1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include <linux/export.h>
20
ath9k_hw_set_txq_interrupts(struct ath_hw * ah,struct ath9k_tx_queue_info * qi)21 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22 struct ath9k_tx_queue_info *qi)
23 {
24 ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25 "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27 ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28 ah->txurn_interrupt_mask);
29
30 ENABLE_REGWRITE_BUFFER(ah);
31
32 REG_WRITE(ah, AR_IMR_S0,
33 SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34 | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35 REG_WRITE(ah, AR_IMR_S1,
36 SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37 | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38
39 ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40 ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42
43 REGWRITE_BUFFER_FLUSH(ah);
44 }
45
ath9k_hw_gettxbuf(struct ath_hw * ah,u32 q)46 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47 {
48 return REG_READ(ah, AR_QTXDP(q));
49 }
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51
ath9k_hw_puttxbuf(struct ath_hw * ah,u32 q,u32 txdp)52 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53 {
54 REG_WRITE(ah, AR_QTXDP(q), txdp);
55 }
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57
ath9k_hw_txstart(struct ath_hw * ah,u32 q)58 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59 {
60 ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61 REG_WRITE(ah, AR_Q_TXE, 1 << q);
62 }
63 EXPORT_SYMBOL(ath9k_hw_txstart);
64
ath9k_hw_numtxpending(struct ath_hw * ah,u32 q)65 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66 {
67 u32 npend;
68
69 npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70 if (npend == 0) {
71
72 if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73 npend = 1;
74 }
75
76 return npend;
77 }
78 EXPORT_SYMBOL(ath9k_hw_numtxpending);
79
80 /**
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82 *
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
85 *
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91 * first)
92 *
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
99 *
100 * Current dual stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
104 */
ath9k_hw_updatetxtriglevel(struct ath_hw * ah,bool bIncTrigLevel)105 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106 {
107 u32 txcfg, curLevel, newLevel;
108
109 if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110 return false;
111
112 ath9k_hw_disable_interrupts(ah);
113
114 txcfg = REG_READ(ah, AR_TXCFG);
115 curLevel = MS(txcfg, AR_FTRIG);
116 newLevel = curLevel;
117 if (bIncTrigLevel) {
118 if (curLevel < ah->config.max_txtrig_level)
119 newLevel++;
120 } else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121 newLevel--;
122 if (newLevel != curLevel)
123 REG_WRITE(ah, AR_TXCFG,
124 (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125
126 ath9k_hw_enable_interrupts(ah);
127
128 ah->tx_trig_level = newLevel;
129
130 return newLevel != curLevel;
131 }
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133
ath9k_hw_abort_tx_dma(struct ath_hw * ah)134 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135 {
136 int maxdelay = 1000;
137 int i, q;
138
139 if (ah->curchan) {
140 if (IS_CHAN_HALF_RATE(ah->curchan))
141 maxdelay *= 2;
142 else if (IS_CHAN_QUARTER_RATE(ah->curchan))
143 maxdelay *= 4;
144 }
145
146 REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
147
148 REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
149 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
150 REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
151
152 for (q = 0; q < AR_NUM_QCU; q++) {
153 for (i = 0; i < maxdelay; i++) {
154 if (i)
155 udelay(5);
156
157 if (!ath9k_hw_numtxpending(ah, q))
158 break;
159 }
160 }
161
162 REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
163 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
164 REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
165
166 REG_WRITE(ah, AR_Q_TXD, 0);
167 }
168 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
169
