• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>		/* anon_vma_prepare */
32 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33 #include <linux/swap.h>		/* try_to_free_swap */
34 #include <linux/ptrace.h>	/* user_enable_single_step */
35 #include <linux/kdebug.h>	/* notifier mechanism */
36 #include "../../mm/internal.h"	/* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 
39 #include <linux/uprobes.h>
40 
41 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
42 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
43 
44 static struct rb_root uprobes_tree = RB_ROOT;
45 /*
46  * allows us to skip the uprobe_mmap if there are no uprobe events active
47  * at this time.  Probably a fine grained per inode count is better?
48  */
49 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
50 
51 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
52 
53 #define UPROBES_HASH_SZ	13
54 /* serialize uprobe->pending_list */
55 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
56 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
57 
58 static struct percpu_rw_semaphore dup_mmap_sem;
59 
60 /* Have a copy of original instruction */
61 #define UPROBE_COPY_INSN	0
62 /* Can skip singlestep */
63 #define UPROBE_SKIP_SSTEP	1
64 
65 struct uprobe {
66 	struct rb_node		rb_node;	/* node in the rb tree */
67 	atomic_t		ref;
68 	struct rw_semaphore	register_rwsem;
69 	struct rw_semaphore	consumer_rwsem;
70 	struct list_head	pending_list;
71 	struct uprobe_consumer	*consumers;
72 	struct inode		*inode;		/* Also hold a ref to inode */
73 	loff_t			offset;
74 	unsigned long		flags;
75 	struct arch_uprobe	arch;
76 };
77 
78 struct return_instance {
79 	struct uprobe		*uprobe;
80 	unsigned long		func;
81 	unsigned long		orig_ret_vaddr; /* original return address */
82 	bool			chained;	/* true, if instance is nested */
83 
84 	struct return_instance	*next;		/* keep as stack */
85 };
86 
87 /*
88  * valid_vma: Verify if the specified vma is an executable vma
89  * Relax restrictions while unregistering: vm_flags might have
90  * changed after breakpoint was inserted.
91  *	- is_register: indicates if we are in register context.
92  *	- Return 1 if the specified virtual address is in an
93  *	  executable vma.
94  */
valid_vma(struct vm_area_struct * vma,bool is_register)95 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
96 {
97 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
98 
99 	if (is_register)
100 		flags |= VM_WRITE;
101 
102 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
103 }
104 
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)105 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
106 {
107 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
108 }
109 
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)110 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
111 {
112 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
113 }
114 
115 /**
116  * __replace_page - replace page in vma by new page.
117  * based on replace_page in mm/ksm.c
118  *
119  * @vma:      vma that holds the pte pointing to page
120  * @addr:     address the old @page is mapped at
121  * @page:     the cowed page we are replacing by kpage
122  * @kpage:    the modified page we replace page by
123  *
124  * Returns 0 on success, -EFAULT on failure.
125  */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,struct page * kpage)126 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
127 				struct page *page, struct page *kpage)
128 {
129 	struct mm_struct *mm = vma->vm_mm;
130 	spinlock_t *ptl;
131 	pte_t *ptep;
132 	int err;
133 	/* For mmu_notifiers */
134 	const unsigned long mmun_start = addr;
135 	const unsigned long mmun_end   = addr + PAGE_SIZE;
136 
137 	/* For try_to_free_swap() and munlock_vma_page() below */
138 	lock_page(page);
139 
140 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
141 	err = -EAGAIN;
142 	ptep = page_check_address(page, mm, addr, &ptl, 0);
143 	if (!ptep)
144 		goto unlock;
145 
146 	get_page(kpage);
147 	page_add_new_anon_rmap(kpage, vma, addr);
148 
149 	if (!PageAnon(page)) {
150 		dec_mm_counter(mm, MM_FILEPAGES);
151 		inc_mm_counter(mm, MM_ANONPAGES);
152 	}
153 
154 	flush_cache_page(vma, addr, pte_pfn(*ptep));
155 	ptep_clear_flush(vma, addr, ptep);
156 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
157 
158 	page_remove_rmap(page);
159 	if (!page_mapped(page))
160 		try_to_free_swap(page);
161 	pte_unmap_unlock(ptep, ptl);
162 
163 	if (vma->vm_flags & VM_LOCKED)
164 		munlock_vma_page(page);
165 	put_page(page);
166 
167 	err = 0;
168  unlock:
169 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
170 	unlock_page(page);
171 	return err;
172 }
173 
174 /**
175  * is_swbp_insn - check if instruction is breakpoint instruction.
176  * @insn: instruction to be checked.
177  * Default implementation of is_swbp_insn
178  * Returns true if @insn is a breakpoint instruction.
179  */
is_swbp_insn(uprobe_opcode_t * insn)180 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
181 {
182 	return *insn == UPROBE_SWBP_INSN;
183 }
184 
185 /**
186  * is_trap_insn - check if instruction is breakpoint instruction.
187  * @insn: instruction to be checked.
188  * Default implementation of is_trap_insn
189  * Returns true if @insn is a breakpoint instruction.
190  *
191  * This function is needed for the case where an architecture has multiple
192  * trap instructions (like powerpc).
193  */
is_trap_insn(uprobe_opcode_t * insn)194 bool __weak is_trap_insn(uprobe_opcode_t *insn)
195 {
196 	return is_swbp_insn(insn);
197 }
198 
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)199 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
200 {
201 	void *kaddr = kmap_atomic(page);
202 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
203 	kunmap_atomic(kaddr);
204 }
205 
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)206 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
207 {
208 	void *kaddr = kmap_atomic(page);
209 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
210 	kunmap_atomic(kaddr);
211 }
212 
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)213 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
214 {
215 	uprobe_opcode_t old_opcode;
216 	bool is_swbp;
217 
218 	/*
219 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
220 	 * We do not check if it is any other 'trap variant' which could
221 	 * be conditional trap instruction such as the one powerpc supports.
222 	 *
223 	 * The logic is that we do not care if the underlying instruction
224 	 * is a trap variant; uprobes always wins over any other (gdb)
225 	 * breakpoint.
226 	 */
227 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
228 	is_swbp = is_swbp_insn(&old_opcode);
229 
230 	if (is_swbp_insn(new_opcode)) {
231 		if (is_swbp)		/* register: already installed? */
232 			return 0;
233 	} else {
234 		if (!is_swbp)		/* unregister: was it changed by us? */
235 			return 0;
236 	}
237 
238 	return 1;
239 }
240 
241 /*
242  * NOTE:
243  * Expect the breakpoint instruction to be the smallest size instruction for
244  * the architecture. If an arch has variable length instruction and the
245  * breakpoint instruction is not of the smallest length instruction
246  * supported by that architecture then we need to modify is_trap_at_addr and
247  * write_opcode accordingly. This would never be a problem for archs that
248  * have fixed length instructions.
