• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1994 Linus Torvalds
3  *
4  * Pentium III FXSR, SSE support
5  * General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  * x86-64 work by Andi Kleen 2002
8  */
9 
10 #ifndef _FPU_INTERNAL_H
11 #define _FPU_INTERNAL_H
12 
13 #include <linux/kernel_stat.h>
14 #include <linux/regset.h>
15 #include <linux/compat.h>
16 #include <linux/slab.h>
17 #include <asm/asm.h>
18 #include <asm/cpufeature.h>
19 #include <asm/processor.h>
20 #include <asm/sigcontext.h>
21 #include <asm/user.h>
22 #include <asm/uaccess.h>
23 #include <asm/xsave.h>
24 #include <asm/smap.h>
25 
26 #ifdef CONFIG_X86_64
27 # include <asm/sigcontext32.h>
28 # include <asm/user32.h>
29 struct ksignal;
30 int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
31 			compat_sigset_t *set, struct pt_regs *regs);
32 int ia32_setup_frame(int sig, struct ksignal *ksig,
33 		     compat_sigset_t *set, struct pt_regs *regs);
34 #else
35 # define user_i387_ia32_struct	user_i387_struct
36 # define user32_fxsr_struct	user_fxsr_struct
37 # define ia32_setup_frame	__setup_frame
38 # define ia32_setup_rt_frame	__setup_rt_frame
39 #endif
40 
41 extern unsigned int mxcsr_feature_mask;
42 extern void fpu_init(void);
43 extern void eager_fpu_init(void);
44 
45 DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
46 
47 extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
48 			      struct task_struct *tsk);
49 extern void convert_to_fxsr(struct task_struct *tsk,
50 			    const struct user_i387_ia32_struct *env);
51 
52 extern user_regset_active_fn fpregs_active, xfpregs_active;
53 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
54 				xstateregs_get;
55 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
56 				 xstateregs_set;
57 
58 /*
59  * xstateregs_active == fpregs_active. Please refer to the comment
60  * at the definition of fpregs_active.
61  */
62 #define xstateregs_active	fpregs_active
63 
64 #ifdef CONFIG_MATH_EMULATION
65 # define HAVE_HWFP		(boot_cpu_data.hard_math)
66 extern void finit_soft_fpu(struct i387_soft_struct *soft);
67 #else
68 # define HAVE_HWFP		1
finit_soft_fpu(struct i387_soft_struct * soft)69 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
70 #endif
71 
is_ia32_compat_frame(void)72 static inline int is_ia32_compat_frame(void)
73 {
74 	return config_enabled(CONFIG_IA32_EMULATION) &&
75 	       test_thread_flag(TIF_IA32);
76 }
77 
is_ia32_frame(void)78 static inline int is_ia32_frame(void)
79 {
80 	return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
81 }
82 
is_x32_frame(void)83 static inline int is_x32_frame(void)
84 {
85 	return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
86 }
87 
88 #define X87_FSW_ES (1 << 7)	/* Exception Summary */
89 
use_eager_fpu(void)90 static __always_inline __pure bool use_eager_fpu(void)
91 {
92 	return static_cpu_has(X86_FEATURE_EAGER_FPU);
93 }
94 
use_xsaveopt(void)95 static __always_inline __pure bool use_xsaveopt(void)
96 {
97 	return static_cpu_has(X86_FEATURE_XSAVEOPT);
98 }
99 
use_xsave(void)100 static __always_inline __pure bool use_xsave(void)
101 {
102 	return static_cpu_has(X86_FEATURE_XSAVE);
103 }
104 
use_fxsr(void)105 static __always_inline __pure bool use_fxsr(void)
106 {
107         return static_cpu_has(X86_FEATURE_FXSR);
108 }
109 
fx_finit(struct i387_fxsave_struct * fx)110 static inline void fx_finit(struct i387_fxsave_struct *fx)
111 {
112 	memset(fx, 0, xstate_size);
113 	fx->cwd = 0x37f;
114 	fx->mxcsr = MXCSR_DEFAULT;
115 }
116 
117 extern void __sanitize_i387_state(struct task_struct *);
118 
sanitize_i387_state(struct task_struct * tsk)119 static inline void sanitize_i387_state(struct task_struct *tsk)
120 {
121 	if (!use_xsaveopt())
122 		return;
123 	__sanitize_i387_state(tsk);
124 }
125 
126 #define user_insn(insn, output, input...)				\
127 ({									\
128 	int err;							\
129 	asm volatile(ASM_STAC "\n"					\
130 		     "1:" #insn "\n\t"					\
131 		     "2: " ASM_CLAC "\n"				\
132 		     ".section .fixup,\"ax\"\n"				\
133 		     "3:  movl $-1,%[err]\n"				\
134 		     "    jmp  2b\n"					\
135 		     ".previous\n"					\
136 		     _ASM_EXTABLE(1b, 3b)				\
137 		     : [err] "=r" (err), output				\
138 		     : "0"(0), input);					\
139 	err;								\