ath9k_hw_stop_dma_queue(struct ath_hw * ah,u32 q)170 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
171 {
172 #define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */
173 #define ATH9K_TIME_QUANTUM 100 /* usec */
174 int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
175 int wait;
176
177 REG_WRITE(ah, AR_Q_TXD, 1 << q);
178
179 for (wait = wait_time; wait != 0; wait--) {
180 if (wait != wait_time)
181 udelay(ATH9K_TIME_QUANTUM);
182
183 if (ath9k_hw_numtxpending(ah, q) == 0)
184 break;
185 }
186
187 REG_WRITE(ah, AR_Q_TXD, 0);
188
189 return wait != 0;
190
191 #undef ATH9K_TX_STOP_DMA_TIMEOUT
192 #undef ATH9K_TIME_QUANTUM
193 }
194 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
195
ath9k_hw_set_txq_props(struct ath_hw * ah,int q,const struct ath9k_tx_queue_info * qinfo)196 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197 const struct ath9k_tx_queue_info *qinfo)
198 {
199 u32 cw;
200 struct ath_common *common = ath9k_hw_common(ah);
201 struct ath9k_tx_queue_info *qi;
202
203 qi = &ah->txq[q];
204 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205 ath_dbg(common, QUEUE,
206 "Set TXQ properties, inactive queue: %u\n", q);
207 return false;
208 }
209
210 ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
211
212 qi->tqi_ver = qinfo->tqi_ver;
213 qi->tqi_subtype = qinfo->tqi_subtype;
214 qi->tqi_qflags = qinfo->tqi_qflags;
215 qi->tqi_priority = qinfo->tqi_priority;
216 if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217 qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218 else
219 qi->tqi_aifs = INIT_AIFS;
220 if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221 cw = min(qinfo->tqi_cwmin, 1024U);
222 qi->tqi_cwmin = 1;
223 while (qi->tqi_cwmin < cw)
224 qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225 } else
226 qi->tqi_cwmin = qinfo->tqi_cwmin;
227 if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228 cw = min(qinfo->tqi_cwmax, 1024U);
229 qi->tqi_cwmax = 1;
230 while (qi->tqi_cwmax < cw)
231 qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232 } else
233 qi->tqi_cwmax = INIT_CWMAX;
234
235 if (qinfo->tqi_shretry != 0)
236 qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237 else
238 qi->tqi_shretry = INIT_SH_RETRY;
239 if (qinfo->tqi_lgretry != 0)
240 qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241 else
242 qi->tqi_lgretry = INIT_LG_RETRY;
243 qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244 qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245 qi->tqi_burstTime = qinfo->tqi_burstTime;
246 qi->tqi_readyTime = qinfo->tqi_readyTime;
247
248 switch (qinfo->tqi_subtype) {
249 case ATH9K_WME_UPSD:
250 if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251 qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252 break;
253 default:
254 break;
255 }
256
257 return true;
258 }
259 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
260
ath9k_hw_get_txq_props(struct ath_hw * ah,int q,struct ath9k_tx_queue_info * qinfo)261 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262 struct ath9k_tx_queue_info *qinfo)
263 {
264 struct ath_common *common = ath9k_hw_common(ah);
265 struct ath9k_tx_queue_info *qi;
266
267 qi = &ah->txq[q];
268 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269 ath_dbg(common, QUEUE,
270 "Get TXQ properties, inactive queue: %u\n", q);
271 return false;
272 }
273
274 qinfo->tqi_qflags = qi->tqi_qflags;
275 qinfo->tqi_ver = qi->tqi_ver;
276 qinfo->tqi_subtype = qi->tqi_subtype;
277 qinfo->tqi_qflags = qi->tqi_qflags;
278 qinfo->tqi_priority = qi->tqi_priority;
279 qinfo->tqi_aifs = qi->tqi_aifs;
280 qinfo->tqi_cwmin = qi->tqi_cwmin;
281 qinfo->tqi_cwmax = qi->tqi_cwmax;
282 qinfo->tqi_shretry = qi->tqi_shretry;
283 qinfo->tqi_lgretry = qi->tqi_lgretry;
284 qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285 qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286 qinfo->tqi_burstTime = qi->tqi_burstTime;
287 qinfo->tqi_readyTime = qi->tqi_readyTime;
288
289 return true;
290 }
291 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
292
ath9k_hw_setuptxqueue(struct ath_hw * ah,enum ath9k_tx_queue type,const struct ath9k_tx_queue_info * qinfo)293 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294 const struct ath9k_tx_queue_info *qinfo)
