• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "ar9003_phy.h"
28 #include "debug.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
ath9k_init(void)38 static int __init ath9k_init(void)
39 {
40 	return 0;
41 }
42 module_init(ath9k_init);
43 
ath9k_exit(void)44 static void __exit ath9k_exit(void)
45 {
46 	return;
47 }
48 module_exit(ath9k_exit);
49 
50 /* Private hardware callbacks */
51 
ath9k_hw_init_cal_settings(struct ath_hw * ah)52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56 
ath9k_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
ath9k_hw_init_mode_gain_regs(struct ath_hw * ah)63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
ath9k_hw_ani_cache_ini_regs(struct ath_hw * ah)71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 #ifdef CONFIG_ATH9K_DEBUGFS
85 
ath9k_debug_sync_cause(struct ath_common * common,u32 sync_cause)86 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
87 {
88 	struct ath_softc *sc = common->priv;
89 	if (sync_cause)
90 		sc->debug.stats.istats.sync_cause_all++;
91 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
92 		sc->debug.stats.istats.sync_rtc_irq++;
93 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
94 		sc->debug.stats.istats.sync_mac_irq++;
95 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
96 		sc->debug.stats.istats.eeprom_illegal_access++;
97 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
98 		sc->debug.stats.istats.apb_timeout++;
99 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
100 		sc->debug.stats.istats.pci_mode_conflict++;
101 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
102 		sc->debug.stats.istats.host1_fatal++;
103 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
104 		sc->debug.stats.istats.host1_perr++;
105 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
106 		sc->debug.stats.istats.trcv_fifo_perr++;
107 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
108 		sc->debug.stats.istats.radm_cpl_ep++;
109 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
110 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
111 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
112 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
113 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
114 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
115 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
116 		sc->debug.stats.istats.radm_cpl_timeout++;
117 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
118 		sc->debug.stats.istats.local_timeout++;
119 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
120 		sc->debug.stats.istats.pm_access++;
121 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
122 		sc->debug.stats.istats.mac_awake++;
123 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
124 		sc->debug.stats.istats.mac_asleep++;
125 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
126 		sc->debug.stats.istats.mac_sleep_access++;
127 }
128 #endif
129 
130 
ath9k_hw_set_clockrate(struct ath_hw * ah)131 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
132 {
133 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
134 	struct ath_common *common = ath9k_hw_common(ah);
135 	unsigned int clockrate;
136 
137 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
138 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
139 		clockrate = 117;
140 	else if (!ah->curchan) /* should really check for CCK instead */
141 		clockrate = ATH9K_CLOCK_RATE_CCK;
142 	else if (conf->chandef.chan->band == IEEE80211_BAND_2GHZ)
143 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
144 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
145 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
146 	else
147 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
148 
149 	if (conf_is_ht40(conf))
150 		clockrate *= 2;
151 
152 	if (ah->curchan) {
153 		if (IS_CHAN_HALF_RATE(ah->curchan))
154 			clockrate /= 2;
155 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
156 			clockrate /= 4;
157 	}
158 
159 	common->clockrate = clockrate;
160 }
161 
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)162 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
163 {
164 	struct ath_common *common = ath9k_hw_common(ah);
165 
166 	return usecs * common->clockrate;
167 }
168 
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)169 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
170 {
171 	int i;
172 
173 	BUG_ON(timeout < AH_TIME_QUANTUM);
174 
175 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
176 		if ((REG_READ(ah, reg) & mask) == val)
177 			return true;
178 
179 		udelay(AH_TIME_QUANTUM);
180 	}
181 
182 	ath_dbg(ath9k_hw_common(ah), ANY,
183 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
184 		timeout, reg, REG_READ(ah, reg), mask, val);
185 
186 	return false;
187 }
188 EXPORT_SYMBOL(ath9k_hw_wait);
189 
ath9k_hw_synth_delay(struct ath_hw * ah,struct ath9k_channel * chan,int hw_delay)190 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
191 			  int hw_delay)
192 {
193 	if (IS_CHAN_B(chan))
194 		hw_delay = (4 * hw_delay) / 22;
195 	else
196 		hw_delay /= 10;
197 
198 	if (IS_CHAN_HALF_RATE(chan))
199 		hw_delay *= 2;
200 	else if (IS_CHAN_QUARTER_RATE(chan))
201 		hw_delay *= 4;
202 
203 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
204 }
205 
ath9k_hw_write_array(struct ath_hw * ah,const struct ar5416IniArray * array,int column,unsigned int * writecnt)206 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
207 			  int column, unsigned int *writecnt)
208 {
209 	int r;
210 
211 	ENABLE_REGWRITE_BUFFER(ah);
212 	for (r = 0; r < array->ia_rows; r++) {
213 		REG_WRITE(ah, INI_RA(array, r, 0),
214 			  INI_RA(array, r, column));
215 		DO_DELAY(*writecnt);
216 	}
217 	REGWRITE_BUFFER_FLUSH(ah);
218 }
219 
ath9k_hw_reverse_bits(u32 val,u32 n)220 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
221 {
222 	u32 retval;
223 	int i;
224 
225 	for (i = 0, retval = 0; i < n; i++) {
226 		retval = (retval << 1) | (val & 1);
227 		val >>= 1;
228 	}
229 	return retval;
230 }
231 
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)232 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
233 			   u8 phy, int kbps,
234 			   u32 frameLen, u16 rateix,
235 			   bool shortPreamble)
236 {
237 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
238 
239 	if (kbps == 0)
240 		return 0;
241 
242 	switch (phy) {
243 	case WLAN_RC_PHY_CCK:
244 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
245 		if (shortPreamble)
246 			phyTime >>= 1;
247 		numBits = frameLen << 3;
248 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
249 		break;
250 	case WLAN_RC_PHY_OFDM:
251 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
252 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
253 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
254 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
255 			txTime = OFDM_SIFS_TIME_QUARTER
