• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <joerg.roedel@amd.com>
4  *         Leo Duran <leo.duran@amd.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/io_apic.h>
38 #include <asm/apic.h>
39 #include <asm/hw_irq.h>
40 #include <asm/msidef.h>
41 #include <asm/proto.h>
42 #include <asm/iommu.h>
43 #include <asm/gart.h>
44 #include <asm/dma.h>
45 
46 #include "amd_iommu_proto.h"
47 #include "amd_iommu_types.h"
48 #include "irq_remapping.h"
49 #include "pci.h"
50 
51 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52 
53 #define LOOP_TIMEOUT	100000
54 
55 /*
56  * This bitmap is used to advertise the page sizes our hardware support
57  * to the IOMMU core, which will then use this information to split
58  * physically contiguous memory regions it is mapping into page sizes
59  * that we support.
60  *
61  * 512GB Pages are not supported due to a hardware bug
62  */
63 #define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64 
65 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66 
67 /* A list of preallocated protection domains */
68 static LIST_HEAD(iommu_pd_list);
69 static DEFINE_SPINLOCK(iommu_pd_list_lock);
70 
71 /* List of all available dev_data structures */
72 static LIST_HEAD(dev_data_list);
73 static DEFINE_SPINLOCK(dev_data_list_lock);
74 
75 LIST_HEAD(ioapic_map);
76 LIST_HEAD(hpet_map);
77 
78 /*
79  * Domain for untranslated devices - only allocated
80  * if iommu=pt passed on kernel cmd line.
81  */
82 static struct protection_domain *pt_domain;
83 
84 static struct iommu_ops amd_iommu_ops;
85 
86 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87 int amd_iommu_max_glx_val = -1;
88 
89 static struct dma_map_ops amd_iommu_dma_ops;
90 
91 /*
92  * general struct to manage commands send to an IOMMU
93  */
94 struct iommu_cmd {
95 	u32 data[4];
96 };
97 
98 struct kmem_cache *amd_iommu_irq_cache;
99 
100 static void update_domain(struct protection_domain *domain);
101 static int __init alloc_passthrough_domain(void);
102 
103 /****************************************************************************
104  *
105  * Helper functions
106  *
107  ****************************************************************************/
108 
alloc_dev_data(u16 devid)109 static struct iommu_dev_data *alloc_dev_data(u16 devid)
110 {
111 	struct iommu_dev_data *dev_data;
112 	unsigned long flags;
113 
114 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
115 	if (!dev_data)
116 		return NULL;
117 
118 	dev_data->devid = devid;
119 	atomic_set(&dev_data->bind, 0);
120 
121 	spin_lock_irqsave(&dev_data_list_lock, flags);
122 	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
123 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
124 
125 	return dev_data;
126 }
127 
free_dev_data(struct iommu_dev_data * dev_data)128 static void free_dev_data(struct iommu_dev_data *dev_data)
129 {
130 	unsigned long flags;
131 
132 	spin_lock_irqsave(&dev_data_list_lock, flags);
133 	list_del(&dev_data->dev_data_list);
134 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
135 
136 	if (dev_data->group)
137 		iommu_group_put(dev_data->group);
138 
139 	kfree(dev_data);
140 }
141 
search_dev_data(u16 devid)142 static struct iommu_dev_data *search_dev_data(u16 devid)
143 {
144 	struct iommu_dev_data *dev_data;
145 	unsigned long flags;
146 
147 	spin_lock_irqsave(&dev_data_list_lock, flags);
148 	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
149 		if (dev_data->devid == devid)
150 			goto out_unlock;
151 	}
152 
153 	dev_data = NULL;
154 
155 out_unlock:
156 	spin_unlock_irqrestore(&dev_data_list_lock, flags);
157 
158 	return dev_data;
159 }
160 
find_dev_data(u16 devid)161 static struct iommu_dev_data *find_dev_data(u16 devid)
162 {
163 	struct iommu_dev_data *dev_data;
164 
165 	dev_data = search_dev_data(devid);
166 
167 	if (dev_data == NULL)
168 		dev_data = alloc_dev_data(devid);
169 
170 	return dev_data;
171 }
172 
get_device_id(struct device * dev)173 static inline u16 get_device_id(struct device *dev)
174 {
175 	struct pci_dev *pdev = to_pci_dev(dev);
176 
177 	return PCI_DEVID(pdev->bus->number, pdev->devfn);
178 }
179 
get_dev_data(struct device * dev)180 static struct iommu_dev_data *get_dev_data(struct device *dev)
181 {
182 	return dev->archdata.iommu;
183 }
184 
pci_iommuv2_capable(struct pci_dev * pdev)185 static bool pci_iommuv2_capable(struct pci_dev *pdev)
186 {
187 	static const int caps[] = {
188 		PCI_EXT_CAP_ID_ATS,
189 		PCI_EXT_CAP_ID_PRI,
190 		PCI_EXT_CAP_ID_PASID,
191 	};
192 	int i, pos;
193 
194 	for (i = 0; i < 3; ++i) {
195 		pos = pci_find_ext_capability(pdev, caps[i]);
196 		if (pos == 0)
197 			return false;
198 	}
199 
200 	return true;
201 }
202 
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)203 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
204 {
205 	struct iommu_dev_data *dev_data;
206 
207 	dev_data = get_dev_data(&pdev->dev);
208 
209 	return dev_data->errata & (1 << erratum) ? true : false;
210 }
211 
212 /*
213  * In this function the list of preallocated protection domains is traversed to
214  * find the domain for a specific device
215  */
find_protection_domain(u16 devid)216 static struct dma_ops_domain *find_protection_domain(u16 devid)
217 {
218 	struct dma_ops_domain *entry, *ret = NULL;
219 	unsigned long flags;
220 	u16 alias = amd_iommu_alias_table[devid];
221 
222 	if (list_empty(&iommu_pd_list))
223 		return NULL;
224 
225 	spin_lock_irqsave(&iommu_pd_list_lock, flags);
226 
227 	list_for_each_entry(entry, &iommu_pd_list, list) {
228 		if (entry->target_dev == devid ||
229 		    entry->target_dev == alias) {
230 			ret = entry;
231 			break;
232 		}
233 	}
234 
235 	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
236 
237 	return ret;
238 }
239 
240 /*
241  * This function checks if the driver got a valid device from the caller to
242  * avoid dereferencing invalid pointers.
243  */
check_device(struct device * dev)244 static bool check_device(struct device *dev)
245 {
246 	u16 devid;
247 
248 	if (!dev || !dev->dma_mask)
249 		return false;
250 
251 	/* No device or no PCI device */
252 	if (dev->bus != &pci_bus_type)
253 		return false;
254 
255 	devid = get_device_id(dev);
256 
257 	/* Out of our scope? */
258 	if (devid > amd_iommu_last_bdf)
259 		return false;
260 
261 	if (amd_iommu_rlookup_table[devid] == NULL)
262 		return false;
263 
264 	return true;
265 }
266 
find_hosted_bus(struct pci_bus * bus)267 static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
268 {
269 	while (!bus->self) {
270 		if (!pci_is_root_bus(bus))
271 			bus = bus->parent;
272 		else
273 			return ERR_PTR(-ENODEV);
274 	}
275 
276 	return bus;
277 }
278 
279 #define REQ_ACS_FLAGS	(PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
280 
get_isolation_root(struct pci_dev * pdev)281 static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
282 {
283 	struct pci_dev *dma_pdev = pdev;
284 
285 	/* Account for quirked devices */
286 	swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
287 
288 	/*
289 	 * If it's a multifunction device that does not support our
290 	 * required ACS flags, add to the same group as function 0.
291 	 */
292 	if (dma_pdev->multifunction &&
293 	    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
294 		swap_pci_ref(&dma_pdev,
295 			     pci_get_slot(dma_pdev->bus,
296 					  PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
297 					  0)));
298 
299 	/*
300 	 * Devices on the root bus go through the iommu.  If that's not us,
301 	 * find the next upstream device and test ACS up to the root bus.
302 	 * Finding the next device may require skipping virtual buses.
303 	 */
304 	while (!pci_is_root_bus(dma_pdev->bus)) {
305 		struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
306 		if (IS_ERR(bus))
307 			break;
308 
309 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
310 			break;
311 
312 		swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
313 	}
314 
315 	return dma_pdev;
316 }
317 
use_pdev_iommu_group(struct pci_dev * pdev,struct device * dev)318 static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
319 {
320 	struct iommu_group *group = iommu_group_get(&pdev->dev);
321 	int ret;
322 
323 	if (!group) {
324 		group = iommu_group_alloc();
325 		if (IS_ERR(group))
326 			return PTR_ERR(group);
327 
328 		WARN_ON(&pdev->dev != dev);
329 	}
330 
331 	ret = iommu_group_add_device(group, dev);
332 	iommu_group_put(group);
333 	return ret;
334 }
335 
use_dev_data_iommu_group(struct iommu_dev_data * dev_data,struct device * dev)336 static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
337 				    struct device *dev)
338 {
339 	if (!dev_data->group) {
340 		struct iommu_group *group = iommu_group_alloc();
341 		if (IS_ERR(group))
342 			return PTR_ERR(group);
343 
344 		dev_data->group = group;
345 	}
346 
347 	return iommu_group_add_device(dev_data->group, dev);
348 }
349 
init_iommu_group(struct device * dev)350 static int init_iommu_group(struct device *dev)
351 {
352 	struct iommu_dev_data *dev_data;
353 	struct iommu_group *group;
354 	struct pci_dev *dma_pdev;
355 	int ret;
356 
357 	group = iommu_group_get(dev);
358 	if (group) {
359 		iommu_group_put(group);
360 		return 0;
361 	}
362 
363 	dev_data = find_dev_data(get_device_id(dev));
364 	if (!dev_data)
365 		return -ENOMEM;
366 
367 	if (dev_data->alias_data) {
368 		u16 alias;
369 		struct pci_bus *bus;
370 
371 		if (dev_data->alias_data->group)
372 			goto use_group;
373 
374 		/*
375 		 * If the alias device exists, it's effectively just a first
376 		 * level quirk for finding the DMA source.
377 		 */
378 		alias = amd_iommu_alias_table[dev_data->devid];
379 		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
380 		if (dma_pdev) {
381 			dma_pdev = get_isolation_root(dma_pdev);
382 			goto use_pdev;
383 		}
384 
385 		/*
386 		 * If the alias is virtual, try to find a parent device
387 		 * and test whether the IOMMU group is actualy rooted above
388 		 * the alias.  Be careful to also test the parent device if
389 		 * we think the alias is the root of the group.
390 		 */
391 		bus = pci_find_bus(0, alias >> 8);
392 		if (!bus)
393 			goto use_group;
394 
395 		bus = find_hosted_bus(bus);
396 		if (IS_ERR(bus) || !bus->self)
397 			goto use_group;
398 
399 		dma_pdev = get_isolation_root(pci_dev_get(bus->self));
400 		if (dma_pdev != bus->self || (dma_pdev->multifunction &&
401 		    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
402 			goto use_pdev;
403 
404 		pci_dev_put(dma_pdev);
405 		goto use_group;
406 	}
407 
408 	dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
409 use_pdev:
410 	ret = use_pdev_iommu_group(dma_pdev, dev);
411 	pci_dev_put(dma_pdev);
412 	return ret;
413 use_group:
414 	return use_dev_data_iommu_group(dev_data->alias_data, dev);
415 }
416 
iommu_init_device(struct device * dev)417 static int iommu_init_device(struct device *dev)
418 {
419 	struct pci_dev *pdev = to_pci_dev(dev);
420 	struct iommu_dev_data *dev_data;
421 	u16 alias;
422 	int ret;
423 
424 	if (dev->archdata.iommu)
425 		return 0;
426 
427 	dev_data = find_dev_data(get_device_id(dev));
428 	if (!dev_data)
429 		return -ENOMEM;
430 
431 	alias = amd_iommu_alias_table[dev_data->devid];
432 	if (alias != dev_data->devid) {
433 		struct iommu_dev_data *alias_data;
434 
435 		alias_data = find_dev_data(alias);
436 		if (alias_data == NULL) {
437 			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
438 					dev_name(dev));
439 			free_dev_data(dev_data);
440 			return -ENOTSUPP;
441 		}
442 		dev_data->alias_data = alias_data;
443 	}
444 
445 	ret = init_iommu_group(dev);
446 	if (ret)
447 		return ret;
448 
449 	if (pci_iommuv2_capable(pdev)) {
450 		struct amd_iommu *iommu;
451 
452 		iommu              = amd_iommu_rlookup_table[dev_data->devid];
453 		dev_data->iommu_v2 = iommu->is_iommu_v2;
454 	}
455 
456 	dev->archdata.iommu = dev_data;
457 
458 	return 0;
459 }
460 
iommu_ignore_device(struct device * dev)461 static void iommu_ignore_device(struct device *dev)
462 {
463 	u16 devid, alias;
464 
465 	devid = get_device_id(dev);
466 	alias = amd_iommu_alias_table[devid];
467 
468 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
469 	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
470 
471 	amd_iommu_rlookup_table[devid] = NULL;
472 	amd_iommu_rlookup_table[alias] = NULL;
473 }
474 
iommu_uninit_device(struct device * dev)475 static void iommu_uninit_device(struct device *dev)
476 {
477 	iommu_group_remove_device(dev);
478 
479 	/*
480 	 * Nothing to do here - we keep dev_data around for unplugged devices
481 	 * and reuse it when the device is re-plugged - not doing so would
482 	 * introduce a ton of races.