140 })
141 
142 #define check_insn(insn, output, input...)				\
143 ({									\
144 	int err;							\
145 	asm volatile("1:" #insn "\n\t"					\
146 		     "2:\n"						\
147 		     ".section .fixup,\"ax\"\n"				\
148 		     "3:  movl $-1,%[err]\n"				\
149 		     "    jmp  2b\n"					\
150 		     ".previous\n"					\
151 		     _ASM_EXTABLE(1b, 3b)				\
152 		     : [err] "=r" (err), output				\
153 		     : "0"(0), input);					\
154 	err;								\
155 })
156 
fsave_user(struct i387_fsave_struct __user * fx)157 static inline int fsave_user(struct i387_fsave_struct __user *fx)
158 {
159 	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
160 }
161 
fxsave_user(struct i387_fxsave_struct __user * fx)162 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
163 {
164 	if (config_enabled(CONFIG_X86_32))
165 		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
166 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
167 		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
168 
169 	/* See comment in fpu_fxsave() below. */
170 	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
171 }
172 
fxrstor_checking(struct i387_fxsave_struct * fx)173 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
174 {
175 	if (config_enabled(CONFIG_X86_32))
176 		return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
177 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
178 		return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
179 
180 	/* See comment in fpu_fxsave() below. */
181 	return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
182 			  "m" (*fx));
183 }
184 
fxrstor_user(struct i387_fxsave_struct __user * fx)185 static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
186 {
187 	if (config_enabled(CONFIG_X86_32))
188 		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
189 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
190 		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
191 
192 	/* See comment in fpu_fxsave() below. */
193 	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
194 			  "m" (*fx));
195 }
196 
frstor_checking(struct i387_fsave_struct * fx)197 static inline int frstor_checking(struct i387_fsave_struct *fx)
198 {
199 	return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
200 }
201 
frstor_user(struct i387_fsave_struct __user * fx)202 static inline int frstor_user(struct i387_fsave_struct __user *fx)
203 {
204 	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
205 }
206 
fpu_fxsave(struct fpu * fpu)207 static inline void fpu_fxsave(struct fpu *fpu)
208 {
209 	if (config_enabled(CONFIG_X86_32))
210 		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
211 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
212 		asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
213 	else {
214 		/* Using "rex64; fxsave %0" is broken because, if the memory
215 		 * operand uses any extended registers for addressing, a second
216 		 * REX prefix will be generated (to the assembler, rex64
217 		 * followed by semicolon is a separate instruction), and hence
218 		 * the 64-bitness is lost.
219 		 *
220 		 * Using "fxsaveq %0" would be the ideal choice, but is only
221 		 * supported starting with gas 2.16.
222 		 *
223 		 * Using, as a workaround, the properly prefixed form below
224 		 * isn't accepted by any binutils version so far released,
225 		 * complaining that the same type of prefix is used twice if
226 		 * an extended register is needed for addressing (fix submitted
227 		 * to mainline 2005-11-21).
228 		 *
229 		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
230 		 *
231 		 * This, however, we can work around by forcing the compiler to
232 		 * select an addressing mode that doesn't require extended
233 		 * registers.
234 		 */
235 		asm volatile( "rex64/fxsave (%[fx])"
236 			     : "=m" (fpu->state->fxsave)
237 			     : [fx] "R" (&fpu->state->fxsave));
238 	}
239 }
240 
241 /*
242  * These must be called with preempt disabled. Returns
243  * 'true' if the FPU state is still intact.
244  */
fpu_save_init(struct fpu * fpu)245 static inline int fpu_save_init(struct fpu *fpu)
246 {
247 	if (use_xsave()) {
248 		fpu_xsave(fpu);
249 
250 		/*
251 		 * xsave header may indicate the init state of the FP.