295 {
296 struct ath_common *common = ath9k_hw_common(ah);
297 struct ath9k_tx_queue_info *qi;
298 int q;
299
300 switch (type) {
301 case ATH9K_TX_QUEUE_BEACON:
302 q = ATH9K_NUM_TX_QUEUES - 1;
303 break;
304 case ATH9K_TX_QUEUE_CAB:
305 q = ATH9K_NUM_TX_QUEUES - 2;
306 break;
307 case ATH9K_TX_QUEUE_PSPOLL:
308 q = 1;
309 break;
310 case ATH9K_TX_QUEUE_UAPSD:
311 q = ATH9K_NUM_TX_QUEUES - 3;
312 break;
313 case ATH9K_TX_QUEUE_DATA:
314 for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
315 if (ah->txq[q].tqi_type ==
316 ATH9K_TX_QUEUE_INACTIVE)
317 break;
318 if (q == ATH9K_NUM_TX_QUEUES) {
319 ath_err(common, "No available TX queue\n");
320 return -1;
321 }
322 break;
323 default:
324 ath_err(common, "Invalid TX queue type: %u\n", type);
325 return -1;
326 }
327
328 ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
329
330 qi = &ah->txq[q];
331 if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
332 ath_err(common, "TX queue: %u already active\n", q);
333 return -1;
334 }
335 memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
336 qi->tqi_type = type;
337 qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
338 (void) ath9k_hw_set_txq_props(ah, q, qinfo);
339
340 return q;
341 }
342 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
343
ath9k_hw_clear_queue_interrupts(struct ath_hw * ah,u32 q)344 static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
345 {
346 ah->txok_interrupt_mask &= ~(1 << q);
347 ah->txerr_interrupt_mask &= ~(1 << q);
348 ah->txdesc_interrupt_mask &= ~(1 << q);
349 ah->txeol_interrupt_mask &= ~(1 << q);
350 ah->txurn_interrupt_mask &= ~(1 << q);
351 }
352
ath9k_hw_releasetxqueue(struct ath_hw * ah,u32 q)353 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
354 {
355 struct ath_common *common = ath9k_hw_common(ah);
356 struct ath9k_tx_queue_info *qi;
357
358 qi = &ah->txq[q];
359 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
360 ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
361 return false;
362 }
363
364 ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
365
366 qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
367 ath9k_hw_clear_queue_interrupts(ah, q);
368 ath9k_hw_set_txq_interrupts(ah, qi);
369
370 return true;
371 }
372 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
373
ath9k_hw_resettxqueue(struct ath_hw * ah,u32 q)374 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
375 {
376 struct ath_common *common = ath9k_hw_common(ah);
377 struct ath9k_channel *chan = ah->curchan;
378 struct ath9k_tx_queue_info *qi;
379 u32 cwMin, chanCwMin, value;
380
381 qi = &ah->txq[q];
382 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
383 ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
384 return true;
385 }
386
387 ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
388
389 if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
390 if (chan && IS_CHAN_B(chan))
391 chanCwMin = INIT_CWMIN_11B;
392 else
393 chanCwMin = INIT_CWMIN;
394
395 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
396 } else
397 cwMin = qi->tqi_cwmin;
398
399 ENABLE_REGWRITE_BUFFER(ah);
400
401 REG_WRITE(ah, AR_DLCL_IFS(q),
402 SM(cwMin, AR_D_LCL_IFS_CWMIN) |
403 SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
404 SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
405
406 REG_WRITE(ah, AR_DRETRY_LIMIT(q),
407 SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
408 SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
409 SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
410
411 REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
412
413 if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
414 REG_WRITE(ah, AR_DMISC(q),
415 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
416 else
417 REG_WRITE(ah, AR_DMISC(q),
418 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
419
420 if (qi->tqi_cbrPeriod) {
421 REG_WRITE(ah, AR_QCBRCFG(q),
422 SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
423 SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
424 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
425 (qi->tqi_cbrOverflowLimit ?