483 	 */
484 }
485 
amd_iommu_uninit_devices(void)486 void __init amd_iommu_uninit_devices(void)
487 {
488 	struct iommu_dev_data *dev_data, *n;
489 	struct pci_dev *pdev = NULL;
490 
491 	for_each_pci_dev(pdev) {
492 
493 		if (!check_device(&pdev->dev))
494 			continue;
495 
496 		iommu_uninit_device(&pdev->dev);
497 	}
498 
499 	/* Free all of our dev_data structures */
500 	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
501 		free_dev_data(dev_data);
502 }
503 
amd_iommu_init_devices(void)504 int __init amd_iommu_init_devices(void)
505 {
506 	struct pci_dev *pdev = NULL;
507 	int ret = 0;
508 
509 	for_each_pci_dev(pdev) {
510 
511 		if (!check_device(&pdev->dev))
512 			continue;
513 
514 		ret = iommu_init_device(&pdev->dev);
515 		if (ret == -ENOTSUPP)
516 			iommu_ignore_device(&pdev->dev);
517 		else if (ret)
518 			goto out_free;
519 	}
520 
521 	return 0;
522 
523 out_free:
524 
525 	amd_iommu_uninit_devices();
526 
527 	return ret;
528 }
529 #ifdef CONFIG_AMD_IOMMU_STATS
530 
531 /*
532  * Initialization code for statistics collection
533  */
534 
535 DECLARE_STATS_COUNTER(compl_wait);
536 DECLARE_STATS_COUNTER(cnt_map_single);
537 DECLARE_STATS_COUNTER(cnt_unmap_single);
538 DECLARE_STATS_COUNTER(cnt_map_sg);
539 DECLARE_STATS_COUNTER(cnt_unmap_sg);
540 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
541 DECLARE_STATS_COUNTER(cnt_free_coherent);
542 DECLARE_STATS_COUNTER(cross_page);
543 DECLARE_STATS_COUNTER(domain_flush_single);
544 DECLARE_STATS_COUNTER(domain_flush_all);
545 DECLARE_STATS_COUNTER(alloced_io_mem);
546 DECLARE_STATS_COUNTER(total_map_requests);
547 DECLARE_STATS_COUNTER(complete_ppr);
548 DECLARE_STATS_COUNTER(invalidate_iotlb);
549 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
550 DECLARE_STATS_COUNTER(pri_requests);
551 
552 static struct dentry *stats_dir;
553 static struct dentry *de_fflush;
554 
amd_iommu_stats_add(struct __iommu_counter * cnt)555 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
556 {
557 	if (stats_dir == NULL)
558 		return;
559 
560 	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
561 				       &cnt->value);
562 }
563 
amd_iommu_stats_init(void)564 static void amd_iommu_stats_init(void)
565 {
566 	stats_dir = debugfs_create_dir("amd-iommu", NULL);
567 	if (stats_dir == NULL)
568 		return;
569 
570 	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
571 					 &amd_iommu_unmap_flush);
572 
573 	amd_iommu_stats_add(&compl_wait);
574 	amd_iommu_stats_add(&cnt_map_single);
575 	amd_iommu_stats_add(&cnt_unmap_single);
576 	amd_iommu_stats_add(&cnt_map_sg);
577 	amd_iommu_stats_add(&cnt_unmap_sg);
578 	amd_iommu_stats_add(&cnt_alloc_coherent);
579 	amd_iommu_stats_add(&cnt_free_coherent);
580 	amd_iommu_stats_add(&cross_page);
581 	amd_iommu_stats_add(&domain_flush_single);
582 	amd_iommu_stats_add(&domain_flush_all);
583 	amd_iommu_stats_add(&alloced_io_mem);
584 	amd_iommu_stats_add(&total_map_requests);
585 	amd_iommu_stats_add(&complete_ppr);
586 	amd_iommu_stats_add(&invalidate_iotlb);
587 	amd_iommu_stats_add(&invalidate_iotlb_all);
588 	amd_iommu_stats_add(&pri_requests);
589 }
590 
591 #endif
592 
593 /****************************************************************************
594  *
595  * Interrupt handling functions
596  *
597  ****************************************************************************/
598 
dump_dte_entry(u16 devid)599 static void dump_dte_entry(u16 devid)
600 {
601 	int i;
602 
603 	for (i = 0; i < 4; ++i)
604 		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
605 			amd_iommu_dev_table[devid].data[i]);
606 }
607 
dump_command(unsigned long phys_addr)608 static void dump_command(unsigned long phys_addr)
609 {
610 	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
611 	int i;
612 
613 	for (i = 0; i < 4; ++i)
614 		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
615 }
616 
iommu_print_event(struct amd_iommu * iommu,void * __evt)617 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
618 {
619 	int type, devid, domid, flags;
620 	volatile u32 *event = __evt;
621 	int count = 0;
622 	u64 address;
623 
624 retry:
625 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
626 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
627 	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
628 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
629 	address = (u64)(((u64)event[3]) << 32) | event[2];
630 
631 	if (type == 0) {
632 		/* Did we hit the erratum? */
633 		if (++count == LOOP_TIMEOUT) {
634 			pr_err("AMD-Vi: No event written to event log\n");
635 			return;
636 		}
637 		udelay(1);
638 		goto retry;
639 	}
640 
641 	printk(KERN_ERR "AMD-Vi: Event logged [");
642 
643 	switch (type) {
644 	case EVENT_TYPE_ILL_DEV:
645 		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
646 		       "address=0x%016llx flags=0x%04x]\n",
647 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
648 		       address, flags);
649 		dump_dte_entry(devid);
650 		break;
651 	case EVENT_TYPE_IO_FAULT:
652 		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
653 		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
654 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
655 		       domid, address, flags);
656 		break;
657 	case EVENT_TYPE_DEV_TAB_ERR:
658 		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
659 		       "address=0x%016llx flags=0x%04x]\n",
660 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
661 		       address, flags);
662 		break;
663 	case EVENT_TYPE_PAGE_TAB_ERR:
664 		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
665 		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
666 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
667 		       domid, address, flags);
668 		break;
669 	case EVENT_TYPE_ILL_CMD:
670 		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
671 		dump_command(address);
672 		break;
673 	case EVENT_TYPE_CMD_HARD_ERR:
674 		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
675 		       "flags=0x%04x]\n", address, flags);
676 		break;
677 	case EVENT_TYPE_IOTLB_INV_TO:
678 		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
679 		       "address=0x%016llx]\n",
680 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
681 		       address);
682 		break;
683 	case EVENT_TYPE_INV_DEV_REQ:
684 		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
685 		       "address=0x%016llx flags=0x%04x]\n",
686 		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
687 		       address, flags);
688 		break;
689 	default:
690 		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
691 	}
692 
693 	memset(__evt, 0, 4 * sizeof(u32));
694 }
695 
iommu_poll_events(struct amd_iommu * iommu)696 static void iommu_poll_events(struct amd_iommu *iommu)
697 {
698 	u32 head, tail;
699 
700 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
701 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
702 
703 	while (head != tail) {
704 		iommu_print_event(iommu, iommu->evt_buf + head);
705 		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
706 	}
707 
708 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
709 }
710 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)711 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
712 {
713 	struct amd_iommu_fault fault;
714 
715 	INC_STATS_COUNTER(pri_requests);
716 
717 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
718 		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
719 		return;
720 	}
721 
722 	fault.address   = raw[1];
723 	fault.pasid     = PPR_PASID(raw[0]);
724 	fault.device_id = PPR_DEVID(raw[0]);
725 	fault.tag       = PPR_TAG(raw[0]);
726 	fault.flags     = PPR_FLAGS(raw[0]);
727 
728 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
729 }
730 
iommu_poll_ppr_log(struct amd_iommu * iommu)731 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
732 {
733 	u32 head, tail;
734 
735 	if (iommu->ppr_log == NULL)
736 		return;
737 
738 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
739 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
740 
741 	while (head != tail) {
742 		volatile u64 *raw;
743 		u64 entry[2];
744 		int i;
745 
746 		raw = (u64 *)(iommu->ppr_log + head);
747 
748 		/*
749 		 * Hardware bug: Interrupt may arrive before the entry is
750 		 * written to memory. If this happens we need to wait for the
751 		 * entry to arrive.
752 		 */
753 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
754 			if (PPR_REQ_TYPE(raw[0]) != 0)
755 				break;
756 			udelay(1);
757 		}
758 
759 		/* Avoid memcpy function-call overhead */
760 		entry[0] = raw[0];
761 		entry[1] = raw[1];
762 
763 		/*
764 		 * To detect the hardware bug we need to clear the entry
765 		 * back to zero.
766 		 */
767 		raw[0] = raw[1] = 0UL;
768 
769 		/* Update head pointer of hardware ring-buffer */
770 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
771 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
772 
773 		/* Handle PPR entry */
774 		iommu_handle_ppr_entry(iommu, entry);
775 
776 		/* Refresh ring-buffer information */
777 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
778 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
779 	}
780 }
781 
amd_iommu_int_thread(int irq,void * data)782 irqreturn_t amd_iommu_int_thread(int irq, void *data)
783 {
784 	struct amd_iommu *iommu = (struct amd_iommu *) data;
785 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
786 
787 	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
788 		/* Enable EVT and PPR interrupts again */
789 		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
790 			iommu->mmio_base + MMIO_STATUS_OFFSET);
791 
792 		if (status & MMIO_STATUS_EVT_INT_MASK) {
793 			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
794 			iommu_poll_events(iommu);
795 		}
796 
797 		if (status & MMIO_STATUS_PPR_INT_MASK) {
798 			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
799 			iommu_poll_ppr_log(iommu);
800 		}
801 
802 		/*
803 		 * Hardware bug: ERBT1312
804 		 * When re-enabling interrupt (by writing 1
805 		 * to clear the bit), the hardware might also try to set
806 		 * the interrupt bit in the event status register.
807 		 * In this scenario, the bit will be set, and disable
808 		 * subsequent interrupts.
809 		 *
810 		 * Workaround: The IOMMU driver should read back the
811 		 * status register and check if the interrupt bits are cleared.
812 		 * If not, driver will need to go through the interrupt handler
813 		 * again and re-clear the bits
814 		 */
815 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
816 	}
817 	return IRQ_HANDLED;
818 }
819 
amd_iommu_int_handler(int irq,void * data)820 irqreturn_t amd_iommu_int_handler(int irq, void *data)
821 {
822 	return IRQ_WAKE_THREAD;
823 }
824 
825 /****************************************************************************
826  *
827  * IOMMU command queuing functions
828  *
829  ****************************************************************************/
830 
wait_on_sem(volatile u64 * sem)831 static int wait_on_sem(volatile u64 *sem)
832 {
833 	int i = 0;
834 
835 	while (*sem == 0 && i < LOOP_TIMEOUT) {
836 		udelay(1);
837 		i += 1;
838 	}
839 
840 	if (i == LOOP_TIMEOUT) {
841 		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
842 		return -EIO;
843 	}
844 
845 	return 0;
846 }
847 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd,u32 tail)848 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
849 			       struct iommu_cmd *cmd,
850 			       u32 tail)
851 {
852 	u8 *target;
853 
854 	target = iommu->cmd_buf + tail;
855 	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
856 
857 	/* Copy command to buffer */
858 	memcpy(target, cmd, sizeof(*cmd));
859 
860 	/* Tell the IOMMU about it */
861 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
862 }
863 
build_completion_wait(struct iommu_cmd * cmd,u64 address)864 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
865 {
866 	WARN_ON(address & 0x7ULL);
867 
868 	memset(cmd, 0, sizeof(*cmd));
869 	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
870 	cmd->data[1] = upper_32_bits(__pa(address));
871 	cmd->data[2] = 1;
872 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
873 }
874 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)875 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
876 {
877 	memset(cmd, 0, sizeof(*cmd));
878 	cmd->data[0] = devid;
879 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
880 }
881 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)882 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
883 				  size_t size, u16 domid, int pde)
884 {
885 	u64 pages;
886 	int s;
887 
888 	pages = iommu_num_pages(address, size, PAGE_SIZE);
889 	s     = 0;
890 
891 	if (pages > 1) {
892 		/*
893 		 * If we have to flush more than one page, flush all
894 		 * TLB entries for this domain
895 		 */
896 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
897 		s = 1;
898 	}
899 
900 	address &= PAGE_MASK;
901 
902 	memset(cmd, 0, sizeof(*cmd));
903 	cmd->data[1] |= domid;
904 	cmd->data[2]  = lower_32_bits(address);
905 	cmd->data[3]  = upper_32_bits(address);
906 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
907 	if (s) /* size bit - we flush more than one 4kb page */
908 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
909 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
910 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
911 }
912 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)913 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
914 				  u64 address, size_t size)
915 {
916 	u64 pages;
917 	int s;
918 
919 	pages = iommu_num_pages(address, size, PAGE_SIZE);
920 	s     = 0;
921 
922 	if (pages > 1) {
923 		/*
924 		 * If we have to flush more than one page, flush all
925 		 * TLB entries for this domain
926 		 */
927 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
928 		s = 1;
929 	}
930 
931 	address &= PAGE_MASK;
932 
933 	memset(cmd, 0, sizeof(*cmd));
934 	cmd->data[0]  = devid;
935 	cmd->data[0] |= (qdep & 0xff) << 24;
936 	cmd->data[1]  = devid;
937 	cmd->data[2]  = lower_32_bits(address);
938 	cmd->data[3]  = upper_32_bits(address);
939 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
940 	if (s)
941 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
942 }
943 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,int pasid,u64 address,bool size)944 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
945 				  u64 address, bool size)
946 {
947 	memset(cmd, 0, sizeof(*cmd));
948 
949 	address &= ~(0xfffULL);
950 
951 	cmd->data[0]  = pasid & PASID_MASK;
952 	cmd->data[1]  = domid;
953 	cmd->data[2]  = lower_32_bits(address);
954 	cmd->data[3]  = upper_32_bits(address);
955 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
956 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
957 	if (size)
958 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
959 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
960 }
961 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,int pasid,int qdep,u64 address,bool size)962 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
963 				  int qdep, u64 address, bool size)
964 {
965 	memset(cmd, 0, sizeof(*cmd));
966 
967 	address &= ~(0xfffULL);
968 
969 	cmd->data[0]  = devid;
970 	cmd->data[0] |= (pasid & 0xff) << 16;
971 	cmd->data[0] |= (qdep  & 0xff) << 24;
972 	cmd->data[1]  = devid;
973 	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
974 	cmd->data[2]  = lower_32_bits(address);
975 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
976 	cmd->data[3]  = upper_32_bits(address);
977 	if (size)
978 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
979 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
980 }
981 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,int pasid,int status,int tag,bool gn)982 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
983 			       int status, int tag, bool gn)
984 {
985 	memset(cmd, 0, sizeof(*cmd));
986 
987 	cmd->data[0]  = devid;
988 	if (gn) {
989 		cmd->data[1]  = pasid & PASID_MASK;
990 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
991 	}
992 	cmd->data[3]  = tag & 0x1ff;
993 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
994 
995 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
996 }
997 
build_inv_all(struct iommu_cmd * cmd)998 static void build_inv_all(struct iommu_cmd *cmd)
999 {
1000 	memset(cmd, 0, sizeof(*cmd));
1001 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1002 }
1003 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1004 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1005 {
1006 	memset(cmd, 0, sizeof(*cmd));
1007 	cmd->data[0] = devid;
1008 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1009 }
1010 
1011 /*
1012  * Writes the command to the IOMMUs command buffer and informs the
1013  * hardware about the new command.
1014  */
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1015 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1016 				    struct iommu_cmd *cmd,
1017 				    bool sync)
1018 {
1019 	u32 left, tail, head, next_tail;
1020 	unsigned long flags;
1021 
1022 	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
1023 
1024 again:
1025 	spin_lock_irqsave(&iommu->lock, flags);
1026 
1027 	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1028 	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1029 	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
1030 	left      = (head - next_tail) % iommu->cmd_buf_size;
1031 
1032 	if (left <= 2) {
1033 		struct iommu_cmd sync_cmd;
1034 		volatile u64 sem = 0;
1035 		int ret;
1036 
1037 		build_completion_wait(&sync_cmd, (u64)&sem);
1038 		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1039 
1040 		spin_unlock_irqrestore(&iommu->lock, flags);
1041 
1042 		if ((ret = wait_on_sem(&sem)) != 0)
1043 			return ret;
1044 
1045 		goto again;
1046 	}
1047 
1048 	copy_cmd_to_buffer(iommu, cmd, tail);
1049 
1050 	/* We need to sync now to make sure all commands are processed */
1051 	iommu->need_sync = sync;
1052 
1053 	spin_unlock_irqrestore(&iommu->lock, flags);
1054 
1055 	return 0;
1056 }
1057 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1058 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1059 {
1060 	return iommu_queue_command_sync(iommu, cmd, true);
1061 }
1062 
1063 /*
1064  * This function queues a completion wait command into the command
1065  * buffer of an IOMMU
1066  */
iommu_completion_wait(struct amd_iommu * iommu)1067 static int iommu_completion_wait(struct amd_iommu *iommu)
1068 {
1069 	struct iommu_cmd cmd;
1070 	volatile u64 sem = 0;
1071 	int ret;
1072 
1073 	if (!iommu->need_sync)
1074 		return 0;
1075 
1076 	build_completion_wait(&cmd, (u64)&sem);
1077 
1078 	ret = iommu_queue_command_sync(iommu, &cmd, false);
1079 	if (ret)
1080 		return ret;
1081 
1082 	return wait_on_sem(&sem);
1083 }
1084 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1085 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1086 {
1087 	struct iommu_cmd cmd;
1088 
1089 	build_inv_dte(&cmd, devid);
1090 
1091 	return iommu_queue_command(iommu, &cmd);
1092 }
1093 
iommu_flush_dte_all(struct amd_iommu * iommu)1094 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1095 {
1096 	u32 devid;
1097 
1098 	for (devid = 0; devid <= 0xffff; ++devid)
1099 		iommu_flush_dte(iommu, devid);
1100 
1101 	iommu_completion_wait(iommu);
1102 }
1103 
1104 /*
1105  * This function uses heavy locking and may disable irqs for some time. But
1106  * this is no issue because it is only called during resume.
1107  */
iommu_flush_tlb_all(struct amd_iommu * iommu)1108 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1109 {
1110 	u32 dom_id;
1111 
1112 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1113 		struct iommu_cmd cmd;
1114 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1115 				      dom_id, 1);
1116 		iommu_queue_command(iommu, &cmd);
1117 	}
1118 
1119 	iommu_completion_wait(iommu);
1120 }
1121 
iommu_flush_all(struct amd_iommu * iommu)1122 static void iommu_flush_all(struct amd_iommu *iommu)
1123 {
1124 	struct iommu_cmd cmd;
1125 
1126 	build_inv_all(&cmd);
1127 
1128 	iommu_queue_command(iommu, &cmd);
1129 	iommu_completion_wait(iommu);
1130 }
1131 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1132 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1133 {
1134 	struct iommu_cmd cmd;
1135 
1136 	build_inv_irt(&cmd, devid);
1137 
1138 	iommu_queue_command(iommu, &cmd);
1139 }
1140 
iommu_flush_irt_all(struct amd_iommu * iommu)1141 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1142 {
1143 	u32 devid;
1144 
1145 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1146 		iommu_flush_irt(iommu, devid);
1147 
1148 	iommu_completion_wait(iommu);
1149 }
1150 
iommu_flush_all_caches(struct amd_iommu * iommu)1151 void iommu_flush_all_caches(struct amd_iommu *iommu)
1152 {
1153 	if (iommu_feature(iommu, FEATURE_IA)) {
1154 		iommu_flush_all(iommu);
1155 	} else {
1156 		iommu_flush_dte_all(iommu);
1157 		iommu_flush_irt_all(iommu);
1158 		iommu_flush_tlb_all(iommu);
1159 	}
1160 }
1161 
1162 /*
1163  * Command send function for flushing on-device TLB
1164  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1165 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1166 			      u64 address, size_t size)
1167 {
1168 	struct amd_iommu *iommu;
1169 	struct iommu_cmd cmd;
1170 	int qdep;
1171 
1172 	qdep     = dev_data->ats.qdep;
1173 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1174 
1175 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1176 
1177 	return iommu_queue_command(iommu, &cmd);
1178 }
1179 
1180 /*
1181  * Command send function for invalidating a device table entry
1182  */
device_flush_dte(struct iommu_dev_data * dev_data)1183 static int device_flush_dte(struct iommu_dev_data *dev_data)
1184 {
1185 	struct amd_iommu *iommu;
1186 	int ret;
1187 
1188 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1189 
1190 	ret = iommu_flush_dte(iommu, dev_data->devid);
1191 	if (ret)
1192 		return ret;
1193 
1194 	if (dev_data->ats.enabled)
1195 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1196 
1197 	return ret;
1198 }
1199 
1200 /*
1201  * TLB invalidation function which is called from the mapping functions.
