• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 
28 #include <asm/addrspace.h>
29 #include <asm/bootinfo.h>
30 #include <asm/bugs.h>
31 #include <asm/cache.h>
32 #include <asm/cpu.h>
33 #include <asm/sections.h>
34 #include <asm/setup.h>
35 #include <asm/smp-ops.h>
36 #include <asm/prom.h>
37 
38 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
39 
40 EXPORT_SYMBOL(cpu_data);
41 
42 #ifdef CONFIG_VT
43 struct screen_info screen_info;
44 #endif
45 
46 /*
47  * Despite it's name this variable is even if we don't have PCI
48  */
49 unsigned int PCI_DMA_BUS_IS_PHYS;
50 
51 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
52 
53 /*
54  * Setup information
55  *
56  * These are initialized so they are in the .data section
57  */
58 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
59 
60 EXPORT_SYMBOL(mips_machtype);
61 
62 struct boot_mem_map boot_mem_map;
63 
64 static char __initdata command_line[COMMAND_LINE_SIZE];
65 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
66 
67 #ifdef CONFIG_CMDLINE_BOOL
68 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
69 #endif
70 
71 /*
72  * mips_io_port_base is the begin of the address space to which x86 style
73  * I/O ports are mapped.
74  */
75 const unsigned long mips_io_port_base = -1;
76 EXPORT_SYMBOL(mips_io_port_base);
77 
78 static struct resource code_resource = { .name = "Kernel code", };
79 static struct resource data_resource = { .name = "Kernel data", };
80 
81 static void *detect_magic __initdata = detect_memory_region;
82 
add_memory_region(phys_t start,phys_t size,long type)83 void __init add_memory_region(phys_t start, phys_t size, long type)
84 {
85 	int x = boot_mem_map.nr_map;
86 	int i;
87 
88 	/* Sanity check */
89 	if (start + size < start) {
90 		pr_warning("Trying to add an invalid memory region, skipped\n");
91 		return;
92 	}
93 
94 	/*
95 	 * Try to merge with existing entry, if any.
96 	 */
97 	for (i = 0; i < boot_mem_map.nr_map; i++) {
98 		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
99 		unsigned long top;
100 
101 		if (entry->type != type)
102 			continue;
103 
104 		if (start + size < entry->addr)
105 			continue;			/* no overlap */
106 
107 		if (entry->addr + entry->size < start)
108 			continue;			/* no overlap */
109 
110 		top = max(entry->addr + entry->size, start + size);
111 		entry->addr = min(entry->addr, start);
112 		entry->size = top - entry->addr;
113 
114 		return;
115 	}
116 
117 	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
118 		pr_err("Ooops! Too many entries in the memory map!\n");
119 		return;
120 	}
121 
122 	boot_mem_map.map[x].addr = start;
123 	boot_mem_map.map[x].size = size;
124 	boot_mem_map.map[x].type = type;
125 	boot_mem_map.nr_map++;
126 }
127 
detect_memory_region(phys_t start,phys_t sz_min,phys_t sz_max)128 void __init detect_memory_region(phys_t start, phys_t sz_min, phys_t sz_max)
129 {
130 	void *dm = &detect_magic;
131 	phys_t size;
132 
133 	for (size = sz_min; size < sz_max; size <<= 1) {
134 		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
135 			break;
136 	}
137 
138 	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
139 		((unsigned long long) size) / SZ_1M,
140 		(unsigned long long) start,
141 		((unsigned long long) sz_min) / SZ_1M,
142 		((unsigned long long) sz_max) / SZ_1M);
143 
144 	add_memory_region(start, size, BOOT_MEM_RAM);
145 }
146 
print_memory_map(void)147 static void __init print_memory_map(void)
148 {
149 	int i;
150 	const int field = 2 * sizeof(unsigned long);
151 
152 	for (i = 0; i < boot_mem_map.nr_map; i++) {
153 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