249  */
250 
251 /*
252  * write_opcode - write the opcode at a given virtual address.
253  * @mm: the probed process address space.
254  * @vaddr: the virtual address to store the opcode.
255  * @opcode: opcode to be written at @vaddr.
256  *
257  * Called with mm->mmap_sem held (for read and with a reference to
258  * mm).
259  *
260  * For mm @mm, write the opcode at @vaddr.
261  * Return 0 (success) or a negative errno.
262  */
write_opcode(struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)263 static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
264 			uprobe_opcode_t opcode)
265 {
266 	struct page *old_page, *new_page;
267 	struct vm_area_struct *vma;
268 	int ret;
269 
270 retry:
271 	/* Read the page with vaddr into memory */
272 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
273 	if (ret <= 0)
274 		return ret;
275 
276 	ret = verify_opcode(old_page, vaddr, &opcode);
277 	if (ret <= 0)
278 		goto put_old;
279 
280 	ret = -ENOMEM;
281 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
282 	if (!new_page)
283 		goto put_old;
284 
285 	__SetPageUptodate(new_page);
286 
287 	copy_highpage(new_page, old_page);
288 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
289 
290 	ret = anon_vma_prepare(vma);
291 	if (ret)
292 		goto put_new;
293 
294 	ret = __replace_page(vma, vaddr, old_page, new_page);
295 
296 put_new:
297 	page_cache_release(new_page);
298 put_old:
299 	put_page(old_page);
300 
301 	if (unlikely(ret == -EAGAIN))
302 		goto retry;
303 	return ret;
304 }
305 
306 /**
307  * set_swbp - store breakpoint at a given address.
308  * @auprobe: arch specific probepoint information.
309  * @mm: the probed process address space.
310  * @vaddr: the virtual address to insert the opcode.
311  *
312  * For mm @mm, store the breakpoint instruction at @vaddr.
313  * Return 0 (success) or a negative errno.
314  */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)315 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
316 {
317 	return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
318 }
319 
320 /**
321  * set_orig_insn - Restore the original instruction.
322  * @mm: the probed process address space.
323  * @auprobe: arch specific probepoint information.
324  * @vaddr: the virtual address to insert the opcode.
325  *
326  * For mm @mm, restore the original opcode (opcode) at @vaddr.
327  * Return 0 (success) or a negative errno.
328  */
329 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)330 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
331 {
332 	return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
333 }
334 
match_uprobe(struct uprobe * l,struct uprobe * r)335 static int match_uprobe(struct uprobe *l, struct uprobe *r)
336 {
337 	if (l->inode < r->inode)
338 		return -1;
339 
340 	if (l->inode > r->inode)
341 		return 1;
342 
343 	if (l->offset < r->offset)
344 		return -1;
345 
346 	if (l->offset > r->offset)
347 		return 1;
348 
349 	return 0;
350 }
351 
__find_uprobe(struct inode * inode,loff_t offset)352 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
353 {
354 	struct uprobe u = { .inode = inode, .offset = offset };
355 	struct rb_node *n = uprobes_tree.rb_node;
356 	struct uprobe *uprobe;
357 	int match;
358 
359 	while (n) {
360 		uprobe = rb_entry(n, struct uprobe, rb_node);
361 		match = match_uprobe(&u, uprobe);
362 		if (!match) {
363 			atomic_inc(&uprobe->ref);
364 			return uprobe;
365 		}
366 
367 		if (match < 0)
368 			n = n->rb_left;
369 		else
370 			n = n->rb_right;
371 	}
372 	return NULL;
373 }
374 
375 /*
376  * Find a uprobe corresponding to a given inode:offset
377  * Acquires uprobes_treelock
378  */
find_uprobe(struct inode * inode,loff_t offset)379 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
380 {
381 	struct uprobe *uprobe;
382 
383 	spin_lock(&uprobes_treelock);
384 	uprobe = __find_uprobe(inode, offset);
385 	spin_unlock(&uprobes_treelock);
386 
387 	return uprobe;
388 }
389 
__insert_uprobe(struct uprobe * uprobe)390 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
391 {
392 	struct rb_node **p = &uprobes_tree.rb_node;
393 	struct rb_node *parent = NULL;
394 	struct uprobe *u;
395 	int match;
396 
397 	while (*p) {
398 		parent = *p;
399 		u = rb_entry(parent, struct uprobe, rb_node);
400 		match = match_uprobe(uprobe, u);
401 		if (!match) {
402 			atomic_inc(&u->ref);
403 			return u;
404 		}
405 
406 		if (match < 0)
407 			p = &parent->rb_left;
408 		else
409 			p = &parent->rb_right;
410 
411 	}
412 
413 	u = NULL;
414 	rb_link_node(&uprobe->rb_node, parent, p);
415 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
416 	/* get access + creation ref */
417 	atomic_set(&uprobe->ref, 2);
418 
419 	return u;
420 }
421 
422 /*
423  * Acquire uprobes_treelock.
424  * Matching uprobe already exists in rbtree;
425  *	increment (access refcount) and return the matching uprobe.
426  *
427  * No matching uprobe; insert the uprobe in rb_tree;
428  *	get a double refcount (access + creation) and return NULL.
429  */
insert_uprobe(struct uprobe * uprobe)430 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
431 {
432 	struct uprobe *u;
433 
434 	spin_lock(&uprobes_treelock);
435 	u = __insert_uprobe(uprobe);
436 	spin_unlock(&uprobes_treelock);
437 
438 	return u;
439 }
440 
put_uprobe(struct uprobe * uprobe)441 static void put_uprobe(struct uprobe *uprobe)
442 {
443 	if (atomic_dec_and_test(&uprobe->ref))
444 		kfree(uprobe);
445 }
446 
alloc_uprobe(struct inode * inode,loff_t offset)447 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
448 {
449 	struct uprobe *uprobe, *cur_uprobe;
450 
451 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
452 	if (!uprobe)
453 		return NULL;
454 
455 	uprobe->inode = igrab(inode);
456 	uprobe->offset = offset;
457 	init_rwsem(&uprobe->register_rwsem);
458 	init_rwsem(&uprobe->consumer_rwsem);
459 	/* For now assume that the instruction need not be single-stepped */
460 	__set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
461 
462 	/* add to uprobes_tree, sorted on inode:offset */
463 	cur_uprobe = insert_uprobe(uprobe);
464 
465 	/* a uprobe exists for this inode:offset combination */
466 	if (cur_uprobe) {
467 		kfree(uprobe);
468 		uprobe = cur_uprobe;
469 		iput(inode);
470 	}
471 
472 	return uprobe;
473 }
474 
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)475 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
476 {
477 	down_write(&uprobe->consumer_rwsem);
478 	uc->next = uprobe->consumers;
479 	uprobe->consumers = uc;
480 	up_write(&uprobe->consumer_rwsem);
481 }
482 
483 /*
484  * For uprobe @uprobe, delete the consumer @uc.