1202  * It invalidates a single PTE if the range to flush is within a single
1203  * page. Otherwise it flushes the whole TLB of the IOMMU.
1204  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1205 static void __domain_flush_pages(struct protection_domain *domain,
1206 				 u64 address, size_t size, int pde)
1207 {
1208 	struct iommu_dev_data *dev_data;
1209 	struct iommu_cmd cmd;
1210 	int ret = 0, i;
1211 
1212 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1213 
1214 	for (i = 0; i < amd_iommus_present; ++i) {
1215 		if (!domain->dev_iommu[i])
1216 			continue;
1217 
1218 		/*
1219 		 * Devices of this domain are behind this IOMMU
1220 		 * We need a TLB flush
1221 		 */
1222 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1223 	}
1224 
1225 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1226 
1227 		if (!dev_data->ats.enabled)
1228 			continue;
1229 
1230 		ret |= device_flush_iotlb(dev_data, address, size);
1231 	}
1232 
1233 	WARN_ON(ret);
1234 }
1235 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1236 static void domain_flush_pages(struct protection_domain *domain,
1237 			       u64 address, size_t size)
1238 {
1239 	__domain_flush_pages(domain, address, size, 0);
1240 }
1241 
1242 /* Flush the whole IO/TLB for a given protection domain */
domain_flush_tlb(struct protection_domain * domain)1243 static void domain_flush_tlb(struct protection_domain *domain)
1244 {
1245 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1246 }
1247 
1248 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1249 static void domain_flush_tlb_pde(struct protection_domain *domain)
1250 {
1251 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1252 }
1253 
domain_flush_complete(struct protection_domain * domain)1254 static void domain_flush_complete(struct protection_domain *domain)
1255 {
1256 	int i;
1257 
1258 	for (i = 0; i < amd_iommus_present; ++i) {
1259 		if (!domain->dev_iommu[i])
1260 			continue;
1261 
1262 		/*
1263 		 * Devices of this domain are behind this IOMMU
1264 		 * We need to wait for completion of all commands.
1265 		 */
1266 		iommu_completion_wait(amd_iommus[i]);
1267 	}
1268 }
1269 
1270 
1271 /*
1272  * This function flushes the DTEs for all devices in domain
1273  */
domain_flush_devices(struct protection_domain * domain)1274 static void domain_flush_devices(struct protection_domain *domain)
1275 {
1276 	struct iommu_dev_data *dev_data;
1277 
1278 	list_for_each_entry(dev_data, &domain->dev_list, list)
1279 		device_flush_dte(dev_data);
1280 }
1281 
1282 /****************************************************************************
1283  *
1284  * The functions below are used the create the page table mappings for
1285  * unity mapped regions.
1286  *
1287  ****************************************************************************/
1288 
1289 /*
1290  * This function is used to add another level to an IO page table. Adding
1291  * another level increases the size of the address space by 9 bits to a size up
1292  * to 64 bits.
1293  */
increase_address_space(struct protection_domain * domain,gfp_t gfp)1294 static bool increase_address_space(struct protection_domain *domain,
1295 				   gfp_t gfp)
1296 {
1297 	u64 *pte;
1298 
1299 	if (domain->mode == PAGE_MODE_6_LEVEL)
1300 		/* address space already 64 bit large */
1301 		return false;
1302 
1303 	pte = (void *)get_zeroed_page(gfp);
1304 	if (!pte)
1305 		return false;
1306 
1307 	*pte             = PM_LEVEL_PDE(domain->mode,
1308 					virt_to_phys(domain->pt_root));
1309 	domain->pt_root  = pte;
1310 	domain->mode    += 1;
1311 	domain->updated  = true;
1312 
1313 	return true;
1314 }
1315 
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp)1316 static u64 *alloc_pte(struct protection_domain *domain,
1317 		      unsigned long address,
1318 		      unsigned long page_size,
1319 		      u64 **pte_page,
1320 		      gfp_t gfp)
1321 {
1322 	int level, end_lvl;
1323 	u64 *pte, *page;
1324 
1325 	BUG_ON(!is_power_of_2(page_size));
1326 
1327 	while (address > PM_LEVEL_SIZE(domain->mode))
1328 		increase_address_space(domain, gfp);
1329 
1330 	level   = domain->mode - 1;
1331 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1332 	address = PAGE_SIZE_ALIGN(address, page_size);
1333 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1334 
1335 	while (level > end_lvl) {
1336 		if (!IOMMU_PTE_PRESENT(*pte)) {
1337 			page = (u64 *)get_zeroed_page(gfp);
1338 			if (!page)
1339 				return NULL;
1340 			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1341 		}
1342 
1343 		/* No level skipping support yet */
1344 		if (PM_PTE_LEVEL(*pte) != level)
1345 			return NULL;
1346 
1347 		level -= 1;
1348 
1349 		pte = IOMMU_PTE_PAGE(*pte);
1350 
1351 		if (pte_page && level == end_lvl)
1352 			*pte_page = pte;
1353 
1354 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1355 	}
1356 
1357 	return pte;
1358 }
1359 
1360 /*
1361  * This function checks if there is a PTE for a given dma address. If
1362  * there is one, it returns the pointer to it.
1363  */
fetch_pte(struct protection_domain * domain,unsigned long address)1364 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1365 {
1366 	int level;
1367 	u64 *pte;
1368 
1369 	if (address > PM_LEVEL_SIZE(domain->mode))
1370 		return NULL;
1371 
1372 	level   =  domain->mode - 1;
1373 	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1374 
1375 	while (level > 0) {
1376 
1377 		/* Not Present */
1378 		if (!IOMMU_PTE_PRESENT(*pte))
1379 			return NULL;
1380 
1381 		/* Large PTE */
1382 		if (PM_PTE_LEVEL(*pte) == 0x07) {
1383 			unsigned long pte_mask, __pte;
1384 
1385 			/*
1386 			 * If we have a series of large PTEs, make
1387 			 * sure to return a pointer to the first one.
1388 			 */
1389 			pte_mask = PTE_PAGE_SIZE(*pte);
1390 			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1391 			__pte    = ((unsigned long)pte) & pte_mask;
1392 
1393 			return (u64 *)__pte;
1394 		}
1395 
1396 		/* No level skipping support yet */
1397 		if (PM_PTE_LEVEL(*pte) != level)
1398 			return NULL;
1399 
1400 		level -= 1;
1401 
1402 		/* Walk to the next level */
1403 		pte = IOMMU_PTE_PAGE(*pte);
1404 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1405 	}
1406 
1407 	return pte;
1408 }
1409 
1410 /*
1411  * Generic mapping functions. It maps a physical address into a DMA
1412  * address space. It allocates the page table pages if necessary.
1413  * In the future it can be extended to a generic mapping function
1414  * supporting all features of AMD IOMMU page tables like level skipping
1415  * and full 64 bit address spaces.
1416  */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,int prot,unsigned long page_size)1417 static int iommu_map_page(struct protection_domain *dom,
1418 			  unsigned long bus_addr,
1419 			  unsigned long phys_addr,
1420 			  int prot,
1421 			  unsigned long page_size)
1422 {
1423 	u64 __pte, *pte;
1424 	int i, count;
1425 
1426 	if (!(prot & IOMMU_PROT_MASK))
1427 		return -EINVAL;
1428 
1429 	bus_addr  = PAGE_ALIGN(bus_addr);
1430 	phys_addr = PAGE_ALIGN(phys_addr);
1431 	count     = PAGE_SIZE_PTE_COUNT(page_size);
1432 	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1433 
1434 	for (i = 0; i < count; ++i)
1435 		if (IOMMU_PTE_PRESENT(pte[i]))
1436 			return -EBUSY;
1437 
1438 	if (page_size > PAGE_SIZE) {
1439 		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1440 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1441 	} else
1442 		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1443 
1444 	if (prot & IOMMU_PROT_IR)
1445 		__pte |= IOMMU_PTE_IR;
1446 	if (prot & IOMMU_PROT_IW)
1447 		__pte |= IOMMU_PTE_IW;
1448 
1449 	for (i = 0; i < count; ++i)
1450 		pte[i] = __pte;
1451 
1452 	update_domain(dom);
1453 
1454 	return 0;
1455 }
1456 
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1457 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1458 				      unsigned long bus_addr,
1459 				      unsigned long page_size)
1460 {
1461 	unsigned long long unmap_size, unmapped;
1462 	u64 *pte;
1463 
1464 	BUG_ON(!is_power_of_2(page_size));
1465 
1466 	unmapped = 0;
1467 
1468 	while (unmapped < page_size) {
1469 
1470 		pte = fetch_pte(dom, bus_addr);
1471 
1472 		if (!pte) {
1473 			/*
1474 			 * No PTE for this address
1475 			 * move forward in 4kb steps
1476 			 */
1477 			unmap_size = PAGE_SIZE;
1478 		} else if (PM_PTE_LEVEL(*pte) == 0) {
1479 			/* 4kb PTE found for this address */
1480 			unmap_size = PAGE_SIZE;
1481 			*pte       = 0ULL;
1482 		} else {
1483 			int count, i;
1484 
1485 			/* Large PTE found which maps this address */
1486 			unmap_size = PTE_PAGE_SIZE(*pte);
1487 			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
1488 			for (i = 0; i < count; i++)
1489 				pte[i] = 0ULL;
1490 		}
1491 
1492 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1493 		unmapped += unmap_size;
1494 	}
1495 
1496 	BUG_ON(!is_power_of_2(unmapped));
1497 
1498 	return unmapped;
1499 }
1500 
1501 /*
1502  * This function checks if a specific unity mapping entry is needed for
1503  * this specific IOMMU.
1504  */
iommu_for_unity_map(struct amd_iommu * iommu,struct unity_map_entry * entry)1505 static int iommu_for_unity_map(struct amd_iommu *iommu,
1506 			       struct unity_map_entry *entry)
1507 {
1508 	u16 bdf, i;
1509 
1510 	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1511 		bdf = amd_iommu_alias_table[i];
1512 		if (amd_iommu_rlookup_table[bdf] == iommu)
1513 			return 1;
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 /*
1520  * This function actually applies the mapping to the page table of the
1521  * dma_ops domain.
1522  */
dma_ops_unity_map(struct dma_ops_domain * dma_dom,struct unity_map_entry * e)1523 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1524 			     struct unity_map_entry *e)
1525 {
1526 	u64 addr;
1527 	int ret;
1528 
1529 	for (addr = e->address_start; addr < e->address_end;
1530 	     addr += PAGE_SIZE) {
1531 		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1532 				     PAGE_SIZE);
1533 		if (ret)
1534 			return ret;
1535 		/*
1536 		 * if unity mapping is in aperture range mark the page
1537 		 * as allocated in the aperture
1538 		 */
1539 		if (addr < dma_dom->aperture_size)
1540 			__set_bit(addr >> PAGE_SHIFT,
1541 				  dma_dom->aperture[0]->bitmap);
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 /*
1548  * Init the unity mappings for a specific IOMMU in the system
1549  *
1550  * Basically iterates over all unity mapping entries and applies them to
1551  * the default domain DMA of that IOMMU if necessary.
1552  */
iommu_init_unity_mappings(struct amd_iommu * iommu)1553 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1554 {
1555 	struct unity_map_entry *entry;
1556 	int ret;
1557 
1558 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1559 		if (!iommu_for_unity_map(iommu, entry))
1560 			continue;
1561 		ret = dma_ops_unity_map(iommu->default_dom, entry);
1562 		if (ret)
1563 			return ret;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 /*
1570  * Inits the unity mappings required for a specific device
1571  */
init_unity_mappings_for_device(struct dma_ops_domain * dma_dom,u16 devid)1572 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1573 					  u16 devid)
1574 {
1575 	struct unity_map_entry *e;
1576 	int ret;
1577 
1578 	list_for_each_entry(e, &amd_iommu_unity_map, list) {
1579 		if (!(devid >= e->devid_start && devid <= e->devid_end))
1580 			continue;
1581 		ret = dma_ops_unity_map(dma_dom, e);
1582 		if (ret)
1583 			return ret;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 /****************************************************************************
1590  *
1591  * The next functions belong to the address allocator for the dma_ops
1592  * interface functions. They work like the allocators in the other IOMMU
1593  * drivers. Its basically a bitmap which marks the allocated pages in
1594  * the aperture. Maybe it could be enhanced in the future to a more
1595  * efficient allocator.
1596  *
1597  ****************************************************************************/
1598 
1599 /*
1600  * The address allocator core functions.
1601  *
1602  * called with domain->lock held
1603  */
1604 
1605 /*
1606  * Used to reserve address ranges in the aperture (e.g. for exclusion
1607  * ranges.
1608  */
dma_ops_reserve_addresses(struct dma_ops_domain * dom,unsigned long start_page,unsigned int pages)1609 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1610 				      unsigned long start_page,
1611 				      unsigned int pages)
1612 {
1613 	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1614 
1615 	if (start_page + pages > last_page)
1616 		pages = last_page - start_page;
1617 
1618 	for (i = start_page; i < start_page + pages; ++i) {
1619 		int index = i / APERTURE_RANGE_PAGES;
1620 		int page  = i % APERTURE_RANGE_PAGES;
1621 		__set_bit(page, dom->aperture[index]->bitmap);
1622 	}
1623 }
1624 
1625 /*
1626  * This function is used to add a new aperture range to an existing
1627  * aperture in case of dma_ops domain allocation or address allocation
1628  * failure.
1629  */
alloc_new_range(struct dma_ops_domain * dma_dom,bool populate,gfp_t gfp)1630 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1631 			   bool populate, gfp_t gfp)
1632 {
1633 	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1634 	struct amd_iommu *iommu;
1635 	unsigned long i, old_size;
1636 
1637 #ifdef CONFIG_IOMMU_STRESS
1638 	populate = false;
1639 #endif
1640 
1641 	if (index >= APERTURE_MAX_RANGES)
1642 		return -ENOMEM;
1643 
1644 	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1645 	if (!dma_dom->aperture[index])
1646 		return -ENOMEM;
1647 
1648 	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1649 	if (!dma_dom->aperture[index]->bitmap)
1650 		goto out_free;
1651 
1652 	dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1653 
1654 	if (populate) {
1655 		unsigned long address = dma_dom->aperture_size;
1656 		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1657 		u64 *pte, *pte_page;
1658 
1659 		for (i = 0; i < num_ptes; ++i) {
1660 			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1661 					&pte_page, gfp);
1662 			if (!pte)
1663 				goto out_free;
1664 
1665 			dma_dom->aperture[index]->pte_pages[i] = pte_page;
1666 
1667 			address += APERTURE_RANGE_SIZE / 64;
1668 		}
1669 	}
1670 
1671 	old_size                = dma_dom->aperture_size;
1672 	dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1673 
1674 	/* Reserve address range used for MSI messages */
1675 	if (old_size < MSI_ADDR_BASE_LO &&
1676 	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1677 		unsigned long spage;
1678 		int pages;
1679 
1680 		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1681 		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1682 
1683 		dma_ops_reserve_addresses(dma_dom, spage, pages);
1684 	}
1685 
1686 	/* Initialize the exclusion range if necessary */
1687 	for_each_iommu(iommu) {
1688 		if (iommu->exclusion_start &&
1689 		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1690 		    && iommu->exclusion_start < dma_dom->aperture_size) {
1691 			unsigned long startpage;
1692 			int pages = iommu_num_pages(iommu->exclusion_start,
1693 						    iommu->exclusion_length,
1694 						    PAGE_SIZE);
1695 			startpage = iommu->exclusion_start >> PAGE_SHIFT;
1696 			dma_ops_reserve_addresses(dma_dom, startpage, pages);
1697 		}
1698 	}
1699 
1700 	/*
1701 	 * Check for areas already mapped as present in the new aperture
1702 	 * range and mark those pages as reserved in the allocator. Such
1703 	 * mappings may already exist as a result of requested unity
1704 	 * mappings for devices.