154 		       field, (unsigned long long) boot_mem_map.map[i].size,
155 		       field, (unsigned long long) boot_mem_map.map[i].addr);
156 
157 		switch (boot_mem_map.map[i].type) {
158 		case BOOT_MEM_RAM:
159 			printk(KERN_CONT "(usable)\n");
160 			break;
161 		case BOOT_MEM_INIT_RAM:
162 			printk(KERN_CONT "(usable after init)\n");
163 			break;
164 		case BOOT_MEM_ROM_DATA:
165 			printk(KERN_CONT "(ROM data)\n");
166 			break;
167 		case BOOT_MEM_RESERVED:
168 			printk(KERN_CONT "(reserved)\n");
169 			break;
170 		case BOOT_MEM_INUSE:
171 			printk(KERN_CONT "(in-use, reserved)\n");
172 			break;
173 		default:
174 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
175 			break;
176 		}
177 	}
178 }
179 
180 /*
181  * Manage initrd
182  */
183 #ifdef CONFIG_BLK_DEV_INITRD
184 
rd_start_early(char * p)185 static int __init rd_start_early(char *p)
186 {
187 	unsigned long start = memparse(p, &p);
188 
189 #ifdef CONFIG_64BIT
190 	/* Guess if the sign extension was forgotten by bootloader */
191 	if (start < XKPHYS)
192 		start = (int)start;
193 #endif
194 	initrd_start = start;
195 	initrd_end += start;
196 	return 0;
197 }
198 early_param("rd_start", rd_start_early);
199 
rd_size_early(char * p)200 static int __init rd_size_early(char *p)
201 {
202 	initrd_end += memparse(p, &p);
203 	return 0;
204 }
205 early_param("rd_size", rd_size_early);
206 
207 /* it returns the next free pfn after initrd */
init_initrd(void)208 static unsigned long __init init_initrd(void)
209 {
210 	unsigned long end;
211 
212 	/*
213 	 * Board specific code or command line parser should have
214 	 * already set up initrd_start and initrd_end. In these cases
215 	 * perfom sanity checks and use them if all looks good.
216 	 */
217 	if (!initrd_start || initrd_end <= initrd_start)
218 		goto disable;
219 
220 	if (initrd_start & ~PAGE_MASK) {
221 		pr_err("initrd start must be page aligned\n");
222 		goto disable;
223 	}
224 	if (initrd_start < PAGE_OFFSET) {
225 		pr_err("initrd start < PAGE_OFFSET\n");
226 		goto disable;
227 	}
228 
229 	/*
230 	 * Sanitize initrd addresses. For example firmware
231 	 * can't guess if they need to pass them through
232 	 * 64-bits values if the kernel has been built in pure
233 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
234 	 * addresses now, so the code can now safely use __pa().
235 	 */
236 	end = __pa(initrd_end);
237 	initrd_end = (unsigned long)__va(end);
238 	initrd_start = (unsigned long)__va(__pa(initrd_start));
239 
240 	ROOT_DEV = Root_RAM0;
241 	return PFN_UP(end);
242 disable:
243 	initrd_start = 0;
244 	initrd_end = 0;
245 	return 0;
246 }
247 
finalize_initrd(void)248 static void __init finalize_initrd(void)
249 {
250 	unsigned long size = initrd_end - initrd_start;
251 
252 	if (size == 0) {
253 		printk(KERN_INFO "Initrd not found or empty");
254 		goto disable;
255 	}
256 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
257 		printk(KERN_ERR "Initrd extends beyond end of memory");
258 		goto disable;
259 	}
260 
261 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
262 	initrd_below_start_ok = 1;
263 
264 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
265 		initrd_start, size);
266 	return;
267 disable:
268 	printk(KERN_CONT " - disabling initrd\n");
269 	initrd_start = 0;
270 	initrd_end = 0;
271 }
272 
273 #else  /* !CONFIG_BLK_DEV_INITRD */
274 
init_initrd(void)275 static unsigned long __init init_initrd(void)
276 {
277 	return 0;
278 }
279 
280 #define finalize_initrd()	do {} while (0)
281 
282 #endif
283 
284 /*
285  * Initialize the bootmem allocator. It also setup initrd related data
286  * if needed.
