1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Licensed under the GPL
5 */
6
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <linux/tracehook.h>
22 #include <asm/current.h>
23 #include <asm/pgtable.h>
24 #include <asm/mmu_context.h>
25 #include <asm/uaccess.h>
26 #include <as-layout.h>
27 #include <kern_util.h>
28 #include <os.h>
29 #include <skas.h>
30
31 /*
32 * This is a per-cpu array. A processor only modifies its entry and it only
33 * cares about its entry, so it's OK if another processor is modifying its
34 * entry.
35 */
36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
37
external_pid(void)38 static inline int external_pid(void)
39 {
40 /* FIXME: Need to look up userspace_pid by cpu */
41 return userspace_pid[0];
42 }
43
pid_to_processor_id(int pid)44 int pid_to_processor_id(int pid)
45 {
46 int i;
47
48 for (i = 0; i < ncpus; i++) {
49 if (cpu_tasks[i].pid == pid)
50 return i;
51 }
52 return -1;
53 }
54
free_stack(unsigned long stack,int order)55 void free_stack(unsigned long stack, int order)
56 {
57 free_pages(stack, order);
58 }
59
alloc_stack(int order,int atomic)60 unsigned long alloc_stack(int order, int atomic)
61 {
62 unsigned long page;
63 gfp_t flags = GFP_KERNEL;
64
65 if (atomic)
66 flags = GFP_ATOMIC;
67 page = __get_free_pages(flags, order);
68
69 return page;
70 }
71
set_current(struct task_struct * task)72 static inline void set_current(struct task_struct *task)
73 {
74 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
75 { external_pid(), task });
76 }
77
78 extern void arch_switch_to(struct task_struct *to);
79
__switch_to(struct task_struct * from,struct task_struct * to)80 void *__switch_to(struct task_struct *from, struct task_struct *to)
81 {
82 to->thread.prev_sched = from;
83 set_current(to);
84
85 do {
86 current->thread.saved_task = NULL;
87
88 switch_threads(&from->thread.switch_buf,
89 &to->thread.switch_buf);
90
91 arch_switch_to(current);
92
93 if (current->thread.saved_task)
94 show_regs(&(current->thread.regs));
95 to = current->thread.saved_task;
96 from = current;
97 } while (current->thread.saved_task);
98
99 return current->thread.prev_sched;
100 }
101
interrupt_end(void)102 void interrupt_end(void)
103 {
104 if (need_resched())
105 schedule();
106 if (test_thread_flag(TIF_SIGPENDING))
107 do_signal();
108 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
109 tracehook_notify_resume(¤t->thread.regs);
110 }
111
exit_thread(void)112 void exit_thread(void)
113 {
114 }
115
get_current_pid(void)116 int get_current_pid(void)
117 {
118 return task_pid_nr(current);
119 }
120
121 /*
122 * This is called magically, by its address being stuffed in a jmp_buf
123 * and being longjmp-d to.