1705 	 */
1706 	for (i = dma_dom->aperture[index]->offset;
1707 	     i < dma_dom->aperture_size;
1708 	     i += PAGE_SIZE) {
1709 		u64 *pte = fetch_pte(&dma_dom->domain, i);
1710 		if (!pte || !IOMMU_PTE_PRESENT(*pte))
1711 			continue;
1712 
1713 		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1714 	}
1715 
1716 	update_domain(&dma_dom->domain);
1717 
1718 	return 0;
1719 
1720 out_free:
1721 	update_domain(&dma_dom->domain);
1722 
1723 	free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1724 
1725 	kfree(dma_dom->aperture[index]);
1726 	dma_dom->aperture[index] = NULL;
1727 
1728 	return -ENOMEM;
1729 }
1730 
dma_ops_area_alloc(struct device * dev,struct dma_ops_domain * dom,unsigned int pages,unsigned long align_mask,u64 dma_mask,unsigned long start)1731 static unsigned long dma_ops_area_alloc(struct device *dev,
1732 					struct dma_ops_domain *dom,
1733 					unsigned int pages,
1734 					unsigned long align_mask,
1735 					u64 dma_mask,
1736 					unsigned long start)
1737 {
1738 	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1739 	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1740 	int i = start >> APERTURE_RANGE_SHIFT;
1741 	unsigned long boundary_size;
1742 	unsigned long address = -1;
1743 	unsigned long limit;
1744 
1745 	next_bit >>= PAGE_SHIFT;
1746 
1747 	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1748 			PAGE_SIZE) >> PAGE_SHIFT;
1749 
1750 	for (;i < max_index; ++i) {
1751 		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1752 
1753 		if (dom->aperture[i]->offset >= dma_mask)
1754 			break;
1755 
1756 		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1757 					       dma_mask >> PAGE_SHIFT);
1758 
1759 		address = iommu_area_alloc(dom->aperture[i]->bitmap,
1760 					   limit, next_bit, pages, 0,
1761 					    boundary_size, align_mask);
1762 		if (address != -1) {
1763 			address = dom->aperture[i]->offset +
1764 				  (address << PAGE_SHIFT);
1765 			dom->next_address = address + (pages << PAGE_SHIFT);
1766 			break;
1767 		}
1768 
1769 		next_bit = 0;
1770 	}
1771 
1772 	return address;
1773 }
1774 
dma_ops_alloc_addresses(struct device * dev,struct dma_ops_domain * dom,unsigned int pages,unsigned long align_mask,u64 dma_mask)1775 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1776 					     struct dma_ops_domain *dom,
1777 					     unsigned int pages,
1778 					     unsigned long align_mask,
1779 					     u64 dma_mask)
1780 {
1781 	unsigned long address;
1782 
1783 #ifdef CONFIG_IOMMU_STRESS
1784 	dom->next_address = 0;
1785 	dom->need_flush = true;
1786 #endif
1787 
1788 	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1789 				     dma_mask, dom->next_address);
1790 
1791 	if (address == -1) {
1792 		dom->next_address = 0;
1793 		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1794 					     dma_mask, 0);
1795 		dom->need_flush = true;
1796 	}
1797 
1798 	if (unlikely(address == -1))
1799 		address = DMA_ERROR_CODE;
1800 
1801 	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1802 
1803 	return address;
1804 }
1805 
1806 /*
1807  * The address free function.
1808  *
1809  * called with domain->lock held
1810  */
dma_ops_free_addresses(struct dma_ops_domain * dom,unsigned long address,unsigned int pages)1811 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1812 				   unsigned long address,
1813 				   unsigned int pages)
1814 {
1815 	unsigned i = address >> APERTURE_RANGE_SHIFT;
1816 	struct aperture_range *range = dom->aperture[i];
1817 
1818 	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1819 
1820 #ifdef CONFIG_IOMMU_STRESS
1821 	if (i < 4)
1822 		return;
1823 #endif
1824 
1825 	if (address >= dom->next_address)
1826 		dom->need_flush = true;
1827 
1828 	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1829 
1830 	bitmap_clear(range->bitmap, address, pages);
1831 
1832 }
1833 
1834 /****************************************************************************
1835  *
1836  * The next functions belong to the domain allocation. A domain is
1837  * allocated for every IOMMU as the default domain. If device isolation
1838  * is enabled, every device get its own domain. The most important thing
1839  * about domains is the page table mapping the DMA address space they
1840  * contain.
1841  *
1842  ****************************************************************************/
1843 
1844 /*
1845  * This function adds a protection domain to the global protection domain list
1846  */
add_domain_to_list(struct protection_domain * domain)1847 static void add_domain_to_list(struct protection_domain *domain)
1848 {
1849 	unsigned long flags;
1850 
1851 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1852 	list_add(&domain->list, &amd_iommu_pd_list);
1853 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1854 }
1855 
1856 /*
1857  * This function removes a protection domain to the global
1858  * protection domain list
1859  */
del_domain_from_list(struct protection_domain * domain)1860 static void del_domain_from_list(struct protection_domain *domain)
1861 {
1862 	unsigned long flags;
1863 
1864 	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1865 	list_del(&domain->list);
1866 	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1867 }
1868 
domain_id_alloc(void)1869 static u16 domain_id_alloc(void)
1870 {
1871 	unsigned long flags;
1872 	int id;
1873 
1874 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1875 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1876 	BUG_ON(id == 0);
1877 	if (id > 0 && id < MAX_DOMAIN_ID)
1878 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1879 	else
1880 		id = 0;
1881 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1882 
1883 	return id;
1884 }
1885 
domain_id_free(int id)1886 static void domain_id_free(int id)
1887 {
1888 	unsigned long flags;
1889 
1890 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1891 	if (id > 0 && id < MAX_DOMAIN_ID)
1892 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1893 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1894 }
1895 
free_pagetable(struct protection_domain * domain)1896 static void free_pagetable(struct protection_domain *domain)
1897 {
1898 	int i, j;
1899 	u64 *p1, *p2, *p3;
1900 
1901 	p1 = domain->pt_root;
1902 
1903 	if (!p1)
1904 		return;
1905 
1906 	for (i = 0; i < 512; ++i) {
1907 		if (!IOMMU_PTE_PRESENT(p1[i]))
1908 			continue;
1909 
1910 		p2 = IOMMU_PTE_PAGE(p1[i]);
1911 		for (j = 0; j < 512; ++j) {
1912 			if (!IOMMU_PTE_PRESENT(p2[j]))
1913 				continue;
1914 			p3 = IOMMU_PTE_PAGE(p2[j]);
1915 			free_page((unsigned long)p3);
1916 		}
1917 
1918 		free_page((unsigned long)p2);
1919 	}
1920 
1921 	free_page((unsigned long)p1);
1922 
1923 	domain->pt_root = NULL;
1924 }
1925 
free_gcr3_tbl_level1(u64 * tbl)1926 static void free_gcr3_tbl_level1(u64 *tbl)
1927 {
1928 	u64 *ptr;
1929 	int i;
1930 
1931 	for (i = 0; i < 512; ++i) {
1932 		if (!(tbl[i] & GCR3_VALID))
1933 			continue;
1934 
1935 		ptr = __va(tbl[i] & PAGE_MASK);
1936 
1937 		free_page((unsigned long)ptr);
1938 	}
1939 }
1940 
free_gcr3_tbl_level2(u64 * tbl)1941 static void free_gcr3_tbl_level2(u64 *tbl)
1942 {
1943 	u64 *ptr;
1944 	int i;
1945 
1946 	for (i = 0; i < 512; ++i) {
1947 		if (!(tbl[i] & GCR3_VALID))
1948 			continue;
1949 
1950 		ptr = __va(tbl[i] & PAGE_MASK);
1951 
1952 		free_gcr3_tbl_level1(ptr);
1953 	}
1954 }
1955 
free_gcr3_table(struct protection_domain * domain)1956 static void free_gcr3_table(struct protection_domain *domain)
1957 {
1958 	if (domain->glx == 2)
1959 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1960 	else if (domain->glx == 1)
1961 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1962 	else if (domain->glx != 0)
1963 		BUG();
1964 
1965 	free_page((unsigned long)domain->gcr3_tbl);
1966 }
1967 
1968 /*
1969  * Free a domain, only used if something went wrong in the
1970  * allocation path and we need to free an already allocated page table
1971  */
dma_ops_domain_free(struct dma_ops_domain * dom)1972 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1973 {
1974 	int i;
1975 
1976 	if (!dom)
1977 		return;
1978 
1979 	del_domain_from_list(&dom->domain);
1980 
1981 	free_pagetable(&dom->domain);
1982 
1983 	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1984 		if (!dom->aperture[i])
1985 			continue;
1986 		free_page((unsigned long)dom->aperture[i]->bitmap);
1987 		kfree(dom->aperture[i]);
1988 	}
1989 
1990 	kfree(dom);
1991 }
1992 
1993 /*
1994  * Allocates a new protection domain usable for the dma_ops functions.
1995  * It also initializes the page table and the address allocator data
1996  * structures required for the dma_ops interface
1997  */
dma_ops_domain_alloc(void)1998 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1999 {
2000 	struct dma_ops_domain *dma_dom;
2001 
2002 	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2003 	if (!dma_dom)
2004 		return NULL;
2005 
2006 	spin_lock_init(&dma_dom->domain.lock);
2007 
2008 	dma_dom->domain.id = domain_id_alloc();
2009 	if (dma_dom->domain.id == 0)
2010 		goto free_dma_dom;
2011 	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2012 	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2013 	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2014 	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2015 	dma_dom->domain.priv = dma_dom;
2016 	if (!dma_dom->domain.pt_root)
2017 		goto free_dma_dom;
2018 
2019 	dma_dom->need_flush = false;
2020 	dma_dom->target_dev = 0xffff;
2021 
2022 	add_domain_to_list(&dma_dom->domain);
2023 
2024 	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2025 		goto free_dma_dom;
2026 
2027 	/*
2028 	 * mark the first page as allocated so we never return 0 as
2029 	 * a valid dma-address. So we can use 0 as error value
2030 	 */
2031 	dma_dom->aperture[0]->bitmap[0] = 1;
2032 	dma_dom->next_address = 0;
2033 
2034 
2035 	return dma_dom;
2036 
2037 free_dma_dom:
2038 	dma_ops_domain_free(dma_dom);
2039 
2040 	return NULL;
2041 }
2042 
2043 /*
2044  * little helper function to check whether a given protection domain is a
2045  * dma_ops domain
2046  */
dma_ops_domain(struct protection_domain * domain)2047 static bool dma_ops_domain(struct protection_domain *domain)
2048 {
2049 	return domain->flags & PD_DMA_OPS_MASK;
2050 }
2051 
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats)2052 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2053 {
2054 	u64 pte_root = 0;
2055 	u64 flags = 0;
2056 
2057 	if (domain->mode != PAGE_MODE_NONE)
2058 		pte_root = virt_to_phys(domain->pt_root);
2059 
2060 	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2061 		    << DEV_ENTRY_MODE_SHIFT;
2062 	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2063 
2064 	flags = amd_iommu_dev_table[devid].data[1];
2065 
2066 	if (ats)
2067 		flags |= DTE_FLAG_IOTLB;
2068 
2069 	if (domain->flags & PD_IOMMUV2_MASK) {
2070 		u64 gcr3 = __pa(domain->gcr3_tbl);
2071 		u64 glx  = domain->glx;
2072 		u64 tmp;
2073 
2074 		pte_root |= DTE_FLAG_GV;
2075 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2076 
2077 		/* First mask out possible old values for GCR3 table */
2078 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2079 		flags    &= ~tmp;
2080 
2081 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2082 		flags    &= ~tmp;
2083 
2084 		/* Encode GCR3 table into DTE */
2085 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2086 		pte_root |= tmp;
2087 
2088 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2089 		flags    |= tmp;
2090 
2091 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2092 		flags    |= tmp;
2093 	}
2094 
2095 	flags &= ~(0xffffUL);
2096 	flags |= domain->id;
2097 
2098 	amd_iommu_dev_table[devid].data[1]  = flags;
2099 	amd_iommu_dev_table[devid].data[0]  = pte_root;
2100 }
2101 
clear_dte_entry(u16 devid)2102 static void clear_dte_entry(u16 devid)
2103 {
2104 	/* remove entry from the device table seen by the hardware */
2105 	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2106 	amd_iommu_dev_table[devid].data[1] = 0;
2107 
2108 	amd_iommu_apply_erratum_63(devid);
2109 }
2110 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)2111 static void do_attach(struct iommu_dev_data *dev_data,
2112 		      struct protection_domain *domain)
2113 {
2114 	struct amd_iommu *iommu;
2115 	bool ats;
2116 
2117 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2118 	ats   = dev_data->ats.enabled;
2119 
2120 	/* Update data structures */
2121 	dev_data->domain = domain;
2122 	list_add(&dev_data->list, &domain->dev_list);
2123 	set_dte_entry(dev_data->devid, domain, ats);
2124 
2125 	/* Do reference counting */
2126 	domain->dev_iommu[iommu->index] += 1;
2127 	domain->dev_cnt                 += 1;
2128 
2129 	/* Flush the DTE entry */
2130 	device_flush_dte(dev_data);
2131 }
2132 
do_detach(struct iommu_dev_data * dev_data)2133 static void do_detach(struct iommu_dev_data *dev_data)
2134 {
2135 	struct amd_iommu *iommu;
2136 
2137 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2138 
2139 	/* decrease reference counters */
2140 	dev_data->domain->dev_iommu[iommu->index] -= 1;
2141 	dev_data->domain->dev_cnt                 -= 1;
2142 
2143 	/* Update data structures */
2144 	dev_data->domain = NULL;
2145 	list_del(&dev_data->list);
2146 	clear_dte_entry(dev_data->devid);
2147 
2148 	/* Flush the DTE entry */
2149 	device_flush_dte(dev_data);
2150 }
2151 
2152 /*
2153  * If a device is not yet associated with a domain, this function does
2154  * assigns it visible for the hardware
2155  */
__attach_device(struct iommu_dev_data * dev_data,struct protection_domain * domain)2156 static int __attach_device(struct iommu_dev_data *dev_data,
2157 			   struct protection_domain *domain)
2158 {
2159 	int ret;
2160 
2161 	/* lock domain */
2162 	spin_lock(&domain->lock);
2163 
2164 	if (dev_data->alias_data != NULL) {
2165 		struct iommu_dev_data *alias_data = dev_data->alias_data;
2166 
2167 		/* Some sanity checks */
2168 		ret = -EBUSY;
2169 		if (alias_data->domain != NULL &&
2170 				alias_data->domain != domain)
2171 			goto out_unlock;
2172 
2173 		if (dev_data->domain != NULL &&
2174 				dev_data->domain != domain)
2175 			goto out_unlock;
2176 
2177 		/* Do real assignment */
2178 		if (alias_data->domain == NULL)
2179 			do_attach(alias_data, domain);
2180 
2181 		atomic_inc(&alias_data->bind);
2182 	}
2183 
2184 	if (dev_data->domain == NULL)
2185 		do_attach(dev_data, domain);
2186 
2187 	atomic_inc(&dev_data->bind);
2188 
2189 	ret = 0;
2190 
2191 out_unlock:
2192 
2193 	/* ready */
2194 	spin_unlock(&domain->lock);
2195 
2196 	return ret;
2197 }
2198 
2199 
pdev_iommuv2_disable(struct pci_dev * pdev)2200 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2201 {
2202 	pci_disable_ats(pdev);
2203 	pci_disable_pri(pdev);
2204 	pci_disable_pasid(pdev);
2205 }
2206 
2207 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)2208 static int pri_reset_while_enabled(struct pci_dev *pdev)
2209 {
2210 	u16 control;
2211 	int pos;
2212 
2213 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2214 	if (!pos)
2215 		return -EINVAL;
2216 
2217 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2218 	control |= PCI_PRI_CTRL_RESET;
2219 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2220 
2221 	return 0;
2222 }
2223 
pdev_iommuv2_enable(struct pci_dev * pdev)2224 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2225 {
2226 	bool reset_enable;
2227 	int reqs, ret;
2228 
2229 	/* FIXME: Hardcode number of outstanding requests for now */
2230 	reqs = 32;
2231 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2232 		reqs = 1;
2233 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2234 
2235 	/* Only allow access to user-accessible pages */
2236 	ret = pci_enable_pasid(pdev, 0);
2237 	if (ret)
2238 		goto out_err;
2239 
2240 	/* First reset the PRI state of the device */
2241 	ret = pci_reset_pri(pdev);
2242 	if (ret)
2243 		goto out_err;
2244 
2245 	/* Enable PRI */
2246 	ret = pci_enable_pri(pdev, reqs);
2247 	if (ret)
2248 		goto out_err;
2249 
2250 	if (reset_enable) {
2251 		ret = pri_reset_while_enabled(pdev);
2252 		if (ret)
2253 			goto out_err;
2254 	}
2255 
2256 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2257 	if (ret)
2258 		goto out_err;
2259 
2260 	return 0;
2261 
2262 out_err:
2263 	pci_disable_pri(pdev);
2264 	pci_disable_pasid(pdev);
2265 
2266 	return ret;
2267 }
2268 
2269 /* FIXME: Move this to PCI code */
2270 #define PCI_PRI_TLP_OFF		(1 << 15)
2271 
pci_pri_tlp_required(struct pci_dev * pdev)2272 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2273 {
2274 	u16 status;
2275 	int pos;
2276 
2277 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2278 	if (!pos)
2279 		return false;
2280 
2281 	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2282 
2283 	return (status & PCI_PRI_TLP_OFF) ? true : false;
2284 }
2285 
2286 /*
2287  * If a device is not yet associated with a domain, this function
2288  * assigns it visible for the hardware
2289  */
attach_device(struct device * dev,struct protection_domain * domain)2290 static int attach_device(struct device *dev,
2291 			 struct protection_domain *domain)
2292 {
2293 	struct pci_dev *pdev = to_pci_dev(dev);
2294 	struct iommu_dev_data *dev_data;
2295 	unsigned long flags;
2296 	int ret;
2297 
2298 	dev_data = get_dev_data(dev);
2299 
2300 	if (domain->flags & PD_IOMMUV2_MASK) {
2301 		if (!dev_data->iommu_v2 || !dev_data->passthrough)
2302 			return -EINVAL;
2303 
2304 		if (pdev_iommuv2_enable(pdev) != 0)
2305 			return -EINVAL;
2306 
2307 		dev_data->ats.enabled = true;
2308 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2309 		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2310 	} else if (amd_iommu_iotlb_sup &&
2311 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2312 		dev_data->ats.enabled = true;
2313 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2314 	}
2315 
2316 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2317 	ret = __attach_device(dev_data, domain);
2318 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2319 
2320 	/*
2321 	 * We might boot into a crash-kernel here. The crashed kernel
2322 	 * left the caches in the IOMMU dirty. So we have to flush
2323 	 * here to evict all dirty stuff.