252 		 */
253 		if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
254 			return 1;
255 	} else if (use_fxsr()) {
256 		fpu_fxsave(fpu);
257 	} else {
258 		asm volatile("fnsave %[fx]; fwait"
259 			     : [fx] "=m" (fpu->state->fsave));
260 		return 0;
261 	}
262 
263 	/*
264 	 * If exceptions are pending, we need to clear them so
265 	 * that we don't randomly get exceptions later.
266 	 *
267 	 * FIXME! Is this perhaps only true for the old-style
268 	 * irq13 case? Maybe we could leave the x87 state
269 	 * intact otherwise?
270 	 */
271 	if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
272 		asm volatile("fnclex");
273 		return 0;
274 	}
275 	return 1;
276 }
277 
__save_init_fpu(struct task_struct * tsk)278 static inline int __save_init_fpu(struct task_struct *tsk)
279 {
280 	return fpu_save_init(&tsk->thread.fpu);
281 }
282 
fpu_restore_checking(struct fpu * fpu)283 static inline int fpu_restore_checking(struct fpu *fpu)
284 {
285 	if (use_xsave())
286 		return fpu_xrstor_checking(&fpu->state->xsave);
287 	else if (use_fxsr())
288 		return fxrstor_checking(&fpu->state->fxsave);
289 	else
290 		return frstor_checking(&fpu->state->fsave);
291 }
292 
restore_fpu_checking(struct task_struct * tsk)293 static inline int restore_fpu_checking(struct task_struct *tsk)
294 {
295 	/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
296 	   is pending.  Clear the x87 state here by setting it to fixed
297 	   values. "m" is a random variable that should be in L1 */
298 	alternative_input(
299 		ASM_NOP8 ASM_NOP2,
300 		"emms\n\t"		/* clear stack tags */
301 		"fildl %P[addr]",	/* set F?P to defined value */
302 		X86_FEATURE_FXSAVE_LEAK,
303 		[addr] "m" (tsk->thread.fpu.has_fpu));
304 
305 	return fpu_restore_checking(&tsk->thread.fpu);
306 }
307 
308 /*
309  * Software FPU state helpers. Careful: these need to
310  * be preemption protection *and* they need to be
311  * properly paired with the CR0.TS changes!
312  */
__thread_has_fpu(struct task_struct * tsk)313 static inline int __thread_has_fpu(struct task_struct *tsk)
314 {
315 	return tsk->thread.fpu.has_fpu;
316 }
317 
318 /* Must be paired with an 'stts' after! */
__thread_clear_has_fpu(struct task_struct * tsk)319 static inline void __thread_clear_has_fpu(struct task_struct *tsk)
320 {
321 	tsk->thread.fpu.has_fpu = 0;
322 	this_cpu_write(fpu_owner_task, NULL);
323 }
324 
325 /* Must be paired with a 'clts' before! */
__thread_set_has_fpu(struct task_struct * tsk)326 static inline void __thread_set_has_fpu(struct task_struct *tsk)
327 {
328 	tsk->thread.fpu.has_fpu = 1;
329 	this_cpu_write(fpu_owner_task, tsk);
330 }
331 
332 /*
333  * Encapsulate the CR0.TS handling together with the
334  * software flag.
335  *
336  * These generally need preemption protection to work,
337  * do try to avoid using these on their own.
338  */
__thread_fpu_end(struct task_struct * tsk)339 static inline void __thread_fpu_end(struct task_struct *tsk)
340 {
341 	__thread_clear_has_fpu(tsk);
342 	if (!use_eager_fpu())
343 		stts();
344 }
345 
__thread_fpu_begin(struct task_struct * tsk)346 static inline void __thread_fpu_begin(struct task_struct *tsk)
347 {
348 	if (!use_eager_fpu())
349 		clts();
350 	__thread_set_has_fpu(tsk);
351 }
352 
__drop_fpu(struct task_struct * tsk)353 static inline void __drop_fpu(struct task_struct *tsk)
354 {
355 	if (__thread_has_fpu(tsk)) {
356 		/* Ignore delayed exceptions from user space */
357 		asm volatile("1: fwait\n"
358 			     "2:\n"
359 			     _ASM_EXTABLE(1b, 2b));
360 		__thread_fpu_end(tsk);
361 	}
362 }
363 
drop_fpu(struct task_struct * tsk)364 static inline void drop_fpu(struct task_struct *tsk)
365 {
366 	/*
367 	 * Forget coprocessor state..