485  * Return true if the @uc is deleted successfully
486  * or return false.
487  */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)488 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
489 {
490 	struct uprobe_consumer **con;
491 	bool ret = false;
492 
493 	down_write(&uprobe->consumer_rwsem);
494 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
495 		if (*con == uc) {
496 			*con = uc->next;
497 			ret = true;
498 			break;
499 		}
500 	}
501 	up_write(&uprobe->consumer_rwsem);
502 
503 	return ret;
504 }
505 
506 static int
__copy_insn(struct address_space * mapping,struct file * filp,char * insn,unsigned long nbytes,loff_t offset)507 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
508 			unsigned long nbytes, loff_t offset)
509 {
510 	struct page *page;
511 
512 	if (!mapping->a_ops->readpage)
513 		return -EIO;
514 	/*
515 	 * Ensure that the page that has the original instruction is
516 	 * populated and in page-cache.
517 	 */
518 	page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
519 	if (IS_ERR(page))
520 		return PTR_ERR(page);
521 
522 	copy_from_page(page, offset, insn, nbytes);
523 	page_cache_release(page);
524 
525 	return 0;
526 }
527 
copy_insn(struct uprobe * uprobe,struct file * filp)528 static int copy_insn(struct uprobe *uprobe, struct file *filp)
529 {
530 	struct address_space *mapping;
531 	unsigned long nbytes;
532 	int bytes;
533 
534 	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
535 	mapping = uprobe->inode->i_mapping;
536 
537 	/* Instruction at end of binary; copy only available bytes */
538 	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
539 		bytes = uprobe->inode->i_size - uprobe->offset;
540 	else
541 		bytes = MAX_UINSN_BYTES;
542 
543 	/* Instruction at the page-boundary; copy bytes in second page */
544 	if (nbytes < bytes) {
545 		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
546 				bytes - nbytes, uprobe->offset + nbytes);
547 		if (err)
548 			return err;
549 		bytes = nbytes;
550 	}
551 	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
552 }
553 
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)554 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
555 				struct mm_struct *mm, unsigned long vaddr)
556 {
557 	int ret = 0;
558 
559 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
560 		return ret;
561 
562 	/* TODO: move this into _register, until then we abuse this sem. */
563 	down_write(&uprobe->consumer_rwsem);
564 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
565 		goto out;
566 
567 	ret = copy_insn(uprobe, file);
568 	if (ret)
569 		goto out;
570 
571 	ret = -ENOTSUPP;
572 	if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
573 		goto out;
574 
575 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
576 	if (ret)
577 		goto out;
578 
579 	/* write_opcode() assumes we don't cross page boundary */
580 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
581 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
582 
583 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
584 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
585 
586  out:
587 	up_write(&uprobe->consumer_rwsem);
588 
589 	return ret;
590 }
591 
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)592 static inline bool consumer_filter(struct uprobe_consumer *uc,
593 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
594 {
595 	return !uc->filter || uc->filter(uc, ctx, mm);
596 }
597 
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)598 static bool filter_chain(struct uprobe *uprobe,
599 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
600 {
601 	struct uprobe_consumer *uc;
602 	bool ret = false;
603 
604 	down_read(&uprobe->consumer_rwsem);
605 	for (uc = uprobe->consumers; uc; uc = uc->next) {
606 		ret = consumer_filter(uc, ctx, mm);
607 		if (ret)
608 			break;
609 	}
610 	up_read(&uprobe->consumer_rwsem);
611 
612 	return ret;
613 }
614 
615 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)616 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
617 			struct vm_area_struct *vma, unsigned long vaddr)
618 {
619 	bool first_uprobe;
620 	int ret;
621 
622 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
623 	if (ret)
624 		return ret;
625 
626 	/*
627 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
628 	 * the task can hit this breakpoint right after __replace_page().
629 	 */
630 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
631 	if (first_uprobe)
632 		set_bit(MMF_HAS_UPROBES, &mm->flags);
633 
634 	ret = set_swbp(&uprobe->arch, mm, vaddr);
635 	if (!ret)
636 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
637 	else if (first_uprobe)
638 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
639 
640 	return ret;
641 }
642 
643 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)644 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
645 {
646 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
647 	return set_orig_insn(&uprobe->arch, mm, vaddr);
648 }
649 
uprobe_is_active(struct uprobe * uprobe)650 static inline bool uprobe_is_active(struct uprobe *uprobe)
651 {
652 	return !RB_EMPTY_NODE(&uprobe->rb_node);
653 }
654 /*
655  * There could be threads that have already hit the breakpoint. They
656  * will recheck the current insn and restart if find_uprobe() fails.
657  * See find_active_uprobe().
658  */
delete_uprobe(struct uprobe * uprobe)659 static void delete_uprobe(struct uprobe *uprobe)
660 {
661 	if (WARN_ON(!uprobe_is_active(uprobe)))
662 		return;
663 
664 	spin_lock(&uprobes_treelock);
665 	rb_erase(&uprobe->rb_node, &uprobes_tree);
666 	spin_unlock(&uprobes_treelock);
667 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
668 	iput(uprobe->inode);
669 	put_uprobe(uprobe);
670 }
671 
672 struct map_info {
673 	struct map_info *next;
674 	struct mm_struct *mm;
675 	unsigned long vaddr;
676 };
677 
free_map_info(struct map_info * info)678 static inline struct map_info *free_map_info(struct map_info *info)
679 {
680 	struct map_info *next = info->next;
681 	kfree(info);
682 	return next;
683 }
684 
685 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)686 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
687 {
688 	unsigned long pgoff = offset >> PAGE_SHIFT;
689 	struct vm_area_struct *vma;
690 	struct map_info *curr = NULL;
691 	struct map_info *prev = NULL;
692 	struct map_info *info;
693 	int more = 0;
694 
695  again:
696 	mutex_lock(&mapping->i_mmap_mutex);
697 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
698 		if (!valid_vma(vma, is_register))
699 			continue;
700 
701 		if (!prev && !more) {
702 			/*
703 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
704 			 * reclaim. This is optimistic, no harm done if it fails.