2324 	 */
2325 	domain_flush_tlb_pde(domain);
2326 
2327 	return ret;
2328 }
2329 
2330 /*
2331  * Removes a device from a protection domain (unlocked)
2332  */
__detach_device(struct iommu_dev_data * dev_data)2333 static void __detach_device(struct iommu_dev_data *dev_data)
2334 {
2335 	struct protection_domain *domain;
2336 	unsigned long flags;
2337 
2338 	BUG_ON(!dev_data->domain);
2339 
2340 	domain = dev_data->domain;
2341 
2342 	spin_lock_irqsave(&domain->lock, flags);
2343 
2344 	if (dev_data->alias_data != NULL) {
2345 		struct iommu_dev_data *alias_data = dev_data->alias_data;
2346 
2347 		if (atomic_dec_and_test(&alias_data->bind))
2348 			do_detach(alias_data);
2349 	}
2350 
2351 	if (atomic_dec_and_test(&dev_data->bind))
2352 		do_detach(dev_data);
2353 
2354 	spin_unlock_irqrestore(&domain->lock, flags);
2355 
2356 	/*
2357 	 * If we run in passthrough mode the device must be assigned to the
2358 	 * passthrough domain if it is detached from any other domain.
2359 	 * Make sure we can deassign from the pt_domain itself.
2360 	 */
2361 	if (dev_data->passthrough &&
2362 	    (dev_data->domain == NULL && domain != pt_domain))
2363 		__attach_device(dev_data, pt_domain);
2364 }
2365 
2366 /*
2367  * Removes a device from a protection domain (with devtable_lock held)
2368  */
detach_device(struct device * dev)2369 static void detach_device(struct device *dev)
2370 {
2371 	struct protection_domain *domain;
2372 	struct iommu_dev_data *dev_data;
2373 	unsigned long flags;
2374 
2375 	dev_data = get_dev_data(dev);
2376 	domain   = dev_data->domain;
2377 
2378 	/* lock device table */
2379 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2380 	__detach_device(dev_data);
2381 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2382 
2383 	if (domain->flags & PD_IOMMUV2_MASK)
2384 		pdev_iommuv2_disable(to_pci_dev(dev));
2385 	else if (dev_data->ats.enabled)
2386 		pci_disable_ats(to_pci_dev(dev));
2387 
2388 	dev_data->ats.enabled = false;
2389 }
2390 
2391 /*
2392  * Find out the protection domain structure for a given PCI device. This
2393  * will give us the pointer to the page table root for example.
2394  */
domain_for_device(struct device * dev)2395 static struct protection_domain *domain_for_device(struct device *dev)
2396 {
2397 	struct iommu_dev_data *dev_data;
2398 	struct protection_domain *dom = NULL;
2399 	unsigned long flags;
2400 
2401 	dev_data   = get_dev_data(dev);
2402 
2403 	if (dev_data->domain)
2404 		return dev_data->domain;
2405 
2406 	if (dev_data->alias_data != NULL) {
2407 		struct iommu_dev_data *alias_data = dev_data->alias_data;
2408 
2409 		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2410 		if (alias_data->domain != NULL) {
2411 			__attach_device(dev_data, alias_data->domain);
2412 			dom = alias_data->domain;
2413 		}
2414 		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2415 	}
2416 
2417 	return dom;
2418 }
2419 
device_change_notifier(struct notifier_block * nb,unsigned long action,void * data)2420 static int device_change_notifier(struct notifier_block *nb,
2421 				  unsigned long action, void *data)
2422 {
2423 	struct dma_ops_domain *dma_domain;
2424 	struct protection_domain *domain;
2425 	struct iommu_dev_data *dev_data;
2426 	struct device *dev = data;
2427 	struct amd_iommu *iommu;
2428 	unsigned long flags;
2429 	u16 devid;
2430 
2431 	if (!check_device(dev))
2432 		return 0;
2433 
2434 	devid    = get_device_id(dev);
2435 	iommu    = amd_iommu_rlookup_table[devid];
2436 	dev_data = get_dev_data(dev);
2437 
2438 	switch (action) {
2439 	case BUS_NOTIFY_UNBOUND_DRIVER:
2440 
2441 		domain = domain_for_device(dev);
2442 
2443 		if (!domain)
2444 			goto out;
2445 		if (dev_data->passthrough)
2446 			break;
2447 		detach_device(dev);
2448 		break;
2449 	case BUS_NOTIFY_ADD_DEVICE:
2450 
2451 		iommu_init_device(dev);
2452 
2453 		/*
2454 		 * dev_data is still NULL and
2455 		 * got initialized in iommu_init_device
2456 		 */
2457 		dev_data = get_dev_data(dev);
2458 
2459 		if (iommu_pass_through || dev_data->iommu_v2) {
2460 			dev_data->passthrough = true;
2461 			attach_device(dev, pt_domain);
2462 			break;
2463 		}
2464 
2465 		domain = domain_for_device(dev);
2466 
2467 		/* allocate a protection domain if a device is added */
2468 		dma_domain = find_protection_domain(devid);
2469 		if (!dma_domain) {
2470 			dma_domain = dma_ops_domain_alloc();
2471 			if (!dma_domain)
2472 				goto out;
2473 			dma_domain->target_dev = devid;
2474 
2475 			spin_lock_irqsave(&iommu_pd_list_lock, flags);
2476 			list_add_tail(&dma_domain->list, &iommu_pd_list);
2477 			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2478 		}
2479 
2480 		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2481 
2482 		break;
2483 	case BUS_NOTIFY_DEL_DEVICE:
2484 
2485 		iommu_uninit_device(dev);
2486 
2487 	default:
2488 		goto out;
2489 	}
2490 
2491 	iommu_completion_wait(iommu);
2492 
2493 out:
2494 	return 0;
2495 }
2496 
2497 static struct notifier_block device_nb = {
2498 	.notifier_call = device_change_notifier,
2499 };
2500 
amd_iommu_init_notifier(void)2501 void amd_iommu_init_notifier(void)
2502 {
2503 	bus_register_notifier(&pci_bus_type, &device_nb);
2504 }
2505 
2506 /*****************************************************************************
2507  *
2508  * The next functions belong to the dma_ops mapping/unmapping code.
2509  *
2510  *****************************************************************************/
2511 
2512 /*
2513  * In the dma_ops path we only have the struct device. This function
2514  * finds the corresponding IOMMU, the protection domain and the
2515  * requestor id for a given device.
2516  * If the device is not yet associated with a domain this is also done
2517  * in this function.
2518  */
get_domain(struct device * dev)2519 static struct protection_domain *get_domain(struct device *dev)
2520 {
2521 	struct protection_domain *domain;
2522 	struct dma_ops_domain *dma_dom;
2523 	u16 devid = get_device_id(dev);
2524 
2525 	if (!check_device(dev))
2526 		return ERR_PTR(-EINVAL);
2527 
2528 	domain = domain_for_device(dev);
2529 	if (domain != NULL && !dma_ops_domain(domain))
2530 		return ERR_PTR(-EBUSY);
2531 
2532 	if (domain != NULL)
2533 		return domain;
2534 
2535 	/* Device not bound yet - bind it */
2536 	dma_dom = find_protection_domain(devid);
2537 	if (!dma_dom)
2538 		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2539 	attach_device(dev, &dma_dom->domain);
2540 	DUMP_printk("Using protection domain %d for device %s\n",
2541 		    dma_dom->domain.id, dev_name(dev));
2542 
2543 	return &dma_dom->domain;
2544 }
2545 
update_device_table(struct protection_domain * domain)2546 static void update_device_table(struct protection_domain *domain)
2547 {
2548 	struct iommu_dev_data *dev_data;
2549 
2550 	list_for_each_entry(dev_data, &domain->dev_list, list)
2551 		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2552 }
2553 
update_domain(struct protection_domain * domain)2554 static void update_domain(struct protection_domain *domain)
2555 {
2556 	if (!domain->updated)
2557 		return;
2558 
2559 	update_device_table(domain);
2560 
2561 	domain_flush_devices(domain);
2562 	domain_flush_tlb_pde(domain);
2563 
2564 	domain->updated = false;
2565 }
2566 
2567 /*
2568  * This function fetches the PTE for a given address in the aperture
2569  */
dma_ops_get_pte(struct dma_ops_domain * dom,unsigned long address)2570 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2571 			    unsigned long address)
2572 {
2573 	struct aperture_range *aperture;
2574 	u64 *pte, *pte_page;
2575 
2576 	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2577 	if (!aperture)
2578 		return NULL;
2579 
2580 	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2581 	if (!pte) {
2582 		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2583 				GFP_ATOMIC);
2584 		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2585 	} else
2586 		pte += PM_LEVEL_INDEX(0, address);
2587 
2588 	update_domain(&dom->domain);
2589 
2590 	return pte;
2591 }
2592 
2593 /*
2594  * This is the generic map function. It maps one 4kb page at paddr to
2595  * the given address in the DMA address space for the domain.
2596  */
dma_ops_domain_map(struct dma_ops_domain * dom,unsigned long address,phys_addr_t paddr,int direction)2597 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2598 				     unsigned long address,
2599 				     phys_addr_t paddr,
2600 				     int direction)
2601 {
2602 	u64 *pte, __pte;
2603 
2604 	WARN_ON(address > dom->aperture_size);
2605 
2606 	paddr &= PAGE_MASK;
2607 
2608 	pte  = dma_ops_get_pte(dom, address);
2609 	if (!pte)
2610 		return DMA_ERROR_CODE;
2611 
2612 	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2613 
2614 	if (direction == DMA_TO_DEVICE)
2615 		__pte |= IOMMU_PTE_IR;
2616 	else if (direction == DMA_FROM_DEVICE)
2617 		__pte |= IOMMU_PTE_IW;
2618 	else if (direction == DMA_BIDIRECTIONAL)
2619 		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2620 
2621 	WARN_ON(*pte);
2622 
2623 	*pte = __pte;
2624 
2625 	return (dma_addr_t)address;
2626 }
2627 
2628 /*
2629  * The generic unmapping function for on page in the DMA address space.
2630  */
dma_ops_domain_unmap(struct dma_ops_domain * dom,unsigned long address)2631 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2632 				 unsigned long address)
2633 {
2634 	struct aperture_range *aperture;
2635 	u64 *pte;
2636 
2637 	if (address >= dom->aperture_size)
2638 		return;
2639 
2640 	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2641 	if (!aperture)
2642 		return;
2643 
2644 	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2645 	if (!pte)
2646 		return;
2647 
2648 	pte += PM_LEVEL_INDEX(0, address);
2649 
2650 	WARN_ON(!*pte);
2651 
2652 	*pte = 0ULL;
2653 }
2654 
2655 /*
2656  * This function contains common code for mapping of a physically
2657  * contiguous memory region into DMA address space. It is used by all
2658  * mapping functions provided with this IOMMU driver.
2659  * Must be called with the domain lock held.
2660  */
__map_single(struct device * dev,struct dma_ops_domain * dma_dom,phys_addr_t paddr,size_t size,int dir,bool align,u64 dma_mask)2661 static dma_addr_t __map_single(struct device *dev,
2662 			       struct dma_ops_domain *dma_dom,
2663 			       phys_addr_t paddr,
2664 			       size_t size,
2665 			       int dir,
2666 			       bool align,
2667 			       u64 dma_mask)
2668 {
2669 	dma_addr_t offset = paddr & ~PAGE_MASK;
2670 	dma_addr_t address, start, ret;
2671 	unsigned int pages;
2672 	unsigned long align_mask = 0;
2673 	int i;
2674 
2675 	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2676 	paddr &= PAGE_MASK;
2677 
2678 	INC_STATS_COUNTER(total_map_requests);
2679 
2680 	if (pages > 1)
2681 		INC_STATS_COUNTER(cross_page);
2682 
2683 	if (align)
2684 		align_mask = (1UL << get_order(size)) - 1;
2685 
2686 retry:
2687 	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2688 					  dma_mask);
2689 	if (unlikely(address == DMA_ERROR_CODE)) {
2690 		/*
2691 		 * setting next_address here will let the address
2692 		 * allocator only scan the new allocated range in the
2693 		 * first run. This is a small optimization.
2694 		 */
2695 		dma_dom->next_address = dma_dom->aperture_size;
2696 
2697 		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2698 			goto out;
2699 
2700 		/*
2701 		 * aperture was successfully enlarged by 128 MB, try
2702 		 * allocation again
2703 		 */
2704 		goto retry;
2705 	}
2706 
2707 	start = address;
2708 	for (i = 0; i < pages; ++i) {
2709 		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2710 		if (ret == DMA_ERROR_CODE)
2711 			goto out_unmap;
2712 
2713 		paddr += PAGE_SIZE;
2714 		start += PAGE_SIZE;
2715 	}
2716 	address += offset;
2717 
2718 	ADD_STATS_COUNTER(alloced_io_mem, size);
2719 
2720 	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2721 		domain_flush_tlb(&dma_dom->domain);
2722 		dma_dom->need_flush = false;
2723 	} else if (unlikely(amd_iommu_np_cache))
2724 		domain_flush_pages(&dma_dom->domain, address, size);
2725 
2726 out:
2727 	return address;
2728 
2729 out_unmap:
2730 
2731 	for (--i; i >= 0; --i) {
2732 		start -= PAGE_SIZE;
2733 		dma_ops_domain_unmap(dma_dom, start);
2734 	}
2735 
2736 	dma_ops_free_addresses(dma_dom, address, pages);
2737 
2738 	return DMA_ERROR_CODE;
2739 }
2740 
2741 /*
2742  * Does the reverse of the __map_single function. Must be called with
2743  * the domain lock held too
2744  */
__unmap_single(struct dma_ops_domain * dma_dom,dma_addr_t dma_addr,size_t size,int dir)2745 static void __unmap_single(struct dma_ops_domain *dma_dom,
2746 			   dma_addr_t dma_addr,
2747 			   size_t size,
2748 			   int dir)
2749 {
2750 	dma_addr_t flush_addr;
2751 	dma_addr_t i, start;
2752 	unsigned int pages;
2753 
2754 	if ((dma_addr == DMA_ERROR_CODE) ||
2755 	    (dma_addr + size > dma_dom->aperture_size))
2756 		return;
2757 
2758 	flush_addr = dma_addr;
2759 	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2760 	dma_addr &= PAGE_MASK;
2761 	start = dma_addr;
2762 
2763 	for (i = 0; i < pages; ++i) {
2764 		dma_ops_domain_unmap(dma_dom, start);
2765 		start += PAGE_SIZE;
2766 	}
2767 
2768 	SUB_STATS_COUNTER(alloced_io_mem, size);
2769 
2770 	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2771 
2772 	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2773 		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2774 		dma_dom->need_flush = false;
2775 	}
2776 }
2777 
2778 /*
2779  * The exported map_single function for dma_ops.
