• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 
32 /*
33  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34  * no more per-task TSS's. The TSS size is kept cacheline-aligned
35  * so they are allowed to end up in the .data..cacheline_aligned
36  * section. Since TSS's are completely CPU-local, we want them
37  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38  */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40 
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 #endif
44 
45 struct kmem_cache *task_xstate_cachep;
46 EXPORT_SYMBOL_GPL(task_xstate_cachep);
47 
48 /*
49  * this gets called so that we can store lazy state into memory and copy the
50  * current task into the new thread.
51  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)52 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
53 {
54 	int ret;
55 
56 	*dst = *src;
57 	if (fpu_allocated(&src->thread.fpu)) {
58 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
59 		ret = fpu_alloc(&dst->thread.fpu);
60 		if (ret)
61 			return ret;
62 		fpu_copy(dst, src);
63 	}
64 	return 0;
65 }
66 
free_thread_xstate(struct task_struct * tsk)67 void free_thread_xstate(struct task_struct *tsk)
68 {
69 	fpu_free(&tsk->thread.fpu);
70 }
71 
arch_release_task_struct(struct task_struct * tsk)72 void arch_release_task_struct(struct task_struct *tsk)
73 {
74 	free_thread_xstate(tsk);
75 }
76 
arch_task_cache_init(void)77 void arch_task_cache_init(void)
78 {
79         task_xstate_cachep =
80         	kmem_cache_create("task_xstate", xstate_size,
81 				  __alignof__(union thread_xstate),
82 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
83 }
84 
85 /*
86  * Free current thread data structures etc..
87  */
exit_thread(void)88 void exit_thread(void)
89 {
90 	struct task_struct *me = current;
91 	struct thread_struct *t = &me->thread;
92 	unsigned long *bp = t->io_bitmap_ptr;
93 
94 	if (bp) {
95 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
96 
97 		t->io_bitmap_ptr = NULL;
98 		clear_thread_flag(TIF_IO_BITMAP);
99 		/*
100 		 * Careful, clear this in the TSS too:
101 		 */
102 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
103 		t->io_bitmap_max = 0;
104 		put_cpu();
105 		kfree(bp);
106 	}
107 
108 	drop_fpu(me);
109 }
110 
flush_thread(void)111 void flush_thread(void)
112 {
113 	struct task_struct *tsk = current;
114 
115 	flush_ptrace_hw_breakpoint(tsk);
116 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
117 	drop_init_fpu(tsk);
118 	/*
119 	 * Free the FPU state for non xsave platforms. They get reallocated
120 	 * lazily at the first use.
121 	 */
122 	if (!use_eager_fpu())
123 		free_thread_xstate(tsk);
124 }
125 
hard_disable_TSC(void)126 static void hard_disable_TSC(void)
127 {
128 	write_cr4(read_cr4() | X86_CR4_TSD);
129 }
130 
disable_TSC(void)131 void disable_TSC(void)
132 {
133 	preempt_disable();
134 	if (!test_and_set_thread_flag(TIF_NOTSC))
135 		/*
136 		 * Must flip the CPU state synchronously with
137 		 * TIF_NOTSC in the current running context.
138 		 */
139 		hard_disable_TSC();
140 	preempt_enable();
141 }
142 
hard_enable_TSC(void)143 static void hard_enable_TSC(void)
144 {
145 	write_cr4(read_cr4() & ~X86_CR4_TSD);
146 }
147 
enable_TSC(void)148 static void enable_TSC(void)
149 {
150 	preempt_disable();
151 	if (test_and_clear_thread_flag(TIF_NOTSC))
152 		/*
153 		 * Must flip the CPU state synchronously with
154 		 * TIF_NOTSC in the current running context.