287  */
288 #ifdef CONFIG_SGI_IP27
289 
bootmem_init(void)290 static void __init bootmem_init(void)
291 {
292 	init_initrd();
293 	finalize_initrd();
294 }
295 
296 #else  /* !CONFIG_SGI_IP27 */
297 
298 static int maar_last = -2;
299 static int nomaar_flag;
300 static unsigned long maar_regs[MIPS_MAAR_MAX * 2];
301 
early_parse_nomaar(char * p)302 static int __init early_parse_nomaar(char *p)
303 {
304 	nomaar_flag = 1;
305 	return(0);
306 }
307 early_param("nomaar", early_parse_nomaar);
308 
maar_reset(void)309 static void __init maar_reset(void)
310 {
311 	int maar = 0;
312 
313 	do {
314 		write_c0_maarindex(maar);
315 		back_to_back_c0_hazard();
316 		if (read_c0_maarindex() != maar)
317 			return;
318 		write_c0_maar(0);
319 		back_to_back_c0_hazard();
320 	} while (++maar < MIPS_MAAR_MAX);
321 }
322 
maar_setup(void)323 void __init maar_setup(void)
324 {
325 	int maar = 0;
326 	phys_t low;
327 	phys_t upper;
328 
329 	if (nomaar_flag || !cpu_has_maar)
330 		return;
331 
332 	pr_info("MAAR setup:\n");
333 	maar_reset();
334 
335 	for (maar=0; maar<(maar_last+2); maar++) {
336 		write_c0_maarindex(maar);
337 		back_to_back_c0_hazard();
338 		if (read_c0_maarindex() != maar) {
339 			pr_err("CPU has only %d MAARs, resetting...\n",maar - 1);
340 			maar_reset();
341 			return;
342 		}
343 		write_c0_maar(maar_regs[maar]);
344 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_64BIT_PHYS_ADDR)
345 		write_c0_hi_maar(maar_regs[maar + MIPS_MAAR_MAX]);
346 #endif
347 		back_to_back_c0_hazard();
348 		if (maar & 1) {
349 			low = (((phys_t)maar_regs[maar]) << 4) & ~0xffff;
350 			upper = (((phys_t)maar_regs[maar - 1]) << 4) & ~0xffff;
351 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_64BIT_PHYS_ADDR)
352 			low += (((phys_t)maar_regs[maar + MIPS_MAAR_MAX]) << 36) & ~MIPS_MAAR_HI_V;
353 			upper += (((phys_t)maar_regs[maar - 1 + MIPS_MAAR_MAX]) << 36) & ~MIPS_MAAR_HI_V;
354 #endif
355 			upper = (upper & ~0xffff) + 0xffff;
356 			pr_info("  [%0#10lx-%0#10lx] %s\n", low, upper,
357 				(maar_regs[maar -1] & MIPS_MAAR_S)?"speculative":"");
358 		}
359 	}
360 }
361 
maar_update(phys_t begin,phys_t end,int speculative)362 static void __init maar_update(phys_t begin, phys_t end, int speculative)
363 {
364 	phys_t start;
365 
366 	/* rounding, let's be conservative if speculative */
367 	if (speculative) {
368 		if (begin & 0xffff)
369 			start = (begin + 0x10000) & ~0xffff;
370 		else
371 			start = begin;
372 		end = (end - 0x10000) & ~0xffff;
373 	} else {
374 		start = begin & ~0xffff;
375 		end = (end - 1) & ~0xffff;
376 	}
377 	if (speculative && (end == start))
378 		return;
379 
380 	maar_regs[maar_last + 1] = ((start >> 4) | MIPS_MAAR_V | (speculative?MIPS_MAAR_S:0));