705 			 */
706 			prev = kmalloc(sizeof(struct map_info),
707 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
708 			if (prev)
709 				prev->next = NULL;
710 		}
711 		if (!prev) {
712 			more++;
713 			continue;
714 		}
715 
716 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
717 			continue;
718 
719 		info = prev;
720 		prev = prev->next;
721 		info->next = curr;
722 		curr = info;
723 
724 		info->mm = vma->vm_mm;
725 		info->vaddr = offset_to_vaddr(vma, offset);
726 	}
727 	mutex_unlock(&mapping->i_mmap_mutex);
728 
729 	if (!more)
730 		goto out;
731 
732 	prev = curr;
733 	while (curr) {
734 		mmput(curr->mm);
735 		curr = curr->next;
736 	}
737 
738 	do {
739 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
740 		if (!info) {
741 			curr = ERR_PTR(-ENOMEM);
742 			goto out;
743 		}
744 		info->next = prev;
745 		prev = info;
746 	} while (--more);
747 
748 	goto again;
749  out:
750 	while (prev)
751 		prev = free_map_info(prev);
752 	return curr;
753 }
754 
755 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)756 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
757 {
758 	bool is_register = !!new;
759 	struct map_info *info;
760 	int err = 0;
761 
762 	percpu_down_write(&dup_mmap_sem);
763 	info = build_map_info(uprobe->inode->i_mapping,
764 					uprobe->offset, is_register);
765 	if (IS_ERR(info)) {
766 		err = PTR_ERR(info);
767 		goto out;
768 	}
769 
770 	while (info) {
771 		struct mm_struct *mm = info->mm;
772 		struct vm_area_struct *vma;
773 
774 		if (err && is_register)
775 			goto free;
776 
777 		down_write(&mm->mmap_sem);
778 		vma = find_vma(mm, info->vaddr);
779 		if (!vma || !valid_vma(vma, is_register) ||
780 		    file_inode(vma->vm_file) != uprobe->inode)
781 			goto unlock;
782 
783 		if (vma->vm_start > info->vaddr ||
784 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
785 			goto unlock;
786 
787 		if (is_register) {
788 			/* consult only the "caller", new consumer. */
789 			if (consumer_filter(new,
790 					UPROBE_FILTER_REGISTER, mm))
791 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
792 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
793 			if (!filter_chain(uprobe,
794 					UPROBE_FILTER_UNREGISTER, mm))
795 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
796 		}
797 
798  unlock:
799 		up_write(&mm->mmap_sem);
800  free:
801 		mmput(mm);
802 		info = free_map_info(info);
803 	}
804  out:
805 	percpu_up_write(&dup_mmap_sem);
806 	return err;
807 }
808 
__uprobe_register(struct uprobe * uprobe,struct uprobe_consumer * uc)809 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
810 {
811 	consumer_add(uprobe, uc);
812 	return register_for_each_vma(uprobe, uc);
813 }
814 
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)815 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
816 {
817 	int err;
818 
819 	if (!consumer_del(uprobe, uc))	/* WARN? */
820 		return;
821 
822 	err = register_for_each_vma(uprobe, NULL);
823 	/* TODO : cant unregister? schedule a worker thread */
824 	if (!uprobe->consumers && !err)
825 		delete_uprobe(uprobe);
826 }
827 
828 /*
829  * uprobe_register - register a probe
830  * @inode: the file in which the probe has to be placed.
831  * @offset: offset from the start of the file.
832  * @uc: information on howto handle the probe..
833  *
834  * Apart from the access refcount, uprobe_register() takes a creation
835  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
836  * inserted into the rbtree (i.e first consumer for a @inode:@offset
837  * tuple).  Creation refcount stops uprobe_unregister from freeing the
838  * @uprobe even before the register operation is complete. Creation
839  * refcount is released when the last @uc for the @uprobe
840  * unregisters.
841  *
842  * Return errno if it cannot successully install probes
843  * else return 0 (success)
844  */
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)845 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
846 {
847 	struct uprobe *uprobe;
848 	int ret;
849 
850 	/* Uprobe must have at least one set consumer */
851 	if (!uc->handler && !uc->ret_handler)
852 		return -EINVAL;
853 
854 	/* Racy, just to catch the obvious mistakes */
855 	if (offset > i_size_read(inode))
856 		return -EINVAL;
857 
858  retry:
859 	uprobe = alloc_uprobe(inode, offset);
860 	if (!uprobe)
861 		return -ENOMEM;
862 	/*
863 	 * We can race with uprobe_unregister()->delete_uprobe().
864 	 * Check uprobe_is_active() and retry if it is false.
865 	 */
866 	down_write(&uprobe->register_rwsem);
867 	ret = -EAGAIN;
868 	if (likely(uprobe_is_active(uprobe))) {
869 		ret = __uprobe_register(uprobe, uc);
870 		if (ret)
871 			__uprobe_unregister(uprobe, uc);
872 	}
873 	up_write(&uprobe->register_rwsem);
874 	put_uprobe(uprobe);
875 
876 	if (unlikely(ret == -EAGAIN))
877 		goto retry;
878 	return ret;
879 }
880 EXPORT_SYMBOL_GPL(uprobe_register);
881 
882 /*
883  * uprobe_apply - unregister a already registered probe.
884  * @inode: the file in which the probe has to be removed.
885  * @offset: offset from the start of the file.
886  * @uc: consumer which wants to add more or remove some breakpoints
887  * @add: add or remove the breakpoints
888  */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)889 int uprobe_apply(struct inode *inode, loff_t offset,
890 			struct uprobe_consumer *uc, bool add)
891 {
892 	struct uprobe *uprobe;
893 	struct uprobe_consumer *con;
894 	int ret = -ENOENT;
895 
896 	uprobe = find_uprobe(inode, offset);
897 	if (!uprobe)
898 		return ret;
899 
900 	down_write(&uprobe->register_rwsem);
901 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
902 		;
903 	if (con)
904 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
905 	up_write(&uprobe->register_rwsem);
906 	put_uprobe(uprobe);
907 
908 	return ret;
909 }
910 
911 /*
912  * uprobe_unregister - unregister a already registered probe.
913  * @inode: the file in which the probe has to be removed.
914  * @offset: offset from the start of the file.
915  * @uc: identify which probe if multiple probes are colocated.
916  */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)917 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
918 {
919 	struct uprobe *uprobe;
920 
921 	uprobe = find_uprobe(inode, offset);
922 	if (!uprobe)
923 		return;
924 
925 	down_write(&uprobe->register_rwsem);
926 	__uprobe_unregister(uprobe, uc);
927 	up_write(&uprobe->register_rwsem);
928 	put_uprobe(uprobe);
929 }
930 EXPORT_SYMBOL_GPL(uprobe_unregister);
931 
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)932 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
933 {
934 	struct vm_area_struct *vma;
935 	int err = 0;
936 
937 	down_read(&mm->mmap_sem);
938 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
939 		unsigned long vaddr;
940 		loff_t offset;
941 
942 		if (!valid_vma(vma, false) ||
943 		    file_inode(vma->vm_file) != uprobe->inode)
944 			continue;
945 
946 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
947 		if (uprobe->offset <  offset ||
948 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
949 			continue;
950 
951 		vaddr = offset_to_vaddr(vma, uprobe->offset);
952 		err |= remove_breakpoint(uprobe, mm, vaddr);
953 	}
954 	up_read(&mm->mmap_sem);
955 
956 	return err;
957 }
958 
959 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)960 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
961 {
962 	struct rb_node *n = uprobes_tree.rb_node;
963 
964 	while (n) {
965 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
966 
967 		if (inode < u->inode) {
968 			n = n->rb_left;
969 		} else if (inode > u->inode) {
970 			n = n->rb_right;
971 		} else {
972 			if (max < u->offset)
973 				n = n->rb_left;
974 			else if (min > u->offset)
975 				n = n->rb_right;
976 			else
977 				break;
978 		}
979 	}
980 
981 	return n;
982 }
983 
984 /*
985  * For a given range in vma, build a list of probes that need to be inserted.