256 				+ OFDM_PREAMBLE_TIME_QUARTER
257 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
258 		} else if (ah->curchan &&
259 			   IS_CHAN_HALF_RATE(ah->curchan)) {
260 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
261 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
262 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
263 			txTime = OFDM_SIFS_TIME_HALF +
264 				OFDM_PREAMBLE_TIME_HALF
265 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
266 		} else {
267 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
268 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
269 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
270 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
271 				+ (numSymbols * OFDM_SYMBOL_TIME);
272 		}
273 		break;
274 	default:
275 		ath_err(ath9k_hw_common(ah),
276 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
277 		txTime = 0;
278 		break;
279 	}
280 
281 	return txTime;
282 }
283 EXPORT_SYMBOL(ath9k_hw_computetxtime);
284 
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)285 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
286 				  struct ath9k_channel *chan,
287 				  struct chan_centers *centers)
288 {
289 	int8_t extoff;
290 
291 	if (!IS_CHAN_HT40(chan)) {
292 		centers->ctl_center = centers->ext_center =
293 			centers->synth_center = chan->channel;
294 		return;
295 	}
296 
297 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
298 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
299 		centers->synth_center =
300 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
301 		extoff = 1;
302 	} else {
303 		centers->synth_center =
304 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
305 		extoff = -1;
306 	}
307 
308 	centers->ctl_center =
309 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
310 	/* 25 MHz spacing is supported by hw but not on upper layers */
311 	centers->ext_center =
312 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
313 }
314 
315 /******************/
316 /* Chip Revisions */
317 /******************/
318 
ath9k_hw_read_revisions(struct ath_hw * ah)319 static void ath9k_hw_read_revisions(struct ath_hw *ah)
320 {
321 	u32 val;
322 
323 	switch (ah->hw_version.devid) {
324 	case AR5416_AR9100_DEVID:
325 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
326 		break;
327 	case AR9300_DEVID_AR9330:
328 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
329 		if (ah->get_mac_revision) {
330 			ah->hw_version.macRev = ah->get_mac_revision();
331 		} else {
332 			val = REG_READ(ah, AR_SREV);
333 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
334 		}
335 		return;
336 	case AR9300_DEVID_AR9340:
337 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
338 		val = REG_READ(ah, AR_SREV);
339 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
340 		return;
341 	case AR9300_DEVID_QCA955X:
342 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
343 		return;
344 	}
345 
346 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
347 
348 	if (val == 0xFF) {
349 		val = REG_READ(ah, AR_SREV);
350 		ah->hw_version.macVersion =
351 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
352 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
353 
354 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
355 			ah->is_pciexpress = true;
356 		else
357 			ah->is_pciexpress = (val &
358 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
359 	} else {
360 		if (!AR_SREV_9100(ah))
361 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
362 
363 		ah->hw_version.macRev = val & AR_SREV_REVISION;
364 
365 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
366 			ah->is_pciexpress = true;
367 	}
368 }
369 
370 /************************************/
371 /* HW Attach, Detach, Init Routines */
372 /************************************/
373 
ath9k_hw_disablepcie(struct ath_hw * ah)374 static void ath9k_hw_disablepcie(struct ath_hw *ah)
375 {
376 	if (!AR_SREV_5416(ah))
377 		return;
378 
379 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
380 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
381 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
382 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
383 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
384 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
385 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
386 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
387 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
388 
389 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
390 }
391 
392 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)393 static bool ath9k_hw_chip_test(struct ath_hw *ah)
394 {
395 	struct ath_common *common = ath9k_hw_common(ah);
396 	u32 regAddr[2] = { AR_STA_ID0 };
397 	u32 regHold[2];
398 	static const u32 patternData[4] = {
399 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
400 	};
401 	int i, j, loop_max;
402 
403 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
404 		loop_max = 2;
405 		regAddr[1] = AR_PHY_BASE + (8 << 2);
406 	} else
407 		loop_max = 1;
408 
409 	for (i = 0; i < loop_max; i++) {
410 		u32 addr = regAddr[i];
411 		u32 wrData, rdData;
412 
413 		regHold[i] = REG_READ(ah, addr);
414 		for (j = 0; j < 0x100; j++) {
415 			wrData = (j << 16) | j;
416 			REG_WRITE(ah, addr, wrData);
417 			rdData = REG_READ(ah, addr);
418 			if (rdData != wrData) {
419 				ath_err(common,
420 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
421 					addr, wrData, rdData);
422 				return false;
423 			}
424 		}
425 		for (j = 0; j < 4; j++) {
426 			wrData = patternData[j];
427 			REG_WRITE(ah, addr, wrData);
428 			rdData = REG_READ(ah, addr);
429 			if (wrData != rdData) {
430 				ath_err(common,
431 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
432 					addr, wrData, rdData);
433 				return false;
434 			}
435 		}
436 		REG_WRITE(ah, regAddr[i], regHold[i]);
437 	}
438 	udelay(100);
439 
440 	return true;
441 }
442 
ath9k_hw_init_config(struct ath_hw * ah)443 static void ath9k_hw_init_config(struct ath_hw *ah)
444 {
445 	int i;
446 
447 	ah->config.dma_beacon_response_time = 1;
448 	ah->config.sw_beacon_response_time = 6;
449 	ah->config.additional_swba_backoff = 0;
450 	ah->config.ack_6mb = 0x0;
451 	ah->config.cwm_ignore_extcca = 0;
452 	ah->config.pcie_clock_req = 0;
453 	ah->config.pcie_waen = 0;
454 	ah->config.analog_shiftreg = 1;
455 	ah->config.enable_ani = true;
456 
457 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
458 		ah->config.spurchans[i][0] = AR_NO_SPUR;
459 		ah->config.spurchans[i][1] = AR_NO_SPUR;
460 	}
461 
462 	ah->config.rx_intr_mitigation = true;
463 	ah->config.pcieSerDesWrite = true;
464 
465 	/*
466 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
467 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
468 	 * This means we use it for all AR5416 devices, and the few
469 	 * minor PCI AR9280 devices out there.