2780  */
map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2781 static dma_addr_t map_page(struct device *dev, struct page *page,
2782 			   unsigned long offset, size_t size,
2783 			   enum dma_data_direction dir,
2784 			   struct dma_attrs *attrs)
2785 {
2786 	unsigned long flags;
2787 	struct protection_domain *domain;
2788 	dma_addr_t addr;
2789 	u64 dma_mask;
2790 	phys_addr_t paddr = page_to_phys(page) + offset;
2791 
2792 	INC_STATS_COUNTER(cnt_map_single);
2793 
2794 	domain = get_domain(dev);
2795 	if (PTR_ERR(domain) == -EINVAL)
2796 		return (dma_addr_t)paddr;
2797 	else if (IS_ERR(domain))
2798 		return DMA_ERROR_CODE;
2799 
2800 	dma_mask = *dev->dma_mask;
2801 
2802 	spin_lock_irqsave(&domain->lock, flags);
2803 
2804 	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2805 			    dma_mask);
2806 	if (addr == DMA_ERROR_CODE)
2807 		goto out;
2808 
2809 	domain_flush_complete(domain);
2810 
2811 out:
2812 	spin_unlock_irqrestore(&domain->lock, flags);
2813 
2814 	return addr;
2815 }
2816 
2817 /*
2818  * The exported unmap_single function for dma_ops.
2819  */
unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2820 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2821 		       enum dma_data_direction dir, struct dma_attrs *attrs)
2822 {
2823 	unsigned long flags;
2824 	struct protection_domain *domain;
2825 
2826 	INC_STATS_COUNTER(cnt_unmap_single);
2827 
2828 	domain = get_domain(dev);
2829 	if (IS_ERR(domain))
2830 		return;
2831 
2832 	spin_lock_irqsave(&domain->lock, flags);
2833 
2834 	__unmap_single(domain->priv, dma_addr, size, dir);
2835 
2836 	domain_flush_complete(domain);
2837 
2838 	spin_unlock_irqrestore(&domain->lock, flags);
2839 }
2840 
2841 /*
2842  * The exported map_sg function for dma_ops (handles scatter-gather
2843  * lists).
2844  */
map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)2845 static int map_sg(struct device *dev, struct scatterlist *sglist,
2846 		  int nelems, enum dma_data_direction dir,
2847 		  struct dma_attrs *attrs)
2848 {
2849 	unsigned long flags;
2850 	struct protection_domain *domain;
2851 	int i;
2852 	struct scatterlist *s;
2853 	phys_addr_t paddr;
2854 	int mapped_elems = 0;
2855 	u64 dma_mask;
2856 
2857 	INC_STATS_COUNTER(cnt_map_sg);
2858 
2859 	domain = get_domain(dev);
2860 	if (IS_ERR(domain))
2861 		return 0;
2862 
2863 	dma_mask = *dev->dma_mask;
2864 
2865 	spin_lock_irqsave(&domain->lock, flags);
2866 
2867 	for_each_sg(sglist, s, nelems, i) {
2868 		paddr = sg_phys(s);
2869 
2870 		s->dma_address = __map_single(dev, domain->priv,
2871 					      paddr, s->length, dir, false,
2872 					      dma_mask);
2873 
2874 		if (s->dma_address) {
2875 			s->dma_length = s->length;
2876 			mapped_elems++;
2877 		} else
2878 			goto unmap;
2879 	}
2880 
2881 	domain_flush_complete(domain);
2882 
2883 out:
2884 	spin_unlock_irqrestore(&domain->lock, flags);
2885 
2886 	return mapped_elems;
2887 unmap:
2888 	for_each_sg(sglist, s, mapped_elems, i) {
2889 		if (s->dma_address)
2890 			__unmap_single(domain->priv, s->dma_address,
2891 				       s->dma_length, dir);
2892 		s->dma_address = s->dma_length = 0;
2893 	}
2894 
2895 	mapped_elems = 0;
2896 
2897 	goto out;
2898 }
2899 
2900 /*
2901  * The exported map_sg function for dma_ops (handles scatter-gather
2902  * lists).
2903  */
unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)2904 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2905 		     int nelems, enum dma_data_direction dir,
2906 		     struct dma_attrs *attrs)
2907 {
2908 	unsigned long flags;
2909 	struct protection_domain *domain;
2910 	struct scatterlist *s;
2911 	int i;
2912 
2913 	INC_STATS_COUNTER(cnt_unmap_sg);
2914 
2915 	domain = get_domain(dev);
2916 	if (IS_ERR(domain))
2917 		return;
2918 
2919 	spin_lock_irqsave(&domain->lock, flags);
2920 
2921 	for_each_sg(sglist, s, nelems, i) {
2922 		__unmap_single(domain->priv, s->dma_address,
2923 			       s->dma_length, dir);
2924 		s->dma_address = s->dma_length = 0;
2925 	}
2926 
2927 	domain_flush_complete(domain);
2928 
2929 	spin_unlock_irqrestore(&domain->lock, flags);
2930 }
2931 
2932 /*
2933  * The exported alloc_coherent function for dma_ops.
2934  */
alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t flag,struct dma_attrs * attrs)2935 static void *alloc_coherent(struct device *dev, size_t size,
2936 			    dma_addr_t *dma_addr, gfp_t flag,
2937 			    struct dma_attrs *attrs)
2938 {
2939 	unsigned long flags;
2940 	void *virt_addr;
2941 	struct protection_domain *domain;
2942 	phys_addr_t paddr;
2943 	u64 dma_mask = dev->coherent_dma_mask;
2944 
2945 	INC_STATS_COUNTER(cnt_alloc_coherent);
2946 
2947 	domain = get_domain(dev);
2948 	if (PTR_ERR(domain) == -EINVAL) {
2949 		virt_addr = (void *)__get_free_pages(flag, get_order(size));
2950 		*dma_addr = __pa(virt_addr);
2951 		return virt_addr;
2952 	} else if (IS_ERR(domain))
2953 		return NULL;
2954 
2955 	dma_mask  = dev->coherent_dma_mask;
2956 	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2957 	flag     |= __GFP_ZERO;
2958 
2959 	virt_addr = (void *)__get_free_pages(flag, get_order(size));
2960 	if (!virt_addr)
2961 		return NULL;
2962 
2963 	paddr = virt_to_phys(virt_addr);
2964 
2965 	if (!dma_mask)
2966 		dma_mask = *dev->dma_mask;
2967 
2968 	spin_lock_irqsave(&domain->lock, flags);
2969 
2970 	*dma_addr = __map_single(dev, domain->priv, paddr,
2971 				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2972 
2973 	if (*dma_addr == DMA_ERROR_CODE) {
2974 		spin_unlock_irqrestore(&domain->lock, flags);
2975 		goto out_free;
2976 	}
2977 
2978 	domain_flush_complete(domain);
2979 
2980 	spin_unlock_irqrestore(&domain->lock, flags);
2981 
2982 	return virt_addr;
2983 
2984 out_free:
2985 
2986 	free_pages((unsigned long)virt_addr, get_order(size));
2987 
2988 	return NULL;
2989 }
2990 
2991 /*
2992  * The exported free_coherent function for dma_ops.
2993  */
free_coherent(struct device * dev,size_t size,void * virt_addr,dma_addr_t dma_addr,struct dma_attrs * attrs)2994 static void free_coherent(struct device *dev, size_t size,
2995 			  void *virt_addr, dma_addr_t dma_addr,
2996 			  struct dma_attrs *attrs)
2997 {
2998 	unsigned long flags;
2999 	struct protection_domain *domain;
3000 
3001 	INC_STATS_COUNTER(cnt_free_coherent);
3002 
3003 	domain = get_domain(dev);
3004 	if (IS_ERR(domain))
3005 		goto free_mem;
3006 
3007 	spin_lock_irqsave(&domain->lock, flags);
3008 
3009 	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3010 
3011 	domain_flush_complete(domain);
3012 
3013 	spin_unlock_irqrestore(&domain->lock, flags);
3014 
3015 free_mem:
3016 	free_pages((unsigned long)virt_addr, get_order(size));
3017 }
3018 
3019 /*
3020  * This function is called by the DMA layer to find out if we can handle a
3021  * particular device. It is part of the dma_ops.
3022  */
amd_iommu_dma_supported(struct device * dev,u64 mask)3023 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3024 {
3025 	return check_device(dev);
3026 }
3027 
3028 /*
3029  * The function for pre-allocating protection domains.
3030  *
3031  * If the driver core informs the DMA layer if a driver grabs a device
3032  * we don't need to preallocate the protection domains anymore.
3033  * For now we have to.
3034  */
prealloc_protection_domains(void)3035 static void __init prealloc_protection_domains(void)
3036 {
3037 	struct iommu_dev_data *dev_data;
3038 	struct dma_ops_domain *dma_dom;
3039 	struct pci_dev *dev = NULL;
3040 	u16 devid;
3041 
3042 	for_each_pci_dev(dev) {
3043 
3044 		/* Do we handle this device? */
3045 		if (!check_device(&dev->dev))
3046 			continue;
3047 
3048 		dev_data = get_dev_data(&dev->dev);
3049 		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3050 			/* Make sure passthrough domain is allocated */
3051 			alloc_passthrough_domain();
3052 			dev_data->passthrough = true;
3053 			attach_device(&dev->dev, pt_domain);
3054 			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3055 				dev_name(&dev->dev));
3056 		}
3057 
3058 		/* Is there already any domain for it? */
3059 		if (domain_for_device(&dev->dev))
3060 			continue;
3061 
3062 		devid = get_device_id(&dev->dev);
3063 
3064 		dma_dom = dma_ops_domain_alloc();
3065 		if (!dma_dom)
3066 			continue;
3067 		init_unity_mappings_for_device(dma_dom, devid);
3068 		dma_dom->target_dev = devid;
3069 
3070 		attach_device(&dev->dev, &dma_dom->domain);
3071 
3072 		list_add_tail(&dma_dom->list, &iommu_pd_list);
3073 	}
3074 }
3075 
3076 static struct dma_map_ops amd_iommu_dma_ops = {
3077 	.alloc = alloc_coherent,
3078 	.free = free_coherent,
3079 	.map_page = map_page,
3080 	.unmap_page = unmap_page,
3081 	.map_sg = map_sg,
3082 	.unmap_sg = unmap_sg,
3083 	.dma_supported = amd_iommu_dma_supported,
3084 };
3085 
device_dma_ops_init(void)3086 static unsigned device_dma_ops_init(void)
3087 {
3088 	struct iommu_dev_data *dev_data;
3089 	struct pci_dev *pdev = NULL;
3090 	unsigned unhandled = 0;
3091 
3092 	for_each_pci_dev(pdev) {
3093 		if (!check_device(&pdev->dev)) {
3094 
3095 			iommu_ignore_device(&pdev->dev);
3096 
3097 			unhandled += 1;
3098 			continue;
3099 		}
3100 
3101 		dev_data = get_dev_data(&pdev->dev);
3102 
3103 		if (!dev_data->passthrough)
3104 			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3105 		else
3106 			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3107 	}
3108 
3109 	return unhandled;
3110 }
3111 
3112 /*
3113  * The function which clues the AMD IOMMU driver into dma_ops.
3114  */
3115 
amd_iommu_init_api(void)3116 void __init amd_iommu_init_api(void)
3117 {
3118 	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3119 }
3120 
amd_iommu_init_dma_ops(void)3121 int __init amd_iommu_init_dma_ops(void)
3122 {
3123 	struct amd_iommu *iommu;
3124 	int ret, unhandled;
3125 
3126 	/*
3127 	 * first allocate a default protection domain for every IOMMU we
3128 	 * found in the system. Devices not assigned to any other
3129 	 * protection domain will be assigned to the default one.
3130 	 */
3131 	for_each_iommu(iommu) {
3132 		iommu->default_dom = dma_ops_domain_alloc();
3133 		if (iommu->default_dom == NULL)
3134 			return -ENOMEM;
3135 		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3136 		ret = iommu_init_unity_mappings(iommu);
3137 		if (ret)
3138 			goto free_domains;
3139 	}
3140 
3141 	/*
3142 	 * Pre-allocate the protection domains for each device.
3143 	 */
3144 	prealloc_protection_domains();
3145 
3146 	iommu_detected = 1;
3147 	swiotlb = 0;
3148 
3149 	/* Make the driver finally visible to the drivers */
3150 	unhandled = device_dma_ops_init();
3151 	if (unhandled && max_pfn > MAX_DMA32_PFN) {
3152 		/* There are unhandled devices - initialize swiotlb for them */
3153 		swiotlb = 1;
3154 	}
3155 
3156 	amd_iommu_stats_init();
3157 
3158 	if (amd_iommu_unmap_flush)
3159 		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3160 	else
3161 		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3162 
3163 	return 0;
3164 
3165 free_domains:
3166 
3167 	for_each_iommu(iommu) {
3168 		dma_ops_domain_free(iommu->default_dom);
3169 	}
3170 
3171 	return ret;
3172 }
3173 
3174 /*****************************************************************************
3175  *
3176  * The following functions belong to the exported interface of AMD IOMMU
3177  *
3178  * This interface allows access to lower level functions of the IOMMU
3179  * like protection domain handling and assignement of devices to domains
3180  * which is not possible with the dma_ops interface.