986  */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)987 static void build_probe_list(struct inode *inode,
988 				struct vm_area_struct *vma,
989 				unsigned long start, unsigned long end,
990 				struct list_head *head)
991 {
992 	loff_t min, max;
993 	struct rb_node *n, *t;
994 	struct uprobe *u;
995 
996 	INIT_LIST_HEAD(head);
997 	min = vaddr_to_offset(vma, start);
998 	max = min + (end - start) - 1;
999 
1000 	spin_lock(&uprobes_treelock);
1001 	n = find_node_in_range(inode, min, max);
1002 	if (n) {
1003 		for (t = n; t; t = rb_prev(t)) {
1004 			u = rb_entry(t, struct uprobe, rb_node);
1005 			if (u->inode != inode || u->offset < min)
1006 				break;
1007 			list_add(&u->pending_list, head);
1008 			atomic_inc(&u->ref);
1009 		}
1010 		for (t = n; (t = rb_next(t)); ) {
1011 			u = rb_entry(t, struct uprobe, rb_node);
1012 			if (u->inode != inode || u->offset > max)
1013 				break;
1014 			list_add(&u->pending_list, head);
1015 			atomic_inc(&u->ref);
1016 		}
1017 	}
1018 	spin_unlock(&uprobes_treelock);
1019 }
1020 
1021 /*
1022  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1023  *
1024  * Currently we ignore all errors and always return 0, the callers
1025  * can't handle the failure anyway.
1026  */
uprobe_mmap(struct vm_area_struct * vma)1027 int uprobe_mmap(struct vm_area_struct *vma)
1028 {
1029 	struct list_head tmp_list;
1030 	struct uprobe *uprobe, *u;
1031 	struct inode *inode;
1032 
1033 	if (no_uprobe_events() || !valid_vma(vma, true))
1034 		return 0;
1035 
1036 	inode = file_inode(vma->vm_file);
1037 	if (!inode)
1038 		return 0;
1039 
1040 	mutex_lock(uprobes_mmap_hash(inode));
1041 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1042 	/*
1043 	 * We can race with uprobe_unregister(), this uprobe can be already
1044 	 * removed. But in this case filter_chain() must return false, all
1045 	 * consumers have gone away.
1046 	 */
1047 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1048 		if (!fatal_signal_pending(current) &&
1049 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1050 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1051 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1052 		}
1053 		put_uprobe(uprobe);
1054 	}
1055 	mutex_unlock(uprobes_mmap_hash(inode));
1056 
1057 	return 0;
1058 }
1059 
1060 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1061 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1062 {
1063 	loff_t min, max;
1064 	struct inode *inode;
1065 	struct rb_node *n;
1066 
1067 	inode = file_inode(vma->vm_file);
1068 
1069 	min = vaddr_to_offset(vma, start);
1070 	max = min + (end - start) - 1;
1071 
1072 	spin_lock(&uprobes_treelock);
1073 	n = find_node_in_range(inode, min, max);
1074 	spin_unlock(&uprobes_treelock);
1075 
1076 	return !!n;
1077 }
1078 
1079 /*
1080  * Called in context of a munmap of a vma.
1081  */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1082 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1083 {
1084 	if (no_uprobe_events() || !valid_vma(vma, false))
1085 		return;
1086 
1087 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1088 		return;
1089 
1090 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1091 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1092 		return;
1093 
1094 	if (vma_has_uprobes(vma, start, end))
1095 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1096 }
1097 
1098 /* Slot allocation for XOL */
xol_add_vma(struct xol_area * area)1099 static int xol_add_vma(struct xol_area *area)
1100 {
1101 	struct mm_struct *mm = current->mm;
1102 	int ret = -EALREADY;
1103 
1104 	down_write(&mm->mmap_sem);
1105 	if (mm->uprobes_state.xol_area)
1106 		goto fail;
1107 
1108 	ret = -ENOMEM;
1109 	/* Try to map as high as possible, this is only a hint. */
1110 	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1111 	if (area->vaddr & ~PAGE_MASK) {
1112 		ret = area->vaddr;
1113 		goto fail;
1114 	}
1115 
1116 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1117 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1118 	if (ret)
1119 		goto fail;
1120 
1121 	smp_wmb();	/* pairs with get_xol_area() */
1122 	mm->uprobes_state.xol_area = area;
1123 	ret = 0;
1124  fail:
1125 	up_write(&mm->mmap_sem);
1126 
1127 	return ret;
1128 }
1129 
1130 /*
1131  * get_xol_area - Allocate process's xol_area if necessary.
1132  * This area will be used for storing instructions for execution out of line.
1133  *
1134  * Returns the allocated area or NULL.
1135  */
get_xol_area(void)1136 static struct xol_area *get_xol_area(void)
1137 {
1138 	struct mm_struct *mm = current->mm;
1139 	struct xol_area *area;
1140 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1141 
1142 	area = mm->uprobes_state.xol_area;
1143 	if (area)
1144 		goto ret;
1145 
1146 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1147 	if (unlikely(!area))
1148 		goto out;
1149 
1150 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1151 	if (!area->bitmap)
1152 		goto free_area;
1153 
1154 	area->page = alloc_page(GFP_HIGHUSER);
1155 	if (!area->page)
1156 		goto free_bitmap;
1157 
1158 	/* allocate first slot of task's xol_area for the return probes */
1159 	set_bit(0, area->bitmap);
1160 	copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1161 	atomic_set(&area->slot_count, 1);
1162 	init_waitqueue_head(&area->wq);
1163 
1164 	if (!xol_add_vma(area))
1165 		return area;
1166 
1167 	__free_page(area->page);
1168  free_bitmap:
1169 	kfree(area->bitmap);
1170  free_area:
1171 	kfree(area);
1172  out:
1173 	area = mm->uprobes_state.xol_area;
1174  ret:
1175 	smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1176 	return area;
1177 }
1178 
1179 /*
1180  * uprobe_clear_state - Free the area allocated for slots.
1181  */
uprobe_clear_state(struct mm_struct * mm)1182 void uprobe_clear_state(struct mm_struct *mm)
1183 {
1184 	struct xol_area *area = mm->uprobes_state.xol_area;
1185 
1186 	if (!area)
1187 		return;
1188 
1189 	put_page(area->page);
1190 	kfree(area->bitmap);
1191 	kfree(area);
1192 }
1193 
uprobe_start_dup_mmap(void)1194 void uprobe_start_dup_mmap(void)
1195 {
1196 	percpu_down_read(&dup_mmap_sem);
1197 }
1198 
uprobe_end_dup_mmap(void)1199 void uprobe_end_dup_mmap(void)
1200 {
1201 	percpu_up_read(&dup_mmap_sem);
1202 }
1203 
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1204 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1205 {
1206 	newmm->uprobes_state.xol_area = NULL;
1207 
1208 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1209 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1210 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1211 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1212 	}
1213 }
1214 
1215 /*
1216  *  - search for a free slot.
