(struct fpu *fpu)
567 {
568 return fpu->state != NULL;
569 }
570
fpu_alloc(struct fpu * fpu)571 static inline int fpu_alloc(struct fpu *fpu)
572 {
573 if (fpu_allocated(fpu))
574 return 0;
575 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
576 if (!fpu->state)
577 return -ENOMEM;
578 WARN_ON((unsigned long)fpu->state & 15);
579 return 0;
580 }
581
fpu_free(struct fpu * fpu)582 static inline void fpu_free(struct fpu *fpu)
583 {
584 if (fpu->state) {
585 kmem_cache_free(task_xstate_cachep, fpu->state);
586 fpu->state = NULL;
587 }
588 }
589
fpu_copy(struct task_struct * dst,struct task_struct * src)590 static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
591 {
592 if (use_eager_fpu()) {
593 memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
594 __save_fpu(dst);
595 } else {
596 struct fpu *dfpu = &dst->thread.fpu;
597 struct fpu *sfpu = &src->thread.fpu;
598
599 unlazy_fpu(src);
600 memcpy(dfpu->state, sfpu->state, xstate_size);
601 }
602 }
603
604 static inline unsigned long
alloc_mathframe(unsigned long sp,int ia32_frame,unsigned long * buf_fx,unsigned long * size)605 alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
606 unsigned long *size)
607 {
608 unsigned long frame_size = xstate_sigframe_size();
609
610 *buf_fx = sp = round_down(sp - frame_size, 64);
611 if (ia32_frame && use_fxsr()) {
612 frame_size += sizeof(struct i387_fsave_struct);
613 sp -= sizeof(struct i387_fsave_struct);
614 }
615
616 *size = frame_size;
617 return sp;
618 }
619
620 #endif
621