124 */
new_thread_handler(void)125 void new_thread_handler(void)
126 {
127 int (*fn)(void *), n;
128 void *arg;
129
130 if (current->thread.prev_sched != NULL)
131 schedule_tail(current->thread.prev_sched);
132 current->thread.prev_sched = NULL;
133
134 fn = current->thread.request.u.thread.proc;
135 arg = current->thread.request.u.thread.arg;
136
137 /*
138 * callback returns only if the kernel thread execs a process
139 */
140 n = fn(arg);
141 userspace(¤t->thread.regs.regs);
142 }
143
144 /* Called magically, see new_thread_handler above */
fork_handler(void)145 void fork_handler(void)
146 {
147 force_flush_all();
148
149 schedule_tail(current->thread.prev_sched);
150
151 /*
152 * XXX: if interrupt_end() calls schedule, this call to
153 * arch_switch_to isn't needed. We could want to apply this to
154 * improve performance. -bb
155 */
156 arch_switch_to(current);
157
158 current->thread.prev_sched = NULL;
159
160 userspace(¤t->thread.regs.regs);
161 }
162
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p)163 int copy_thread(unsigned long clone_flags, unsigned long sp,
164 unsigned long arg, struct task_struct * p)
165 {
166 void (*handler)(void);
167 int kthread = current->flags & PF_KTHREAD;
168 int ret = 0;
169
170 p->thread = (struct thread_struct) INIT_THREAD;
171
172 if (!kthread) {
173 memcpy(&p->thread.regs.regs, current_pt_regs(),
174 sizeof(p->thread.regs.regs));
175 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
176 if (sp != 0)
177 REGS_SP(p->thread.regs.regs.gp) = sp;
178
179 handler = fork_handler;
180
181 arch_copy_thread(¤t->thread.arch, &p->thread.arch);
182 } else {
183 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
184 p->thread.request.u.thread.proc = (int (*)(void *))sp;
185 p->thread.request.u.thread.arg = (void *)arg;
186 handler = new_thread_handler;
187 }
188
189 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
190
191 if (!kthread) {
192 clear_flushed_tls(p);
193
194 /*
195 * Set a new TLS for the child thread?
196 */
197 if (clone_flags & CLONE_SETTLS)
198 ret = arch_copy_tls(p);
199 }
200
201 return ret;
202 }
203
initial_thread_cb(void (* proc)(void *),void * arg)204 void initial_thread_cb(void (*proc)(void *), void *arg)
205 {
206 int save_kmalloc_ok = kmalloc_ok;
207
208 kmalloc_ok = 0;
209 initial_thread_cb_skas(proc, arg);
210 kmalloc_ok = save_kmalloc_ok;
211 }
212
arch_cpu_idle(void)213 void arch_cpu_idle(void)
214 {
215 unsigned long long nsecs;
216
217 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
218 nsecs = disable_timer();
219 idle_sleep(nsecs);
220 local_irq_enable();
221 }
222
__cant_sleep(void)223 int __cant_sleep(void) {
224 return in_atomic() || irqs_disabled() || in_interrupt();
225 /* Is in_interrupt() really needed? */
226 }
227
user_context(unsigned long sp)228 int user_context(unsigned long sp)
229 {
230 unsigned long stack;
231
232 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
233 return stack != (unsigned long) current_thread_info();
234 }
235
236 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
237
do_uml_exitcalls(void)238 void do_uml_exitcalls(void)
239 {
240 exitcall_t *call;
241
242 call = &__uml_exitcall_end;
243 while (--call >= &__uml_exitcall_begin)
244 (*call)();
245 }
246
uml_strdup(const char * string)247 char *uml_strdup(const char *string)
248 {
249 return kstrdup(string, GFP_KERNEL);
250 }
251 EXPORT_SYMBOL(uml_strdup);
252
copy_to_user_proc(void __user * to,void * from,int size)253 int copy_to_user_proc(void __user *to, void *from, int size)
254 {
255 return copy_to_user(to, from, size);
256 }
257
copy_from_user_proc(void * to,void __user * from,int size)258 int copy_from_user_proc(void *to, void __user *from, int size)
259 {
260 return copy_from_user(to, from, size);
261 }
262
clear_user_proc(void __user * buf,int size)263 int clear_user_proc(void __user *buf, int size)
264 {
265 return clear_user(buf, size);
266 }
267
strlen_user_proc(char __user * str)268 int strlen_user_proc(char __user *str)
269 {
270 return strlen_user(str);