1217  */
xol_take_insn_slot(struct xol_area * area)1218 static unsigned long xol_take_insn_slot(struct xol_area *area)
1219 {
1220 	unsigned long slot_addr;
1221 	int slot_nr;
1222 
1223 	do {
1224 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1225 		if (slot_nr < UINSNS_PER_PAGE) {
1226 			if (!test_and_set_bit(slot_nr, area->bitmap))
1227 				break;
1228 
1229 			slot_nr = UINSNS_PER_PAGE;
1230 			continue;
1231 		}
1232 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1233 	} while (slot_nr >= UINSNS_PER_PAGE);
1234 
1235 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1236 	atomic_inc(&area->slot_count);
1237 
1238 	return slot_addr;
1239 }
1240 
1241 /*
1242  * xol_get_insn_slot - allocate a slot for xol.
1243  * Returns the allocated slot address or 0.
1244  */
xol_get_insn_slot(struct uprobe * uprobe)1245 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1246 {
1247 	struct xol_area *area;
1248 	unsigned long xol_vaddr;
1249 
1250 	area = get_xol_area();
1251 	if (!area)
1252 		return 0;
1253 
1254 	xol_vaddr = xol_take_insn_slot(area);
1255 	if (unlikely(!xol_vaddr))
1256 		return 0;
1257 
1258 	/* Initialize the slot */
1259 	copy_to_page(area->page, xol_vaddr, uprobe->arch.insn, MAX_UINSN_BYTES);
1260 	/*
1261 	 * We probably need flush_icache_user_range() but it needs vma.
1262 	 * This should work on supported architectures too.
1263 	 */
1264 	flush_dcache_page(area->page);
1265 
1266 	return xol_vaddr;
1267 }
1268 
1269 /*
1270  * xol_free_insn_slot - If slot was earlier allocated by
1271  * @xol_get_insn_slot(), make the slot available for
1272  * subsequent requests.
1273  */
xol_free_insn_slot(struct task_struct * tsk)1274 static void xol_free_insn_slot(struct task_struct *tsk)
1275 {
1276 	struct xol_area *area;
1277 	unsigned long vma_end;
1278 	unsigned long slot_addr;
1279 
1280 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1281 		return;
1282 
1283 	slot_addr = tsk->utask->xol_vaddr;
1284 	if (unlikely(!slot_addr))
1285 		return;
1286 
1287 	area = tsk->mm->uprobes_state.xol_area;
1288 	vma_end = area->vaddr + PAGE_SIZE;
1289 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1290 		unsigned long offset;
1291 		int slot_nr;
1292 
1293 		offset = slot_addr - area->vaddr;
1294 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1295 		if (slot_nr >= UINSNS_PER_PAGE)
1296 			return;
1297 
1298 		clear_bit(slot_nr, area->bitmap);
1299 		atomic_dec(&area->slot_count);
1300 		if (waitqueue_active(&area->wq))
1301 			wake_up(&area->wq);
1302 
1303 		tsk->utask->xol_vaddr = 0;
1304 	}
1305 }
1306 
1307 /**
1308  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1309  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1310  * instruction.
1311  * Return the address of the breakpoint instruction.
1312  */
uprobe_get_swbp_addr(struct pt_regs * regs)1313 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1314 {
1315 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1316 }
1317 
1318 /*
1319  * Called with no locks held.
1320  * Called in context of a exiting or a exec-ing thread.
1321  */
uprobe_free_utask(struct task_struct * t)1322 void uprobe_free_utask(struct task_struct *t)
1323 {
1324 	struct uprobe_task *utask = t->utask;
1325 	struct return_instance *ri, *tmp;
1326 
1327 	if (!utask)
1328 		return;
1329 
1330 	if (utask->active_uprobe)
1331 		put_uprobe(utask->active_uprobe);
1332 
1333 	ri = utask->return_instances;
1334 	while (ri) {
1335 		tmp = ri;
1336 		ri = ri->next;
1337 
1338 		put_uprobe(tmp->uprobe);
1339 		kfree(tmp);
1340 	}
1341 
1342 	xol_free_insn_slot(t);
1343 	kfree(utask);
1344 	t->utask = NULL;
1345 }
1346 
1347 /*
1348  * Called in context of a new clone/fork from copy_process.
1349  */
uprobe_copy_process(struct task_struct * t)1350 void uprobe_copy_process(struct task_struct *t)
1351 {
1352 	t->utask = NULL;
1353 }
1354 
1355 /*
1356  * Allocate a uprobe_task object for the task if if necessary.
1357  * Called when the thread hits a breakpoint.
1358  *
1359  * Returns:
1360  * - pointer to new uprobe_task on success
1361  * - NULL otherwise
1362  */
get_utask(void)1363 static struct uprobe_task *get_utask(void)
1364 {
1365 	if (!current->utask)
1366 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1367 	return current->utask;
1368 }
1369 
1370 /*
1371  * Current area->vaddr notion assume the trampoline address is always
1372  * equal area->vaddr.
1373  *
1374  * Returns -1 in case the xol_area is not allocated.
1375  */
get_trampoline_vaddr(void)1376 static unsigned long get_trampoline_vaddr(void)
1377 {
1378 	struct xol_area *area;
1379 	unsigned long trampoline_vaddr = -1;
1380 
1381 	area = current->mm->uprobes_state.xol_area;
1382 	smp_read_barrier_depends();
1383 	if (area)
1384 		trampoline_vaddr = area->vaddr;
1385 
1386 	return trampoline_vaddr;
1387 }
1388 
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1389 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1390 {
1391 	struct return_instance *ri;
1392 	struct uprobe_task *utask;
1393 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1394 	bool chained = false;
1395 
1396 	if (!get_xol_area())
1397 		return;
1398 
1399 	utask = get_utask();
1400 	if (!utask)
1401 		return;
1402 
1403 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1404 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1405 				" nestedness limit pid/tgid=%d/%d\n",
1406 				current->pid, current->tgid);
1407 		return;
1408 	}
1409 
1410 	ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1411 	if (!ri)
1412 		goto fail;
1413 
1414 	trampoline_vaddr = get_trampoline_vaddr();
1415 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1416 	if (orig_ret_vaddr == -1)
1417 		goto fail;
1418 
1419 	/*
1420 	 * We don't want to keep trampoline address in stack, rather keep the
1421 	 * original return address of first caller thru all the consequent
1422 	 * instances. This also makes breakpoint unwrapping easier.