470 	 *
471 	 * Serialization is required because these devices do not handle
472 	 * well the case of two concurrent reads/writes due to the latency
473 	 * involved. During one read/write another read/write can be issued
474 	 * on another CPU while the previous read/write may still be working
475 	 * on our hardware, if we hit this case the hardware poops in a loop.
476 	 * We prevent this by serializing reads and writes.
477 	 *
478 	 * This issue is not present on PCI-Express devices or pre-AR5416
479 	 * devices (legacy, 802.11abg).
480 	 */
481 	if (num_possible_cpus() > 1)
482 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
483 }
484 
ath9k_hw_init_defaults(struct ath_hw * ah)485 static void ath9k_hw_init_defaults(struct ath_hw *ah)
486 {
487 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
488 
489 	regulatory->country_code = CTRY_DEFAULT;
490 	regulatory->power_limit = MAX_RATE_POWER;
491 
492 	ah->hw_version.magic = AR5416_MAGIC;
493 	ah->hw_version.subvendorid = 0;
494 
495 	ah->atim_window = 0;
496 	ah->sta_id1_defaults =
497 		AR_STA_ID1_CRPT_MIC_ENABLE |
498 		AR_STA_ID1_MCAST_KSRCH;
499 	if (AR_SREV_9100(ah))
500 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
501 	ah->slottime = ATH9K_SLOT_TIME_9;
502 	ah->globaltxtimeout = (u32) -1;
503 	ah->power_mode = ATH9K_PM_UNDEFINED;
504 	ah->htc_reset_init = true;
505 }
506 
ath9k_hw_init_macaddr(struct ath_hw * ah)507 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
508 {
509 	struct ath_common *common = ath9k_hw_common(ah);
510 	u32 sum;
511 	int i;
512 	u16 eeval;
513 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
514 
515 	sum = 0;
516 	for (i = 0; i < 3; i++) {
517 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
518 		sum += eeval;
519 		common->macaddr[2 * i] = eeval >> 8;
520 		common->macaddr[2 * i + 1] = eeval & 0xff;
521 	}
522 	if (sum == 0 || sum == 0xffff * 3)
523 		return -EADDRNOTAVAIL;
524 
525 	return 0;
526 }
527 
ath9k_hw_post_init(struct ath_hw * ah)528 static int ath9k_hw_post_init(struct ath_hw *ah)
529 {
530 	struct ath_common *common = ath9k_hw_common(ah);
531 	int ecode;
532 
533 	if (common->bus_ops->ath_bus_type != ATH_USB) {
534 		if (!ath9k_hw_chip_test(ah))
535 			return -ENODEV;
536 	}
537 
538 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
539 		ecode = ar9002_hw_rf_claim(ah);
540 		if (ecode != 0)
541 			return ecode;
542 	}
543 
544 	ecode = ath9k_hw_eeprom_init(ah);
545 	if (ecode != 0)
546 		return ecode;
547 
548 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
549 		ah->eep_ops->get_eeprom_ver(ah),
550 		ah->eep_ops->get_eeprom_rev(ah));
551 
552 	if (ah->config.enable_ani)
553 		ath9k_hw_ani_init(ah);
554 
555 	return 0;
556 }
557 
ath9k_hw_attach_ops(struct ath_hw * ah)558 static int ath9k_hw_attach_ops(struct ath_hw *ah)
559 {
560 	if (!AR_SREV_9300_20_OR_LATER(ah))
561 		return ar9002_hw_attach_ops(ah);
562 
563 	ar9003_hw_attach_ops(ah);
564 	return 0;
565 }
566 
567 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)568 static int __ath9k_hw_init(struct ath_hw *ah)
569 {
570 	struct ath_common *common = ath9k_hw_common(ah);
571 	int r = 0;
572 
573 	ath9k_hw_read_revisions(ah);
574 
575 	/*
576 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
577 	 * We need to do this to avoid RMW of this register. We cannot
578 	 * read the reg when chip is asleep.