381 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_64BIT_PHYS_ADDR)
382 	maar_regs[maar_last + 1 + MIPS_MAAR_MAX] = MIPS_MAAR_HI_V | (start >> 36);
383 #endif
384 	maar_regs[maar_last] = ((end >> 4) | MIPS_MAAR_V | (speculative?MIPS_MAAR_S:0));
385 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_64BIT_PHYS_ADDR)
386 	maar_regs[maar_last + MIPS_MAAR_MAX] = MIPS_MAAR_HI_V | (end >> 36);
387 #endif
388 	return;
389 }
390 
add_maar_region(phys_t start,phys_t end,int speculative)391 void __init add_maar_region(phys_t start, phys_t end, int speculative)
392 {
393 	phys_t upper;
394 	unsigned sbit;
395 	int i;
396 
397 	if (nomaar_flag || !cpu_has_maar)
398 		return;
399 
400 	if (maar_last < 0) {
401 		maar_last = 0;
402 		maar_update(start, end, speculative);
403 		return;
404 	}
405 
406 	/* try merge with previous region */
407 	upper = maar_regs[maar_last];
408 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_64BIT_PHYS_ADDR)
409 	upper |= (((phys_t)maar_regs[maar_last + MIPS_MAAR_MAX] << 32) & ~MIPS_MAAR_HI_V);
410 #endif
411 	sbit = (upper & MIPS_MAAR_S)? MIPS_MAAR_S : 0;
412 	speculative = speculative? MIPS_MAAR_S : 0;
413 	upper = ((upper << 4) + 0x10000) & ~0xffffUL;
414 	if (((upper == (start & ~0xffffUL)) ||
415 	     (upper == ((start + 0xffffUL) & ~0xffffUL))) &&
416 	    (sbit == speculative)) {
417 		if (speculative)
418 			end = (end - 0x10000) & ~0xffff;
419 		else
420 			end = (end - 1) & ~0xffff;
421 		maar_regs[maar_last] = (end >> 4) | MIPS_MAAR_V | sbit;
422 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_64BIT_PHYS_ADDR)
423 		maar_regs[maar_last + MIPS_MAAR_MAX] = MIPS_MAAR_HI_V | (end >> 36);
424 #endif
425 		return;
426 	}
427 
428 	maar_last += 2;
429 	if (maar_last >= MIPS_MAAR_MAX) {
430 		pr_err("Attempt to initialize more than %d MAARs\n", MIPS_MAAR_MAX);
431 		for (i=0; i<MIPS_MAAR_MAX; i++) {
432 			maar_regs[i] = 0;
433 			maar_regs[i + MIPS_MAAR_MAX] = 0;
434 		}
435 		return;
436 	}
437 	maar_update(start, end, speculative);
438 }
439 
bootmem_init(void)440 static void __init bootmem_init(void)
441 {
442 	unsigned long reserved_end;
443 	unsigned long mapstart = ~0UL;
444 	unsigned long bootmap_size;
445 	int i;
446 
447 	/*
448 	 * Init any data related to initrd. It's a nop if INITRD is
449 	 * not selected. Once that done we can determine the low bound
450 	 * of usable memory.
451 	 */
452 	reserved_end = max(init_initrd(),
453 			   (unsigned long) PFN_UP(__pa_symbol(&_end)));
454 
455 	/*
456 	 * max_low_pfn is not a number of pages. The number of pages
457 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
458 	 */
459 	min_low_pfn = ~0UL;
460 	max_low_pfn = 0;
461 
462 	/*
463 	 * Find the highest page frame number we have available.