3181  *
3182  *****************************************************************************/
3183 
cleanup_domain(struct protection_domain * domain)3184 static void cleanup_domain(struct protection_domain *domain)
3185 {
3186 	struct iommu_dev_data *dev_data, *next;
3187 	unsigned long flags;
3188 
3189 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3190 
3191 	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3192 		__detach_device(dev_data);
3193 		atomic_set(&dev_data->bind, 0);
3194 	}
3195 
3196 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3197 }
3198 
protection_domain_free(struct protection_domain * domain)3199 static void protection_domain_free(struct protection_domain *domain)
3200 {
3201 	if (!domain)
3202 		return;
3203 
3204 	del_domain_from_list(domain);
3205 
3206 	if (domain->id)
3207 		domain_id_free(domain->id);
3208 
3209 	kfree(domain);
3210 }
3211 
protection_domain_alloc(void)3212 static struct protection_domain *protection_domain_alloc(void)
3213 {
3214 	struct protection_domain *domain;
3215 
3216 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3217 	if (!domain)
3218 		return NULL;
3219 
3220 	spin_lock_init(&domain->lock);
3221 	mutex_init(&domain->api_lock);
3222 	domain->id = domain_id_alloc();
3223 	if (!domain->id)
3224 		goto out_err;
3225 	INIT_LIST_HEAD(&domain->dev_list);
3226 
3227 	add_domain_to_list(domain);
3228 
3229 	return domain;
3230 
3231 out_err:
3232 	kfree(domain);
3233 
3234 	return NULL;
3235 }
3236 
alloc_passthrough_domain(void)3237 static int __init alloc_passthrough_domain(void)
3238 {
3239 	if (pt_domain != NULL)
3240 		return 0;
3241 
3242 	/* allocate passthrough domain */
3243 	pt_domain = protection_domain_alloc();
3244 	if (!pt_domain)
3245 		return -ENOMEM;
3246 
3247 	pt_domain->mode = PAGE_MODE_NONE;
3248 
3249 	return 0;
3250 }
amd_iommu_domain_init(struct iommu_domain * dom)3251 static int amd_iommu_domain_init(struct iommu_domain *dom)
3252 {
3253 	struct protection_domain *domain;
3254 
3255 	domain = protection_domain_alloc();
3256 	if (!domain)
3257 		goto out_free;
3258 
3259 	domain->mode    = PAGE_MODE_3_LEVEL;
3260 	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3261 	if (!domain->pt_root)
3262 		goto out_free;
3263 
3264 	domain->iommu_domain = dom;
3265 
3266 	dom->priv = domain;
3267 
3268 	dom->geometry.aperture_start = 0;
3269 	dom->geometry.aperture_end   = ~0ULL;
3270 	dom->geometry.force_aperture = true;
3271 
3272 	return 0;
3273 
3274 out_free:
3275 	protection_domain_free(domain);
3276 
3277 	return -ENOMEM;
3278 }
3279 
amd_iommu_domain_destroy(struct iommu_domain * dom)3280 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3281 {
3282 	struct protection_domain *domain = dom->priv;
3283 
3284 	if (!domain)
3285 		return;
3286 
3287 	if (domain->dev_cnt > 0)
3288 		cleanup_domain(domain);
3289 
3290 	BUG_ON(domain->dev_cnt != 0);
3291 
3292 	if (domain->mode != PAGE_MODE_NONE)
3293 		free_pagetable(domain);
3294 
3295 	if (domain->flags & PD_IOMMUV2_MASK)
3296 		free_gcr3_table(domain);
3297 
3298 	protection_domain_free(domain);
3299 
3300 	dom->priv = NULL;
3301 }
3302 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)3303 static void amd_iommu_detach_device(struct iommu_domain *dom,
3304 				    struct device *dev)
3305 {
3306 	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3307 	struct amd_iommu *iommu;
3308 	u16 devid;
3309 
3310 	if (!check_device(dev))
3311 		return;
3312 
3313 	devid = get_device_id(dev);
3314 
3315 	if (dev_data->domain != NULL)
3316 		detach_device(dev);
3317 
3318 	iommu = amd_iommu_rlookup_table[devid];
3319 	if (!iommu)
3320 		return;
3321 
3322 	iommu_completion_wait(iommu);
3323 }
3324 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)3325 static int amd_iommu_attach_device(struct iommu_domain *dom,
3326 				   struct device *dev)
3327 {
3328 	struct protection_domain *domain = dom->priv;
3329 	struct iommu_dev_data *dev_data;
3330 	struct amd_iommu *iommu;
3331 	int ret;
3332 
3333 	if (!check_device(dev))
3334 		return -EINVAL;
3335 
3336 	dev_data = dev->archdata.iommu;
3337 
3338 	iommu = amd_iommu_rlookup_table[dev_data->devid];
3339 	if (!iommu)
3340 		return -EINVAL;
3341 
3342 	if (dev_data->domain)
3343 		detach_device(dev);
3344 
3345 	ret = attach_device(dev, domain);
3346 
3347 	iommu_completion_wait(iommu);
3348 
3349 	return ret;
3350 }
3351 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot)3352 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3353 			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3354 {
3355 	struct protection_domain *domain = dom->priv;
3356 	int prot = 0;
3357 	int ret;
3358 
3359 	if (domain->mode == PAGE_MODE_NONE)
3360 		return -EINVAL;
3361 
3362 	if (iommu_prot & IOMMU_READ)
3363 		prot |= IOMMU_PROT_IR;
3364 	if (iommu_prot & IOMMU_WRITE)
3365 		prot |= IOMMU_PROT_IW;
3366 
3367 	mutex_lock(&domain->api_lock);
3368 	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3369 	mutex_unlock(&domain->api_lock);
3370 
3371 	return ret;
3372 }
3373 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size)3374 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3375 			   size_t page_size)
3376 {
3377 	struct protection_domain *domain = dom->priv;
3378 	size_t unmap_size;
3379 
3380 	if (domain->mode == PAGE_MODE_NONE)
3381 		return -EINVAL;
3382 
3383 	mutex_lock(&domain->api_lock);
3384 	unmap_size = iommu_unmap_page(domain, iova, page_size);
3385 	mutex_unlock(&domain->api_lock);
3386 
3387 	domain_flush_tlb_pde(domain);
3388 
3389 	return unmap_size;
3390 }
3391 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)3392 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3393 					  dma_addr_t iova)
3394 {
3395 	struct protection_domain *domain = dom->priv;
3396 	unsigned long offset_mask;
3397 	phys_addr_t paddr;
3398 	u64 *pte, __pte;
3399 
3400 	if (domain->mode == PAGE_MODE_NONE)
3401 		return iova;
3402 
3403 	pte = fetch_pte(domain, iova);
3404 
3405 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3406 		return 0;
3407 
3408 	if (PM_PTE_LEVEL(*pte) == 0)
3409 		offset_mask = PAGE_SIZE - 1;
3410 	else
3411 		offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3412 
3413 	__pte = *pte & PM_ADDR_MASK;
3414 	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3415 
3416 	return paddr;
3417 }
3418 
amd_iommu_domain_has_cap(struct iommu_domain * domain,unsigned long cap)3419 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3420 				    unsigned long cap)
3421 {
3422 	switch (cap) {
3423 	case IOMMU_CAP_CACHE_COHERENCY:
3424 		return 1;
3425 	case IOMMU_CAP_INTR_REMAP:
3426 		return irq_remapping_enabled;
3427 	}
3428 
3429 	return 0;
3430 }
3431 
3432 static struct iommu_ops amd_iommu_ops = {
3433 	.domain_init = amd_iommu_domain_init,
3434 	.domain_destroy = amd_iommu_domain_destroy,
3435 	.attach_dev = amd_iommu_attach_device,
3436 	.detach_dev = amd_iommu_detach_device,
3437 	.map = amd_iommu_map,
3438 	.unmap = amd_iommu_unmap,
3439 	.iova_to_phys = amd_iommu_iova_to_phys,
3440 	.domain_has_cap = amd_iommu_domain_has_cap,
3441 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3442 };
3443 
3444 /*****************************************************************************
3445  *
3446  * The next functions do a basic initialization of IOMMU for pass through
3447  * mode
3448  *
3449  * In passthrough mode the IOMMU is initialized and enabled but not used for
3450  * DMA-API translation.
3451  *
3452  *****************************************************************************/
3453 
amd_iommu_init_passthrough(void)3454 int __init amd_iommu_init_passthrough(void)
3455 {
3456 	struct iommu_dev_data *dev_data;
3457 	struct pci_dev *dev = NULL;
3458 	struct amd_iommu *iommu;
3459 	u16 devid;
3460 	int ret;
3461 
3462 	ret = alloc_passthrough_domain();
3463 	if (ret)
3464 		return ret;
3465 
3466 	for_each_pci_dev(dev) {
3467 		if (!check_device(&dev->dev))
3468 			continue;
3469 
3470 		dev_data = get_dev_data(&dev->dev);
3471 		dev_data->passthrough = true;
3472 
3473 		devid = get_device_id(&dev->dev);
3474 
3475 		iommu = amd_iommu_rlookup_table[devid];
3476 		if (!iommu)
3477 			continue;
3478 
3479 		attach_device(&dev->dev, pt_domain);
3480 	}
3481 
3482 	amd_iommu_stats_init();
3483 
3484 	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3485 
3486 	return 0;
3487 }
3488 
3489 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)3490 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3491 {
3492 	return atomic_notifier_chain_register(&ppr_notifier, nb);
3493 }
3494 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3495 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)3496 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3497 {
3498 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3499 }
3500 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3501 
amd_iommu_domain_direct_map(struct iommu_domain * dom)3502 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3503 {
3504 	struct protection_domain *domain = dom->priv;
3505 	unsigned long flags;
3506 
3507 	spin_lock_irqsave(&domain->lock, flags);
3508 
3509 	/* Update data structure */
3510 	domain->mode    = PAGE_MODE_NONE;
3511 	domain->updated = true;
3512 
3513 	/* Make changes visible to IOMMUs */
3514 	update_domain(domain);
3515 
3516 	/* Page-table is not visible to IOMMU anymore, so free it */
3517 	free_pagetable(domain);
3518 
3519 	spin_unlock_irqrestore(&domain->lock, flags);
3520 }
3521 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3522 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)3523 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3524 {
3525 	struct protection_domain *domain = dom->priv;
3526 	unsigned long flags;
3527 	int levels, ret;
3528 
3529 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
3530 		return -EINVAL;
3531 
3532 	/* Number of GCR3 table levels required */
3533 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3534 		levels += 1;
3535 
3536 	if (levels > amd_iommu_max_glx_val)
3537 		return -EINVAL;
3538 
3539 	spin_lock_irqsave(&domain->lock, flags);
3540 
3541 	/*
3542 	 * Save us all sanity checks whether devices already in the
3543 	 * domain support IOMMUv2. Just force that the domain has no
3544 	 * devices attached when it is switched into IOMMUv2 mode.
3545 	 */
3546 	ret = -EBUSY;
3547 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3548 		goto out;
3549 
3550 	ret = -ENOMEM;
3551 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3552 	if (domain->gcr3_tbl == NULL)
3553 		goto out;
3554 
3555 	domain->glx      = levels;
3556 	domain->flags   |= PD_IOMMUV2_MASK;
3557 	domain->updated  = true;
3558 
3559 	update_domain(domain);
3560 
3561 	ret = 0;
3562 
3563 out:
3564 	spin_unlock_irqrestore(&domain->lock, flags);
3565 
3566 	return ret;
3567 }
3568 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3569 
__flush_pasid(struct protection_domain * domain,int pasid,u64 address,bool size)3570 static int __flush_pasid(struct protection_domain *domain, int pasid,
3571 			 u64 address, bool size)
3572 {
3573 	struct iommu_dev_data *dev_data;
3574 	struct iommu_cmd cmd;
3575 	int i, ret;
3576 
3577 	if (!(domain->flags & PD_IOMMUV2_MASK))
3578 		return -EINVAL;
3579 
3580 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3581 
3582 	/*
3583 	 * IOMMU TLB needs to be flushed before Device TLB to
3584 	 * prevent device TLB refill from IOMMU TLB
3585 	 */
3586 	for (i = 0; i < amd_iommus_present; ++i) {
3587 		if (domain->dev_iommu[i] == 0)
3588 			continue;
3589 
3590 		ret = iommu_queue_command(amd_iommus[i], &cmd);
3591 		if (ret != 0)
3592 			goto out;
3593 	}
3594 
3595 	/* Wait until IOMMU TLB flushes are complete */
3596 	domain_flush_complete(domain);
3597 
3598 	/* Now flush device TLBs */
3599 	list_for_each_entry(dev_data, &domain->dev_list, list) {
3600 		struct amd_iommu *iommu;
3601 		int qdep;
3602 
3603 		BUG_ON(!dev_data->ats.enabled);
3604 
3605 		qdep  = dev_data->ats.qdep;
3606 		iommu = amd_iommu_rlookup_table[dev_data->devid];
3607 
3608 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3609 				      qdep, address, size);
3610 
3611 		ret = iommu_queue_command(iommu, &cmd);
3612 		if (ret != 0)
3613 			goto out;
3614 	}
3615 
3616 	/* Wait until all device TLBs are flushed */
3617 	domain_flush_complete(domain);
3618 
3619 	ret = 0;
3620 
3621 out:
3622 
3623 	return ret;
3624 }
3625 
__amd_iommu_flush_page(struct protection_domain * domain,int pasid,u64 address)3626 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3627 				  u64 address)
3628 {
3629 	INC_STATS_COUNTER(invalidate_iotlb);
3630 
3631 	return __flush_pasid(domain, pasid, address, false);
3632 }
3633 
amd_iommu_flush_page(struct iommu_domain * dom,int pasid,u64 address)3634 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3635 			 u64 address)
3636 {
3637 	struct protection_domain *domain = dom->priv;
3638 	unsigned long flags;
3639 	int ret;
3640 
3641 	spin_lock_irqsave(&domain->lock, flags);
3642 	ret = __amd_iommu_flush_page(domain, pasid, address);
3643 	spin_unlock_irqrestore(&domain->lock, flags);
3644 
3645 	return ret;
3646 }
3647 EXPORT_SYMBOL(amd_iommu_flush_page);
3648 
__amd_iommu_flush_tlb(struct protection_domain * domain,int pasid)3649 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3650 {
3651 	INC_STATS_COUNTER(invalidate_iotlb_all);
3652 
3653 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3654 			     true);
3655 }
3656 
amd_iommu_flush_tlb(struct iommu_domain * dom,int pasid)3657 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3658 {
3659 	struct protection_domain *domain = dom->priv;
3660 	unsigned long flags;
3661 	int ret;
3662 
3663 	spin_lock_irqsave(&domain->lock, flags);
3664 	ret = __amd_iommu_flush_tlb(domain, pasid);
3665 	spin_unlock_irqrestore(&domain->lock, flags);
3666 
3667 	return ret;
3668 }
3669 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3670 
__get_gcr3_pte(u64 * root,int level,int pasid,bool alloc)3671 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3672 {
3673 	int index;
3674 	u64 *pte;
3675 
3676 	while (true) {
3677 
3678 		index = (pasid >> (9 * level)) & 0x1ff;
3679 		pte   = &root[index];
3680 
3681 		if (level == 0)
3682 			break;
3683 
3684 		if (!(*pte & GCR3_VALID)) {
3685 			if (!alloc)
3686 				return NULL;
3687 
3688 			root = (void *)get_zeroed_page(GFP_ATOMIC);
3689 			if (root == NULL)
3690 				return NULL;
3691 
3692 			*pte = __pa(root) | GCR3_VALID;
3693 		}
3694 
3695 		root = __va(*pte & PAGE_MASK);
3696 
3697 		level -= 1;
3698 	}
3699 
3700 	return pte;
3701 }
3702 
__set_gcr3(struct protection_domain * domain,int pasid,unsigned long cr3)3703 static int __set_gcr3(struct protection_domain *domain, int pasid,
3704 		      unsigned long cr3)
3705 {
3706 	u64 *pte;
3707 
3708 	if (domain->mode != PAGE_MODE_NONE)
3709 		return -EINVAL;
3710 
3711 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3712 	if (pte == NULL)
3713 		return -ENOMEM;
3714 
3715 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3716 
3717 	return __amd_iommu_flush_tlb(domain, pasid);
3718 }
3719 
__clear_gcr3(struct protection_domain * domain,int pasid)3720 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3721 {
3722 	u64 *pte;
3723 
3724 	if (domain->mode != PAGE_MODE_NONE)
3725 		return -EINVAL;
3726 
3727 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3728 	if (pte == NULL)
3729 		return 0;
3730 
3731 	*pte = 0;
3732 
3733 	return __amd_iommu_flush_tlb(domain, pasid);
3734 }
3735 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,int pasid,unsigned long cr3)3736 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3737 			      unsigned long cr3)
3738 {
3739 	struct protection_domain *domain = dom->priv;
3740 	unsigned long flags;
3741 	int ret;
3742 
3743 	spin_lock_irqsave(&domain->lock, flags);
3744 	ret = __set_gcr3(domain, pasid, cr3);
3745 	spin_unlock_irqrestore(&domain->lock, flags);
3746 
3747 	return ret;
3748 }