368 	 */
369 	preempt_disable();
370 	tsk->fpu_counter = 0;
371 	__drop_fpu(tsk);
372 	clear_used_math();
373 	preempt_enable();
374 }
375 
drop_init_fpu(struct task_struct * tsk)376 static inline void drop_init_fpu(struct task_struct *tsk)
377 {
378 	if (!use_eager_fpu())
379 		drop_fpu(tsk);
380 	else {
381 		if (use_xsave())
382 			xrstor_state(init_xstate_buf, -1);
383 		else
384 			fxrstor_checking(&init_xstate_buf->i387);
385 	}
386 }
387 
388 /*
389  * FPU state switching for scheduling.
390  *
391  * This is a two-stage process:
392  *
393  *  - switch_fpu_prepare() saves the old state and
394  *    sets the new state of the CR0.TS bit. This is
395  *    done within the context of the old process.
396  *
397  *  - switch_fpu_finish() restores the new state as
398  *    necessary.
399  */
400 typedef struct { int preload; } fpu_switch_t;
401 
402 /*
403  * Must be run with preemption disabled: this clears the fpu_owner_task,
404  * on this CPU.
405  *
406  * This will disable any lazy FPU state restore of the current FPU state,
407  * but if the current thread owns the FPU, it will still be saved by.
408  */
__cpu_disable_lazy_restore(unsigned int cpu)409 static inline void __cpu_disable_lazy_restore(unsigned int cpu)
410 {
411 	per_cpu(fpu_owner_task, cpu) = NULL;
412 }
413 
fpu_lazy_restore(struct task_struct * new,unsigned int cpu)414 static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
415 {
416 	return new == this_cpu_read_stable(fpu_owner_task) &&
417 		cpu == new->thread.fpu.last_cpu;
418 }
419 
switch_fpu_prepare(struct task_struct * old,struct task_struct * new,int cpu)420 static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
421 {
422 	fpu_switch_t fpu;
423 
424 	/*
425 	 * If the task has used the math, pre-load the FPU on xsave processors
426 	 * or if the past 5 consecutive context-switches used math.
427 	 */
428 	fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
429 					     new->fpu_counter > 5);
430 	if (__thread_has_fpu(old)) {
431 		if (!__save_init_fpu(old))
432 			cpu = ~0;
433 		old->thread.fpu.last_cpu = cpu;
434 		old->thread.fpu.has_fpu = 0;	/* But leave fpu_owner_task! */
435 
436 		/* Don't change CR0.TS if we just switch! */
437 		if (fpu.preload) {
438 			new->fpu_counter++;
439 			__thread_set_has_fpu(new);
440 			prefetch(new->thread.fpu.state);
441 		} else if (!use_eager_fpu())
442 			stts();
443 	} else {
444 		old->fpu_counter = 0;
445 		old->thread.fpu.last_cpu = ~0;
446 		if (fpu.preload) {
447 			new->fpu_counter++;
448 			if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
449 				fpu.preload = 0;
450 			else
451 				prefetch(new->thread.fpu.state);
452 			__thread_fpu_begin(new);
453 		}
454 	}
455 	return fpu;
456 }
457 
458 /*
459  * By the time this gets called, we've already cleared CR0.TS and
460  * given the process the FPU if we are going to preload the FPU
461  * state - all we need to do is to conditionally restore the register
462  * state itself.
463  */
switch_fpu_finish(struct task_struct * new,fpu_switch_t fpu)464 static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
465 {
466 	if (fpu.preload) {
467 		if (unlikely(restore_fpu_checking(new)))
468 			drop_init_fpu(new);
469 	}
470 }
471 
472 /*
473  * Signal frame handlers...
474  */
475 extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
476 extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
477 
xstate_sigframe_size(void)478 static inline int xstate_sigframe_size(void)
479 {
480 	return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
481 }
482 
restore_xstate_sig(void __user * buf,int ia32_frame)483 static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
484 {
485 	void __user *buf_fx = buf;
486 	int size = xstate_sigframe_size();
487 
488 	if (ia32_frame && use_fxsr()) {
489 		buf_fx = buf + sizeof(struct i387_fsave_struct);
490 		size += sizeof(struct i387_fsave_struct);
491 	}
492 
493 	return __restore_xstate_sig(buf, buf_fx, size);
494 }
495 
496 /*
497  * Need to be preemption-safe.