155 		 */
156 		hard_enable_TSC();
157 	preempt_enable();
158 }
159 
get_tsc_mode(unsigned long adr)160 int get_tsc_mode(unsigned long adr)
161 {
162 	unsigned int val;
163 
164 	if (test_thread_flag(TIF_NOTSC))
165 		val = PR_TSC_SIGSEGV;
166 	else
167 		val = PR_TSC_ENABLE;
168 
169 	return put_user(val, (unsigned int __user *)adr);
170 }
171 
set_tsc_mode(unsigned int val)172 int set_tsc_mode(unsigned int val)
173 {
174 	if (val == PR_TSC_SIGSEGV)
175 		disable_TSC();
176 	else if (val == PR_TSC_ENABLE)
177 		enable_TSC();
178 	else
179 		return -EINVAL;
180 
181 	return 0;
182 }
183 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p,struct tss_struct * tss)184 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
185 		      struct tss_struct *tss)
186 {
187 	struct thread_struct *prev, *next;
188 
189 	prev = &prev_p->thread;
190 	next = &next_p->thread;
191 
192 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
193 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
194 		unsigned long debugctl = get_debugctlmsr();
195 
196 		debugctl &= ~DEBUGCTLMSR_BTF;
197 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
198 			debugctl |= DEBUGCTLMSR_BTF;
199 
200 		update_debugctlmsr(debugctl);
201 	}
202 
203 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
204 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
205 		/* prev and next are different */
206 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
207 			hard_disable_TSC();
208 		else
209 			hard_enable_TSC();
210 	}
211 
212 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
213 		/*
214 		 * Copy the relevant range of the IO bitmap.
215 		 * Normally this is 128 bytes or less:
216 		 */
217 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
218 		       max(prev->io_bitmap_max, next->io_bitmap_max));
219 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
220 		/*
221 		 * Clear any possible leftover bits:
222 		 */
223 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
224 	}
225 	propagate_user_return_notify(prev_p, next_p);
226 }
227 
228 /*
229  * Idle related variables and functions
230  */
231 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
232 EXPORT_SYMBOL(boot_option_idle_override);
233 
234 static void (*x86_idle)(void);
235 
236 #ifndef CONFIG_SMP
play_dead(void)237 static inline void play_dead(void)
238 {
239 	BUG();
240 }
241 #endif
242 
243 #ifdef CONFIG_X86_64
enter_idle(void)244 void enter_idle(void)
245 {
246 	this_cpu_write(is_idle, 1);
247 	idle_notifier_call_chain(IDLE_START);
248 }
249 
__exit_idle(void)250 static void __exit_idle(void)
251 {
252 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
253 		return;
254 	idle_notifier_call_chain(IDLE_END);
255 }
256 
257 /* Called from interrupts to signify idle end */
exit_idle(void)258 void exit_idle(void)
259 {
260 	/* idle loop has pid 0 */
261 	if (current->pid)
262 		return;
263 	__exit_idle();
264 }
265 #endif
266 
arch_cpu_idle_enter(void)267 void arch_cpu_idle_enter(void)
268 {
269 	local_touch_nmi();
270 	enter_idle();
271 }
272 
arch_cpu_idle_exit(void)273 void arch_cpu_idle_exit(void)
274 {
275 	__exit_idle();
276 }
277 
arch_cpu_idle_dead(void)278 void arch_cpu_idle_dead(void)
279 {
280 	play_dead();
281 }
282 
283 /*
284  * Called from the generic idle code.
285  */
arch_cpu_idle(void)286 void arch_cpu_idle(void)
287 {
288 	if (cpuidle_idle_call())
289 		x86_idle();
290 	else
291 		local_irq_enable();
292 }
293 
294 /*
295  * We use this if we don't have any better idle routine..