3749 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3750 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,int pasid)3751 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3752 {
3753 	struct protection_domain *domain = dom->priv;
3754 	unsigned long flags;
3755 	int ret;
3756 
3757 	spin_lock_irqsave(&domain->lock, flags);
3758 	ret = __clear_gcr3(domain, pasid);
3759 	spin_unlock_irqrestore(&domain->lock, flags);
3760 
3761 	return ret;
3762 }
3763 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3764 
amd_iommu_complete_ppr(struct pci_dev * pdev,int pasid,int status,int tag)3765 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3766 			   int status, int tag)
3767 {
3768 	struct iommu_dev_data *dev_data;
3769 	struct amd_iommu *iommu;
3770 	struct iommu_cmd cmd;
3771 
3772 	INC_STATS_COUNTER(complete_ppr);
3773 
3774 	dev_data = get_dev_data(&pdev->dev);
3775 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3776 
3777 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3778 			   tag, dev_data->pri_tlp);
3779 
3780 	return iommu_queue_command(iommu, &cmd);
3781 }
3782 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3783 
amd_iommu_get_v2_domain(struct pci_dev * pdev)3784 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3785 {
3786 	struct protection_domain *domain;
3787 
3788 	domain = get_domain(&pdev->dev);
3789 	if (IS_ERR(domain))
3790 		return NULL;
3791 
3792 	/* Only return IOMMUv2 domains */
3793 	if (!(domain->flags & PD_IOMMUV2_MASK))
3794 		return NULL;
3795 
3796 	return domain->iommu_domain;
3797 }
3798 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3799 
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3800 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3801 {
3802 	struct iommu_dev_data *dev_data;
3803 
3804 	if (!amd_iommu_v2_supported())
3805 		return;
3806 
3807 	dev_data = get_dev_data(&pdev->dev);
3808 	dev_data->errata |= (1 << erratum);
3809 }
3810 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3811 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3812 int amd_iommu_device_info(struct pci_dev *pdev,
3813                           struct amd_iommu_device_info *info)
3814 {
3815 	int max_pasids;
3816 	int pos;
3817 
3818 	if (pdev == NULL || info == NULL)
3819 		return -EINVAL;
3820 
3821 	if (!amd_iommu_v2_supported())
3822 		return -EINVAL;
3823 
3824 	memset(info, 0, sizeof(*info));
3825 
3826 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3827 	if (pos)
3828 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3829 
3830 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3831 	if (pos)
3832 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3833 
3834 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3835 	if (pos) {
3836 		int features;
3837 
3838 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3839 		max_pasids = min(max_pasids, (1 << 20));
3840 
3841 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3842 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3843 
3844 		features = pci_pasid_features(pdev);
3845 		if (features & PCI_PASID_CAP_EXEC)
3846 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3847 		if (features & PCI_PASID_CAP_PRIV)
3848 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3849 	}
3850 
3851 	return 0;
3852 }
3853 EXPORT_SYMBOL(amd_iommu_device_info);
3854 
3855 #ifdef CONFIG_IRQ_REMAP
3856 
3857 /*****************************************************************************
3858  *
3859  * Interrupt Remapping Implementation
3860  *
3861  *****************************************************************************/
3862 
3863 union irte {
3864 	u32 val;
3865 	struct {
3866 		u32 valid	: 1,
3867 		    no_fault	: 1,
3868 		    int_type	: 3,
3869 		    rq_eoi	: 1,
3870 		    dm		: 1,
3871 		    rsvd_1	: 1,
3872 		    destination	: 8,
3873 		    vector	: 8,
3874 		    rsvd_2	: 8;
3875 	} fields;
3876 };
3877 
3878 #define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
3879 #define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
3880 #define DTE_IRQ_TABLE_LEN       (8ULL << 1)
3881 #define DTE_IRQ_REMAP_ENABLE    1ULL
3882 
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)3883 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3884 {
3885 	u64 dte;
3886 
3887 	dte	= amd_iommu_dev_table[devid].data[2];
3888 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3889 	dte	|= virt_to_phys(table->table);
3890 	dte	|= DTE_IRQ_REMAP_INTCTL;
3891 	dte	|= DTE_IRQ_TABLE_LEN;
3892 	dte	|= DTE_IRQ_REMAP_ENABLE;
3893 
3894 	amd_iommu_dev_table[devid].data[2] = dte;
3895 }
3896 
3897 #define IRTE_ALLOCATED (~1U)
3898 
get_irq_table(u16 devid,bool ioapic)3899 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3900 {
3901 	struct irq_remap_table *table = NULL;
3902 	struct amd_iommu *iommu;
3903 	unsigned long flags;
3904 	u16 alias;
3905 
3906 	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3907 
3908 	iommu = amd_iommu_rlookup_table[devid];
3909 	if (!iommu)
3910 		goto out_unlock;
3911 
3912 	table = irq_lookup_table[devid];
3913 	if (table)
3914 		goto out;
3915 
3916 	alias = amd_iommu_alias_table[devid];
3917 	table = irq_lookup_table[alias];
3918 	if (table) {
3919 		irq_lookup_table[devid] = table;
3920 		set_dte_irq_entry(devid, table);
3921 		iommu_flush_dte(iommu, devid);
3922 		goto out;
3923 	}
3924 
3925 	/* Nothing there yet, allocate new irq remapping table */
3926 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
3927 	if (!table)
3928 		goto out;
3929 
3930 	/* Initialize table spin-lock */
3931 	spin_lock_init(&table->lock);
3932 
3933 	if (ioapic)
3934 		/* Keep the first 32 indexes free for IOAPIC interrupts */
3935 		table->min_index = 32;
3936 
3937 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3938 	if (!table->table) {
3939 		kfree(table);
3940 		table = NULL;
3941 		goto out;
3942 	}
3943 
3944 	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3945 
3946 	if (ioapic) {
3947 		int i;
3948 
3949 		for (i = 0; i < 32; ++i)
3950 			table->table[i] = IRTE_ALLOCATED;
3951 	}
3952 
3953 	irq_lookup_table[devid] = table;
3954 	set_dte_irq_entry(devid, table);
3955 	iommu_flush_dte(iommu, devid);
3956 	if (devid != alias) {
3957 		irq_lookup_table[alias] = table;
3958 		set_dte_irq_entry(devid, table);
3959 		iommu_flush_dte(iommu, alias);
3960 	}
3961 
3962 out:
3963 	iommu_completion_wait(iommu);
3964 
3965 out_unlock:
3966 	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3967 
3968 	return table;
3969 }
3970 
alloc_irq_index(struct irq_cfg * cfg,u16 devid,int count)3971 static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3972 {
3973 	struct irq_remap_table *table;
3974 	unsigned long flags;
3975 	int index, c;
3976 
3977 	table = get_irq_table(devid, false);
3978 	if (!table)
3979 		return -ENODEV;
3980 
3981 	spin_lock_irqsave(&table->lock, flags);
3982 
3983 	/* Scan table for free entries */
3984 	for (c = 0, index = table->min_index;
3985 	     index < MAX_IRQS_PER_TABLE;
3986 	     ++index) {
3987 		if (table->table[index] == 0)
3988 			c += 1;
3989 		else
3990 			c = 0;
3991 
3992 		if (c == count)	{
3993 			struct irq_2_irte *irte_info;
3994 
3995 			for (; c != 0; --c)
3996 				table->table[index - c + 1] = IRTE_ALLOCATED;
3997 
3998 			index -= count - 1;
3999 
4000 			cfg->remapped	      = 1;
4001 			irte_info             = &cfg->irq_2_irte;
4002 			irte_info->devid      = devid;
4003 			irte_info->index      = index;
4004 
4005 			goto out;
4006 		}
4007 	}
4008 
4009 	index = -ENOSPC;
4010 
4011 out:
4012 	spin_unlock_irqrestore(&table->lock, flags);
4013 
4014 	return index;
4015 }
4016 
get_irte(u16 devid,int index,union irte * irte)4017 static int get_irte(u16 devid, int index, union irte *irte)
4018 {
4019 	struct irq_remap_table *table;
4020 	unsigned long flags;
4021 
4022 	table = get_irq_table(devid, false);
4023 	if (!table)
4024 		return -ENOMEM;
4025 
4026 	spin_lock_irqsave(&table->lock, flags);
4027 	irte->val = table->table[index];
4028 	spin_unlock_irqrestore(&table->lock, flags);
4029 
4030 	return 0;
4031 }
4032 
modify_irte(u16 devid,int index,union irte irte)4033 static int modify_irte(u16 devid, int index, union irte irte)
4034 {
4035 	struct irq_remap_table *table;
4036 	struct amd_iommu *iommu;
4037 	unsigned long flags;
4038 
4039 	iommu = amd_iommu_rlookup_table[devid];
4040 	if (iommu == NULL)
4041 		return -EINVAL;
4042 
4043 	table = get_irq_table(devid, false);
4044 	if (!table)
4045 		return -ENOMEM;
4046 
4047 	spin_lock_irqsave(&table->lock, flags);
4048 	table->table[index] = irte.val;
4049 	spin_unlock_irqrestore(&table->lock, flags);
4050 
4051 	iommu_flush_irt(iommu, devid);
4052 	iommu_completion_wait(iommu);
4053 
4054 	return 0;
4055 }
4056 
free_irte(u16 devid,int index)4057 static void free_irte(u16 devid, int index)
4058 {
4059 	struct irq_remap_table *table;
4060 	struct amd_iommu *iommu;
4061 	unsigned long flags;
4062 
4063 	iommu = amd_iommu_rlookup_table[devid];
4064 	if (iommu == NULL)
4065 		return;
4066 
4067 	table = get_irq_table(devid, false);
4068 	if (!table)
4069 		return;
4070 
4071 	spin_lock_irqsave(&table->lock, flags);
4072 	table->table[index] = 0;
4073 	spin_unlock_irqrestore(&table->lock, flags);
4074 
4075 	iommu_flush_irt(iommu, devid);
4076 	iommu_completion_wait(iommu);
4077 }
4078 
setup_ioapic_entry(int irq,struct IO_APIC_route_entry * entry,unsigned int destination,int vector,struct io_apic_irq_attr * attr)4079 static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4080 			      unsigned int destination, int vector,
4081 			      struct io_apic_irq_attr *attr)
4082 {
4083 	struct irq_remap_table *table;
4084 	struct irq_2_irte *irte_info;
4085 	struct irq_cfg *cfg;
4086 	union irte irte;
4087 	int ioapic_id;
4088 	int index;
4089 	int devid;
4090 	int ret;
4091 
4092 	cfg = irq_get_chip_data(irq);
4093 	if (!cfg)
4094 		return -EINVAL;
4095 
4096 	irte_info = &cfg->irq_2_irte;
4097 	ioapic_id = mpc_ioapic_id(attr->ioapic);
4098 	devid     = get_ioapic_devid(ioapic_id);
4099 
4100 	if (devid < 0)
4101 		return devid;
4102 
4103 	table = get_irq_table(devid, true);
4104 	if (table == NULL)
4105 		return -ENOMEM;
4106 
4107 	index = attr->ioapic_pin;
4108 
4109 	/* Setup IRQ remapping info */
4110 	cfg->remapped	      = 1;
4111 	irte_info->devid      = devid;
4112 	irte_info->index      = index;
4113 
4114 	/* Setup IRTE for IOMMU */
4115 	irte.val		= 0;
4116 	irte.fields.vector      = vector;
4117 	irte.fields.int_type    = apic->irq_delivery_mode;
4118 	irte.fields.destination = destination;
4119 	irte.fields.dm          = apic->irq_dest_mode;
4120 	irte.fields.valid       = 1;
4121 
4122 	ret = modify_irte(devid, index, irte);
4123 	if (ret)
4124 		return ret;
4125 
4126 	/* Setup IOAPIC entry */
4127 	memset(entry, 0, sizeof(*entry));
4128 
4129 	entry->vector        = index;
4130 	entry->mask          = 0;
4131 	entry->trigger       = attr->trigger;
4132 	entry->polarity      = attr->polarity;
4133 
4134 	/*
4135 	 * Mask level triggered irqs.
4136 	 */
4137 	if (attr->trigger)
4138 		entry->mask = 1;
4139 
4140 	return 0;
4141 }
4142 
set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4143 static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4144 			bool force)
4145 {
4146 	struct irq_2_irte *irte_info;
4147 	unsigned int dest, irq;
4148 	struct irq_cfg *cfg;
4149 	union irte irte;
4150 	int err;
4151 
4152 	if (!config_enabled(CONFIG_SMP))
4153 		return -1;
4154 
4155 	cfg       = data->chip_data;
4156 	irq       = data->irq;
4157 	irte_info = &cfg->irq_2_irte;
4158 
4159 	if (!cpumask_intersects(mask, cpu_online_mask))
4160 		return -EINVAL;
4161 
4162 	if (get_irte(irte_info->devid, irte_info->index, &irte))
4163 		return -EBUSY;
4164 
4165 	if (assign_irq_vector(irq, cfg, mask))
4166 		return -EBUSY;
4167 
4168 	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4169 	if (err) {
4170 		if (assign_irq_vector(irq, cfg, data->affinity))
4171 			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4172 		return err;
4173 	}
4174 
4175 	irte.fields.vector      = cfg->vector;
4176 	irte.fields.destination = dest;
4177 
4178 	modify_irte(irte_info->devid, irte_info->index, irte);
4179 
4180 	if (cfg->move_in_progress)
4181 		send_cleanup_vector(cfg);
4182 
4183 	cpumask_copy(data->affinity, mask);
4184 
4185 	return 0;
4186 }
4187 
free_irq(int irq)4188 static int free_irq(int irq)
4189 {
4190 	struct irq_2_irte *irte_info;
4191 	struct irq_cfg *cfg;
4192 
4193 	cfg = irq_get_chip_data(irq);
4194 	if (!cfg)
4195 		return -EINVAL;
4196 
4197 	irte_info = &cfg->irq_2_irte;
4198 
4199 	free_irte(irte_info->devid, irte_info->index);
4200 
4201 	return 0;
4202 }
4203 
compose_msi_msg(struct pci_dev * pdev,unsigned int irq,unsigned int dest,struct msi_msg * msg,u8 hpet_id)4204 static void compose_msi_msg(struct pci_dev *pdev,
4205 			    unsigned int irq, unsigned int dest,
4206 			    struct msi_msg *msg, u8 hpet_id)
4207 {
4208 	struct irq_2_irte *irte_info;
4209 	struct irq_cfg *cfg;
4210 	union irte irte;
4211 
4212 	cfg = irq_get_chip_data(irq);
4213 	if (!cfg)
4214 		return;
4215 
4216 	irte_info = &cfg->irq_2_irte;
4217 
4218 	irte.val		= 0;
4219 	irte.fields.vector	= cfg->vector;
4220 	irte.fields.int_type    = apic->irq_delivery_mode;
4221 	irte.fields.destination	= dest;
4222 	irte.fields.dm		= apic->irq_dest_mode;
4223 	irte.fields.valid	= 1;
4224 
4225 	modify_irte(irte_info->devid, irte_info->index, irte);
4226 
4227 	msg->address_hi = MSI_ADDR_BASE_HI;
4228 	msg->address_lo = MSI_ADDR_BASE_LO;
4229 	msg->data       = irte_info->index;
4230 }
4231 
msi_alloc_irq(struct pci_dev * pdev,int irq,int nvec)4232 static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4233 {
4234 	struct irq_cfg *cfg;
4235 	int index;
4236 	u16 devid;
4237 
4238 	if (!pdev)
4239 		return -EINVAL;
4240 
4241 	cfg = irq_get_chip_data(irq);
4242 	if (!cfg)
4243 		return -EINVAL;
4244 
4245 	devid = get_device_id(&pdev->dev);
4246 	index = alloc_irq_index(cfg, devid, nvec);
4247 
4248 	return index < 0 ? MAX_IRQS_PER_TABLE : index;
4249 }
4250 
msi_setup_irq(struct pci_dev * pdev,unsigned int irq,int index,int offset)4251 static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4252 			 int index, int offset)
4253 {
4254 	struct irq_2_irte *irte_info;
4255 	struct irq_cfg *cfg;
4256 	u16 devid;
4257 
4258 	if (!pdev)
4259 		return -EINVAL;
4260 
4261 	cfg = irq_get_chip_data(irq);
4262 	if (!cfg)
4263 		return -EINVAL;
4264 
4265 	if (index >= MAX_IRQS_PER_TABLE)
4266 		return 0;
4267 
4268 	devid		= get_device_id(&pdev->dev);
4269 	irte_info	= &cfg->irq_2_irte;
4270 
4271 	cfg->remapped	      = 1;
4272 	irte_info->devid      = devid;
4273 	irte_info->index      = index + offset;
4274 
4275 	return 0;
4276 }
4277 
setup_hpet_msi(unsigned int irq,unsigned int id)4278 static int setup_hpet_msi(unsigned int irq, unsigned int id)
4279 {
4280 	struct irq_2_irte *irte_info;
4281 	struct irq_cfg *cfg;
4282 	int index, devid;
4283 
4284 	cfg = irq_get_chip_data(irq);
4285 	if (!cfg)
4286 		return -EINVAL;
4287 
4288 	irte_info = &cfg->irq_2_irte;
4289 	devid     = get_hpet_devid(id);
4290 	if (devid < 0)
4291 		return devid;
4292 
4293 	index = alloc_irq_index(cfg, devid, 1);
4294 	if (index < 0)
4295 		return index;
4296 
4297 	cfg->remapped	      = 1;
4298 	irte_info->devid      = devid;
4299 	irte_info->index      = index;
4300 
4301 	return 0;
4302 }
4303 
4304 struct irq_remap_ops amd_iommu_irq_ops = {
4305 	.supported		= amd_iommu_supported,
4306 	.prepare		= amd_iommu_prepare,
4307 	.enable			= amd_iommu_enable,
4308 	.disable		= amd_iommu_disable,
4309 	.reenable		= amd_iommu_reenable,
4310 	.enable_faulting	= amd_iommu_enable_faulting,
4311 	.setup_ioapic_entry	= setup_ioapic_entry,
4312 	.set_affinity		= set_affinity,
4313 	.free_irq		= free_irq,
4314 	.compose_msi_msg	= compose_msi_msg,
4315 	.msi_alloc_irq		= msi_alloc_irq,
4316 	.msi_setup_irq		= msi_setup_irq,
4317 	.setup_hpet_msi		= setup_hpet_msi,
4318 };
4319 #endif
4320