1423 	 */
1424 	if (orig_ret_vaddr == trampoline_vaddr) {
1425 		if (!utask->return_instances) {
1426 			/*
1427 			 * This situation is not possible. Likely we have an
1428 			 * attack from user-space.
1429 			 */
1430 			pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1431 						current->pid, current->tgid);
1432 			goto fail;
1433 		}
1434 
1435 		chained = true;
1436 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1437 	}
1438 
1439 	atomic_inc(&uprobe->ref);
1440 	ri->uprobe = uprobe;
1441 	ri->func = instruction_pointer(regs);
1442 	ri->orig_ret_vaddr = orig_ret_vaddr;
1443 	ri->chained = chained;
1444 
1445 	utask->depth++;
1446 
1447 	/* add instance to the stack */
1448 	ri->next = utask->return_instances;
1449 	utask->return_instances = ri;
1450 
1451 	return;
1452 
1453  fail:
1454 	kfree(ri);
1455 }
1456 
1457 /* Prepare to single-step probed instruction out of line. */
1458 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1459 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1460 {
1461 	struct uprobe_task *utask;
1462 	unsigned long xol_vaddr;
1463 	int err;
1464 
1465 	utask = get_utask();
1466 	if (!utask)
1467 		return -ENOMEM;
1468 
1469 	xol_vaddr = xol_get_insn_slot(uprobe);
1470 	if (!xol_vaddr)
1471 		return -ENOMEM;
1472 
1473 	utask->xol_vaddr = xol_vaddr;
1474 	utask->vaddr = bp_vaddr;
1475 
1476 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1477 	if (unlikely(err)) {
1478 		xol_free_insn_slot(current);
1479 		return err;
1480 	}
1481 
1482 	utask->active_uprobe = uprobe;
1483 	utask->state = UTASK_SSTEP;
1484 	return 0;
1485 }
1486 
1487 /*
1488  * If we are singlestepping, then ensure this thread is not connected to
1489  * non-fatal signals until completion of singlestep.  When xol insn itself
1490  * triggers the signal,  restart the original insn even if the task is
1491  * already SIGKILL'ed (since coredump should report the correct ip).  This
1492  * is even more important if the task has a handler for SIGSEGV/etc, The
1493  * _same_ instruction should be repeated again after return from the signal
1494  * handler, and SSTEP can never finish in this case.
1495  */
uprobe_deny_signal(void)1496 bool uprobe_deny_signal(void)
1497 {
1498 	struct task_struct *t = current;
1499 	struct uprobe_task *utask = t->utask;
1500 
1501 	if (likely(!utask || !utask->active_uprobe))
1502 		return false;
1503 
1504 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1505 
1506 	if (signal_pending(t)) {
1507 		spin_lock_irq(&t->sighand->siglock);
1508 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1509 		spin_unlock_irq(&t->sighand->siglock);
1510 
1511 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1512 			utask->state = UTASK_SSTEP_TRAPPED;
1513 			set_tsk_thread_flag(t, TIF_UPROBE);
1514 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1515 		}
1516 	}
1517 
1518 	return true;
1519 }
1520 
1521 /*
1522  * Avoid singlestepping the original instruction if the original instruction
1523  * is a NOP or can be emulated.
1524  */
can_skip_sstep(struct uprobe * uprobe,struct pt_regs * regs)1525 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1526 {
1527 	if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1528 		if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1529 			return true;
1530 		clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1531 	}
1532 	return false;
1533 }
1534 
mmf_recalc_uprobes(struct mm_struct * mm)1535 static void mmf_recalc_uprobes(struct mm_struct *mm)
1536 {
1537 	struct vm_area_struct *vma;
1538 
1539 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1540 		if (!valid_vma(vma, false))
1541 			continue;
1542 		/*
1543 		 * This is not strictly accurate, we can race with
1544 		 * uprobe_unregister() and see the already removed
1545 		 * uprobe if delete_uprobe() was not yet called.
1546 		 * Or this uprobe can be filtered out.
1547 		 */
1548 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1549 			return;
1550 	}
1551 
1552 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1553 }
1554 
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)1555 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1556 {
1557 	struct page *page;
1558 	uprobe_opcode_t opcode;
1559 	int result;
1560 
1561 	pagefault_disable();
1562 	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1563 							sizeof(opcode));
1564 	pagefault_enable();
1565 
1566 	if (likely(result == 0))
1567 		goto out;
1568 
1569 	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1570 	if (result < 0)
1571 		return result;
1572 
1573 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1574 	put_page(page);
1575  out:
1576 	/* This needs to return true for any variant of the trap insn */
1577 	return is_trap_insn(&opcode);
1578 }
1579 
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)1580 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1581 {
1582 	struct mm_struct *mm = current->mm;
1583 	struct uprobe *uprobe = NULL;
1584 	struct vm_area_struct *vma;
1585 
1586 	down_read(&mm->mmap_sem);
1587 	vma = find_vma(mm, bp_vaddr);
1588 	if (vma && vma->vm_start <= bp_vaddr) {
1589 		if (valid_vma(vma, false)) {
1590 			struct inode *inode = file_inode(vma->vm_file);
1591 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1592 
1593 			uprobe = find_uprobe(inode, offset);
1594 		}
1595 
1596 		if (!uprobe)
1597 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1598 	} else {
1599 		*is_swbp = -EFAULT;
1600 	}
1601 
1602 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1603 		mmf_recalc_uprobes(mm);
1604 	up_read(&mm->mmap_sem);
1605 
1606 	return uprobe;
1607 }
1608 
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)1609 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1610 {
1611 	struct uprobe_consumer *uc;
1612 	int remove = UPROBE_HANDLER_REMOVE;
1613 	bool need_prep = false; /* prepare return uprobe, when needed */
1614 
1615 	down_read(&uprobe->register_rwsem);
1616 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1617 		int rc = 0;
1618 
1619 		if (uc->handler) {
1620 			rc = uc->handler(uc, regs);
1621 			WARN(rc & ~UPROBE_HANDLER_MASK,
1622 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1623 		}
1624 
1625 		if (uc->ret_handler)
1626 			need_prep = true;
1627 
1628 		remove &= rc;
1629 	}
1630 
1631 	if (need_prep && !remove)
1632 		prepare_uretprobe(uprobe, regs); /* put bp at return */
1633 
1634 	if (remove && uprobe->consumers) {
1635 		WARN_ON(!uprobe_is_active(uprobe));
1636 		unapply_uprobe(uprobe, current->mm);
1637 	}
1638 	up_read(&uprobe->register_rwsem);
1639 }
1640 
1641 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)1642 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1643 {
1644 	struct uprobe *uprobe = ri->uprobe;
1645 	struct uprobe_consumer *uc;
1646 
1647 	down_read(&uprobe->register_rwsem);
1648 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1649 		if (uc->ret_handler)
1650 			uc->ret_handler(uc, ri->func, regs);
1651 	}
1652 	up_read(&uprobe->register_rwsem);
1653 }
1654 
handle_trampoline(struct pt_regs * regs)1655 static bool handle_trampoline(struct pt_regs *regs)
1656 {
1657 	struct uprobe_task *utask;
1658 	struct return_instance *ri, *tmp;
1659 	bool chained;
1660 
1661 	utask = current->utask;
1662 	if (!utask)
1663 		return false;
1664 
1665 	ri = utask->return_instances;
1666 	if (!ri)
1667 		return false;
1668 
1669 	/*
1670 	 * TODO: we should throw out return_instance's invalidated by
1671 	 * longjmp(), currently we assume that the probed function always
1672 	 * returns.