426 AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
427 }
428 if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
429 REG_WRITE(ah, AR_QRDYTIMECFG(q),
430 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
431 AR_Q_RDYTIMECFG_EN);
432 }
433
434 REG_WRITE(ah, AR_DCHNTIME(q),
435 SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
436 (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
437
438 if (qi->tqi_burstTime
439 && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
440 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
441
442 if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
443 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
444
445 REGWRITE_BUFFER_FLUSH(ah);
446
447 if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
448 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
449
450 switch (qi->tqi_type) {
451 case ATH9K_TX_QUEUE_BEACON:
452 ENABLE_REGWRITE_BUFFER(ah);
453
454 REG_SET_BIT(ah, AR_QMISC(q),
455 AR_Q_MISC_FSP_DBA_GATED
456 | AR_Q_MISC_BEACON_USE
457 | AR_Q_MISC_CBR_INCR_DIS1);
458
459 REG_SET_BIT(ah, AR_DMISC(q),
460 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
461 AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
462 | AR_D_MISC_BEACON_USE
463 | AR_D_MISC_POST_FR_BKOFF_DIS);
464
465 REGWRITE_BUFFER_FLUSH(ah);
466
467 /*
468 * cwmin and cwmax should be 0 for beacon queue
469 * but not for IBSS as we would create an imbalance
470 * on beaconing fairness for participating nodes.
471 */
472 if (AR_SREV_9300_20_OR_LATER(ah) &&
473 ah->opmode != NL80211_IFTYPE_ADHOC) {
474 REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
475 | SM(0, AR_D_LCL_IFS_CWMAX)
476 | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
477 }
478 break;
479 case ATH9K_TX_QUEUE_CAB:
480 ENABLE_REGWRITE_BUFFER(ah);
481
482 REG_SET_BIT(ah, AR_QMISC(q),
483 AR_Q_MISC_FSP_DBA_GATED
484 | AR_Q_MISC_CBR_INCR_DIS1
485 | AR_Q_MISC_CBR_INCR_DIS0);
486 value = (qi->tqi_readyTime -
487 (ah->config.sw_beacon_response_time -
488 ah->config.dma_beacon_response_time) -
489 ah->config.additional_swba_backoff) * 1024;
490 REG_WRITE(ah, AR_QRDYTIMECFG(q),
491 value | AR_Q_RDYTIMECFG_EN);
492 REG_SET_BIT(ah, AR_DMISC(q),
493 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
494 AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
495
496 REGWRITE_BUFFER_FLUSH(ah);
497
498 break;
499 case ATH9K_TX_QUEUE_PSPOLL:
500 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
501 break;
502 case ATH9K_TX_QUEUE_UAPSD:
503 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
504 break;
505 default:
506 break;
507 }
508
509 if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
510 REG_SET_BIT(ah, AR_DMISC(q),
511 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
512 AR_D_MISC_ARB_LOCKOUT_CNTRL) |
513 AR_D_MISC_POST_FR_BKOFF_DIS);
514 }
515
516 if (AR_SREV_9300_20_OR_LATER(ah))
517 REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
518
519 ath9k_hw_clear_queue_interrupts(ah, q);
520 if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
521 ah->txok_interrupt_mask |= 1 << q;
522 ah->txerr_interrupt_mask |= 1 << q;
523 }
524 if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
525 ah->txdesc_interrupt_mask |= 1 << q;
526 if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
527 ah->txeol_interrupt_mask |= 1 << q;
528 if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
529 ah->txurn_interrupt_mask |= 1 << q;
530 ath9k_hw_set_txq_interrupts(ah, qi);
531
532 return true;
533 }
534 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
535
ath9k_hw_rxprocdesc(struct ath_hw * ah,struct ath_desc * ds,struct ath_rx_status * rs)536 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
537 struct ath_rx_status *rs)
538 {
539 struct ar5416_desc ads;
540 struct ar5416_desc *adsp = AR5416DESC(ds);
541 u32 phyerr;
542
543 if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
544 return -EINPROGRESS;
545
546 ads.u.rx = adsp->u.rx;
547
548 rs->rs_status = 0;
549 rs->rs_flags = 0;
550
551 rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
552 rs->rs_tstamp = ads.AR_RcvTimestamp;
553
554 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
555 rs->rs_rssi = ATH9K_RSSI_BAD;
