• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3  *           and other Tigon based cards.
4  *
5  * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
6  *
7  * Thanks to Alteon and 3Com for providing hardware and documentation
8  * enabling me to write this driver.
9  *
10  * A mailing list for discussing the use of this driver has been
11  * setup, please subscribe to the lists if you have any questions
12  * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13  * see how to subscribe.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * Additional credits:
21  *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22  *       dump support. The trace dump support has not been
23  *       integrated yet however.
24  *   Troy Benjegerdes: Big Endian (PPC) patches.
25  *   Nate Stahl: Better out of memory handling and stats support.
26  *   Aman Singla: Nasty race between interrupt handler and tx code dealing
27  *                with 'testing the tx_ret_csm and setting tx_full'
28  *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29  *                                       infrastructure and Sparc support
30  *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31  *                              driver under Linux/Sparc64
32  *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33  *                                       ETHTOOL_GDRVINFO support
34  *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35  *                                       handler and close() cleanup.
36  *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37  *                                       memory mapped IO is enabled to
38  *                                       make the driver work on RS/6000.
39  *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40  *                                       where the driver would disable
41  *                                       bus master mode if it had to disable
42  *                                       write and invalidate.
43  *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44  *                                       endian systems.
45  *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and
46  *                                       rx producer index when
47  *                                       flushing the Jumbo ring.
48  *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the
49  *                                       driver init path.
50  *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
51  */
52 
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
66 #include <linux/mm.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
69 #include <linux/firmware.h>
70 #include <linux/slab.h>
71 #include <linux/prefetch.h>
72 #include <linux/if_vlan.h>
73 
74 #ifdef SIOCETHTOOL
75 #include <linux/ethtool.h>
76 #endif
77 
78 #include <net/sock.h>
79 #include <net/ip.h>
80 
81 #include <asm/io.h>
82 #include <asm/irq.h>
83 #include <asm/byteorder.h>
84 #include <asm/uaccess.h>
85 
86 
87 #define DRV_NAME "acenic"
88 
89 #undef INDEX_DEBUG
90 
91 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
92 #define ACE_IS_TIGON_I(ap)	0
93 #define ACE_TX_RING_ENTRIES(ap)	MAX_TX_RING_ENTRIES
94 #else
95 #define ACE_IS_TIGON_I(ap)	(ap->version == 1)
96 #define ACE_TX_RING_ENTRIES(ap)	ap->tx_ring_entries
97 #endif
98 
99 #ifndef PCI_VENDOR_ID_ALTEON
100 #define PCI_VENDOR_ID_ALTEON		0x12ae
101 #endif
102 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
103 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001
104 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
105 #endif
106 #ifndef PCI_DEVICE_ID_3COM_3C985
107 #define PCI_DEVICE_ID_3COM_3C985	0x0001
108 #endif
109 #ifndef PCI_VENDOR_ID_NETGEAR
110 #define PCI_VENDOR_ID_NETGEAR		0x1385
111 #define PCI_DEVICE_ID_NETGEAR_GA620	0x620a
112 #endif
113 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
114 #define PCI_DEVICE_ID_NETGEAR_GA620T	0x630a
115 #endif
116 
117 
118 /*
119  * Farallon used the DEC vendor ID by mistake and they seem not
120  * to care - stinky!
121  */
122 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
123 #define PCI_DEVICE_ID_FARALLON_PN9000SX	0x1a
124 #endif
125 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
126 #define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa
127 #endif
128 #ifndef PCI_VENDOR_ID_SGI
129 #define PCI_VENDOR_ID_SGI		0x10a9
130 #endif
131 #ifndef PCI_DEVICE_ID_SGI_ACENIC
132 #define PCI_DEVICE_ID_SGI_ACENIC	0x0009
133 #endif
134 
135 static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
136 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
137 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
138 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
139 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
140 	{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
141 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
142 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
143 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
144 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
145 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
146 	/*
147 	 * Farallon used the DEC vendor ID on their cards incorrectly,
148 	 * then later Alteon's ID.
149 	 */
150 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
151 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
152 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
153 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
154 	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
155 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
156 	{ }
157 };
158 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
159 
160 #define ace_sync_irq(irq)	synchronize_irq(irq)
161 
162 #ifndef offset_in_page
163 #define offset_in_page(ptr)	((unsigned long)(ptr) & ~PAGE_MASK)
164 #endif
165 
166 #define ACE_MAX_MOD_PARMS	8
167 #define BOARD_IDX_STATIC	0
168 #define BOARD_IDX_OVERFLOW	-1
169 
170 #include "acenic.h"
171 
172 /*
173  * These must be defined before the firmware is included.
174  */
175 #define MAX_TEXT_LEN	96*1024
176 #define MAX_RODATA_LEN	8*1024
177 #define MAX_DATA_LEN	2*1024
178 
179 #ifndef tigon2FwReleaseLocal
180 #define tigon2FwReleaseLocal 0
181 #endif
182 
183 /*
184  * This driver currently supports Tigon I and Tigon II based cards
185  * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
186  * GA620. The driver should also work on the SGI, DEC and Farallon
187  * versions of the card, however I have not been able to test that
188  * myself.
189  *
190  * This card is really neat, it supports receive hardware checksumming
191  * and jumbo frames (up to 9000 bytes) and does a lot of work in the
192  * firmware. Also the programming interface is quite neat, except for
193  * the parts dealing with the i2c eeprom on the card ;-)
194  *
195  * Using jumbo frames:
196  *
197  * To enable jumbo frames, simply specify an mtu between 1500 and 9000
198  * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
199  * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
200  * interface number and <MTU> being the MTU value.
201  *
202  * Module parameters:
203  *
204  * When compiled as a loadable module, the driver allows for a number
205  * of module parameters to be specified. The driver supports the
206  * following module parameters:
207  *
208  *  trace=<val> - Firmware trace level. This requires special traced
209  *                firmware to replace the firmware supplied with
210  *                the driver - for debugging purposes only.
211  *
212  *  link=<val>  - Link state. Normally you want to use the default link
213  *                parameters set by the driver. This can be used to
214  *                override these in case your switch doesn't negotiate
215  *                the link properly. Valid values are:
216  *         0x0001 - Force half duplex link.
217  *         0x0002 - Do not negotiate line speed with the other end.
218  *         0x0010 - 10Mbit/sec link.
219  *         0x0020 - 100Mbit/sec link.
220  *         0x0040 - 1000Mbit/sec link.
221  *         0x0100 - Do not negotiate flow control.
222  *         0x0200 - Enable RX flow control Y
223  *         0x0400 - Enable TX flow control Y (Tigon II NICs only).
224  *                Default value is 0x0270, ie. enable link+flow
225  *                control negotiation. Negotiating the highest
226  *                possible link speed with RX flow control enabled.
227  *
228  *                When disabling link speed negotiation, only one link
229  *                speed is allowed to be specified!
230  *
231  *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
232  *                to wait for more packets to arive before
233  *                interrupting the host, from the time the first
234  *                packet arrives.
235  *
236  *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
237  *                to wait for more packets to arive in the transmit ring,
238  *                before interrupting the host, after transmitting the
239  *                first packet in the ring.
240  *
241  *  max_tx_desc=<val> - maximum number of transmit descriptors
242  *                (packets) transmitted before interrupting the host.
243  *
244  *  max_rx_desc=<val> - maximum number of receive descriptors
245  *                (packets) received before interrupting the host.
246  *
247  *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
248  *                increments of the NIC's on board memory to be used for
249  *                transmit and receive buffers. For the 1MB NIC app. 800KB
250  *                is available, on the 1/2MB NIC app. 300KB is available.
251  *                68KB will always be available as a minimum for both
252  *                directions. The default value is a 50/50 split.
253  *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
254  *                operations, default (1) is to always disable this as
255  *                that is what Alteon does on NT. I have not been able
256  *                to measure any real performance differences with
257  *                this on my systems. Set <val>=0 if you want to
258  *                enable these operations.
259  *
260  * If you use more than one NIC, specify the parameters for the
261  * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
262  * run tracing on NIC #2 but not on NIC #1 and #3.
263  *
264  * TODO:
265  *
266  * - Proper multicast support.
267  * - NIC dump support.
268  * - More tuning parameters.
269  *
270  * The mini ring is not used under Linux and I am not sure it makes sense
271  * to actually use it.
272  *
273  * New interrupt handler strategy:
274  *
275  * The old interrupt handler worked using the traditional method of
276  * replacing an skbuff with a new one when a packet arrives. However
277  * the rx rings do not need to contain a static number of buffer
278  * descriptors, thus it makes sense to move the memory allocation out
279  * of the main interrupt handler and do it in a bottom half handler
280  * and only allocate new buffers when the number of buffers in the
281  * ring is below a certain threshold. In order to avoid starving the
282  * NIC under heavy load it is however necessary to force allocation
283  * when hitting a minimum threshold. The strategy for alloction is as
284  * follows:
285  *
286  *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
287  *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
288  *                           the buffers in the interrupt handler
289  *     RX_RING_THRES       - maximum number of buffers in the rx ring
290  *     RX_MINI_THRES       - maximum number of buffers in the mini ring
291  *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring
292  *
293  * One advantagous side effect of this allocation approach is that the
294  * entire rx processing can be done without holding any spin lock
295  * since the rx rings and registers are totally independent of the tx
296  * ring and its registers.  This of course includes the kmalloc's of
297  * new skb's. Thus start_xmit can run in parallel with rx processing
298  * and the memory allocation on SMP systems.
299  *
300  * Note that running the skb reallocation in a bottom half opens up
301  * another can of races which needs to be handled properly. In
302  * particular it can happen that the interrupt handler tries to run
303  * the reallocation while the bottom half is either running on another
304  * CPU or was interrupted on the same CPU. To get around this the
305  * driver uses bitops to prevent the reallocation routines from being
306  * reentered.
307  *
308  * TX handling can also be done without holding any spin lock, wheee
309  * this is fun! since tx_ret_csm is only written to by the interrupt
310  * handler. The case to be aware of is when shutting down the device
311  * and cleaning up where it is necessary to make sure that
312  * start_xmit() is not running while this is happening. Well DaveM
313  * informs me that this case is already protected against ... bye bye
314  * Mr. Spin Lock, it was nice to know you.
315  *
316  * TX interrupts are now partly disabled so the NIC will only generate
317  * TX interrupts for the number of coal ticks, not for the number of
318  * TX packets in the queue. This should reduce the number of TX only,
319  * ie. when no RX processing is done, interrupts seen.
320  */
321 
322 /*
323  * Threshold values for RX buffer allocation - the low water marks for
324  * when to start refilling the rings are set to 75% of the ring
325  * sizes. It seems to make sense to refill the rings entirely from the
326  * intrrupt handler once it gets below the panic threshold, that way
327  * we don't risk that the refilling is moved to another CPU when the
328  * one running the interrupt handler just got the slab code hot in its
329  * cache.
330  */
331 #define RX_RING_SIZE		72
332 #define RX_MINI_SIZE		64
333 #define RX_JUMBO_SIZE		48
334 
335 #define RX_PANIC_STD_THRES	16
336 #define RX_PANIC_STD_REFILL	(3*RX_PANIC_STD_THRES)/2
337 #define RX_LOW_STD_THRES	(3*RX_RING_SIZE)/4
338 #define RX_PANIC_MINI_THRES	12
339 #define RX_PANIC_MINI_REFILL	(3*RX_PANIC_MINI_THRES)/2
340 #define RX_LOW_MINI_THRES	(3*RX_MINI_SIZE)/4
341 #define RX_PANIC_JUMBO_THRES	6
342 #define RX_PANIC_JUMBO_REFILL	(3*RX_PANIC_JUMBO_THRES)/2
343 #define RX_LOW_JUMBO_THRES	(3*RX_JUMBO_SIZE)/4
344 
345 
346 /*
347  * Size of the mini ring entries, basically these just should be big
348  * enough to take TCP ACKs
349  */
350 #define ACE_MINI_SIZE		100
351 
352 #define ACE_MINI_BUFSIZE	ACE_MINI_SIZE
353 #define ACE_STD_BUFSIZE		(ACE_STD_MTU + ETH_HLEN + 4)
354 #define ACE_JUMBO_BUFSIZE	(ACE_JUMBO_MTU + ETH_HLEN + 4)
355 
356 /*
357  * There seems to be a magic difference in the effect between 995 and 996
358  * but little difference between 900 and 995 ... no idea why.
359  *
360  * There is now a default set of tuning parameters which is set, depending
361  * on whether or not the user enables Jumbo frames. It's assumed that if
362  * Jumbo frames are enabled, the user wants optimal tuning for that case.
363  */
364 #define DEF_TX_COAL		400 /* 996 */
365 #define DEF_TX_MAX_DESC		60  /* was 40 */
366 #define DEF_RX_COAL		120 /* 1000 */
367 #define DEF_RX_MAX_DESC		25
368 #define DEF_TX_RATIO		21 /* 24 */
369 
370 #define DEF_JUMBO_TX_COAL	20
371 #define DEF_JUMBO_TX_MAX_DESC	60
372 #define DEF_JUMBO_RX_COAL	30
373 #define DEF_JUMBO_RX_MAX_DESC	6
374 #define DEF_JUMBO_TX_RATIO	21
375 
376 #if tigon2FwReleaseLocal < 20001118
377 /*
378  * Standard firmware and early modifications duplicate
379  * IRQ load without this flag (coal timer is never reset).
380  * Note that with this flag tx_coal should be less than
381  * time to xmit full tx ring.
382  * 400usec is not so bad for tx ring size of 128.
383  */
384 #define TX_COAL_INTS_ONLY	1	/* worth it */
385 #else
386 /*
387  * With modified firmware, this is not necessary, but still useful.