579 	 */
580 	ah->WARegVal = REG_READ(ah, AR_WA);
581 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
582 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
583 
584 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
585 		ath_err(common, "Couldn't reset chip\n");
586 		return -EIO;
587 	}
588 
589 	if (AR_SREV_9462(ah))
590 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
591 
592 	if (AR_SREV_9565(ah)) {
593 		ah->WARegVal |= AR_WA_BIT22;
594 		REG_WRITE(ah, AR_WA, ah->WARegVal);
595 	}
596 
597 	ath9k_hw_init_defaults(ah);
598 	ath9k_hw_init_config(ah);
599 
600 	r = ath9k_hw_attach_ops(ah);
601 	if (r)
602 		return r;
603 
604 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
605 		ath_err(common, "Couldn't wakeup chip\n");
606 		return -EIO;
607 	}
608 
609 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
610 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
611 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
612 		     !ah->is_pciexpress)) {
613 			ah->config.serialize_regmode =
614 				SER_REG_MODE_ON;
615 		} else {
616 			ah->config.serialize_regmode =
617 				SER_REG_MODE_OFF;
618 		}
619 	}
620 
621 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
622 		ah->config.serialize_regmode);
623 
624 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
625 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
626 	else
627 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
628 
629 	switch (ah->hw_version.macVersion) {
630 	case AR_SREV_VERSION_5416_PCI:
631 	case AR_SREV_VERSION_5416_PCIE:
632 	case AR_SREV_VERSION_9160:
633 	case AR_SREV_VERSION_9100:
634 	case AR_SREV_VERSION_9280:
635 	case AR_SREV_VERSION_9285:
636 	case AR_SREV_VERSION_9287:
637 	case AR_SREV_VERSION_9271:
638 	case AR_SREV_VERSION_9300:
639 	case AR_SREV_VERSION_9330:
640 	case AR_SREV_VERSION_9485:
641 	case AR_SREV_VERSION_9340:
642 	case AR_SREV_VERSION_9462:
643 	case AR_SREV_VERSION_9550:
644 	case AR_SREV_VERSION_9565:
645 		break;
646 	default:
647 		ath_err(common,
648 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
649 			ah->hw_version.macVersion, ah->hw_version.macRev);
650 		return -EOPNOTSUPP;
651 	}
652 
653 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
654 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
655 		ah->is_pciexpress = false;
656 
657 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
658 	ath9k_hw_init_cal_settings(ah);
659 
660 	ah->ani_function = ATH9K_ANI_ALL;
661 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
662 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
663 	if (!AR_SREV_9300_20_OR_LATER(ah))
664 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
665 
666 	if (!ah->is_pciexpress)
667 		ath9k_hw_disablepcie(ah);
668 
669 	r = ath9k_hw_post_init(ah);
670 	if (r)
671 		return r;
672 
673 	ath9k_hw_init_mode_gain_regs(ah);
674 	r = ath9k_hw_fill_cap_info(ah);
675 	if (r)
676 		return r;
677 
678 	r = ath9k_hw_init_macaddr(ah);
679 	if (r) {
680 		ath_err(common, "Failed to initialize MAC address\n");
681 		return r;
682 	}
683 
684 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
685 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
686 	else
687 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
688 
689 	if (AR_SREV_9330(ah))
690 		ah->bb_watchdog_timeout_ms = 85;
691 	else
692 		ah->bb_watchdog_timeout_ms = 25;
693 
694 	common->state = ATH_HW_INITIALIZED;
695 
696 	return 0;
697 }
698 
ath9k_hw_init(struct ath_hw * ah)699 int ath9k_hw_init(struct ath_hw *ah)
700 {
701 	int ret;
702 	struct ath_common *common = ath9k_hw_common(ah);
703 
704 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
705 	switch (ah->hw_version.devid) {
706 	case AR5416_DEVID_PCI:
707 	case AR5416_DEVID_PCIE:
708 	case AR5416_AR9100_DEVID:
709 	case AR9160_DEVID_PCI:
710 	case AR9280_DEVID_PCI:
711 	case AR9280_DEVID_PCIE:
712 	case AR9285_DEVID_PCIE:
713 	case AR9287_DEVID_PCI:
714 	case AR9287_DEVID_PCIE:
715 	case AR2427_DEVID_PCIE:
716 	case AR9300_DEVID_PCIE:
717 	case AR9300_DEVID_AR9485_PCIE:
718 	case AR9300_DEVID_AR9330:
719 	case AR9300_DEVID_AR9340:
720 	case AR9300_DEVID_QCA955X:
721 	case AR9300_DEVID_AR9580:
722 	case AR9300_DEVID_AR9462:
723 	case AR9485_DEVID_AR1111:
724 	case AR9300_DEVID_AR9565:
725 		break;
726 	default:
727 		if (common->bus_ops->ath_bus_type == ATH_USB)
728 			break;
729 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
730 			ah->hw_version.devid);
731 		return -EOPNOTSUPP;
732 	}
733 
734 	ret = __ath9k_hw_init(ah);
735 	if (ret) {
736 		ath_err(common,
737 			"Unable to initialize hardware; initialization status: %d\n",
738 			ret);
739 		return ret;
740 	}
741 
742 	return 0;
743 }
744 EXPORT_SYMBOL(ath9k_hw_init);
745 
ath9k_hw_init_qos(struct ath_hw * ah)746 static void ath9k_hw_init_qos(struct ath_hw *ah)
747 {
748 	ENABLE_REGWRITE_BUFFER(ah);
749 
750 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
751 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
752 
753 	REG_WRITE(ah, AR_QOS_NO_ACK,
754 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
755 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
756 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
757 
758 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
759 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
760 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
761 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
762 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
763 
764 	REGWRITE_BUFFER_FLUSH(ah);
765 }
766 
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)767 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
768 {
769 	struct ath_common *common = ath9k_hw_common(ah);
770 	int i = 0;
771 
772 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
773 	udelay(100);
774 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
775 
776 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
777 
778 		udelay(100);
779 
780 		if (WARN_ON_ONCE(i >= 100)) {
781 			ath_err(common, "PLL4 meaurement not done\n");
782 			break;
783 		}
784 
785 		i++;
786 	}
787 
788 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
789 }
790 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
791 
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)792 static void ath9k_hw_init_pll(struct ath_hw *ah,
793 			      struct ath9k_channel *chan)
794 {
795 	u32 pll;
796 
797 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
798 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