556 rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
557 rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
558 rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
559 rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
560 rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
561 rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
562 } else {
563 rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
564 rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
565 AR_RxRSSIAnt00);
566 rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
567 AR_RxRSSIAnt01);
568 rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
569 AR_RxRSSIAnt02);
570 rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
571 AR_RxRSSIAnt10);
572 rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
573 AR_RxRSSIAnt11);
574 rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
575 AR_RxRSSIAnt12);
576 }
577 if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
578 rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
579 else
580 rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
581
582 rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
583 rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
584
585 rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
586 rs->rs_moreaggr =
587 (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
588 rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
589 rs->rs_flags =
590 (ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
591 rs->rs_flags |=
592 (ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
593
594 if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
595 rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
596 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
597 rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
598 if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
599 rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
600
601 if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
602 /*
603 * Treat these errors as mutually exclusive to avoid spurious
604 * extra error reports from the hardware. If a CRC error is
605 * reported, then decryption and MIC errors are irrelevant,
606 * the frame is going to be dropped either way
607 */
608 if (ads.ds_rxstatus8 & AR_PHYErr) {
609 rs->rs_status |= ATH9K_RXERR_PHY;
610 phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
611 rs->rs_phyerr = phyerr;
612 } else if (ads.ds_rxstatus8 & AR_CRCErr)
613 rs->rs_status |= ATH9K_RXERR_CRC;
614 else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
615 rs->rs_status |= ATH9K_RXERR_DECRYPT;
616 else if (ads.ds_rxstatus8 & AR_MichaelErr)
617 rs->rs_status |= ATH9K_RXERR_MIC;
618 } else {
619 if (ads.ds_rxstatus8 &
620 (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
621 rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
622
623 /* Only up to MCS16 supported, everything above is invalid */
624 if (rs->rs_rate >= 0x90)
625 rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
626 }
627
628 if (ads.ds_rxstatus8 & AR_KeyMiss)
629 rs->rs_status |= ATH9K_RXERR_KEYMISS;
630
631 return 0;
632 }
633 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
634
635 /*
636 * This can stop or re-enables RX.
637 *
638 * If bool is set this will kill any frame which is currently being
639 * transferred between the MAC and baseband and also prevent any new
640 * frames from getting started.
641 */
ath9k_hw_setrxabort(struct ath_hw * ah,bool set)642 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
643 {
644 u32 reg;
645
646 if (set) {
647 REG_SET_BIT(ah, AR_DIAG_SW,
648 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
649
650 if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
651 0, AH_WAIT_TIMEOUT)) {
652 REG_CLR_BIT(ah, AR_DIAG_SW,
653 (AR_DIAG_RX_DIS |
654 AR_DIAG_RX_ABORT));
655
656 reg = REG_READ(ah, AR_OBS_BUS_1);
657 ath_err(ath9k_hw_common(ah),
658 "RX failed to go idle in 10 ms RXSM=0x%x\n",
659 reg);
660
661 return false;
662 }
663 } else {
664 REG_CLR_BIT(ah, AR_DIAG_SW,
665 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
666 }
667
668 return true;
669 }
670 EXPORT_SYMBOL(ath9k_hw_setrxabort);