464 	 */
465 	for (i = 0; i < boot_mem_map.nr_map; i++) {
466 		unsigned long start, end;
467 
468 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
469 			continue;
470 
471 		start = PFN_UP(boot_mem_map.map[i].addr);
472 		end = PFN_DOWN(boot_mem_map.map[i].addr
473 				+ boot_mem_map.map[i].size);
474 
475 		if (end > max_low_pfn)
476 			max_low_pfn = end;
477 		if (start < min_low_pfn)
478 			min_low_pfn = start;
479 		if (end <= reserved_end)
480 			continue;
481 		if (start >= mapstart)
482 			continue;
483 		mapstart = max(reserved_end, start);
484 	}
485 
486 	if (min_low_pfn >= max_low_pfn)
487 		panic("Incorrect memory mapping !!!");
488 	if (min_low_pfn > ARCH_PFN_OFFSET) {
489 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
490 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
491 			min_low_pfn - ARCH_PFN_OFFSET);
492 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
493 		pr_info("%lu free pages won't be used\n",
494 			ARCH_PFN_OFFSET - min_low_pfn);
495 	}
496 	min_low_pfn = ARCH_PFN_OFFSET;
497 
498 	/*
499 	 * Determine low and high memory ranges
500 	 */
501 	max_pfn = max_low_pfn;
502 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
503 #ifdef CONFIG_HIGHMEM
504 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
505 		highend_pfn = max_low_pfn;
506 #endif
507 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
508 	}
509 
510 	/*
511 	 * Initialize the boot-time allocator with low memory only.
512 	 */
513 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
514 					 min_low_pfn, max_low_pfn);
515 
516 	for (i = 0; i < boot_mem_map.nr_map; i++) {
517 		unsigned long start, end;
518 
519 		start = PFN_UP(boot_mem_map.map[i].addr);
520 		end = PFN_DOWN(boot_mem_map.map[i].addr
521 				+ boot_mem_map.map[i].size);
522 
523 		if (start <= min_low_pfn)
524 			start = min_low_pfn;
525 		if (start >= end)
526 			continue;
527 
528 #ifndef CONFIG_HIGHMEM
529 		if (end > max_low_pfn)
530 			end = max_low_pfn;
531 
532 		/*
533 		 * ... finally, is the area going away?
534 		 */
535 		if (end <= start)
536 			continue;
537 #endif
538 		if ((!nomaar_flag) && cpu_has_maar &&
539 		    ((boot_mem_map.map[i].type == BOOT_MEM_RAM) ||
540 		     (boot_mem_map.map[i].type == BOOT_MEM_ROM_DATA) ||
541 		     (boot_mem_map.map[i].type == BOOT_MEM_INUSE) ||
542 		     (boot_mem_map.map[i].type == BOOT_MEM_INIT_RAM)))
543 			add_maar_region(PFN_PHYS(start), PFN_PHYS(end), 1);
544 
545 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
546 	}
547 	if (cpu_has_maar && !nomaar_flag)
548 		maar_setup();
549 
550 	/*
551 	 * Register fully available low RAM pages with the bootmem allocator.
552 	 */
553 	for (i = 0; i < boot_mem_map.nr_map; i++) {
554 		unsigned long start, end, size;
555 
556 		start = PFN_UP(boot_mem_map.map[i].addr);
557 		end   = PFN_DOWN(boot_mem_map.map[i].addr
558 				    + boot_mem_map.map[i].size);
559 
560 		/*
561 		 * Reserve usable memory.
562 		 */
563 		switch (boot_mem_map.map[i].type) {
564 		case BOOT_MEM_RAM:
565 			break;
566 		case BOOT_MEM_INIT_RAM:
567 			memory_present(0, start, end);
568 			continue;
569 		default:
570 			/* Not usable memory */
571 			continue;
572 		}
573 
574 		/*
575 		 * We are rounding up the start address of usable memory
576 		 * and at the end of the usable range downwards.
577 		 */
578 		if (start >= max_low_pfn)
579 			continue;
580 		if (start < reserved_end)
581 			start = reserved_end;
582 		if (end > max_low_pfn)
583 			end = max_low_pfn;
584 
585 		/*
586 		 * ... finally, is the area going away?