1673 	 */
1674 	instruction_pointer_set(regs, ri->orig_ret_vaddr);
1675 
1676 	for (;;) {
1677 		handle_uretprobe_chain(ri, regs);
1678 
1679 		chained = ri->chained;
1680 		put_uprobe(ri->uprobe);
1681 
1682 		tmp = ri;
1683 		ri = ri->next;
1684 		kfree(tmp);
1685 
1686 		if (!chained)
1687 			break;
1688 
1689 		utask->depth--;
1690 
1691 		BUG_ON(!ri);
1692 	}
1693 
1694 	utask->return_instances = ri;
1695 
1696 	return true;
1697 }
1698 
1699 /*
1700  * Run handler and ask thread to singlestep.
1701  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1702  */
handle_swbp(struct pt_regs * regs)1703 static void handle_swbp(struct pt_regs *regs)
1704 {
1705 	struct uprobe *uprobe;
1706 	unsigned long bp_vaddr;
1707 	int uninitialized_var(is_swbp);
1708 
1709 	bp_vaddr = uprobe_get_swbp_addr(regs);
1710 	if (bp_vaddr == get_trampoline_vaddr()) {
1711 		if (handle_trampoline(regs))
1712 			return;
1713 
1714 		pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1715 						current->pid, current->tgid);
1716 	}
1717 
1718 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1719 	if (!uprobe) {
1720 		if (is_swbp > 0) {
1721 			/* No matching uprobe; signal SIGTRAP. */
1722 			send_sig(SIGTRAP, current, 0);
1723 		} else {
1724 			/*
1725 			 * Either we raced with uprobe_unregister() or we can't
1726 			 * access this memory. The latter is only possible if
1727 			 * another thread plays with our ->mm. In both cases
1728 			 * we can simply restart. If this vma was unmapped we
1729 			 * can pretend this insn was not executed yet and get
1730 			 * the (correct) SIGSEGV after restart.
1731 			 */
1732 			instruction_pointer_set(regs, bp_vaddr);
1733 		}
1734 		return;
1735 	}
1736 
1737 	/* change it in advance for ->handler() and restart */
1738 	instruction_pointer_set(regs, bp_vaddr);
1739 
1740 	/*
1741 	 * TODO: move copy_insn/etc into _register and remove this hack.
1742 	 * After we hit the bp, _unregister + _register can install the
1743 	 * new and not-yet-analyzed uprobe at the same address, restart.
1744 	 */
1745 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1746 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1747 		goto out;
1748 
1749 	handler_chain(uprobe, regs);
1750 	if (can_skip_sstep(uprobe, regs))
1751 		goto out;
1752 
1753 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1754 		return;
1755 
1756 	/* can_skip_sstep() succeeded, or restart if can't singlestep */
1757 out:
1758 	put_uprobe(uprobe);
1759 }
1760 
1761 /*
1762  * Perform required fix-ups and disable singlestep.
1763  * Allow pending signals to take effect.
1764  */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)1765 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1766 {
1767 	struct uprobe *uprobe;
1768 
1769 	uprobe = utask->active_uprobe;
1770 	if (utask->state == UTASK_SSTEP_ACK)
1771 		arch_uprobe_post_xol(&uprobe->arch, regs);
1772 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1773 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1774 	else
1775 		WARN_ON_ONCE(1);
1776 
1777 	put_uprobe(uprobe);
1778 	utask->active_uprobe = NULL;
1779 	utask->state = UTASK_RUNNING;
1780 	xol_free_insn_slot(current);
1781 
1782 	spin_lock_irq(&current->sighand->siglock);
1783 	recalc_sigpending(); /* see uprobe_deny_signal() */
1784 	spin_unlock_irq(&current->sighand->siglock);
1785 }
1786 
1787 /*
1788  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1789  * allows the thread to return from interrupt. After that handle_swbp()
1790  * sets utask->active_uprobe.
1791  *
1792  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1793  * and allows the thread to return from interrupt.
1794  *
1795  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1796  * uprobe_notify_resume().
1797  */
uprobe_notify_resume(struct pt_regs * regs)1798 void uprobe_notify_resume(struct pt_regs *regs)
1799 {
1800 	struct uprobe_task *utask;
1801 
1802 	clear_thread_flag(TIF_UPROBE);
1803 
1804 	utask = current->utask;
1805 	if (utask && utask->active_uprobe)
1806 		handle_singlestep(utask, regs);
1807 	else
1808 		handle_swbp(regs);
1809 }
1810 
1811 /*
1812  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1813  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1814  */
uprobe_pre_sstep_notifier(struct pt_regs * regs)1815 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1816 {
1817 	if (!current->mm)
1818 		return 0;
1819 
1820 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1821 	    (!current->utask || !current->utask->return_instances))
1822 		return 0;
1823 
1824 	set_thread_flag(TIF_UPROBE);
1825 	return 1;
1826 }
1827 
1828 /*
1829  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1830  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1831  */
uprobe_post_sstep_notifier(struct pt_regs * regs)1832 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1833 {
1834 	struct uprobe_task *utask = current->utask;
1835 
1836 	if (!current->mm || !utask || !utask->active_uprobe)
1837 		/* task is currently not uprobed */
1838 		return 0;
1839 
1840 	utask->state = UTASK_SSTEP_ACK;
1841 	set_thread_flag(TIF_UPROBE);
1842 	return 1;
1843 }
1844 
1845 static struct notifier_block uprobe_exception_nb = {
1846 	.notifier_call		= arch_uprobe_exception_notify,
1847 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1848 };
1849 
init_uprobes(void)1850 static int __init init_uprobes(void)
1851 {
1852 	int i;
1853 
1854 	for (i = 0; i < UPROBES_HASH_SZ; i++)
1855 		mutex_init(&uprobes_mmap_mutex[i]);
1856 
1857 	if (percpu_init_rwsem(&dup_mmap_sem))
1858 		return -ENOMEM;
1859 
1860 	return register_die_notifier(&uprobe_exception_nb);
1861 }
1862 module_init(init_uprobes);
1863 
exit_uprobes(void)1864 static void __exit exit_uprobes(void)
1865 {
1866 }
1867 module_exit(exit_uprobes);
1868