388  */
389 #define TX_COAL_INTS_ONLY	1
390 #endif
391 
392 #define DEF_TRACE		0
393 #define DEF_STAT		(2 * TICKS_PER_SEC)
394 
395 
396 static int link_state[ACE_MAX_MOD_PARMS];
397 static int trace[ACE_MAX_MOD_PARMS];
398 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
399 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
400 static int max_tx_desc[ACE_MAX_MOD_PARMS];
401 static int max_rx_desc[ACE_MAX_MOD_PARMS];
402 static int tx_ratio[ACE_MAX_MOD_PARMS];
403 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
404 
405 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
406 MODULE_LICENSE("GPL");
407 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
408 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
409 MODULE_FIRMWARE("acenic/tg1.bin");
410 #endif
411 MODULE_FIRMWARE("acenic/tg2.bin");
412 
413 module_param_array_named(link, link_state, int, NULL, 0);
414 module_param_array(trace, int, NULL, 0);
415 module_param_array(tx_coal_tick, int, NULL, 0);
416 module_param_array(max_tx_desc, int, NULL, 0);
417 module_param_array(rx_coal_tick, int, NULL, 0);
418 module_param_array(max_rx_desc, int, NULL, 0);
419 module_param_array(tx_ratio, int, NULL, 0);
420 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
421 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
422 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
423 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
424 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
425 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
426 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
427 
428 
429 static const char version[] =
430   "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n"
431   "                            http://home.cern.ch/~jes/gige/acenic.html\n";
432 
433 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
434 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
435 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
436 
437 static const struct ethtool_ops ace_ethtool_ops = {
438 	.get_settings = ace_get_settings,
439 	.set_settings = ace_set_settings,
440 	.get_drvinfo = ace_get_drvinfo,
441 };
442 
443 static void ace_watchdog(struct net_device *dev);
444 
445 static const struct net_device_ops ace_netdev_ops = {
446 	.ndo_open		= ace_open,
447 	.ndo_stop		= ace_close,
448 	.ndo_tx_timeout		= ace_watchdog,
449 	.ndo_get_stats		= ace_get_stats,
450 	.ndo_start_xmit		= ace_start_xmit,
451 	.ndo_set_rx_mode	= ace_set_multicast_list,
452 	.ndo_validate_addr	= eth_validate_addr,
453 	.ndo_set_mac_address	= ace_set_mac_addr,
454 	.ndo_change_mtu		= ace_change_mtu,
455 };
456 
acenic_probe_one(struct pci_dev * pdev,const struct pci_device_id * id)457 static int acenic_probe_one(struct pci_dev *pdev,
458 			    const struct pci_device_id *id)
459 {
460 	struct net_device *dev;
461 	struct ace_private *ap;
462 	static int boards_found;
463 
464 	dev = alloc_etherdev(sizeof(struct ace_private));
465 	if (dev == NULL)
466 		return -ENOMEM;
467 
468 	SET_NETDEV_DEV(dev, &pdev->dev);
469 
470 	ap = netdev_priv(dev);
471 	ap->pdev = pdev;
472 	ap->name = pci_name(pdev);
473 
474 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
475 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
476 
477 	dev->watchdog_timeo = 5*HZ;
478 
479 	dev->netdev_ops = &ace_netdev_ops;
480 	SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
481 
482 	/* we only display this string ONCE */
483 	if (!boards_found)
484 		printk(version);
485 
486 	if (pci_enable_device(pdev))
487 		goto fail_free_netdev;
488 
489 	/*
490 	 * Enable master mode before we start playing with the
491 	 * pci_command word since pci_set_master() will modify
492 	 * it.
493 	 */
494 	pci_set_master(pdev);
495 
496 	pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
497 
498 	/* OpenFirmware on Mac's does not set this - DOH.. */
499 	if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
500 		printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
501 		       "access - was not enabled by BIOS/Firmware\n",
502 		       ap->name);
503 		ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
504 		pci_write_config_word(ap->pdev, PCI_COMMAND,
505 				      ap->pci_command);
506 		wmb();
507 	}
508 
509 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
510 	if (ap->pci_latency <= 0x40) {
511 		ap->pci_latency = 0x40;
512 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
513 	}
514 
515 	/*
516 	 * Remap the regs into kernel space - this is abuse of
517 	 * dev->base_addr since it was means for I/O port
518 	 * addresses but who gives a damn.
519 	 */
520 	dev->base_addr = pci_resource_start(pdev, 0);
521 	ap->regs = ioremap(dev->base_addr, 0x4000);
522 	if (!ap->regs) {
523 		printk(KERN_ERR "%s:  Unable to map I/O register, "
524 		       "AceNIC %i will be disabled.\n",
525 		       ap->name, boards_found);
526 		goto fail_free_netdev;
527 	}
528 
529 	switch(pdev->vendor) {
530 	case PCI_VENDOR_ID_ALTEON:
531 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
532 			printk(KERN_INFO "%s: Farallon PN9100-T ",
533 			       ap->name);
534 		} else {
535 			printk(KERN_INFO "%s: Alteon AceNIC ",
536 			       ap->name);
537 		}
538 		break;
539 	case PCI_VENDOR_ID_3COM:
540 		printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
541 		break;
542 	case PCI_VENDOR_ID_NETGEAR:
543 		printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
544 		break;
545 	case PCI_VENDOR_ID_DEC:
546 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
547 			printk(KERN_INFO "%s: Farallon PN9000-SX ",
548 			       ap->name);
549 			break;
550 		}
551 	case PCI_VENDOR_ID_SGI:
552 		printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
553 		break;
554 	default:
555 		printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
556 		break;
557 	}
558 
559 	printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
560 	printk("irq %d\n", pdev->irq);
561 
562 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
563 	if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
564 		printk(KERN_ERR "%s: Driver compiled without Tigon I"
565 		       " support - NIC disabled\n", dev->name);
566 		goto fail_uninit;
567 	}
568 #endif
569 
570 	if (ace_allocate_descriptors(dev))
571 		goto fail_free_netdev;
572 
573 #ifdef MODULE
574 	if (boards_found >= ACE_MAX_MOD_PARMS)
575 		ap->board_idx = BOARD_IDX_OVERFLOW;
576 	else
577 		ap->board_idx = boards_found;
578 #else
579 	ap->board_idx = BOARD_IDX_STATIC;
580 #endif
581 
582 	if (ace_init(dev))
583 		goto fail_free_netdev;
584 
585 	if (register_netdev(dev)) {
586 		printk(KERN_ERR "acenic: device registration failed\n");
587 		goto fail_uninit;
588 	}
589 	ap->name = dev->name;
590 
591 	if (ap->pci_using_dac)
592 		dev->features |= NETIF_F_HIGHDMA;
593 
594 	pci_set_drvdata(pdev, dev);
595 
596 	boards_found++;
597 	return 0;
598 
599  fail_uninit:
600 	ace_init_cleanup(dev);
601  fail_free_netdev:
602 	free_netdev(dev);
603 	return -ENODEV;
604 }
605 
acenic_remove_one(struct pci_dev * pdev)606 static void acenic_remove_one(struct pci_dev *pdev)
607 {
608 	struct net_device *dev = pci_get_drvdata(pdev);
609 	struct ace_private *ap = netdev_priv(dev);
610 	struct ace_regs __iomem *regs = ap->regs;
611 	short i;
612 
613 	unregister_netdev(dev);
614 
615 	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
616 	if (ap->version >= 2)
617 		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
618 
619 	/*
620 	 * This clears any pending interrupts
621 	 */
622 	writel(1, &regs->Mb0Lo);
623 	readl(&regs->CpuCtrl);	/* flush */
624 
625 	/*
626 	 * Make sure no other CPUs are processing interrupts
627 	 * on the card before the buffers are being released.
628 	 * Otherwise one might experience some `interesting'
629 	 * effects.
630 	 *
631 	 * Then release the RX buffers - jumbo buffers were
632 	 * already released in ace_close().
633 	 */
634 	ace_sync_irq(dev->irq);
635 
636 	for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
637 		struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
638 
639 		if (skb) {
640 			struct ring_info *ringp;
641 			dma_addr_t mapping;
642 
643 			ringp = &ap->skb->rx_std_skbuff[i];
644 			mapping = dma_unmap_addr(ringp, mapping);
645 			pci_unmap_page(ap->pdev, mapping,
646 				       ACE_STD_BUFSIZE,
647 				       PCI_DMA_FROMDEVICE);
648 
649 			ap->rx_std_ring[i].size = 0;
650 			ap->skb->rx_std_skbuff[i].skb = NULL;
651 			dev_kfree_skb(skb);
652 		}
653 	}
654 
655 	if (ap->version >= 2) {
656 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
657 			struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
658 
659 			if (skb) {
660 				struct ring_info *ringp;
661 				dma_addr_t mapping;
662 
663 				ringp = &ap->skb->rx_mini_skbuff[i];
664 				mapping = dma_unmap_addr(ringp,mapping);
665 				pci_unmap_page(ap->pdev, mapping,
666 					       ACE_MINI_BUFSIZE,
667 					       PCI_DMA_FROMDEVICE);
668 
669 				ap->rx_mini_ring[i].size = 0;
670 				ap->skb->rx_mini_skbuff[i].skb = NULL;
671 				dev_kfree_skb(skb);
672 			}
673 		}
674 	}
675 
676 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
677 		struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
678 		if (skb) {
679 			struct ring_info *ringp;
680 			dma_addr_t mapping;
681 
682 			ringp = &ap->skb->rx_jumbo_skbuff[i];
683 			mapping = dma_unmap_addr(ringp, mapping);
684 			pci_unmap_page(ap->pdev, mapping,
685 				       ACE_JUMBO_BUFSIZE,
686 				       PCI_DMA_FROMDEVICE);
687 
688 			ap->rx_jumbo_ring[i].size = 0;
689 			ap->skb->rx_jumbo_skbuff[i].skb = NULL;
690 			dev_kfree_skb(skb);
691 		}
692 	}
693 
694 	ace_init_cleanup(dev);
695 	free_netdev(dev);
696 }
697 
698 static struct pci_driver acenic_pci_driver = {
699 	.name		= "acenic",
700 	.id_table	= acenic_pci_tbl,
701 	.probe		= acenic_probe_one,
702 	.remove		= acenic_remove_one,
703 };
704 
acenic_init(void)705 static int __init acenic_init(void)
706 {
707 	return pci_register_driver(&acenic_pci_driver);
708 }
709 
acenic_exit(void)710 static void __exit acenic_exit(void)
711 {
712 	pci_unregister_driver(&acenic_pci_driver);
713 }
714 
715 module_init(acenic_init);
716 module_exit(acenic_exit);
717 
ace_free_descriptors(struct net_device * dev)718 static void ace_free_descriptors(struct net_device *dev)
719 {
720 	struct ace_private *ap = netdev_priv(dev);
721 	int size;
722 
723 	if (ap->rx_std_ring != NULL) {
724 		size = (sizeof(struct rx_desc) *
725 			(RX_STD_RING_ENTRIES +
726 			 RX_JUMBO_RING_ENTRIES +
727 			 RX_MINI_RING_ENTRIES +
728 			 RX_RETURN_RING_ENTRIES));
729 		pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
730 				    ap->rx_ring_base_dma);
731 		ap->rx_std_ring = NULL;
732 		ap->rx_jumbo_ring = NULL;
733 		ap->rx_mini_ring = NULL;
734 		ap->rx_return_ring = NULL;
735 	}
736 	if (ap->evt_ring != NULL) {
737 		size = (sizeof(struct event) * EVT_RING_ENTRIES);
738 		pci_free_consistent(ap->pdev, size, ap->evt_ring,
739 				    ap->evt_ring_dma);
740 		ap->evt_ring = NULL;
741 	}
742 	if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
743 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
744 		pci_free_consistent(ap->pdev, size, ap->tx_ring,
745 				    ap->tx_ring_dma);
746 	}
747 	ap->tx_ring = NULL;
748 
749 	if (ap->evt_prd != NULL) {
750 		pci_free_consistent(ap->pdev, sizeof(u32),
751 				    (void *)ap->evt_prd, ap->evt_prd_dma);
752 		ap->evt_prd = NULL;
753 	}
754 	if (ap->rx_ret_prd != NULL) {
755 		pci_free_consistent(ap->pdev, sizeof(u32),
756 				    (void *)ap->rx_ret_prd,
757 				    ap->rx_ret_prd_dma);
758 		ap->rx_ret_prd = NULL;
759 	}
760 	if (ap->tx_csm != NULL) {
761 		pci_free_consistent(ap->pdev, sizeof(u32),
762 				    (void *)ap->tx_csm, ap->tx_csm_dma);
763 		ap->tx_csm = NULL;
764 	}
765 }
766 
767 
ace_allocate_descriptors(struct net_device * dev)768 static int ace_allocate_descriptors(struct net_device *dev)
769 {
770 	struct ace_private *ap = netdev_priv(dev);
771 	int size;
772 
773 	size = (sizeof(struct rx_desc) *
774 		(RX_STD_RING_ENTRIES +
775 		 RX_JUMBO_RING_ENTRIES +
776 		 RX_MINI_RING_ENTRIES +
777 		 RX_RETURN_RING_ENTRIES));
778 
779 	ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
780 					       &ap->rx_ring_base_dma);
781 	if (ap->rx_std_ring == NULL)
782 		goto fail;
783 
784 	ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
785 	ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
786 	ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
787 
788 	size = (sizeof(struct event) * EVT_RING_ENTRIES);
789 
790 	ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
791 
792 	if (ap->evt_ring == NULL)
793 		goto fail;
794 
795 	/*
796 	 * Only allocate a host TX ring for the Tigon II, the Tigon I
797 	 * has to use PCI registers for this ;-(
798 	 */
799 	if (!ACE_IS_TIGON_I(ap)) {
800 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
801 
802 		ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
803 						   &ap->tx_ring_dma);
804 
805 		if (ap->tx_ring == NULL)
806 			goto fail;
807 	}
808 
809 	ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
810 					   &ap->evt_prd_dma);
811 	if (ap->evt_prd == NULL)
812 		goto fail;
813 
814 	ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
815 					      &ap->rx_ret_prd_dma);
816 	if (ap->rx_ret_prd == NULL)
817 		goto fail;
818 
819 	ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
820 					  &ap->tx_csm_dma);
821 	if (ap->tx_csm == NULL)
822 		goto fail;
823 
824 	return 0;
825 
826 fail:
827 	/* Clean up. */
828 	ace_init_cleanup(dev);
829 	return 1;
830 }
831 
832 
833 /*
834  * Generic cleanup handling data allocated during init. Used when the
835  * module is unloaded or if an error occurs during initialization
836  */
ace_init_cleanup(struct net_device * dev)837 static void ace_init_cleanup(struct net_device *dev)
838 {
839 	struct ace_private *ap;
840 
841 	ap = netdev_priv(dev);
842 
843 	ace_free_descriptors(dev);
844 
845 	if (ap->info)
846 		pci_free_consistent(ap->pdev, sizeof(struct ace_info),
847 				    ap->info, ap->info_dma);
848 	kfree(ap->skb);
849 	kfree(ap->trace_buf);
850 
851 	if (dev->irq)
852 		free_irq(dev->irq, dev);
853 
854 	iounmap(ap->regs);
855 }
856 
857 
858 /*
859  * Commands are considered to be slow.