498  *
499  * NOTE! user_fpu_begin() must be used only immediately before restoring
500  * it. This function does not do any save/restore on their own.
501  */
user_fpu_begin(void)502 static inline void user_fpu_begin(void)
503 {
504 	preempt_disable();
505 	if (!user_has_fpu())
506 		__thread_fpu_begin(current);
507 	preempt_enable();
508 }
509 
__save_fpu(struct task_struct * tsk)510 static inline void __save_fpu(struct task_struct *tsk)
511 {
512 	if (use_xsave())
513 		xsave_state(&tsk->thread.fpu.state->xsave, -1);
514 	else
515 		fpu_fxsave(&tsk->thread.fpu);
516 }
517 
518 /*
519  * These disable preemption on their own and are safe
520  */
save_init_fpu(struct task_struct * tsk)521 static inline void save_init_fpu(struct task_struct *tsk)
522 {
523 	WARN_ON_ONCE(!__thread_has_fpu(tsk));
524 
525 	if (use_eager_fpu()) {
526 		__save_fpu(tsk);
527 		return;
528 	}
529 
530 	preempt_disable();
531 	__save_init_fpu(tsk);
532 	__thread_fpu_end(tsk);
533 	preempt_enable();
534 }
535 
536 /*
537  * i387 state interaction
538  */
get_fpu_cwd(struct task_struct * tsk)539 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
540 {
541 	if (cpu_has_fxsr) {
542 		return tsk->thread.fpu.state->fxsave.cwd;
543 	} else {
544 		return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
545 	}
546 }
547 
get_fpu_swd(struct task_struct * tsk)548 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
549 {
550 	if (cpu_has_fxsr) {
551 		return tsk->thread.fpu.state->fxsave.swd;
552 	} else {
553 		return (unsigned short)tsk->thread.fpu.state->fsave.swd;
554 	}
555 }
556 
get_fpu_mxcsr(struct task_struct * tsk)557 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
558 {
559 	if (cpu_has_xmm) {
560 		return tsk->thread.fpu.state->fxsave.mxcsr;
561 	} else {
562 		return MXCSR_DEFAULT;
563 	}
564 }
565 
fpu_allocated(struct fpu * fpu)566 static bool fpu_allocated(struct fpu *fpu)
567 {
568 	return fpu->state != NULL;
569 }
570 
fpu_alloc(struct fpu * fpu)571 static inline int fpu_alloc(struct fpu *fpu)
572 {
573 	if (fpu_allocated(fpu))
574 		return 0;
575 	fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
576 	if (!fpu->state)
577 		return -ENOMEM;
578 	WARN_ON((unsigned long)fpu->state & 15);
579 	return 0;
580 }
581 
fpu_free(struct fpu * fpu)582 static inline void fpu_free(struct fpu *fpu)
583 {
584 	if (fpu->state) {
585 		kmem_cache_free(task_xstate_cachep, fpu->state);
586 		fpu->state = NULL;
587 	}
588 }
589 
fpu_copy(struct task_struct * dst,struct task_struct * src)590 static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
591 {
592 	if (use_eager_fpu()) {
593 		memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
594 		__save_fpu(dst);
595 	} else {
596 		struct fpu *dfpu = &dst->thread.fpu;
597 		struct fpu *sfpu = &src->thread.fpu;
598 
599 		unlazy_fpu(src);
600 		memcpy(dfpu->state, sfpu->state, xstate_size);
601 	}
602 }
603 
604 static inline unsigned long
alloc_mathframe(unsigned long sp,int ia32_frame,unsigned long * buf_fx,unsigned long * size)605 alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
606 		unsigned long *size)
607 {
608 	unsigned long frame_size = xstate_sigframe_size();
609 
610 	*buf_fx = sp = round_down(sp - frame_size, 64);
611 	if (ia32_frame && use_fxsr()) {
612 		frame_size += sizeof(struct i387_fsave_struct);
613 		sp -= sizeof(struct i387_fsave_struct);
614 	}
615 
616 	*size = frame_size;
617 	return sp;
618 }
619 
620 #endif
621