799 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
800 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
801 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
802 			      AR_CH0_DPLL2_KD, 0x40);
803 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
804 			      AR_CH0_DPLL2_KI, 0x4);
805 
806 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
807 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
808 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
809 			      AR_CH0_BB_DPLL1_NINI, 0x58);
810 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
811 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
812 
813 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
814 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
816 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
817 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
818 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
819 
820 		/* program BB PLL phase_shift to 0x6 */
821 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
822 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
823 
824 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
825 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
826 		udelay(1000);
827 	} else if (AR_SREV_9330(ah)) {
828 		u32 ddr_dpll2, pll_control2, kd;
829 
830 		if (ah->is_clk_25mhz) {
831 			ddr_dpll2 = 0x18e82f01;
832 			pll_control2 = 0xe04a3d;
833 			kd = 0x1d;
834 		} else {
835 			ddr_dpll2 = 0x19e82f01;
836 			pll_control2 = 0x886666;
837 			kd = 0x3d;
838 		}
839 
840 		/* program DDR PLL ki and kd value */
841 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
842 
843 		/* program DDR PLL phase_shift */
844 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
845 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
846 
847 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
848 		udelay(1000);
849 
850 		/* program refdiv, nint, frac to RTC register */
851 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
852 
853 		/* program BB PLL kd and ki value */
854 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
855 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
856 
857 		/* program BB PLL phase_shift */
858 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
859 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
860 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
861 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
862 
863 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
864 		udelay(1000);
865 
866 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
867 		udelay(100);
868 
869 		if (ah->is_clk_25mhz) {
870 			pll2_divint = 0x54;
871 			pll2_divfrac = 0x1eb85;
872 			refdiv = 3;
873 		} else {
874 			if (AR_SREV_9340(ah)) {
875 				pll2_divint = 88;
876 				pll2_divfrac = 0;
877 				refdiv = 5;
878 			} else {
879 				pll2_divint = 0x11;
880 				pll2_divfrac = 0x26666;
881 				refdiv = 1;
882 			}
883 		}
884 
885 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
886 		regval |= (0x1 << 16);
887 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
888 		udelay(100);
889 
890 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
891 			  (pll2_divint << 18) | pll2_divfrac);
892 		udelay(100);
893 
894 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
895 		if (AR_SREV_9340(ah))
896 			regval = (regval & 0x80071fff) | (0x1 << 30) |
897 				 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
898 		else
899 			regval = (regval & 0x80071fff) | (0x3 << 30) |
900 				 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
901 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
902 		REG_WRITE(ah, AR_PHY_PLL_MODE,
903 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
904 		udelay(1000);
905 	}
906 
907 	pll = ath9k_hw_compute_pll_control(ah, chan);
908 	if (AR_SREV_9565(ah))
909 		pll |= 0x40000;
910 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
911 
912 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
913 	    AR_SREV_9550(ah))
914 		udelay(1000);
915 
916 	/* Switch the core clock for ar9271 to 117Mhz */
917 	if (AR_SREV_9271(ah)) {
918 		udelay(500);
919 		REG_WRITE(ah, 0x50040, 0x304);
920 	}
921 
922 	udelay(RTC_PLL_SETTLE_DELAY);
923 
924 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
925 
926 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
927 		if (ah->is_clk_25mhz) {
928 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
929 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
930 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
931 		} else {
932 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
933 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
934 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
935 		}
936 		udelay(100);
937 	}
938 }
939 
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)940 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
941 					  enum nl80211_iftype opmode)
942 {
943 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
944 	u32 imr_reg = AR_IMR_TXERR |
945 		AR_IMR_TXURN |
946 		AR_IMR_RXERR |
947 		AR_IMR_RXORN |
948 		AR_IMR_BCNMISC;
949 
950 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
951 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
952 
953 	if (AR_SREV_9300_20_OR_LATER(ah)) {
954 		imr_reg |= AR_IMR_RXOK_HP;
955 		if (ah->config.rx_intr_mitigation)
956 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
957 		else
958 			imr_reg |= AR_IMR_RXOK_LP;
959 
960 	} else {
961 		if (ah->config.rx_intr_mitigation)
962 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
963 		else
964 			imr_reg |= AR_IMR_RXOK;
965 	}
966 
967 	if (ah->config.tx_intr_mitigation)
968 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
969 	else
970 		imr_reg |= AR_IMR_TXOK;
971 
972 	ENABLE_REGWRITE_BUFFER(ah);
973 
974 	REG_WRITE(ah, AR_IMR, imr_reg);
975 	ah->imrs2_reg |= AR_IMR_S2_GTT;
976 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
977 
978 	if (!AR_SREV_9100(ah)) {
979 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
980 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
981 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
982 	}
983 
984 	REGWRITE_BUFFER_FLUSH(ah);
985 
986 	if (AR_SREV_9300_20_OR_LATER(ah)) {
987 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
988 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
989 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
990 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
991 	}
992 }
993 
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)994 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