860  */
ace_issue_cmd(struct ace_regs __iomem * regs,struct cmd * cmd)861 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
862 {
863 	u32 idx;
864 
865 	idx = readl(&regs->CmdPrd);
866 
867 	writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
868 	idx = (idx + 1) % CMD_RING_ENTRIES;
869 
870 	writel(idx, &regs->CmdPrd);
871 }
872 
873 
ace_init(struct net_device * dev)874 static int ace_init(struct net_device *dev)
875 {
876 	struct ace_private *ap;
877 	struct ace_regs __iomem *regs;
878 	struct ace_info *info = NULL;
879 	struct pci_dev *pdev;
880 	unsigned long myjif;
881 	u64 tmp_ptr;
882 	u32 tig_ver, mac1, mac2, tmp, pci_state;
883 	int board_idx, ecode = 0;
884 	short i;
885 	unsigned char cache_size;
886 
887 	ap = netdev_priv(dev);
888 	regs = ap->regs;
889 
890 	board_idx = ap->board_idx;
891 
892 	/*
893 	 * aman@sgi.com - its useful to do a NIC reset here to
894 	 * address the `Firmware not running' problem subsequent
895 	 * to any crashes involving the NIC
896 	 */
897 	writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
898 	readl(&regs->HostCtrl);		/* PCI write posting */
899 	udelay(5);
900 
901 	/*
902 	 * Don't access any other registers before this point!
903 	 */
904 #ifdef __BIG_ENDIAN
905 	/*
906 	 * This will most likely need BYTE_SWAP once we switch
907 	 * to using __raw_writel()
908 	 */
909 	writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
910 	       &regs->HostCtrl);
911 #else
912 	writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
913 	       &regs->HostCtrl);
914 #endif
915 	readl(&regs->HostCtrl);		/* PCI write posting */
916 
917 	/*
918 	 * Stop the NIC CPU and clear pending interrupts
919 	 */
920 	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
921 	readl(&regs->CpuCtrl);		/* PCI write posting */
922 	writel(0, &regs->Mb0Lo);
923 
924 	tig_ver = readl(&regs->HostCtrl) >> 28;
925 
926 	switch(tig_ver){
927 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
928 	case 4:
929 	case 5:
930 		printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ",
931 		       tig_ver, ap->firmware_major, ap->firmware_minor,
932 		       ap->firmware_fix);
933 		writel(0, &regs->LocalCtrl);
934 		ap->version = 1;
935 		ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
936 		break;
937 #endif
938 	case 6:
939 		printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
940 		       tig_ver, ap->firmware_major, ap->firmware_minor,
941 		       ap->firmware_fix);
942 		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
943 		readl(&regs->CpuBCtrl);		/* PCI write posting */
944 		/*
945 		 * The SRAM bank size does _not_ indicate the amount
946 		 * of memory on the card, it controls the _bank_ size!
947 		 * Ie. a 1MB AceNIC will have two banks of 512KB.
948 		 */
949 		writel(SRAM_BANK_512K, &regs->LocalCtrl);
950 		writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
951 		ap->version = 2;
952 		ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
953 		break;
954 	default:
955 		printk(KERN_WARNING "  Unsupported Tigon version detected "
956 		       "(%i)\n", tig_ver);
957 		ecode = -ENODEV;
958 		goto init_error;
959 	}
960 
961 	/*
962 	 * ModeStat _must_ be set after the SRAM settings as this change
963 	 * seems to corrupt the ModeStat and possible other registers.
964 	 * The SRAM settings survive resets and setting it to the same
965 	 * value a second time works as well. This is what caused the
966 	 * `Firmware not running' problem on the Tigon II.
967 	 */
968 #ifdef __BIG_ENDIAN
969 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
970 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
971 #else
972 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
973 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
974 #endif
975 	readl(&regs->ModeStat);		/* PCI write posting */
976 
977 	mac1 = 0;
978 	for(i = 0; i < 4; i++) {
979 		int t;
980 
981 		mac1 = mac1 << 8;
982 		t = read_eeprom_byte(dev, 0x8c+i);
983 		if (t < 0) {
984 			ecode = -EIO;
985 			goto init_error;
986 		} else
987 			mac1 |= (t & 0xff);
988 	}
989 	mac2 = 0;
990 	for(i = 4; i < 8; i++) {
991 		int t;
992 
993 		mac2 = mac2 << 8;
994 		t = read_eeprom_byte(dev, 0x8c+i);
995 		if (t < 0) {
996 			ecode = -EIO;
997 			goto init_error;
998 		} else
999 			mac2 |= (t & 0xff);
1000 	}
1001 
1002 	writel(mac1, &regs->MacAddrHi);
1003 	writel(mac2, &regs->MacAddrLo);
1004 
1005 	dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1006 	dev->dev_addr[1] = mac1 & 0xff;
1007 	dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1008 	dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1009 	dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1010 	dev->dev_addr[5] = mac2 & 0xff;
1011 
1012 	printk("MAC: %pM\n", dev->dev_addr);
1013 
1014 	/*
1015 	 * Looks like this is necessary to deal with on all architectures,
1016 	 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1017 	 * Ie. having two NICs in the machine, one will have the cache
1018 	 * line set at boot time, the other will not.
1019 	 */
1020 	pdev = ap->pdev;
1021 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1022 	cache_size <<= 2;
1023 	if (cache_size != SMP_CACHE_BYTES) {
1024 		printk(KERN_INFO "  PCI cache line size set incorrectly "
1025 		       "(%i bytes) by BIOS/FW, ", cache_size);
1026 		if (cache_size > SMP_CACHE_BYTES)
1027 			printk("expecting %i\n", SMP_CACHE_BYTES);
1028 		else {
1029 			printk("correcting to %i\n", SMP_CACHE_BYTES);
1030 			pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1031 					      SMP_CACHE_BYTES >> 2);
1032 		}
1033 	}
1034 
1035 	pci_state = readl(&regs->PciState);
1036 	printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, "
1037 	       "latency: %i clks\n",
1038 	       	(pci_state & PCI_32BIT) ? 32 : 64,
1039 		(pci_state & PCI_66MHZ) ? 66 : 33,
1040 		ap->pci_latency);
1041 
1042 	/*
1043 	 * Set the max DMA transfer size. Seems that for most systems
1044 	 * the performance is better when no MAX parameter is
1045 	 * set. However for systems enabling PCI write and invalidate,
1046 	 * DMA writes must be set to the L1 cache line size to get
1047 	 * optimal performance.
1048 	 *
1049 	 * The default is now to turn the PCI write and invalidate off
1050 	 * - that is what Alteon does for NT.
1051 	 */
1052 	tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1053 	if (ap->version >= 2) {
1054 		tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1055 		/*
1056 		 * Tuning parameters only supported for 8 cards
1057 		 */
1058 		if (board_idx == BOARD_IDX_OVERFLOW ||
1059 		    dis_pci_mem_inval[board_idx]) {
1060 			if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1061 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1062 				pci_write_config_word(pdev, PCI_COMMAND,
1063 						      ap->pci_command);
1064 				printk(KERN_INFO "  Disabling PCI memory "
1065 				       "write and invalidate\n");
1066 			}
1067 		} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1068 			printk(KERN_INFO "  PCI memory write & invalidate "
1069 			       "enabled by BIOS, enabling counter measures\n");
1070 
1071 			switch(SMP_CACHE_BYTES) {
1072 			case 16:
1073 				tmp |= DMA_WRITE_MAX_16;
1074 				break;
1075 			case 32:
1076 				tmp |= DMA_WRITE_MAX_32;
1077 				break;
1078 			case 64:
1079 				tmp |= DMA_WRITE_MAX_64;
1080 				break;
1081 			case 128:
1082 				tmp |= DMA_WRITE_MAX_128;
1083 				break;
1084 			default:
1085 				printk(KERN_INFO "  Cache line size %i not "
1086 				       "supported, PCI write and invalidate "
1087 				       "disabled\n", SMP_CACHE_BYTES);
1088 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1089 				pci_write_config_word(pdev, PCI_COMMAND,
1090 						      ap->pci_command);
1091 			}
1092 		}
1093 	}
1094 
1095 #ifdef __sparc__
1096 	/*
1097 	 * On this platform, we know what the best dma settings
1098 	 * are.  We use 64-byte maximum bursts, because if we
1099 	 * burst larger than the cache line size (or even cross
1100 	 * a 64byte boundary in a single burst) the UltraSparc
1101 	 * PCI controller will disconnect at 64-byte multiples.
1102 	 *
1103 	 * Read-multiple will be properly enabled above, and when
1104 	 * set will give the PCI controller proper hints about
1105 	 * prefetching.
1106 	 */
1107 	tmp &= ~DMA_READ_WRITE_MASK;
1108 	tmp |= DMA_READ_MAX_64;
1109 	tmp |= DMA_WRITE_MAX_64;
1110 #endif
1111 #ifdef __alpha__
1112 	tmp &= ~DMA_READ_WRITE_MASK;
1113 	tmp |= DMA_READ_MAX_128;
1114 	/*
1115 	 * All the docs say MUST NOT. Well, I did.
1116 	 * Nothing terrible happens, if we load wrong size.
1117 	 * Bit w&i still works better!
1118 	 */
1119 	tmp |= DMA_WRITE_MAX_128;
1120 #endif
1121 	writel(tmp, &regs->PciState);
1122 
1123 #if 0
1124 	/*
1125 	 * The Host PCI bus controller driver has to set FBB.
1126 	 * If all devices on that PCI bus support FBB, then the controller
1127 	 * can enable FBB support in the Host PCI Bus controller (or on
1128 	 * the PCI-PCI bridge if that applies).
1129 	 * -ggg
1130 	 */
1131 	/*
1132 	 * I have received reports from people having problems when this
1133 	 * bit is enabled.
1134 	 */
1135 	if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1136 		printk(KERN_INFO "  Enabling PCI Fast Back to Back\n");
1137 		ap->pci_command |= PCI_COMMAND_FAST_BACK;
1138 		pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1139 	}
1140 #endif
1141 
1142 	/*
1143 	 * Configure DMA attributes.
1144 	 */
1145 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1146 		ap->pci_using_dac = 1;
1147 	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1148 		ap->pci_using_dac = 0;
1149 	} else {
1150 		ecode = -ENODEV;
1151 		goto init_error;
1152 	}
1153 
1154 	/*
1155 	 * Initialize the generic info block and the command+event rings
1156 	 * and the control blocks for the transmit and receive rings
1157 	 * as they need to be setup once and for all.
1158 	 */
1159 	if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1160 					  &ap->info_dma))) {
1161 		ecode = -EAGAIN;
1162 		goto init_error;
1163 	}
1164 	ap->info = info;
1165 
1166 	/*
1167 	 * Get the memory for the skb rings.