671
ath9k_hw_putrxbuf(struct ath_hw * ah,u32 rxdp)672 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
673 {
674 REG_WRITE(ah, AR_RXDP, rxdp);
675 }
676 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
677
ath9k_hw_startpcureceive(struct ath_hw * ah,bool is_scanning)678 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
679 {
680 ath9k_enable_mib_counters(ah);
681
682 ath9k_ani_reset(ah, is_scanning);
683
684 REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
685 }
686 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
687
ath9k_hw_abortpcurecv(struct ath_hw * ah)688 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
689 {
690 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
691
692 ath9k_hw_disable_mib_counters(ah);
693 }
694 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
695
ath9k_hw_stopdmarecv(struct ath_hw * ah,bool * reset)696 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
697 {
698 #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */
699 struct ath_common *common = ath9k_hw_common(ah);
700 u32 mac_status, last_mac_status = 0;
701 int i;
702
703 /* Enable access to the DMA observation bus */
704 REG_WRITE(ah, AR_MACMISC,
705 ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
706 (AR_MACMISC_MISC_OBS_BUS_1 <<
707 AR_MACMISC_MISC_OBS_BUS_MSB_S)));
708
709 REG_WRITE(ah, AR_CR, AR_CR_RXD);
710
711 /* Wait for rx enable bit to go low */
712 for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
713 if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
714 break;
715
716 if (!AR_SREV_9300_20_OR_LATER(ah)) {
717 mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
718 if (mac_status == 0x1c0 && mac_status == last_mac_status) {
719 *reset = true;
720 break;
721 }
722
723 last_mac_status = mac_status;
724 }
725
726 udelay(AH_TIME_QUANTUM);
727 }
728
729 if (i == 0) {
730 ath_err(common,
731 "DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
732 AH_RX_STOP_DMA_TIMEOUT / 1000,
733 REG_READ(ah, AR_CR),
734 REG_READ(ah, AR_DIAG_SW),
735 REG_READ(ah, AR_DMADBG_7));
736 return false;
737 } else {
738 return true;
739 }
740
741 #undef AH_RX_STOP_DMA_TIMEOUT
742 }
743 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
744
ath9k_hw_beaconq_setup(struct ath_hw * ah)745 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
746 {
747 struct ath9k_tx_queue_info qi;
748
749 memset(&qi, 0, sizeof(qi));
750 qi.tqi_aifs = 1;
751 qi.tqi_cwmin = 0;
752 qi.tqi_cwmax = 0;
753
754 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
755 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
756
757 return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
758 }
759 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
760
ath9k_hw_intrpend(struct ath_hw * ah)761 bool ath9k_hw_intrpend(struct ath_hw *ah)
762 {
763 u32 host_isr;
764
765 if (AR_SREV_9100(ah))
766 return true;
767
768 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
769
770 if (((host_isr & AR_INTR_MAC_IRQ) ||
771 (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
772 (host_isr != AR_INTR_SPURIOUS))
773 return true;
774
775 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
776 if ((host_isr & AR_INTR_SYNC_DEFAULT)
777 && (host_isr != AR_INTR_SPURIOUS))
778 return true;
779
780 return false;
781 }
782 EXPORT_SYMBOL(ath9k_hw_intrpend);
783
ath9k_hw_kill_interrupts(struct ath_hw * ah)784 void ath9k_hw_kill_interrupts(struct ath_hw *ah)
785 {
786 struct ath_common *common = ath9k_hw_common(ah);
787
788 ath_dbg(common, INTERRUPT, "disable IER\n");
789 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
790 (void) REG_READ(ah, AR_IER);
791 if (!AR_SREV_9100(ah)) {
792 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
793 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
794
795 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
796 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
797 }
798 }
799 EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
800
ath9k_hw_disable_interrupts(struct ath_hw * ah)801 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
802 {
803 if (!(ah->imask & ATH9K_INT_GLOBAL))
804 atomic_set(&ah->intr_ref_cnt, -1);
805 else