995 {
996 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
997 	val = min(val, (u32) 0xFFFF);
998 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
999 }
1000 
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)1001 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1002 {
1003 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1004 	val = min(val, (u32) 0xFFFF);
1005 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1006 }
1007 
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)1008 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1009 {
1010 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1011 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1012 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1013 }
1014 
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)1015 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1016 {
1017 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1018 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1019 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1020 }
1021 
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)1022 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1023 {
1024 	if (tu > 0xFFFF) {
1025 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1026 			tu);
1027 		ah->globaltxtimeout = (u32) -1;
1028 		return false;
1029 	} else {
1030 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1031 		ah->globaltxtimeout = tu;
1032 		return true;
1033 	}
1034 }
1035 
ath9k_hw_init_global_settings(struct ath_hw * ah)1036 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1037 {
1038 	struct ath_common *common = ath9k_hw_common(ah);
1039 	struct ieee80211_conf *conf = &common->hw->conf;
1040 	const struct ath9k_channel *chan = ah->curchan;
1041 	int acktimeout, ctstimeout, ack_offset = 0;
1042 	int slottime;
1043 	int sifstime;
1044 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1045 	u32 reg;
1046 
1047 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1048 		ah->misc_mode);
1049 
1050 	if (!chan)
1051 		return;
1052 
1053 	if (ah->misc_mode != 0)
1054 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1055 
1056 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1057 		rx_lat = 41;
1058 	else
1059 		rx_lat = 37;
1060 	tx_lat = 54;
1061 
1062 	if (IS_CHAN_5GHZ(chan))
1063 		sifstime = 16;
1064 	else
1065 		sifstime = 10;
1066 
1067 	if (IS_CHAN_HALF_RATE(chan)) {
1068 		eifs = 175;
1069 		rx_lat *= 2;
1070 		tx_lat *= 2;
1071 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1072 		    tx_lat += 11;
1073 
1074 		sifstime *= 2;
1075 		ack_offset = 16;
1076 		slottime = 13;
1077 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1078 		eifs = 340;
1079 		rx_lat = (rx_lat * 4) - 1;
1080 		tx_lat *= 4;
1081 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082 		    tx_lat += 22;
1083 
1084 		sifstime *= 4;
1085 		ack_offset = 32;
1086 		slottime = 21;
1087 	} else {
1088 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1089 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1090 			reg = AR_USEC_ASYNC_FIFO;
1091 		} else {
1092 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1093 				common->clockrate;
1094 			reg = REG_READ(ah, AR_USEC);
1095 		}
1096 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1097 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1098 
1099 		slottime = ah->slottime;
1100 	}
1101 
1102 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1103 	slottime += 3 * ah->coverage_class;
1104 	acktimeout = slottime + sifstime + ack_offset;
1105 	ctstimeout = acktimeout;
1106 
1107 	/*
1108 	 * Workaround for early ACK timeouts, add an offset to match the
1109 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1110 	 * This was initially only meant to work around an issue with delayed
1111 	 * BA frames in some implementations, but it has been found to fix ACK
1112 	 * timeout issues in other cases as well.
1113 	 */
1114 	if (conf->chandef.chan &&
1115 	    conf->chandef.chan->band == IEEE80211_BAND_2GHZ &&
1116 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1117 		acktimeout += 64 - sifstime - ah->slottime;
1118 		ctstimeout += 48 - sifstime - ah->slottime;
1119 	}
1120 
1121 
1122 	ath9k_hw_set_sifs_time(ah, sifstime);
1123 	ath9k_hw_setslottime(ah, slottime);
1124 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1125 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1126 	if (ah->globaltxtimeout != (u32) -1)
1127 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1128 
1129 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1130 	REG_RMW(ah, AR_USEC,
1131 		(common->clockrate - 1) |
1132 		SM(rx_lat, AR_USEC_RX_LAT) |
1133 		SM(tx_lat, AR_USEC_TX_LAT),
1134 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1135 
1136 }
1137 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1138 
ath9k_hw_deinit(struct ath_hw * ah)1139 void ath9k_hw_deinit(struct ath_hw *ah)
1140 {
1141 	struct ath_common *common = ath9k_hw_common(ah);
1142 
1143 	if (common->state < ATH_HW_INITIALIZED)
1144 		return;
1145 
1146 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1147 }
1148 EXPORT_SYMBOL(ath9k_hw_deinit);
1149 
1150 /*******/
1151 /* INI */
1152 /*******/
1153 
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1154 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1155 {
1156 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1157 
1158 	if (IS_CHAN_B(chan))
1159 		ctl |= CTL_11B;
1160 	else if (IS_CHAN_G(chan))
1161 		ctl |= CTL_11G;
1162 	else
1163 		ctl |= CTL_11A;
1164 
1165 	return ctl;
1166 }
1167 
1168 /****************************************/
1169 /* Reset and Channel Switching Routines */
1170 /****************************************/
1171 
ath9k_hw_set_dma(struct ath_hw * ah)1172 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1173 {
1174 	struct ath_common *common = ath9k_hw_common(ah);
1175 	int txbuf_size;
1176 
1177 	ENABLE_REGWRITE_BUFFER(ah);
1178 
1179 	/*
1180 	 * set AHB_MODE not to do cacheline prefetches
1181 	*/
1182 	if (!AR_SREV_9300_20_OR_LATER(ah))
1183 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1184 
1185 	/*
1186 	 * let mac dma reads be in 128 byte chunks
1187 	 */
1188 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1189 
1190 	REGWRITE_BUFFER_FLUSH(ah);
1191 
1192 	/*
1193 	 * Restore TX Trigger Level to its pre-reset value.
1194 	 * The initial value depends on whether aggregation is enabled, and is
1195 	 * adjusted whenever underruns are detected.