1168 	 */
1169 	if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1170 		ecode = -EAGAIN;
1171 		goto init_error;
1172 	}
1173 
1174 	ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1175 			    DRV_NAME, dev);
1176 	if (ecode) {
1177 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1178 		       DRV_NAME, pdev->irq);
1179 		goto init_error;
1180 	} else
1181 		dev->irq = pdev->irq;
1182 
1183 #ifdef INDEX_DEBUG
1184 	spin_lock_init(&ap->debug_lock);
1185 	ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1186 	ap->last_std_rx = 0;
1187 	ap->last_mini_rx = 0;
1188 #endif
1189 
1190 	memset(ap->info, 0, sizeof(struct ace_info));
1191 	memset(ap->skb, 0, sizeof(struct ace_skb));
1192 
1193 	ecode = ace_load_firmware(dev);
1194 	if (ecode)
1195 		goto init_error;
1196 
1197 	ap->fw_running = 0;
1198 
1199 	tmp_ptr = ap->info_dma;
1200 	writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1201 	writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1202 
1203 	memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1204 
1205 	set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1206 	info->evt_ctrl.flags = 0;
1207 
1208 	*(ap->evt_prd) = 0;
1209 	wmb();
1210 	set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1211 	writel(0, &regs->EvtCsm);
1212 
1213 	set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1214 	info->cmd_ctrl.flags = 0;
1215 	info->cmd_ctrl.max_len = 0;
1216 
1217 	for (i = 0; i < CMD_RING_ENTRIES; i++)
1218 		writel(0, &regs->CmdRng[i]);
1219 
1220 	writel(0, &regs->CmdPrd);
1221 	writel(0, &regs->CmdCsm);
1222 
1223 	tmp_ptr = ap->info_dma;
1224 	tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1225 	set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1226 
1227 	set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1228 	info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1229 	info->rx_std_ctrl.flags =
1230 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1231 
1232 	memset(ap->rx_std_ring, 0,
1233 	       RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1234 
1235 	for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1236 		ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1237 
1238 	ap->rx_std_skbprd = 0;
1239 	atomic_set(&ap->cur_rx_bufs, 0);
1240 
1241 	set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1242 		    (ap->rx_ring_base_dma +
1243 		     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1244 	info->rx_jumbo_ctrl.max_len = 0;
1245 	info->rx_jumbo_ctrl.flags =
1246 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1247 
1248 	memset(ap->rx_jumbo_ring, 0,
1249 	       RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1250 
1251 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1252 		ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1253 
1254 	ap->rx_jumbo_skbprd = 0;
1255 	atomic_set(&ap->cur_jumbo_bufs, 0);
1256 
1257 	memset(ap->rx_mini_ring, 0,
1258 	       RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1259 
1260 	if (ap->version >= 2) {
1261 		set_aceaddr(&info->rx_mini_ctrl.rngptr,
1262 			    (ap->rx_ring_base_dma +
1263 			     (sizeof(struct rx_desc) *
1264 			      (RX_STD_RING_ENTRIES +
1265 			       RX_JUMBO_RING_ENTRIES))));
1266 		info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1267 		info->rx_mini_ctrl.flags =
1268 		  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1269 
1270 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1271 			ap->rx_mini_ring[i].flags =
1272 				BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1273 	} else {
1274 		set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1275 		info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1276 		info->rx_mini_ctrl.max_len = 0;
1277 	}
1278 
1279 	ap->rx_mini_skbprd = 0;
1280 	atomic_set(&ap->cur_mini_bufs, 0);
1281 
1282 	set_aceaddr(&info->rx_return_ctrl.rngptr,
1283 		    (ap->rx_ring_base_dma +
1284 		     (sizeof(struct rx_desc) *
1285 		      (RX_STD_RING_ENTRIES +
1286 		       RX_JUMBO_RING_ENTRIES +
1287 		       RX_MINI_RING_ENTRIES))));
1288 	info->rx_return_ctrl.flags = 0;
1289 	info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1290 
1291 	memset(ap->rx_return_ring, 0,
1292 	       RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1293 
1294 	set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1295 	*(ap->rx_ret_prd) = 0;
1296 
1297 	writel(TX_RING_BASE, &regs->WinBase);
1298 
1299 	if (ACE_IS_TIGON_I(ap)) {
1300 		ap->tx_ring = (__force struct tx_desc *) regs->Window;
1301 		for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1302 				 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1303 			writel(0, (__force void __iomem *)ap->tx_ring  + i * 4);
1304 
1305 		set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1306 	} else {
1307 		memset(ap->tx_ring, 0,
1308 		       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1309 
1310 		set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1311 	}
1312 
1313 	info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1314 	tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1315 
1316 	/*
1317 	 * The Tigon I does not like having the TX ring in host memory ;-(
1318 	 */
1319 	if (!ACE_IS_TIGON_I(ap))
1320 		tmp |= RCB_FLG_TX_HOST_RING;
1321 #if TX_COAL_INTS_ONLY
1322 	tmp |= RCB_FLG_COAL_INT_ONLY;
1323 #endif
1324 	info->tx_ctrl.flags = tmp;
1325 
1326 	set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1327 
1328 	/*
1329 	 * Potential item for tuning parameter
1330 	 */
1331 #if 0 /* NO */
1332 	writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1333 	writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1334 #else
1335 	writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1336 	writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1337 #endif
1338 
1339 	writel(0, &regs->MaskInt);
1340 	writel(1, &regs->IfIdx);
1341 #if 0
1342 	/*
1343 	 * McKinley boxes do not like us fiddling with AssistState
1344 	 * this early
1345 	 */
1346 	writel(1, &regs->AssistState);
1347 #endif
1348 
1349 	writel(DEF_STAT, &regs->TuneStatTicks);
1350 	writel(DEF_TRACE, &regs->TuneTrace);
1351 
1352 	ace_set_rxtx_parms(dev, 0);
1353 
1354 	if (board_idx == BOARD_IDX_OVERFLOW) {
1355 		printk(KERN_WARNING "%s: more than %i NICs detected, "
1356 		       "ignoring module parameters!\n",
1357 		       ap->name, ACE_MAX_MOD_PARMS);
1358 	} else if (board_idx >= 0) {
1359 		if (tx_coal_tick[board_idx])
1360 			writel(tx_coal_tick[board_idx],
1361 			       &regs->TuneTxCoalTicks);
1362 		if (max_tx_desc[board_idx])
1363 			writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1364 
1365 		if (rx_coal_tick[board_idx])
1366 			writel(rx_coal_tick[board_idx],
1367 			       &regs->TuneRxCoalTicks);
1368 		if (max_rx_desc[board_idx])
1369 			writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1370 
1371 		if (trace[board_idx])
1372 			writel(trace[board_idx], &regs->TuneTrace);
1373 
1374 		if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1375 			writel(tx_ratio[board_idx], &regs->TxBufRat);
1376 	}
1377 
1378 	/*
1379 	 * Default link parameters
1380 	 */
1381 	tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1382 		LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1383 	if(ap->version >= 2)
1384 		tmp |= LNK_TX_FLOW_CTL_Y;
1385 
1386 	/*
1387 	 * Override link default parameters
1388 	 */
1389 	if ((board_idx >= 0) && link_state[board_idx]) {
1390 		int option = link_state[board_idx];
1391 
1392 		tmp = LNK_ENABLE;
1393 
1394 		if (option & 0x01) {
1395 			printk(KERN_INFO "%s: Setting half duplex link\n",
1396 			       ap->name);
1397 			tmp &= ~LNK_FULL_DUPLEX;
1398 		}
1399 		if (option & 0x02)
1400 			tmp &= ~LNK_NEGOTIATE;
1401 		if (option & 0x10)
1402 			tmp |= LNK_10MB;
1403 		if (option & 0x20)
1404 			tmp |= LNK_100MB;
1405 		if (option & 0x40)
1406 			tmp |= LNK_1000MB;
1407 		if ((option & 0x70) == 0) {
1408 			printk(KERN_WARNING "%s: No media speed specified, "
1409 			       "forcing auto negotiation\n", ap->name);
1410 			tmp |= LNK_NEGOTIATE | LNK_1000MB |
1411 				LNK_100MB | LNK_10MB;
1412 		}
1413 		if ((option & 0x100) == 0)
1414 			tmp |= LNK_NEG_FCTL;
1415 		else
1416 			printk(KERN_INFO "%s: Disabling flow control "
1417 			       "negotiation\n", ap->name);
1418 		if (option & 0x200)
1419 			tmp |= LNK_RX_FLOW_CTL_Y;
1420 		if ((option & 0x400) && (ap->version >= 2)) {
1421 			printk(KERN_INFO "%s: Enabling TX flow control\n",
1422 			       ap->name);
1423 			tmp |= LNK_TX_FLOW_CTL_Y;
1424 		}
1425 	}
1426 
1427 	ap->link = tmp;
1428 	writel(tmp, &regs->TuneLink);
1429 	if (ap->version >= 2)
1430 		writel(tmp, &regs->TuneFastLink);
1431 
1432 	writel(ap->firmware_start, &regs->Pc);
1433 
1434 	writel(0, &regs->Mb0Lo);
1435 
1436 	/*
1437 	 * Set tx_csm before we start receiving interrupts, otherwise
1438 	 * the interrupt handler might think it is supposed to process
1439 	 * tx ints before we are up and running, which may cause a null
1440 	 * pointer access in the int handler.
1441 	 */
1442 	ap->cur_rx = 0;
1443 	ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1444 
1445 	wmb();
1446 	ace_set_txprd(regs, ap, 0);
1447 	writel(0, &regs->RxRetCsm);
1448 
1449        /*
1450 	* Enable DMA engine now.
1451 	* If we do this sooner, Mckinley box pukes.
1452 	* I assume it's because Tigon II DMA engine wants to check
1453 	* *something* even before the CPU is started.
1454 	*/
1455        writel(1, &regs->AssistState);  /* enable DMA */
1456 
1457 	/*
1458 	 * Start the NIC CPU
1459 	 */
1460 	writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1461 	readl(&regs->CpuCtrl);
1462 
1463 	/*
1464 	 * Wait for the firmware to spin up - max 3 seconds.
1465 	 */
1466 	myjif = jiffies + 3 * HZ;
1467 	while (time_before(jiffies, myjif) && !ap->fw_running)
1468 		cpu_relax();
1469 
1470 	if (!ap->fw_running) {
1471 		printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1472 
1473 		ace_dump_trace(ap);
1474 		writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1475 		readl(&regs->CpuCtrl);
1476 
1477 		/* aman@sgi.com - account for badly behaving firmware/NIC:
1478 		 * - have observed that the NIC may continue to generate
1479 		 *   interrupts for some reason; attempt to stop it - halt
1480 		 *   second CPU for Tigon II cards, and also clear Mb0
1481 		 * - if we're a module, we'll fail to load if this was
1482 		 *   the only GbE card in the system => if the kernel does
1483 		 *   see an interrupt from the NIC, code to handle it is
1484 		 *   gone and OOps! - so free_irq also
1485 		 */
1486 		if (ap->version >= 2)
1487 			writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1488 			       &regs->CpuBCtrl);
1489 		writel(0, &regs->Mb0Lo);
1490 		readl(&regs->Mb0Lo);
1491 
1492 		ecode = -EBUSY;
1493 		goto init_error;
1494 	}
1495 
1496 	/*
1497 	 * We load the ring here as there seem to be no way to tell the
1498 	 * firmware to wipe the ring without re-initializing it.
1499 	 */
1500 	if (!test_and_set_bit(0, &ap->std_refill_busy))
1501 		ace_load_std_rx_ring(dev, RX_RING_SIZE);
1502 	else
1503 		printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1504 		       ap->name);
1505 	if (ap->version >= 2) {
1506 		if (!test_and_set_bit(0, &ap->mini_refill_busy))
1507 			ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1508 		else
1509 			printk(KERN_ERR "%s: Someone is busy refilling "
1510 			       "the RX mini ring\n", ap->name);
1511 	}
1512 	return 0;
1513 
1514  init_error:
1515 	ace_init_cleanup(dev);
1516 	return ecode;
1517 }
1518 
1519 
ace_set_rxtx_parms(struct net_device * dev,int jumbo)1520 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1521 {
1522 	struct ace_private *ap = netdev_priv(dev);
1523 	struct ace_regs __iomem *regs = ap->regs;
1524 	int board_idx = ap->board_idx;
1525 
1526 	if (board_idx >= 0) {
1527 		if (!jumbo) {
1528 			if (!tx_coal_tick[board_idx])
1529 				writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1530 			if (!max_tx_desc[board_idx])
1531 				writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1532 			if (!rx_coal_tick[board_idx])
1533 				writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1534 			if (!max_rx_desc[board_idx])
1535 				writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1536 			if (!tx_ratio[board_idx])
1537 				writel(DEF_TX_RATIO, &regs->TxBufRat);
1538 		} else {
1539 			if (!tx_coal_tick[board_idx])
1540 				writel(DEF_JUMBO_TX_COAL,
1541 				       &regs->TuneTxCoalTicks);
1542 			if (!max_tx_desc[board_idx])
1543 				writel(DEF_JUMBO_TX_MAX_DESC,
1544 				       &regs->TuneMaxTxDesc);
1545 			if (!rx_coal_tick[board_idx])
1546 				writel(DEF_JUMBO_RX_COAL,
1547 				       &regs->TuneRxCoalTicks);
1548 			if (!max_rx_desc[board_idx])
1549 				writel(DEF_JUMBO_RX_MAX_DESC,
1550 				       &regs->TuneMaxRxDesc);
1551 			if (!tx_ratio[board_idx])
1552 				writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1553 		}
1554 	}
1555 }
1556 
1557 
ace_watchdog(struct net_device * data)1558 static void ace_watchdog(struct net_device *data)
1559 {
1560 	struct net_device *dev = data;
1561 	struct ace_private *ap = netdev_priv(dev);
1562 	struct ace_regs __iomem *regs = ap->regs;
1563 
1564 	/*
1565 	 * We haven't received a stats update event for more than 2.5
1566 	 * seconds and there is data in the transmit queue, thus we
1567 	 * assume the card is stuck.
1568 	 */
1569 	if (*ap->tx_csm != ap->tx_ret_csm) {
1570 		printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1571 		       dev->name, (unsigned int)readl(&regs->HostCtrl));
1572 		/* This can happen due to ieee flow control. */
1573 	} else {
1574 		printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1575 		       dev->name);
1576 #if 0
1577 		netif_wake_queue(dev);
1578 #endif
1579 	}
1580 }
1581 
1582 
ace_tasklet(unsigned long arg)1583 static void ace_tasklet(unsigned long arg)
1584 {
1585 	struct net_device *dev = (struct net_device *) arg;
1586 	struct ace_private *ap = netdev_priv(dev);
1587 	int cur_size;
1588 
1589 	cur_size = atomic_read(&ap->cur_rx_bufs);
1590 	if ((cur_size < RX_LOW_STD_THRES) &&
1591 	    !test_and_set_bit(0, &ap->std_refill_busy)) {
1592 #ifdef DEBUG
1593 		printk("refilling buffers (current %i)\n", cur_size);
1594 #endif
1595 		ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1596 	}
1597 
1598 	if (ap->version >= 2) {
1599 		cur_size = atomic_read(&ap->cur_mini_bufs);
1600 		if ((cur_size < RX_LOW_MINI_THRES) &&
1601 		    !test_and_set_bit(0, &ap->mini_refill_busy)) {
1602 #ifdef DEBUG
1603 			printk("refilling mini buffers (current %i)\n",
1604 			       cur_size);
1605 #endif
1606 			ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1607 		}
1608 	}
1609 
1610 	cur_size = atomic_read(&ap->cur_jumbo_bufs);
1611 	if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1612 	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1613 #ifdef DEBUG
1614 		printk("refilling jumbo buffers (current %i)\n", cur_size);
1615 #endif
1616 		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1617 	}
1618 	ap->tasklet_pending = 0;
1619 }
1620 
1621 
1622 /*
1623  * Copy the contents of the NIC's trace buffer to kernel memory.
1624  */
ace_dump_trace(struct ace_private * ap)1625 static void ace_dump_trace(struct ace_private *ap)
1626 {
1627 #if 0
1628 	if (!ap->trace_buf)
1629 		if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1630 		    return;
1631 #endif
1632 }
1633 
1634 
1635 /*
1636  * Load the standard rx ring.
1637  *
1638  * Loading rings is safe without holding the spin lock since this is
1639  * done only before the device is enabled, thus no interrupts are
1640  * generated and by the interrupt handler/tasklet handler.