587 		 */
588 		if (end <= start)
589 			continue;
590 		size = end - start;
591 
592 		/* Register lowmem ranges */
593 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
594 		memory_present(0, start, end);
595 	}
596 
597 	/*
598 	 * Reserve the bootmap memory.
599 	 */
600 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
601 
602 	/*
603 	 * Reserve initrd memory if needed.
604 	 */
605 	finalize_initrd();
606 }
607 
608 #endif	/* CONFIG_SGI_IP27 */
609 
610 /*
611  * arch_mem_init - initialize memory management subsystem
612  *
613  *  o plat_mem_setup() detects the memory configuration and will record detected
614  *    memory areas using add_memory_region.
615  *
616  * At this stage the memory configuration of the system is known to the
617  * kernel but generic memory management system is still entirely uninitialized.
618  *
619  *  o bootmem_init()
620  *  o sparse_init()
621  *  o paging_init()
622  *
623  * At this stage the bootmem allocator is ready to use.
624  *
625  * NOTE: historically plat_mem_setup did the entire platform initialization.
626  *	 This was rather impractical because it meant plat_mem_setup had to
627  * get away without any kind of memory allocator.  To keep old code from
628  * breaking plat_setup was just renamed to plat_setup and a second platform
629  * initialization hook for anything else was introduced.
630  */
631 
632 static int usermem __initdata;
633 
early_parse_mem(char * p)634 static int __init early_parse_mem(char *p)
635 {
636 	unsigned long start, size;
637 
638 	/*
639 	 * If a user specifies memory size, we
640 	 * blow away any automatically generated
641 	 * size.
642 	 */
643 	if (usermem == 0) {
644 		boot_mem_map.nr_map = 0;
645 		usermem = 1;
646 	}
647 	start = 0;
648 	size = memparse(p, &p);
649 	if (*p == '@')
650 		start = memparse(p + 1, &p);
651 
652 	add_memory_region(start, size, BOOT_MEM_RAM);
653 	return 0;
654 }
655 early_param("mem", early_parse_mem);
656 
early_parse_memmap(char * p)657 static int __init early_parse_memmap(char *p)
658 {
659 	char *oldp;
660 	u64 start_at, mem_size;
661 
662 	if (!p)
663 		return -EINVAL;
664 
665 	if (!strncmp(p, "exactmap", 8)) {
666 		pr_err("\"memmap=exactmap\" invalid on MIPS\n");
667 		return 0;
668 	}
669 
670 	oldp = p;
671 	mem_size = memparse(p, &p);
672 	if (p == oldp)
673 		return -EINVAL;
674 
675 	if (*p == '@') {
676 		start_at = memparse(p+1, &p);
677 		add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
678 	} else if (*p == '#') {
679 		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
680 		return -EINVAL;
681 	} else if (*p == '$') {
682 		start_at = memparse(p+1, &p);
683 		add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
684 	} else {
685 		pr_err("\"memmap\" invalid format!\n");
686 		return -EINVAL;
687 	}
688 
689 	if (*p == '\0') {
690 		usermem = 1;
691 		return 0;
692 	} else
693 		return -EINVAL;
694 }
695 early_param("memmap", early_parse_memmap);
696 
697 #ifdef CONFIG_PROC_VMCORE
698 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
early_parse_elfcorehdr(char * p)699 static int __init early_parse_elfcorehdr(char *p)
700 {
701 	int i;
702 
703 	setup_elfcorehdr = memparse(p, &p);
704 
705 	for (i = 0; i < boot_mem_map.nr_map; i++) {
706 		unsigned long start = boot_mem_map.map[i].addr;
707 		unsigned long end = (boot_mem_map.map[i].addr +
708 				     boot_mem_map.map[i].size);
709 		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
710 			/*
711 			 * Reserve from the elf core header to the end of
712 			 * the memory segment, that should all be kdump
713 			 * reserved memory.