1196 	 */
1197 	if (!AR_SREV_9300_20_OR_LATER(ah))
1198 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1199 
1200 	ENABLE_REGWRITE_BUFFER(ah);
1201 
1202 	/*
1203 	 * let mac dma writes be in 128 byte chunks
1204 	 */
1205 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1206 
1207 	/*
1208 	 * Setup receive FIFO threshold to hold off TX activities
1209 	 */
1210 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1211 
1212 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1213 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1214 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1215 
1216 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1217 			ah->caps.rx_status_len);
1218 	}
1219 
1220 	/*
1221 	 * reduce the number of usable entries in PCU TXBUF to avoid
1222 	 * wrap around issues.
1223 	 */
1224 	if (AR_SREV_9285(ah)) {
1225 		/* For AR9285 the number of Fifos are reduced to half.
1226 		 * So set the usable tx buf size also to half to
1227 		 * avoid data/delimiter underruns
1228 		 */
1229 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1230 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1231 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1232 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1233 	} else {
1234 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1235 	}
1236 
1237 	if (!AR_SREV_9271(ah))
1238 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1239 
1240 	REGWRITE_BUFFER_FLUSH(ah);
1241 
1242 	if (AR_SREV_9300_20_OR_LATER(ah))
1243 		ath9k_hw_reset_txstatus_ring(ah);
1244 }
1245 
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1246 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1247 {
1248 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1249 	u32 set = AR_STA_ID1_KSRCH_MODE;
1250 
1251 	switch (opmode) {
1252 	case NL80211_IFTYPE_ADHOC:
1253 	case NL80211_IFTYPE_MESH_POINT:
1254 		set |= AR_STA_ID1_ADHOC;
1255 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1256 		break;
1257 	case NL80211_IFTYPE_AP:
1258 		set |= AR_STA_ID1_STA_AP;
1259 		/* fall through */
1260 	case NL80211_IFTYPE_STATION:
1261 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1262 		break;
1263 	default:
1264 		if (!ah->is_monitoring)
1265 			set = 0;
1266 		break;
1267 	}
1268 	REG_RMW(ah, AR_STA_ID1, set, mask);
1269 }
1270 
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1271 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1272 				   u32 *coef_mantissa, u32 *coef_exponent)
1273 {
1274 	u32 coef_exp, coef_man;
1275 
1276 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1277 		if ((coef_scaled >> coef_exp) & 0x1)
1278 			break;
1279 
1280 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1281 
1282 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1283 
1284 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1285 	*coef_exponent = coef_exp - 16;
1286 }
1287 
ath9k_hw_set_reset(struct ath_hw * ah,int type)1288 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1289 {
1290 	u32 rst_flags;
1291 	u32 tmpReg;
1292 
1293 	if (AR_SREV_9100(ah)) {
1294 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1295 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1296 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1297 	}
1298 
1299 	ENABLE_REGWRITE_BUFFER(ah);
1300 
1301 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1302 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1303 		udelay(10);
1304 	}
1305 
1306 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1307 		  AR_RTC_FORCE_WAKE_ON_INT);
1308 
1309 	if (AR_SREV_9100(ah)) {
1310 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1311 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1312 	} else {
1313 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1314 		if (AR_SREV_9340(ah))
1315 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1316 		else
1317 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1318 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1319 
1320 		if (tmpReg) {
1321 			u32 val;
1322 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1323 
1324 			val = AR_RC_HOSTIF;
1325 			if (!AR_SREV_9300_20_OR_LATER(ah))
1326 				val |= AR_RC_AHB;
1327 			REG_WRITE(ah, AR_RC, val);
1328 
1329 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1330 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1331 
1332 		rst_flags = AR_RTC_RC_MAC_WARM;
1333 		if (type == ATH9K_RESET_COLD)
1334 			rst_flags |= AR_RTC_RC_MAC_COLD;
1335 	}
1336 
1337 	if (AR_SREV_9330(ah)) {
1338 		int npend = 0;
1339 		int i;
1340 
1341 		/* AR9330 WAR:
1342 		 * call external reset function to reset WMAC if:
1343 		 * - doing a cold reset
1344 		 * - we have pending frames in the TX queues
1345 		 */
1346 
1347 		for (i = 0; i < AR_NUM_QCU; i++) {
1348 			npend = ath9k_hw_numtxpending(ah, i);
1349 			if (npend)
1350 				break;
1351 		}
1352 
1353 		if (ah->external_reset &&
1354 		    (npend || type == ATH9K_RESET_COLD)) {
1355 			int reset_err = 0;
1356 
1357 			ath_dbg(ath9k_hw_common(ah), RESET,
1358 				"reset MAC via external reset\n");
1359 
1360 			reset_err = ah->external_reset();
1361 			if (reset_err) {
1362 				ath_err(ath9k_hw_common(ah),
1363 					"External reset failed, err=%d\n",
1364 					reset_err);
1365 				return false;
1366 			}
1367 
1368 			REG_WRITE(ah, AR_RTC_RESET, 1);
1369 		}
1370 	}
1371 
1372 	if (ath9k_hw_mci_is_enabled(ah))
1373 		ar9003_mci_check_gpm_offset(ah);
1374 
1375 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1376 