296  */
default_idle(void)297 void default_idle(void)
298 {
299 	trace_cpu_idle_rcuidle(1, smp_processor_id());
300 	safe_halt();
301 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
302 }
303 #ifdef CONFIG_APM_MODULE
304 EXPORT_SYMBOL(default_idle);
305 #endif
306 
307 #ifdef CONFIG_XEN
xen_set_default_idle(void)308 bool xen_set_default_idle(void)
309 {
310 	bool ret = !!x86_idle;
311 
312 	x86_idle = default_idle;
313 
314 	return ret;
315 }
316 #endif
stop_this_cpu(void * dummy)317 void stop_this_cpu(void *dummy)
318 {
319 	local_irq_disable();
320 	/*
321 	 * Remove this CPU:
322 	 */
323 	set_cpu_online(smp_processor_id(), false);
324 	disable_local_APIC();
325 
326 	for (;;)
327 		halt();
328 }
329 
330 bool amd_e400_c1e_detected;
331 EXPORT_SYMBOL(amd_e400_c1e_detected);
332 
333 static cpumask_var_t amd_e400_c1e_mask;
334 
amd_e400_remove_cpu(int cpu)335 void amd_e400_remove_cpu(int cpu)
336 {
337 	if (amd_e400_c1e_mask != NULL)
338 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
339 }
340 
341 /*
342  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
343  * pending message MSR. If we detect C1E, then we handle it the same
344  * way as C3 power states (local apic timer and TSC stop)
345  */
amd_e400_idle(void)346 static void amd_e400_idle(void)
347 {
348 	if (!amd_e400_c1e_detected) {
349 		u32 lo, hi;
350 
351 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
352 
353 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
354 			amd_e400_c1e_detected = true;
355 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
356 				mark_tsc_unstable("TSC halt in AMD C1E");
357 			pr_info("System has AMD C1E enabled\n");
358 		}
359 	}
360 
361 	if (amd_e400_c1e_detected) {
362 		int cpu = smp_processor_id();
363 
364 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
365 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
366 			/*
367 			 * Force broadcast so ACPI can not interfere.
368 			 */
369 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
370 					   &cpu);
371 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
372 		}
373 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
374 
375 		default_idle();
376 
377 		/*
378 		 * The switch back from broadcast mode needs to be
379 		 * called with interrupts disabled.
380 		 */
381 		 local_irq_disable();
382 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
383 		 local_irq_enable();
384 	} else
385 		default_idle();
386 }
387 
select_idle_routine(const struct cpuinfo_x86 * c)388 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
389 {
390 #ifdef CONFIG_SMP
391 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
392 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
393 #endif
394 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
395 		return;
396 
397 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
398 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
399 		pr_info("using AMD E400 aware idle routine\n");
400 		x86_idle = amd_e400_idle;
401 	} else
402 		x86_idle = default_idle;
403 }
404 
init_amd_e400_c1e_mask(void)405 void __init init_amd_e400_c1e_mask(void)
406 {
407 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
408 	if (x86_idle == amd_e400_idle)
409 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
410 }
411 
idle_setup(char * str)412 static int __init idle_setup(char *str)
413 {
414 	if (!str)
415 		return -EINVAL;
416 
417 	if (!strcmp(str, "poll")) {
418 		pr_info("using polling idle threads\n");
419 		boot_option_idle_override = IDLE_POLL;
420 		cpu_idle_poll_ctrl(true);
421 	} else if (!strcmp(str, "halt")) {
422 		/*
423 		 * When the boot option of idle=halt is added, halt is
424 		 * forced to be used for CPU idle. In such case CPU C2/C3
425 		 * won't be used again.
426 		 * To continue to load the CPU idle driver, don't touch
427 		 * the boot_option_idle_override.
428 		 */
429 		x86_idle = default_idle;
430 		boot_option_idle_override = IDLE_HALT;
431 	} else if (!strcmp(str, "nomwait")) {
432 		/*
433 		 * If the boot option of "idle=nomwait" is added,
434 		 * it means that mwait will be disabled for CPU C2/C3
435 		 * states. In such case it won't touch the variable
436 		 * of boot_option_idle_override.
437 		 */
438 		boot_option_idle_override = IDLE_NOMWAIT;
439 	} else
440 		return -1;
441 
442 	return 0;
443 }
444 early_param("idle", idle_setup);
445 
arch_align_stack(unsigned long sp)446 unsigned long arch_align_stack(unsigned long sp)
447 {
448 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
449 		sp -= get_random_int() % 8192;
450 	return sp & ~0xf;
451 }
452 
arch_randomize_brk(struct mm_struct * mm)453 unsigned long arch_randomize_brk(struct mm_struct *mm)
454 {
455 	unsigned long range_end = mm->brk + 0x02000000;
456 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
457 }
458 
459