714 			 */
715 			setup_elfcorehdr_size = end - setup_elfcorehdr;
716 			break;
717 		}
718 	}
719 	/*
720 	 * If we don't find it in the memory map, then we shouldn't
721 	 * have to worry about it, as the new kernel won't use it.
722 	 */
723 	return 0;
724 }
725 early_param("elfcorehdr", early_parse_elfcorehdr);
726 #endif
727 
arch_mem_addpart(phys_t mem,phys_t end,int type)728 static void __init arch_mem_addpart(phys_t mem, phys_t end, int type)
729 {
730 	phys_t size;
731 	int i;
732 
733 	size = end - mem;
734 	if (!size)
735 		return;
736 
737 	/* Make sure it is in the boot_mem_map */
738 	for (i = 0; i < boot_mem_map.nr_map; i++) {
739 		if (mem >= boot_mem_map.map[i].addr &&
740 		    mem < (boot_mem_map.map[i].addr +
741 			   boot_mem_map.map[i].size))
742 			return;
743 	}
744 	add_memory_region(mem, size, type);
745 }
746 
747 #ifdef CONFIG_KEXEC
get_total_mem(void)748 static inline unsigned long long get_total_mem(void)
749 {
750 	unsigned long long total;
751 
752 	total = max_pfn - min_low_pfn;
753 	return total << PAGE_SHIFT;
754 }
755 
mips_parse_crashkernel(void)756 static void __init mips_parse_crashkernel(void)
757 {
758 	unsigned long long total_mem;
759 	unsigned long long crash_size, crash_base;
760 	int ret;
761 
762 	total_mem = get_total_mem();
763 	ret = parse_crashkernel(boot_command_line, total_mem,
764 				&crash_size, &crash_base);
765 	if (ret != 0 || crash_size <= 0)
766 		return;
767 
768 	crashk_res.start = crash_base;
769 	crashk_res.end	 = crash_base + crash_size - 1;
770 }
771 
request_crashkernel(struct resource * res)772 static void __init request_crashkernel(struct resource *res)
773 {
774 	int ret;
775 
776 	ret = request_resource(res, &crashk_res);
777 	if (!ret)
778 		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
779 			(unsigned long)((crashk_res.end -
780 					 crashk_res.start + 1) >> 20),
781 			(unsigned long)(crashk_res.start  >> 20));
782 }
783 #else /* !defined(CONFIG_KEXEC)		*/
mips_parse_crashkernel(void)784 static void __init mips_parse_crashkernel(void)
785 {
786 }
787 
request_crashkernel(struct resource * res)788 static void __init request_crashkernel(struct resource *res)
789 {
790 }
791 #endif /* !defined(CONFIG_KEXEC)  */
792 
arch_mem_init(char ** cmdline_p)793 static void __init arch_mem_init(char **cmdline_p)
794 {
795 	extern void plat_mem_setup(void);
796 
797 	/* call board setup routine */
798 	plat_mem_setup();
799 
800 	/*
801 	 * Make sure all kernel memory is in the maps.  The "UP" and
802 	 * "DOWN" are opposite for initdata since if it crosses over
803 	 * into another memory section you don't want that to be
804 	 * freed when the initdata is freed.