1641  */
ace_load_std_rx_ring(struct net_device * dev,int nr_bufs)1642 static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1643 {
1644 	struct ace_private *ap = netdev_priv(dev);
1645 	struct ace_regs __iomem *regs = ap->regs;
1646 	short i, idx;
1647 
1648 
1649 	prefetchw(&ap->cur_rx_bufs);
1650 
1651 	idx = ap->rx_std_skbprd;
1652 
1653 	for (i = 0; i < nr_bufs; i++) {
1654 		struct sk_buff *skb;
1655 		struct rx_desc *rd;
1656 		dma_addr_t mapping;
1657 
1658 		skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1659 		if (!skb)
1660 			break;
1661 
1662 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1663 				       offset_in_page(skb->data),
1664 				       ACE_STD_BUFSIZE,
1665 				       PCI_DMA_FROMDEVICE);
1666 		ap->skb->rx_std_skbuff[idx].skb = skb;
1667 		dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1668 				   mapping, mapping);
1669 
1670 		rd = &ap->rx_std_ring[idx];
1671 		set_aceaddr(&rd->addr, mapping);
1672 		rd->size = ACE_STD_BUFSIZE;
1673 		rd->idx = idx;
1674 		idx = (idx + 1) % RX_STD_RING_ENTRIES;
1675 	}
1676 
1677 	if (!i)
1678 		goto error_out;
1679 
1680 	atomic_add(i, &ap->cur_rx_bufs);
1681 	ap->rx_std_skbprd = idx;
1682 
1683 	if (ACE_IS_TIGON_I(ap)) {
1684 		struct cmd cmd;
1685 		cmd.evt = C_SET_RX_PRD_IDX;
1686 		cmd.code = 0;
1687 		cmd.idx = ap->rx_std_skbprd;
1688 		ace_issue_cmd(regs, &cmd);
1689 	} else {
1690 		writel(idx, &regs->RxStdPrd);
1691 		wmb();
1692 	}
1693 
1694  out:
1695 	clear_bit(0, &ap->std_refill_busy);
1696 	return;
1697 
1698  error_out:
1699 	printk(KERN_INFO "Out of memory when allocating "
1700 	       "standard receive buffers\n");
1701 	goto out;
1702 }
1703 
1704 
ace_load_mini_rx_ring(struct net_device * dev,int nr_bufs)1705 static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1706 {
1707 	struct ace_private *ap = netdev_priv(dev);
1708 	struct ace_regs __iomem *regs = ap->regs;
1709 	short i, idx;
1710 
1711 	prefetchw(&ap->cur_mini_bufs);
1712 
1713 	idx = ap->rx_mini_skbprd;
1714 	for (i = 0; i < nr_bufs; i++) {
1715 		struct sk_buff *skb;
1716 		struct rx_desc *rd;
1717 		dma_addr_t mapping;
1718 
1719 		skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1720 		if (!skb)
1721 			break;
1722 
1723 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1724 				       offset_in_page(skb->data),
1725 				       ACE_MINI_BUFSIZE,
1726 				       PCI_DMA_FROMDEVICE);
1727 		ap->skb->rx_mini_skbuff[idx].skb = skb;
1728 		dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1729 				   mapping, mapping);
1730 
1731 		rd = &ap->rx_mini_ring[idx];
1732 		set_aceaddr(&rd->addr, mapping);
1733 		rd->size = ACE_MINI_BUFSIZE;
1734 		rd->idx = idx;
1735 		idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1736 	}
1737 
1738 	if (!i)
1739 		goto error_out;
1740 
1741 	atomic_add(i, &ap->cur_mini_bufs);
1742 
1743 	ap->rx_mini_skbprd = idx;
1744 
1745 	writel(idx, &regs->RxMiniPrd);
1746 	wmb();
1747 
1748  out:
1749 	clear_bit(0, &ap->mini_refill_busy);
1750 	return;
1751  error_out:
1752 	printk(KERN_INFO "Out of memory when allocating "
1753 	       "mini receive buffers\n");
1754 	goto out;
1755 }
1756 
1757 
1758 /*
1759  * Load the jumbo rx ring, this may happen at any time if the MTU
1760  * is changed to a value > 1500.
1761  */
ace_load_jumbo_rx_ring(struct net_device * dev,int nr_bufs)1762 static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1763 {
1764 	struct ace_private *ap = netdev_priv(dev);
1765 	struct ace_regs __iomem *regs = ap->regs;
1766 	short i, idx;
1767 
1768 	idx = ap->rx_jumbo_skbprd;
1769 
1770 	for (i = 0; i < nr_bufs; i++) {
1771 		struct sk_buff *skb;
1772 		struct rx_desc *rd;
1773 		dma_addr_t mapping;
1774 
1775 		skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1776 		if (!skb)
1777 			break;
1778 
1779 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1780 				       offset_in_page(skb->data),
1781 				       ACE_JUMBO_BUFSIZE,
1782 				       PCI_DMA_FROMDEVICE);
1783 		ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1784 		dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1785 				   mapping, mapping);
1786 
1787 		rd = &ap->rx_jumbo_ring[idx];
1788 		set_aceaddr(&rd->addr, mapping);
1789 		rd->size = ACE_JUMBO_BUFSIZE;
1790 		rd->idx = idx;
1791 		idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1792 	}
1793 
1794 	if (!i)
1795 		goto error_out;
1796 
1797 	atomic_add(i, &ap->cur_jumbo_bufs);
1798 	ap->rx_jumbo_skbprd = idx;
1799 
1800 	if (ACE_IS_TIGON_I(ap)) {
1801 		struct cmd cmd;
1802 		cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1803 		cmd.code = 0;
1804 		cmd.idx = ap->rx_jumbo_skbprd;
1805 		ace_issue_cmd(regs, &cmd);
1806 	} else {
1807 		writel(idx, &regs->RxJumboPrd);
1808 		wmb();
1809 	}
1810 
1811  out:
1812 	clear_bit(0, &ap->jumbo_refill_busy);
1813 	return;
1814  error_out:
1815 	if (net_ratelimit())
1816 		printk(KERN_INFO "Out of memory when allocating "
1817 		       "jumbo receive buffers\n");
1818 	goto out;
1819 }
1820 
1821 
1822 /*
1823  * All events are considered to be slow (RX/TX ints do not generate
1824  * events) and are handled here, outside the main interrupt handler,
1825  * to reduce the size of the handler.
1826  */
ace_handle_event(struct net_device * dev,u32 evtcsm,u32 evtprd)1827 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1828 {
1829 	struct ace_private *ap;
1830 
1831 	ap = netdev_priv(dev);
1832 
1833 	while (evtcsm != evtprd) {
1834 		switch (ap->evt_ring[evtcsm].evt) {
1835 		case E_FW_RUNNING:
1836 			printk(KERN_INFO "%s: Firmware up and running\n",
1837 			       ap->name);
1838 			ap->fw_running = 1;
1839 			wmb();
1840 			break;
1841 		case E_STATS_UPDATED:
1842 			break;
1843 		case E_LNK_STATE:
1844 		{
1845 			u16 code = ap->evt_ring[evtcsm].code;
1846 			switch (code) {
1847 			case E_C_LINK_UP:
1848 			{
1849 				u32 state = readl(&ap->regs->GigLnkState);
1850 				printk(KERN_WARNING "%s: Optical link UP "
1851 				       "(%s Duplex, Flow Control: %s%s)\n",
1852 				       ap->name,
1853 				       state & LNK_FULL_DUPLEX ? "Full":"Half",
1854 				       state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1855 				       state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1856 				break;
1857 			}
1858 			case E_C_LINK_DOWN:
1859 				printk(KERN_WARNING "%s: Optical link DOWN\n",
1860 				       ap->name);
1861 				break;
1862 			case E_C_LINK_10_100:
1863 				printk(KERN_WARNING "%s: 10/100BaseT link "
1864 				       "UP\n", ap->name);
1865 				break;
1866 			default:
1867 				printk(KERN_ERR "%s: Unknown optical link "
1868 				       "state %02x\n", ap->name, code);
1869 			}
1870 			break;
1871 		}
1872 		case E_ERROR:
1873 			switch(ap->evt_ring[evtcsm].code) {
1874 			case E_C_ERR_INVAL_CMD:
1875 				printk(KERN_ERR "%s: invalid command error\n",
1876 				       ap->name);
1877 				break;
1878 			case E_C_ERR_UNIMP_CMD:
1879 				printk(KERN_ERR "%s: unimplemented command "
1880 				       "error\n", ap->name);
1881 				break;
1882 			case E_C_ERR_BAD_CFG:
1883 				printk(KERN_ERR "%s: bad config error\n",
1884 				       ap->name);
1885 				break;
1886 			default:
1887 				printk(KERN_ERR "%s: unknown error %02x\n",
1888 				       ap->name, ap->evt_ring[evtcsm].code);
1889 			}
1890 			break;
1891 		case E_RESET_JUMBO_RNG:
1892 		{
1893 			int i;
1894 			for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1895 				if (ap->skb->rx_jumbo_skbuff[i].skb) {
1896 					ap->rx_jumbo_ring[i].size = 0;
1897 					set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1898 					dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1899 					ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1900 				}
1901 			}
1902 
1903  			if (ACE_IS_TIGON_I(ap)) {
1904  				struct cmd cmd;
1905  				cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1906  				cmd.code = 0;
1907  				cmd.idx = 0;
1908  				ace_issue_cmd(ap->regs, &cmd);
1909  			} else {
1910  				writel(0, &((ap->regs)->RxJumboPrd));
1911  				wmb();
1912  			}
1913 
1914 			ap->jumbo = 0;
1915 			ap->rx_jumbo_skbprd = 0;
1916 			printk(KERN_INFO "%s: Jumbo ring flushed\n",
1917 			       ap->name);
1918 			clear_bit(0, &ap->jumbo_refill_busy);
1919 			break;
1920 		}
1921 		default:
1922 			printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1923 			       ap->name, ap->evt_ring[evtcsm].evt);
1924 		}
1925 		evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1926 	}
1927 
1928 	return evtcsm;
1929 }
1930 
1931 
ace_rx_int(struct net_device * dev,u32 rxretprd,u32 rxretcsm)1932 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1933 {
1934 	struct ace_private *ap = netdev_priv(dev);
1935 	u32 idx;
1936 	int mini_count = 0, std_count = 0;
1937 
1938 	idx = rxretcsm;
1939 
1940 	prefetchw(&ap->cur_rx_bufs);
1941 	prefetchw(&ap->cur_mini_bufs);
1942 
1943 	while (idx != rxretprd) {
1944 		struct ring_info *rip;
1945 		struct sk_buff *skb;
1946 		struct rx_desc *rxdesc, *retdesc;
1947 		u32 skbidx;
1948 		int bd_flags, desc_type, mapsize;
1949 		u16 csum;
1950 
1951 
1952 		/* make sure the rx descriptor isn't read before rxretprd */
1953 		if (idx == rxretcsm)
1954 			rmb();
1955 
1956 		retdesc = &ap->rx_return_ring[idx];
1957 		skbidx = retdesc->idx;
1958 		bd_flags = retdesc->flags;
1959 		desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1960 
1961 		switch(desc_type) {
1962 			/*
1963 			 * Normal frames do not have any flags set
1964 			 *
1965 			 * Mini and normal frames arrive frequently,
1966 			 * so use a local counter to avoid doing
1967 			 * atomic operations for each packet arriving.
1968 			 */
1969 		case 0:
1970 			rip = &ap->skb->rx_std_skbuff[skbidx];
1971 			mapsize = ACE_STD_BUFSIZE;
1972 			rxdesc = &ap->rx_std_ring[skbidx];
1973 			std_count++;
1974 			break;
1975 		case BD_FLG_JUMBO:
1976 			rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1977 			mapsize = ACE_JUMBO_BUFSIZE;
1978 			rxdesc = &ap->rx_jumbo_ring[skbidx];
1979 			atomic_dec(&ap->cur_jumbo_bufs);
1980 			break;
1981 		case BD_FLG_MINI:
1982 			rip = &ap->skb->rx_mini_skbuff[skbidx];
1983 			mapsize = ACE_MINI_BUFSIZE;
1984 			rxdesc = &ap->rx_mini_ring[skbidx];
1985 			mini_count++;
1986 			break;
1987 		default:
1988 			printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1989 			       "returned by NIC\n", dev->name,
1990 			       retdesc->flags);
1991 			goto error;
1992 		}
1993 
1994 		skb = rip->skb;
1995 		rip->skb = NULL;
1996 		pci_unmap_page(ap->pdev,
1997 			       dma_unmap_addr(rip, mapping),
1998 			       mapsize,
1999 			       PCI_DMA_FROMDEVICE);
2000 		skb_put(skb, retdesc->size);
2001 
2002 		/*
2003 		 * Fly baby, fly!
2004 		 */
2005 		csum = retdesc->tcp_udp_csum;
2006 
2007 		skb->protocol = eth_type_trans(skb, dev);
2008 
2009 		/*
2010 		 * Instead of forcing the poor tigon mips cpu to calculate
2011 		 * pseudo hdr checksum, we do this ourselves.