806 atomic_dec(&ah->intr_ref_cnt);
807
808 ath9k_hw_kill_interrupts(ah);
809 }
810 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
811
ath9k_hw_enable_interrupts(struct ath_hw * ah)812 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
813 {
814 struct ath_common *common = ath9k_hw_common(ah);
815 u32 sync_default = AR_INTR_SYNC_DEFAULT;
816 u32 async_mask;
817
818 if (!(ah->imask & ATH9K_INT_GLOBAL))
819 return;
820
821 if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
822 ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
823 atomic_read(&ah->intr_ref_cnt));
824 return;
825 }
826
827 if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
828 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
829
830 async_mask = AR_INTR_MAC_IRQ;
831
832 if (ah->imask & ATH9K_INT_MCI)
833 async_mask |= AR_INTR_ASYNC_MASK_MCI;
834
835 ath_dbg(common, INTERRUPT, "enable IER\n");
836 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
837 if (!AR_SREV_9100(ah)) {
838 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
839 REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
840
841 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
842 REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
843 }
844 ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
845 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
846 }
847 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
848
ath9k_hw_set_interrupts(struct ath_hw * ah)849 void ath9k_hw_set_interrupts(struct ath_hw *ah)
850 {
851 enum ath9k_int ints = ah->imask;
852 u32 mask, mask2;
853 struct ath9k_hw_capabilities *pCap = &ah->caps;
854 struct ath_common *common = ath9k_hw_common(ah);
855
856 if (!(ints & ATH9K_INT_GLOBAL))
857 ath9k_hw_disable_interrupts(ah);
858
859 ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
860
861 mask = ints & ATH9K_INT_COMMON;
862 mask2 = 0;
863
864 if (ints & ATH9K_INT_TX) {
865 if (ah->config.tx_intr_mitigation)
866 mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
867 else {
868 if (ah->txok_interrupt_mask)
869 mask |= AR_IMR_TXOK;
870 if (ah->txdesc_interrupt_mask)
871 mask |= AR_IMR_TXDESC;
872 }
873 if (ah->txerr_interrupt_mask)
874 mask |= AR_IMR_TXERR;
875 if (ah->txeol_interrupt_mask)
876 mask |= AR_IMR_TXEOL;
877 }
878 if (ints & ATH9K_INT_RX) {
879 if (AR_SREV_9300_20_OR_LATER(ah)) {
880 mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
881 if (ah->config.rx_intr_mitigation) {
882 mask &= ~AR_IMR_RXOK_LP;
883 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
884 } else {
885 mask |= AR_IMR_RXOK_LP;
886 }
887 } else {
888 if (ah->config.rx_intr_mitigation)
889 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
890 else
891 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
892 }
893 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
894 mask |= AR_IMR_GENTMR;
895 }
896
897 if (ints & ATH9K_INT_GENTIMER)
898 mask |= AR_IMR_GENTMR;
899
900 if (ints & (ATH9K_INT_BMISC)) {
901 mask |= AR_IMR_BCNMISC;
902 if (ints & ATH9K_INT_TIM)
903 mask2 |= AR_IMR_S2_TIM;
904 if (ints & ATH9K_INT_DTIM)
905 mask2 |= AR_IMR_S2_DTIM;
906 if (ints & ATH9K_INT_DTIMSYNC)
907 mask2 |= AR_IMR_S2_DTIMSYNC;
908 if (ints & ATH9K_INT_CABEND)
909 mask2 |= AR_IMR_S2_CABEND;
910 if (ints & ATH9K_INT_TSFOOR)
911 mask2 |= AR_IMR_S2_TSFOOR;
912 }
913
914 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
915 mask |= AR_IMR_BCNMISC;
916 if (ints & ATH9K_INT_GTT)
917 mask2 |= AR_IMR_S2_GTT;
918 if (ints & ATH9K_INT_CST)
919 mask2 |= AR_IMR_S2_CST;
920 }
921
922 ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
923 REG_WRITE(ah, AR_IMR, mask);
924 ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
925 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
926 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
927 ah->imrs2_reg |= mask2;
928 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
929
930 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
931 if (ints & ATH9K_INT_TIM_TIMER)
932 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
933 else
934 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
935 }
936
937 return;
938 }
939 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
940