805 	 */
806 	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
807 			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
808 			 BOOT_MEM_RAM);
809 	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
810 			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
811 			 BOOT_MEM_INIT_RAM);
812 
813 	pr_info("Determined physical RAM map:\n");
814 	print_memory_map();
815 
816 #ifdef CONFIG_CMDLINE_BOOL
817 #ifdef CONFIG_CMDLINE_OVERRIDE
818 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
819 #else
820 	if (builtin_cmdline[0]) {
821 		strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
822 		strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
823 	}
824 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
825 #endif
826 #else
827 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
828 #endif
829 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
830 
831 	*cmdline_p = command_line;
832 
833 	parse_early_param();
834 
835 	if (usermem) {
836 		pr_info("User-defined physical RAM map:\n");
837 		print_memory_map();
838 	}
839 
840 	bootmem_init();
841 #ifdef CONFIG_PROC_VMCORE
842 	if (setup_elfcorehdr && setup_elfcorehdr_size) {
843 		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
844 		       setup_elfcorehdr, setup_elfcorehdr_size);
845 		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
846 				BOOTMEM_DEFAULT);
847 	}
848 #endif
849 
850 	mips_parse_crashkernel();
851 #ifdef CONFIG_KEXEC
852 	if (crashk_res.start != crashk_res.end)
853 		reserve_bootmem(crashk_res.start,
854 				crashk_res.end - crashk_res.start + 1,
855 				BOOTMEM_DEFAULT);
856 #endif
857 	device_tree_init();
858 	sparse_init();
859 	plat_swiotlb_setup();
860 	paging_init();
861 }
862 
resource_init(void)863 static void __init resource_init(void)
864 {
865 	int i;
866 
867 	if (UNCAC_BASE != IO_BASE)
868 		return;
869 
870 	code_resource.start = __pa_symbol(&_text);
871 	code_resource.end = __pa_symbol(&_etext) - 1;
872 	data_resource.start = __pa_symbol(&_etext);
873 	data_resource.end = __pa_symbol(&_edata) - 1;
874 
875 	for (i = 0; i < boot_mem_map.nr_map; i++) {
876 		struct resource *res;
877 		unsigned long start, end;
878 
879 		start = boot_mem_map.map[i].addr;
880 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
881 		if (start >= HIGHMEM_START)
882 			continue;
883 		if (end >= HIGHMEM_START)
884 			end = HIGHMEM_START - 1;
885 
886 		res = alloc_bootmem(sizeof(struct resource));
887 		switch (boot_mem_map.map[i].type) {
888 		case BOOT_MEM_RAM:
889 		case BOOT_MEM_INIT_RAM:
890 		case BOOT_MEM_ROM_DATA:
891 			res->name = "System RAM";
892 			break;
893 		case BOOT_MEM_INUSE:
894 			res->name = "InUse memory";
895 			break;
896 		case BOOT_MEM_RESERVED:
897 		default:
898 			res->name = "reserved";
899 		}
900 
901 		res->start = start;
902 		res->end = end;
903 
904 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
905 		request_resource(&iomem_resource, res);
906 
907 		/*
908 		 *  We don't know which RAM region contains kernel data,
909 		 *  so we try it repeatedly and let the resource manager
910 		 *  test it.
911 		 */
912 		request_resource(res, &code_resource);
913 		request_resource(res, &data_resource);
914 		request_crashkernel(res);
915 	}
916 }
917 
setup_arch(char ** cmdline_p)918 void __init setup_arch(char **cmdline_p)
919 {
920 	cpu_probe();
921 	prom_init();
922 
923 #ifdef CONFIG_EARLY_PRINTK
924 	setup_early_printk();
925 #endif
926 	cpu_report();
927 	check_bugs_early();
928 
929 #if defined(CONFIG_VT)
930 #if defined(CONFIG_VGA_CONSOLE)
931 	conswitchp = &vga_con;
932 #elif defined(CONFIG_DUMMY_CONSOLE)
933 	conswitchp = &dummy_con;
934 #endif
935 #endif
936 
937 	arch_mem_init(cmdline_p);
938 
939 	resource_init();
940 	plat_smp_setup();
941 
942 	cpu_cache_init();
943 }
944 
945 unsigned long kernelsp[NR_CPUS];
946 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
947 
948 #ifdef CONFIG_DEBUG_FS
949 struct dentry *mips_debugfs_dir;
debugfs_mips(void)950 static int __init debugfs_mips(void)
951 {
952 	struct dentry *d;
953 
954 	d = debugfs_create_dir("mips", NULL);
955 	if (!d)
956 		return -ENOMEM;
957 	mips_debugfs_dir = d;
958 	return 0;
959 }
960 arch_initcall(debugfs_mips);
961 #endif
962