2012 		 */
2013 		if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2014 			skb->csum = htons(csum);
2015 			skb->ip_summed = CHECKSUM_COMPLETE;
2016 		} else {
2017 			skb_checksum_none_assert(skb);
2018 		}
2019 
2020 		/* send it up */
2021 		if ((bd_flags & BD_FLG_VLAN_TAG))
2022 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan);
2023 		netif_rx(skb);
2024 
2025 		dev->stats.rx_packets++;
2026 		dev->stats.rx_bytes += retdesc->size;
2027 
2028 		idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2029 	}
2030 
2031 	atomic_sub(std_count, &ap->cur_rx_bufs);
2032 	if (!ACE_IS_TIGON_I(ap))
2033 		atomic_sub(mini_count, &ap->cur_mini_bufs);
2034 
2035  out:
2036 	/*
2037 	 * According to the documentation RxRetCsm is obsolete with
2038 	 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2039 	 */
2040 	if (ACE_IS_TIGON_I(ap)) {
2041 		writel(idx, &ap->regs->RxRetCsm);
2042 	}
2043 	ap->cur_rx = idx;
2044 
2045 	return;
2046  error:
2047 	idx = rxretprd;
2048 	goto out;
2049 }
2050 
2051 
ace_tx_int(struct net_device * dev,u32 txcsm,u32 idx)2052 static inline void ace_tx_int(struct net_device *dev,
2053 			      u32 txcsm, u32 idx)
2054 {
2055 	struct ace_private *ap = netdev_priv(dev);
2056 
2057 	do {
2058 		struct sk_buff *skb;
2059 		struct tx_ring_info *info;
2060 
2061 		info = ap->skb->tx_skbuff + idx;
2062 		skb = info->skb;
2063 
2064 		if (dma_unmap_len(info, maplen)) {
2065 			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2066 				       dma_unmap_len(info, maplen),
2067 				       PCI_DMA_TODEVICE);
2068 			dma_unmap_len_set(info, maplen, 0);
2069 		}
2070 
2071 		if (skb) {
2072 			dev->stats.tx_packets++;
2073 			dev->stats.tx_bytes += skb->len;
2074 			dev_kfree_skb_irq(skb);
2075 			info->skb = NULL;
2076 		}
2077 
2078 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2079 	} while (idx != txcsm);
2080 
2081 	if (netif_queue_stopped(dev))
2082 		netif_wake_queue(dev);
2083 
2084 	wmb();
2085 	ap->tx_ret_csm = txcsm;
2086 
2087 	/* So... tx_ret_csm is advanced _after_ check for device wakeup.
2088 	 *
2089 	 * We could try to make it before. In this case we would get
2090 	 * the following race condition: hard_start_xmit on other cpu
2091 	 * enters after we advanced tx_ret_csm and fills space,
2092 	 * which we have just freed, so that we make illegal device wakeup.
2093 	 * There is no good way to workaround this (at entry
2094 	 * to ace_start_xmit detects this condition and prevents
2095 	 * ring corruption, but it is not a good workaround.)
2096 	 *
2097 	 * When tx_ret_csm is advanced after, we wake up device _only_
2098 	 * if we really have some space in ring (though the core doing
2099 	 * hard_start_xmit can see full ring for some period and has to
2100 	 * synchronize.) Superb.
2101 	 * BUT! We get another subtle race condition. hard_start_xmit
2102 	 * may think that ring is full between wakeup and advancing
2103 	 * tx_ret_csm and will stop device instantly! It is not so bad.
2104 	 * We are guaranteed that there is something in ring, so that
2105 	 * the next irq will resume transmission. To speedup this we could
2106 	 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2107 	 * (see ace_start_xmit).
2108 	 *
2109 	 * Well, this dilemma exists in all lock-free devices.
2110 	 * We, following scheme used in drivers by Donald Becker,
2111 	 * select the least dangerous.
2112 	 *							--ANK
2113 	 */
2114 }
2115 
2116 
ace_interrupt(int irq,void * dev_id)2117 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2118 {
2119 	struct net_device *dev = (struct net_device *)dev_id;
2120 	struct ace_private *ap = netdev_priv(dev);
2121 	struct ace_regs __iomem *regs = ap->regs;
2122 	u32 idx;
2123 	u32 txcsm, rxretcsm, rxretprd;
2124 	u32 evtcsm, evtprd;
2125 
2126 	/*
2127 	 * In case of PCI shared interrupts or spurious interrupts,
2128 	 * we want to make sure it is actually our interrupt before
2129 	 * spending any time in here.
2130 	 */
2131 	if (!(readl(&regs->HostCtrl) & IN_INT))
2132 		return IRQ_NONE;
2133 
2134 	/*
2135 	 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2136 	 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2137 	 * writel(0, &regs->Mb0Lo).
2138 	 *
2139 	 * "IRQ avoidance" recommended in docs applies to IRQs served
2140 	 * threads and it is wrong even for that case.
2141 	 */
2142 	writel(0, &regs->Mb0Lo);
2143 	readl(&regs->Mb0Lo);
2144 
2145 	/*
2146 	 * There is no conflict between transmit handling in
2147 	 * start_xmit and receive processing, thus there is no reason
2148 	 * to take a spin lock for RX handling. Wait until we start
2149 	 * working on the other stuff - hey we don't need a spin lock
2150 	 * anymore.
2151 	 */
2152 	rxretprd = *ap->rx_ret_prd;
2153 	rxretcsm = ap->cur_rx;
2154 
2155 	if (rxretprd != rxretcsm)
2156 		ace_rx_int(dev, rxretprd, rxretcsm);
2157 
2158 	txcsm = *ap->tx_csm;
2159 	idx = ap->tx_ret_csm;
2160 
2161 	if (txcsm != idx) {
2162 		/*
2163 		 * If each skb takes only one descriptor this check degenerates
2164 		 * to identity, because new space has just been opened.
2165 		 * But if skbs are fragmented we must check that this index
2166 		 * update releases enough of space, otherwise we just
2167 		 * wait for device to make more work.
2168 		 */
2169 		if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2170 			ace_tx_int(dev, txcsm, idx);
2171 	}
2172 
2173 	evtcsm = readl(&regs->EvtCsm);
2174 	evtprd = *ap->evt_prd;
2175 
2176 	if (evtcsm != evtprd) {
2177 		evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2178 		writel(evtcsm, &regs->EvtCsm);
2179 	}
2180 
2181 	/*
2182 	 * This has to go last in the interrupt handler and run with
2183 	 * the spin lock released ... what lock?
2184 	 */
2185 	if (netif_running(dev)) {
2186 		int cur_size;
2187 		int run_tasklet = 0;
2188 
2189 		cur_size = atomic_read(&ap->cur_rx_bufs);
2190 		if (cur_size < RX_LOW_STD_THRES) {
2191 			if ((cur_size < RX_PANIC_STD_THRES) &&
2192 			    !test_and_set_bit(0, &ap->std_refill_busy)) {
2193 #ifdef DEBUG
2194 				printk("low on std buffers %i\n", cur_size);
2195 #endif
2196 				ace_load_std_rx_ring(dev,
2197 						     RX_RING_SIZE - cur_size);
2198 			} else
2199 				run_tasklet = 1;
2200 		}
2201 
2202 		if (!ACE_IS_TIGON_I(ap)) {
2203 			cur_size = atomic_read(&ap->cur_mini_bufs);
2204 			if (cur_size < RX_LOW_MINI_THRES) {
2205 				if ((cur_size < RX_PANIC_MINI_THRES) &&
2206 				    !test_and_set_bit(0,
2207 						      &ap->mini_refill_busy)) {
2208 #ifdef DEBUG
2209 					printk("low on mini buffers %i\n",
2210 					       cur_size);
2211 #endif
2212 					ace_load_mini_rx_ring(dev,
2213 							      RX_MINI_SIZE - cur_size);
2214 				} else
2215 					run_tasklet = 1;
2216 			}
2217 		}
2218 
2219 		if (ap->jumbo) {
2220 			cur_size = atomic_read(&ap->cur_jumbo_bufs);
2221 			if (cur_size < RX_LOW_JUMBO_THRES) {
2222 				if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2223 				    !test_and_set_bit(0,
2224 						      &ap->jumbo_refill_busy)){
2225 #ifdef DEBUG
2226 					printk("low on jumbo buffers %i\n",
2227 					       cur_size);
2228 #endif
2229 					ace_load_jumbo_rx_ring(dev,
2230 							       RX_JUMBO_SIZE - cur_size);
2231 				} else
2232 					run_tasklet = 1;
2233 			}
2234 		}
2235 		if (run_tasklet && !ap->tasklet_pending) {
2236 			ap->tasklet_pending = 1;
2237 			tasklet_schedule(&ap->ace_tasklet);
2238 		}
2239 	}
2240 
2241 	return IRQ_HANDLED;
2242 }
2243 
ace_open(struct net_device * dev)2244 static int ace_open(struct net_device *dev)
2245 {
2246 	struct ace_private *ap = netdev_priv(dev);
2247 	struct ace_regs __iomem *regs = ap->regs;
2248 	struct cmd cmd;
2249 
2250 	if (!(ap->fw_running)) {
2251 		printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2252 		return -EBUSY;
2253 	}
2254 
2255 	writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2256 
2257 	cmd.evt = C_CLEAR_STATS;
2258 	cmd.code = 0;
2259 	cmd.idx = 0;
2260 	ace_issue_cmd(regs, &cmd);
2261 
2262 	cmd.evt = C_HOST_STATE;
2263 	cmd.code = C_C_STACK_UP;
2264 	cmd.idx = 0;
2265 	ace_issue_cmd(regs, &cmd);
2266 
2267 	if (ap->jumbo &&
2268 	    !test_and_set_bit(0, &ap->jumbo_refill_busy))
2269 		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2270 
2271 	if (dev->flags & IFF_PROMISC) {
2272 		cmd.evt = C_SET_PROMISC_MODE;
2273 		cmd.code = C_C_PROMISC_ENABLE;
2274 		cmd.idx = 0;
2275 		ace_issue_cmd(regs, &cmd);
2276 
2277 		ap->promisc = 1;
2278 	}else
2279 		ap->promisc = 0;
2280 	ap->mcast_all = 0;
2281 
2282 #if 0
2283 	cmd.evt = C_LNK_NEGOTIATION;
2284 	cmd.code = 0;
2285 	cmd.idx = 0;
2286 	ace_issue_cmd(regs, &cmd);
2287 #endif
2288 
2289 	netif_start_queue(dev);
2290 
2291 	/*
2292 	 * Setup the bottom half rx ring refill handler
2293 	 */
2294 	tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2295 	return 0;
2296 }
2297 
2298 
ace_close(struct net_device * dev)2299 static int ace_close(struct net_device *dev)
2300 {
2301 	struct ace_private *ap = netdev_priv(dev);
2302 	struct ace_regs __iomem *regs = ap->regs;
2303 	struct cmd cmd;
2304 	unsigned long flags;
2305 	short i;
2306 
2307 	/*
2308 	 * Without (or before) releasing irq and stopping hardware, this
2309 	 * is an absolute non-sense, by the way. It will be reset instantly
2310 	 * by the first irq.
2311 	 */
2312 	netif_stop_queue(dev);
2313 
2314 
2315 	if (ap->promisc) {
2316 		cmd.evt = C_SET_PROMISC_MODE;
2317 		cmd.code = C_C_PROMISC_DISABLE;
2318 		cmd.idx = 0;
2319 		ace_issue_cmd(regs, &cmd);
2320 		ap->promisc = 0;
2321 	}
2322 
2323 	cmd.evt = C_HOST_STATE;
2324 	cmd.code = C_C_STACK_DOWN;
2325 	cmd.idx = 0;
2326 	ace_issue_cmd(regs, &cmd);
2327 
2328 	tasklet_kill(&ap->ace_tasklet);
2329 
2330 	/*
2331 	 * Make sure one CPU is not processing packets while
2332 	 * buffers are being released by another.
2333 	 */
2334 
2335 	local_irq_save(flags);
2336 	ace_mask_irq(dev);
2337 
2338 	for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2339 		struct sk_buff *skb;
2340 		struct tx_ring_info *info;
2341 
2342 		info = ap->skb->tx_skbuff + i;
2343 		skb = info->skb;
2344 
2345 		if (dma_unmap_len(info, maplen)) {
2346 			if (ACE_IS_TIGON_I(ap)) {
2347 				/* NB: TIGON_1 is special, tx_ring is in io space */
2348 				struct tx_desc __iomem *tx;
2349 				tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2350 				writel(0, &tx->addr.addrhi);
2351 				writel(0, &tx->addr.addrlo);
2352 				writel(0, &tx->flagsize);
2353 			} else
2354 				memset(ap->tx_ring + i, 0,
2355 				       sizeof(struct tx_desc));
2356 			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2357 				       dma_unmap_len(info, maplen),
2358 				       PCI_DMA_TODEVICE);
2359 			dma_unmap_len_set(info, maplen, 0);
2360 		}
2361 		if (skb) {
2362 			dev_kfree_skb(skb);
2363 			info->skb = NULL;
2364 		}
2365 	}
2366 
2367 	if (ap->jumbo) {
2368 		cmd.evt = C_RESET_JUMBO_RNG;
2369 		cmd.code = 0;
2370 		cmd.idx = 0;
2371 		ace_issue_cmd(regs, &cmd);
2372 	}
2373 
2374 	ace_unmask_irq(dev);
2375 	local_irq_restore(flags);
2376 
2377 	return 0;
2378 }
2379 
2380 
2381 static inline dma_addr_t
ace_map_tx_skb(struct ace_private * ap,struct sk_buff * skb,struct sk_buff * tail,u32 idx)2382 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2383 	       struct sk_buff *tail, u32 idx)
2384 {
2385 	dma_addr_t mapping;
2386 	struct tx_ring_info *info;
2387 
2388 	mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2389 			       offset_in_page(skb->data),
2390 			       skb->len, PCI_DMA_TODEVICE);
2391 
2392 	info = ap->skb->tx_skbuff + idx;
2393 	info->skb = tail;
2394 	dma_unmap_addr_set(info, mapping, mapping);
2395 	dma_unmap_len_set(info, maplen, skb->len);
2396 	return mapping;
2397 }
2398 
2399 
2400 static inline void
ace_load_tx_bd(struct ace_private * ap,struct tx_desc * desc,u64 addr,u32 flagsize,u32 vlan_tag)2401 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2402 	       u32 flagsize, u32 vlan_tag)
2403 {
2404 #if !USE_TX_COAL_NOW
2405 	flagsize &= ~BD_FLG_COAL_NOW;
2406 #endif
2407 
2408 	if (ACE_IS_TIGON_I(ap)) {
2409 		struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2410 		writel(addr >> 32, &io->addr.addrhi);
2411 		writel(addr & 0xffffffff, &io->addr.addrlo);
2412 		writel(flagsize, &io->flagsize);
2413 		writel(vlan_tag, &io->vlanres);
2414 	} else {
2415 		desc->addr.addrhi = addr >> 32;
2416 		desc->addr.addrlo = addr;
2417 		desc->flagsize = flagsize;
2418 		desc->vlanres = vlan_tag;
2419 	}
2420 }
2421 
2422 
ace_start_xmit(struct sk_buff * skb,struct net_device * dev)2423 static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2424 				  struct net_device *dev)
2425 {
2426 	struct ace_private *ap = netdev_priv(dev);
2427 	struct ace_regs __iomem *regs = ap->regs;
2428 	struct tx_desc *desc;
2429 	u32 idx, flagsize;
2430 	unsigned long maxjiff = jiffies + 3*HZ;
2431 
2432 restart:
2433 	idx = ap->tx_prd;
2434 
2435 	if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2436 		goto overflow;
2437 
2438 	if (!skb_shinfo(skb)->nr_frags)	{
2439 		dma_addr_t mapping;
2440 		u32 vlan_tag = 0;
2441 
2442 		mapping = ace_map_tx_skb(ap, skb, skb, idx);
2443 		flagsize = (skb->len << 16) | (BD_FLG_END);
2444 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2445 			flagsize |= BD_FLG_TCP_UDP_SUM;
2446 		if (vlan_tx_tag_present(skb)) {
2447 			flagsize |= BD_FLG_VLAN_TAG;
2448 			vlan_tag = vlan_tx_tag_get(skb);
2449 		}
2450 		desc = ap->tx_ring + idx;
2451 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2452 
2453 		/* Look at ace_tx_int for explanations. */
2454 		if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2455 			flagsize |= BD_FLG_COAL_NOW;
2456 
2457 		ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2458 	} else {
2459 		dma_addr_t mapping;
2460 		u32 vlan_tag = 0;
2461 		int i, len = 0;
2462 
2463 		mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2464 		flagsize = (skb_headlen(skb) << 16);
2465 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2466 			flagsize |= BD_FLG_TCP_UDP_SUM;
2467 		if (vlan_tx_tag_present(skb)) {
2468 			flagsize |= BD_FLG_VLAN_TAG;
2469 			vlan_tag = vlan_tx_tag_get(skb);
2470 		}
2471 
2472 		ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2473 
2474 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2475 
2476 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2477 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2478 			struct tx_ring_info *info;
2479 
2480 			len += skb_frag_size(frag);
2481 			info = ap->skb->tx_skbuff + idx;
2482 			desc = ap->tx_ring + idx;
2483 
2484 			mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2485 						   skb_frag_size(frag),
2486 						   DMA_TO_DEVICE);
2487 
2488 			flagsize = skb_frag_size(frag) << 16;
2489 			if (skb->ip_summed == CHECKSUM_PARTIAL)
2490 				flagsize |= BD_FLG_TCP_UDP_SUM;
2491 			idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2492 
2493 			if (i == skb_shinfo(skb)->nr_frags - 1) {
2494 				flagsize |= BD_FLG_END;
2495 				if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2496 					flagsize |= BD_FLG_COAL_NOW;
2497 
2498 				/*
2499 				 * Only the last fragment frees
2500 				 * the skb!