271 }
272
smp_sigio_handler(void)273 int smp_sigio_handler(void)
274 {
275 #ifdef CONFIG_SMP
276 int cpu = current_thread_info()->cpu;
277 IPI_handler(cpu);
278 if (cpu != 0)
279 return 1;
280 #endif
281 return 0;
282 }
283
cpu(void)284 int cpu(void)
285 {
286 return current_thread_info()->cpu;
287 }
288
289 static atomic_t using_sysemu = ATOMIC_INIT(0);
290 int sysemu_supported;
291
set_using_sysemu(int value)292 void set_using_sysemu(int value)
293 {
294 if (value > sysemu_supported)
295 return;
296 atomic_set(&using_sysemu, value);
297 }
298
get_using_sysemu(void)299 int get_using_sysemu(void)
300 {
301 return atomic_read(&using_sysemu);
302 }
303
sysemu_proc_show(struct seq_file * m,void * v)304 static int sysemu_proc_show(struct seq_file *m, void *v)
305 {
306 seq_printf(m, "%d\n", get_using_sysemu());
307 return 0;
308 }
309
sysemu_proc_open(struct inode * inode,struct file * file)310 static int sysemu_proc_open(struct inode *inode, struct file *file)
311 {
312 return single_open(file, sysemu_proc_show, NULL);
313 }
314
sysemu_proc_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)315 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
316 size_t count, loff_t *pos)
317 {
318 char tmp[2];
319
320 if (copy_from_user(tmp, buf, 1))
321 return -EFAULT;
322
323 if (tmp[0] >= '0' && tmp[0] <= '2')
324 set_using_sysemu(tmp[0] - '0');
325 /* We use the first char, but pretend to write everything */
326 return count;
327 }
328
329 static const struct file_operations sysemu_proc_fops = {
330 .owner = THIS_MODULE,
331 .open = sysemu_proc_open,
332 .read = seq_read,
333 .llseek = seq_lseek,
334 .release = single_release,
335 .write = sysemu_proc_write,
336 };
337
make_proc_sysemu(void)338 int __init make_proc_sysemu(void)
339 {
340 struct proc_dir_entry *ent;
341 if (!sysemu_supported)
342 return 0;
343
344 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
345
346 if (ent == NULL)
347 {
348 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
349 return 0;
350 }
351
352 return 0;
353 }
354
355 late_initcall(make_proc_sysemu);
356
singlestepping(void * t)357 int singlestepping(void * t)
358 {
359 struct task_struct *task = t ? t : current;
360
361 if (!(task->ptrace & PT_DTRACE))
362 return 0;
363
364 if (task->thread.singlestep_syscall)
365 return 1;
366
367 return 2;
368 }
369
370 /*
371 * Only x86 and x86_64 have an arch_align_stack().
372 * All other arches have "#define arch_align_stack(x) (x)"
373 * in their asm/system.h
374 * As this is included in UML from asm-um/system-generic.h,
375 * we can use it to behave as the subarch does.
376 */
377 #ifndef arch_align_stack
arch_align_stack(unsigned long sp)378 unsigned long arch_align_stack(unsigned long sp)
379 {
380 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
381 sp -= get_random_int() % 8192;
382 return sp & ~0xf;
383 }
384 #endif
385
get_wchan(struct task_struct * p)386 unsigned long get_wchan(struct task_struct *p)
387 {
388 unsigned long stack_page, sp, ip;
389 bool seen_sched = 0;
390
391 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
392 return 0;
393
394 stack_page = (unsigned long) task_stack_page(p);
395 /* Bail if the process has no kernel stack for some reason */
396 if (stack_page == 0)
397 return 0;
398
399 sp = p->thread.switch_buf->JB_SP;
400 /*
401 * Bail if the stack pointer is below the bottom of the kernel
402 * stack for some reason
403 */
404 if (sp < stack_page)
405 return 0;
406
407 while (sp < stack_page + THREAD_SIZE) {
408 ip = *((unsigned long *) sp);
409 if (in_sched_functions(ip))
410 /* Ignore everything until we're above the scheduler */
411 seen_sched = 1;
412 else if (kernel_text_address(ip) && seen_sched)
413 return ip;
414
415 sp += sizeof(unsigned long);
416 }
417
418 return 0;
419 }
420
elf_core_copy_fpregs(struct task_struct * t,elf_fpregset_t * fpu)421 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
422 {
423 int cpu = current_thread_info()->cpu;
424
425 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
426 }
427
428