2501 				 */
2502 				info->skb = skb;
2503 			} else {
2504 				info->skb = NULL;
2505 			}
2506 			dma_unmap_addr_set(info, mapping, mapping);
2507 			dma_unmap_len_set(info, maplen, skb_frag_size(frag));
2508 			ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2509 		}
2510 	}
2511 
2512  	wmb();
2513  	ap->tx_prd = idx;
2514  	ace_set_txprd(regs, ap, idx);
2515 
2516 	if (flagsize & BD_FLG_COAL_NOW) {
2517 		netif_stop_queue(dev);
2518 
2519 		/*
2520 		 * A TX-descriptor producer (an IRQ) might have gotten
2521 		 * between, making the ring free again. Since xmit is
2522 		 * serialized, this is the only situation we have to
2523 		 * re-test.
2524 		 */
2525 		if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2526 			netif_wake_queue(dev);
2527 	}
2528 
2529 	return NETDEV_TX_OK;
2530 
2531 overflow:
2532 	/*
2533 	 * This race condition is unavoidable with lock-free drivers.
2534 	 * We wake up the queue _before_ tx_prd is advanced, so that we can
2535 	 * enter hard_start_xmit too early, while tx ring still looks closed.
2536 	 * This happens ~1-4 times per 100000 packets, so that we can allow
2537 	 * to loop syncing to other CPU. Probably, we need an additional
2538 	 * wmb() in ace_tx_intr as well.
2539 	 *
2540 	 * Note that this race is relieved by reserving one more entry
2541 	 * in tx ring than it is necessary (see original non-SG driver).
2542 	 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2543 	 * is already overkill.
2544 	 *
2545 	 * Alternative is to return with 1 not throttling queue. In this
2546 	 * case loop becomes longer, no more useful effects.
2547 	 */
2548 	if (time_before(jiffies, maxjiff)) {
2549 		barrier();
2550 		cpu_relax();
2551 		goto restart;
2552 	}
2553 
2554 	/* The ring is stuck full. */
2555 	printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2556 	return NETDEV_TX_BUSY;
2557 }
2558 
2559 
ace_change_mtu(struct net_device * dev,int new_mtu)2560 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2561 {
2562 	struct ace_private *ap = netdev_priv(dev);
2563 	struct ace_regs __iomem *regs = ap->regs;
2564 
2565 	if (new_mtu > ACE_JUMBO_MTU)
2566 		return -EINVAL;
2567 
2568 	writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2569 	dev->mtu = new_mtu;
2570 
2571 	if (new_mtu > ACE_STD_MTU) {
2572 		if (!(ap->jumbo)) {
2573 			printk(KERN_INFO "%s: Enabling Jumbo frame "
2574 			       "support\n", dev->name);
2575 			ap->jumbo = 1;
2576 			if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2577 				ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2578 			ace_set_rxtx_parms(dev, 1);
2579 		}
2580 	} else {
2581 		while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2582 		ace_sync_irq(dev->irq);
2583 		ace_set_rxtx_parms(dev, 0);
2584 		if (ap->jumbo) {
2585 			struct cmd cmd;
2586 
2587 			cmd.evt = C_RESET_JUMBO_RNG;
2588 			cmd.code = 0;
2589 			cmd.idx = 0;
2590 			ace_issue_cmd(regs, &cmd);
2591 		}
2592 	}
2593 
2594 	return 0;
2595 }
2596 
ace_get_settings(struct net_device * dev,struct ethtool_cmd * ecmd)2597 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2598 {
2599 	struct ace_private *ap = netdev_priv(dev);
2600 	struct ace_regs __iomem *regs = ap->regs;
2601 	u32 link;
2602 
2603 	memset(ecmd, 0, sizeof(struct ethtool_cmd));
2604 	ecmd->supported =
2605 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2606 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2607 		 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2608 		 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2609 
2610 	ecmd->port = PORT_FIBRE;
2611 	ecmd->transceiver = XCVR_INTERNAL;
2612 
2613 	link = readl(&regs->GigLnkState);
2614 	if (link & LNK_1000MB)
2615 		ethtool_cmd_speed_set(ecmd, SPEED_1000);
2616 	else {
2617 		link = readl(&regs->FastLnkState);
2618 		if (link & LNK_100MB)
2619 			ethtool_cmd_speed_set(ecmd, SPEED_100);
2620 		else if (link & LNK_10MB)
2621 			ethtool_cmd_speed_set(ecmd, SPEED_10);
2622 		else
2623 			ethtool_cmd_speed_set(ecmd, 0);
2624 	}
2625 	if (link & LNK_FULL_DUPLEX)
2626 		ecmd->duplex = DUPLEX_FULL;
2627 	else
2628 		ecmd->duplex = DUPLEX_HALF;
2629 
2630 	if (link & LNK_NEGOTIATE)
2631 		ecmd->autoneg = AUTONEG_ENABLE;
2632 	else
2633 		ecmd->autoneg = AUTONEG_DISABLE;
2634 
2635 #if 0
2636 	/*
2637 	 * Current struct ethtool_cmd is insufficient
2638 	 */
2639 	ecmd->trace = readl(&regs->TuneTrace);
2640 
2641 	ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2642 	ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2643 #endif
2644 	ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2645 	ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2646 
2647 	return 0;
2648 }
2649 
ace_set_settings(struct net_device * dev,struct ethtool_cmd * ecmd)2650 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2651 {
2652 	struct ace_private *ap = netdev_priv(dev);
2653 	struct ace_regs __iomem *regs = ap->regs;
2654 	u32 link, speed;
2655 
2656 	link = readl(&regs->GigLnkState);
2657 	if (link & LNK_1000MB)
2658 		speed = SPEED_1000;
2659 	else {
2660 		link = readl(&regs->FastLnkState);
2661 		if (link & LNK_100MB)
2662 			speed = SPEED_100;
2663 		else if (link & LNK_10MB)
2664 			speed = SPEED_10;
2665 		else
2666 			speed = SPEED_100;
2667 	}
2668 
2669 	link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2670 		LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2671 	if (!ACE_IS_TIGON_I(ap))
2672 		link |= LNK_TX_FLOW_CTL_Y;
2673 	if (ecmd->autoneg == AUTONEG_ENABLE)
2674 		link |= LNK_NEGOTIATE;
2675 	if (ethtool_cmd_speed(ecmd) != speed) {
2676 		link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2677 		switch (ethtool_cmd_speed(ecmd)) {
2678 		case SPEED_1000:
2679 			link |= LNK_1000MB;
2680 			break;
2681 		case SPEED_100:
2682 			link |= LNK_100MB;
2683 			break;
2684 		case SPEED_10:
2685 			link |= LNK_10MB;
2686 			break;
2687 		}
2688 	}
2689 
2690 	if (ecmd->duplex == DUPLEX_FULL)
2691 		link |= LNK_FULL_DUPLEX;
2692 
2693 	if (link != ap->link) {
2694 		struct cmd cmd;
2695 		printk(KERN_INFO "%s: Renegotiating link state\n",
2696 		       dev->name);
2697 
2698 		ap->link = link;
2699 		writel(link, &regs->TuneLink);
2700 		if (!ACE_IS_TIGON_I(ap))
2701 			writel(link, &regs->TuneFastLink);
2702 		wmb();
2703 
2704 		cmd.evt = C_LNK_NEGOTIATION;
2705 		cmd.code = 0;
2706 		cmd.idx = 0;
2707 		ace_issue_cmd(regs, &cmd);
2708 	}
2709 	return 0;
2710 }
2711 
ace_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2712 static void ace_get_drvinfo(struct net_device *dev,
2713 			    struct ethtool_drvinfo *info)
2714 {
2715 	struct ace_private *ap = netdev_priv(dev);
2716 
2717 	strlcpy(info->driver, "acenic", sizeof(info->driver));
2718 	snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2719 		 ap->firmware_major, ap->firmware_minor,
2720 		 ap->firmware_fix);
2721 
2722 	if (ap->pdev)
2723 		strlcpy(info->bus_info, pci_name(ap->pdev),
2724 			sizeof(info->bus_info));
2725 
2726 }
2727 
2728 /*
2729  * Set the hardware MAC address.
2730  */
ace_set_mac_addr(struct net_device * dev,void * p)2731 static int ace_set_mac_addr(struct net_device *dev, void *p)
2732 {
2733 	struct ace_private *ap = netdev_priv(dev);
2734 	struct ace_regs __iomem *regs = ap->regs;
2735 	struct sockaddr *addr=p;
2736 	u8 *da;
2737 	struct cmd cmd;
2738 
2739 	if(netif_running(dev))
2740 		return -EBUSY;
2741 
2742 	memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2743 
2744 	da = (u8 *)dev->dev_addr;
2745 
2746 	writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2747 	writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2748 	       &regs->MacAddrLo);
2749 
2750 	cmd.evt = C_SET_MAC_ADDR;
2751 	cmd.code = 0;
2752 	cmd.idx = 0;
2753 	ace_issue_cmd(regs, &cmd);
2754 
2755 	return 0;
2756 }
2757 
2758 
ace_set_multicast_list(struct net_device * dev)2759 static void ace_set_multicast_list(struct net_device *dev)
2760 {
2761 	struct ace_private *ap = netdev_priv(dev);
2762 	struct ace_regs __iomem *regs = ap->regs;
2763 	struct cmd cmd;
2764 
2765 	if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2766 		cmd.evt = C_SET_MULTICAST_MODE;
2767 		cmd.code = C_C_MCAST_ENABLE;
2768 		cmd.idx = 0;
2769 		ace_issue_cmd(regs, &cmd);
2770 		ap->mcast_all = 1;
2771 	} else if (ap->mcast_all) {
2772 		cmd.evt = C_SET_MULTICAST_MODE;
2773 		cmd.code = C_C_MCAST_DISABLE;
2774 		cmd.idx = 0;
2775 		ace_issue_cmd(regs, &cmd);
2776 		ap->mcast_all = 0;
2777 	}
2778 
2779 	if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2780 		cmd.evt = C_SET_PROMISC_MODE;
2781 		cmd.code = C_C_PROMISC_ENABLE;
2782 		cmd.idx = 0;
2783 		ace_issue_cmd(regs, &cmd);
2784 		ap->promisc = 1;
2785 	}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2786 		cmd.evt = C_SET_PROMISC_MODE;
2787 		cmd.code = C_C_PROMISC_DISABLE;
2788 		cmd.idx = 0;
2789 		ace_issue_cmd(regs, &cmd);
2790 		ap->promisc = 0;
2791 	}
2792 
2793 	/*
2794 	 * For the time being multicast relies on the upper layers
2795 	 * filtering it properly. The Firmware does not allow one to
2796 	 * set the entire multicast list at a time and keeping track of
2797 	 * it here is going to be messy.
2798 	 */
2799 	if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2800 		cmd.evt = C_SET_MULTICAST_MODE;
2801 		cmd.code = C_C_MCAST_ENABLE;
2802 		cmd.idx = 0;
2803 		ace_issue_cmd(regs, &cmd);
2804 	}else if (!ap->mcast_all) {
2805 		cmd.evt = C_SET_MULTICAST_MODE;
2806 		cmd.code = C_C_MCAST_DISABLE;
2807 		cmd.idx = 0;
2808 		ace_issue_cmd(regs, &cmd);
2809 	}
2810 }
2811 
2812 
ace_get_stats(struct net_device * dev)2813 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2814 {
2815 	struct ace_private *ap = netdev_priv(dev);
2816 	struct ace_mac_stats __iomem *mac_stats =
2817 		(struct ace_mac_stats __iomem *)ap->regs->Stats;
2818 
2819 	dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2820 	dev->stats.multicast = readl(&mac_stats->kept_mc);
2821 	dev->stats.collisions = readl(&mac_stats->coll);
2822 
2823 	return &dev->stats;
2824 }
2825 
2826 
ace_copy(struct ace_regs __iomem * regs,const __be32 * src,u32 dest,int size)2827 static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2828 		     u32 dest, int size)
2829 {
2830 	void __iomem *tdest;
2831 	short tsize, i;
2832 
2833 	if (size <= 0)
2834 		return;
2835 
2836 	while (size > 0) {
2837 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2838 			    min_t(u32, size, ACE_WINDOW_SIZE));
2839 		tdest = (void __iomem *) &regs->Window +
2840 			(dest & (ACE_WINDOW_SIZE - 1));
2841 		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2842 		for (i = 0; i < (tsize / 4); i++) {
2843 			/* Firmware is big-endian */
2844 			writel(be32_to_cpup(src), tdest);
2845 			src++;
2846 			tdest += 4;
2847 			dest += 4;
2848 			size -= 4;
2849 		}
2850 	}
2851 }
2852 
2853 
ace_clear(struct ace_regs __iomem * regs,u32 dest,int size)2854 static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2855 {
2856 	void __iomem *tdest;
2857 	short tsize = 0, i;
2858 
2859 	if (size <= 0)
2860 		return;
2861 
2862 	while (size > 0) {
2863 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2864 				min_t(u32, size, ACE_WINDOW_SIZE));
2865 		tdest = (void __iomem *) &regs->Window +
2866 			(dest & (ACE_WINDOW_SIZE - 1));
2867 		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2868 
2869 		for (i = 0; i < (tsize / 4); i++) {
2870 			writel(0, tdest + i*4);
2871 		}
2872 
2873 		dest += tsize;
2874 		size -= tsize;
2875 	}
2876 }
2877 
2878 
2879 /*
2880  * Download the firmware into the SRAM on the NIC
2881  *
2882  * This operation requires the NIC to be halted and is performed with
2883  * interrupts disabled and with the spinlock hold.
2884  */
ace_load_firmware(struct net_device * dev)2885 static int ace_load_firmware(struct net_device *dev)
2886 {
2887 	const struct firmware *fw;
2888 	const char *fw_name = "acenic/tg2.bin";
2889 	struct ace_private *ap = netdev_priv(dev);
2890 	struct ace_regs __iomem *regs = ap->regs;
2891 	const __be32 *fw_data;
2892 	u32 load_addr;
2893 	int ret;
2894 
2895 	if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2896 		printk(KERN_ERR "%s: trying to download firmware while the "
2897 		       "CPU is running!\n", ap->name);
2898 		return -EFAULT;
2899 	}
2900 
2901 	if (ACE_IS_TIGON_I(ap))
2902 		fw_name = "acenic/tg1.bin";
2903 
2904 	ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2905 	if (ret) {
2906 		printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2907 		       ap->name, fw_name);
2908 		return ret;
2909 	}
2910 
2911 	fw_data = (void *)fw->data;
2912 
2913 	/* Firmware blob starts with version numbers, followed by
2914 	   load and start address. Remainder is the blob to be loaded
2915 	   contiguously from load address. We don't bother to represent
2916 	   the BSS/SBSS sections any more, since we were clearing the
2917 	   whole thing anyway. */
2918 	ap->firmware_major = fw->data[0];
2919 	ap->firmware_minor = fw->data[1];
2920 	ap->firmware_fix = fw->data[2];
2921 
2922 	ap->firmware_start = be32_to_cpu(fw_data[1]);
2923 	if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2924 		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2925 		       ap->name, ap->firmware_start, fw_name);
2926 		ret = -EINVAL;
2927 		goto out;
2928 	}
2929 
2930 	load_addr = be32_to_cpu(fw_data[2]);
2931 	if (load_addr < 0x4000 || load_addr >= 0x80000) {
2932 		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2933 		       ap->name, load_addr, fw_name);
2934 		ret = -EINVAL;
2935 		goto out;
2936 	}
2937 
2938 	/*
2939 	 * Do not try to clear more than 512KiB or we end up seeing
2940 	 * funny things on NICs with only 512KiB SRAM
2941 	 */
2942 	ace_clear(regs, 0x2000, 0x80000-0x2000);
2943 	ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2944  out:
2945 	release_firmware(fw);
2946 	return ret;
2947 }
2948 
2949 
2950 /*
2951  * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2952  *
2953  * Accessing the EEPROM is `interesting' to say the least - don't read
2954  * this code right after dinner.
2955  *
2956  * This is all about black magic and bit-banging the device .... I
2957  * wonder in what hospital they have put the guy who designed the i2c
2958  * specs.
2959  *
2960  * Oh yes, this is only the beginning!
2961  *
2962  * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2963  * code i2c readout code by beta testing all my hacks.
2964  */
eeprom_start(struct ace_regs __iomem * regs)2965 static void eeprom_start(struct ace_regs __iomem *regs)
2966 {
2967 	u32 local;
2968 
2969 	readl(&regs->LocalCtrl);
2970 	udelay(ACE_SHORT_DELAY);
2971 	local = readl(&regs->LocalCtrl);
2972 	local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2973 	writel(local, &regs->LocalCtrl);
2974 	readl(&regs->LocalCtrl);
2975 	mb();
2976 	udelay(ACE_SHORT_DELAY);
2977 	local |= EEPROM_CLK_OUT;
2978 	writel(local, &regs->LocalCtrl);
2979 	readl(&regs->LocalCtrl);
2980 	mb();
2981 	udelay(ACE_SHORT_DELAY);
2982 	local &= ~EEPROM_DATA_OUT;
2983 	writel(local, &regs->LocalCtrl);
2984 	readl(&regs->LocalCtrl);
2985 	mb();
2986 	udelay(ACE_SHORT_DELAY);
2987 	local &= ~EEPROM_CLK_OUT;
2988 	writel(local, &regs->LocalCtrl);
2989 	readl(&regs->LocalCtrl);
2990 	mb();
2991 }
2992 
2993 
eeprom_prep(struct ace_regs __iomem * regs,u8 magic)2994 static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2995 {
2996 	short i;
2997 	u32 local;
2998 
2999 	udelay(ACE_SHORT_DELAY);
3000 	local = readl(&regs->LocalCtrl);
3001 	local &= ~EEPROM_DATA_OUT;
3002 	local |= EEPROM_WRITE_ENABLE;
3003 	writel(local, &regs->LocalCtrl);
3004 	readl(&regs->LocalCtrl);
3005 	mb();
3006 
3007 	for (i = 0; i < 8; i++, magic <<= 1) {
3008 		udelay(ACE_SHORT_DELAY);
3009 		if (magic & 0x80)
3010 			local |= EEPROM_DATA_OUT;
3011 		else
3012 			local &= ~EEPROM_DATA_OUT;
3013 		writel(local, &regs->LocalCtrl);
3014 		readl(&regs->LocalCtrl);
3015 		mb();
3016 
3017 		udelay(ACE_SHORT_DELAY);
3018 		local |= EEPROM_CLK_OUT;
3019 		writel(local, &regs->LocalCtrl);
3020 		readl(&regs->LocalCtrl);
3021 		mb();
3022 		udelay(ACE_SHORT_DELAY);
3023 		local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3024 		writel(local, &regs->LocalCtrl);
3025 		readl(&regs->LocalCtrl);
3026 		mb();
3027 	}
3028 }
3029 
3030 
eeprom_check_ack(struct ace_regs __iomem * regs)3031 static int eeprom_check_ack(struct ace_regs __iomem *regs)
3032 {
3033 	int state;
3034 	u32 local;
3035 
3036 	local = readl(&regs->LocalCtrl);
3037 	local &= ~EEPROM_WRITE_ENABLE;
3038 	writel(local, &regs->LocalCtrl);
3039 	readl(&regs->LocalCtrl);
3040 	mb();
3041 	udelay(ACE_LONG_DELAY);
3042 	local |= EEPROM_CLK_OUT;
3043 	writel(local, &regs->LocalCtrl);
3044 	readl(&regs->LocalCtrl);
3045 	mb();
3046 	udelay(ACE_SHORT_DELAY);
3047 	/* sample data in middle of high clk */
3048 	state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3049 	udelay(ACE_SHORT_DELAY);
3050 	mb();
3051 	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3052 	readl(&regs->LocalCtrl);
3053 	mb();
3054 
3055 	return state;
3056 }
3057 
3058 
eeprom_stop(struct ace_regs __iomem * regs)3059 static void eeprom_stop(struct ace_regs __iomem *regs)
3060 {
3061 	u32 local;
3062 
3063 	udelay(ACE_SHORT_DELAY);
3064 	local = readl(&regs->LocalCtrl);
3065 	local |= EEPROM_WRITE_ENABLE;
3066 	writel(local, &regs->LocalCtrl);
3067 	readl(&regs->LocalCtrl);
3068 	mb();
3069 	udelay(ACE_SHORT_DELAY);
3070 	local &= ~EEPROM_DATA_OUT;
3071 	writel(local, &regs->LocalCtrl);
3072 	readl(&regs->LocalCtrl);
3073 	mb();
3074 	udelay(ACE_SHORT_DELAY);
3075 	local |= EEPROM_CLK_OUT;
3076 	writel(local, &regs->LocalCtrl);
3077 	readl(&regs->LocalCtrl);
3078 	mb();
3079 	udelay(ACE_SHORT_DELAY);
3080 	local |= EEPROM_DATA_OUT;
3081 	writel(local, &regs->LocalCtrl);
3082 	readl(&regs->LocalCtrl);
3083 	mb();
3084 	udelay(ACE_LONG_DELAY);
3085 	local &= ~EEPROM_CLK_OUT;
3086 	writel(local, &regs->LocalCtrl);
3087 	mb();
3088 }
3089 
3090 
3091 /*
3092  * Read a whole byte from the EEPROM.
3093  */
read_eeprom_byte(struct net_device * dev,unsigned long offset)3094 static int read_eeprom_byte(struct net_device *dev, unsigned long offset)
3095 {
3096 	struct ace_private *ap = netdev_priv(dev);
3097 	struct ace_regs __iomem *regs = ap->regs;
3098 	unsigned long flags;
3099 	u32 local;
3100 	int result = 0;
3101 	short i;
3102 
3103 	/*
3104 	 * Don't take interrupts on this CPU will bit banging
3105 	 * the %#%#@$ I2C device
3106 	 */
3107 	local_irq_save(flags);
3108 
3109 	eeprom_start(regs);
3110 
3111 	eeprom_prep(regs, EEPROM_WRITE_SELECT);
3112 	if (eeprom_check_ack(regs)) {
3113 		local_irq_restore(flags);
3114 		printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3115 		result = -EIO;
3116 		goto eeprom_read_error;
3117 	}
3118 
3119 	eeprom_prep(regs, (offset >> 8) & 0xff);
3120 	if (eeprom_check_ack(regs)) {
3121 		local_irq_restore(flags);
3122 		printk(KERN_ERR "%s: Unable to set address byte 0\n",
3123 		       ap->name);
3124 		result = -EIO;
3125 		goto eeprom_read_error;
3126 	}
3127 
3128 	eeprom_prep(regs, offset & 0xff);
3129 	if (eeprom_check_ack(regs)) {
3130 		local_irq_restore(flags);
3131 		printk(KERN_ERR "%s: Unable to set address byte 1\n",
3132 		       ap->name);
3133 		result = -EIO;
3134 		goto eeprom_read_error;
3135 	}
3136 
3137 	eeprom_start(regs);
3138 	eeprom_prep(regs, EEPROM_READ_SELECT);
3139 	if (eeprom_check_ack(regs)) {
3140 		local_irq_restore(flags);
3141 		printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3142 		       ap->name);
3143 		result = -EIO;
3144 		goto eeprom_read_error;
3145 	}
3146 
3147 	for (i = 0; i < 8; i++) {
3148 		local = readl(&regs->LocalCtrl);
3149 		local &= ~EEPROM_WRITE_ENABLE;
3150 		writel(local, &regs->LocalCtrl);
3151 		readl(&regs->LocalCtrl);
3152 		udelay(ACE_LONG_DELAY);
3153 		mb();
3154 		local |= EEPROM_CLK_OUT;
3155 		writel(local, &regs->LocalCtrl);
3156 		readl(&regs->LocalCtrl);
3157 		mb();
3158 		udelay(ACE_SHORT_DELAY);
3159 		/* sample data mid high clk */
3160 		result = (result << 1) |
3161 			((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3162 		udelay(ACE_SHORT_DELAY);
3163 		mb();
3164 		local = readl(&regs->LocalCtrl);
3165 		local &= ~EEPROM_CLK_OUT;
3166 		writel(local, &regs->LocalCtrl);
3167 		readl(&regs->LocalCtrl);
3168 		udelay(ACE_SHORT_DELAY);
3169 		mb();
3170 		if (i == 7) {
3171 			local |= EEPROM_WRITE_ENABLE;
3172 			writel(local, &regs->LocalCtrl);
3173 			readl(&regs->LocalCtrl);
3174 			mb();
3175 			udelay(ACE_SHORT_DELAY);
3176 		}
3177 	}
3178 
3179 	local |= EEPROM_DATA_OUT;
3180 	writel(local, &regs->LocalCtrl);
3181 	readl(&regs->LocalCtrl);
3182 	mb();
3183 	udelay(ACE_SHORT_DELAY);
3184 	writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3185 	readl(&regs->LocalCtrl);
3186 	udelay(ACE_LONG_DELAY);
3187 	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3188 	readl(&regs->LocalCtrl);
3189 	mb();
3190 	udelay(ACE_SHORT_DELAY);
3191 	eeprom_stop(regs);
3192 
3193 	local_irq_restore(flags);
3194  out:
3195 	return result;
3196 
3197  eeprom_read_error:
3198 	printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3199 	       ap->name, offset);
3200 	goto out;
3201 }
3202