1377 	REGWRITE_BUFFER_FLUSH(ah);
1378 
1379 	udelay(50);
1380 
1381 	REG_WRITE(ah, AR_RTC_RC, 0);
1382 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1383 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1384 		return false;
1385 	}
1386 
1387 	if (!AR_SREV_9100(ah))
1388 		REG_WRITE(ah, AR_RC, 0);
1389 
1390 	if (AR_SREV_9100(ah))
1391 		udelay(50);
1392 
1393 	return true;
1394 }
1395 
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1396 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1397 {
1398 	ENABLE_REGWRITE_BUFFER(ah);
1399 
1400 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1401 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1402 		udelay(10);
1403 	}
1404 
1405 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1406 		  AR_RTC_FORCE_WAKE_ON_INT);
1407 
1408 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1409 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1410 
1411 	REG_WRITE(ah, AR_RTC_RESET, 0);
1412 
1413 	REGWRITE_BUFFER_FLUSH(ah);
1414 
1415 	if (!AR_SREV_9300_20_OR_LATER(ah))
1416 		udelay(2);
1417 
1418 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1419 		REG_WRITE(ah, AR_RC, 0);
1420 
1421 	REG_WRITE(ah, AR_RTC_RESET, 1);
1422 
1423 	if (!ath9k_hw_wait(ah,
1424 			   AR_RTC_STATUS,
1425 			   AR_RTC_STATUS_M,
1426 			   AR_RTC_STATUS_ON,
1427 			   AH_WAIT_TIMEOUT)) {
1428 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1429 		return false;
1430 	}
1431 
1432 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1433 }
1434 
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1435 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1436 {
1437 	bool ret = false;
1438 
1439 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1440 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1441 		udelay(10);
1442 	}
1443 
1444 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1445 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1446 
1447 	if (!ah->reset_power_on)
1448 		type = ATH9K_RESET_POWER_ON;
1449 
1450 	switch (type) {
1451 	case ATH9K_RESET_POWER_ON:
1452 		ret = ath9k_hw_set_reset_power_on(ah);
1453 		if (ret)
1454 			ah->reset_power_on = true;
1455 		break;
1456 	case ATH9K_RESET_WARM:
1457 	case ATH9K_RESET_COLD:
1458 		ret = ath9k_hw_set_reset(ah, type);
1459 		break;
1460 	default:
1461 		break;
1462 	}
1463 
1464 	return ret;
1465 }
1466 
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1467 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1468 				struct ath9k_channel *chan)
1469 {
1470 	int reset_type = ATH9K_RESET_WARM;
1471 
1472 	if (AR_SREV_9280(ah)) {
1473 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1474 			reset_type = ATH9K_RESET_POWER_ON;
1475 		else
1476 			reset_type = ATH9K_RESET_COLD;
1477 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1478 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1479 		reset_type = ATH9K_RESET_COLD;
1480 
1481 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1482 		return false;
1483 
1484 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1485 		return false;
1486 
1487 	ah->chip_fullsleep = false;
1488 
1489 	if (AR_SREV_9330(ah))
1490 		ar9003_hw_internal_regulator_apply(ah);
1491 	ath9k_hw_init_pll(ah, chan);
1492 	ath9k_hw_set_rfmode(ah, chan);
1493 
1494 	return true;
1495 }
1496 
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1497 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1498 				    struct ath9k_channel *chan)
1499 {
1500 	struct ath_common *common = ath9k_hw_common(ah);
1501 	u32 qnum;
1502 	int r;
1503 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1504 	bool band_switch, mode_diff;
1505 	u8 ini_reloaded;
1506 
1507 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1508 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1509 						    CHANNEL_5GHZ));
1510 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1511 
1512 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1513 		if (ath9k_hw_numtxpending(ah, qnum)) {
1514 			ath_dbg(common, QUEUE,
1515 				"Transmit frames pending on queue %d\n", qnum);
1516 			return false;
1517 		}
1518 	}
1519 
1520 	if (!ath9k_hw_rfbus_req(ah)) {
1521 		ath_err(common, "Could not kill baseband RX\n");
1522 		return false;
1523 	}
1524 
1525 	if (edma && (band_switch || mode_diff)) {
1526 		ath9k_hw_mark_phy_inactive(ah);
1527 		udelay(5);
1528 
1529 		ath9k_hw_init_pll(ah, NULL);
1530 
1531 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1532 			ath_err(common, "Failed to do fast channel change\n");
1533 			return false;
1534 		}
1535 	}
1536 
1537 	ath9k_hw_set_channel_regs(ah, chan);
1538 
1539 	r = ath9k_hw_rf_set_freq(ah, chan);
1540 	if (r) {
1541 		ath_err(common, "Failed to set channel\n");
1542 		return false;
1543 	}
1544 	ath9k_hw_set_clockrate(ah);
1545 	ath9k_hw_apply_txpower(ah, chan, false);
1546 	ath9k_hw_rfbus_done(ah);
1547 
1548 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1549 		ath9k_hw_set_delta_slope(ah, chan);
1550 
1551 	ath9k_hw_spur_mitigate_freq(ah, chan);
1552 
1553 	if (edma && (band_switch || mode_diff)) {
1554 		ah->ah_flags |= AH_FASTCC;
1555 		if (band_switch || ini_reloaded)
1556 			ah->eep_ops->set_board_values(ah, chan);
1557 
1558 		ath9k_hw_init_bb(ah, chan);
1559 
1560 		if (band_switch || ini_reloaded)
1561 			ath9k_hw_init_cal(ah, chan);
1562 		ah->ah_flags &= ~AH_FASTCC;
1563 	}
1564 
1565 	return true;
1566 }
1567 
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1568 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1569 {
1570 	u32 gpio_mask = ah->gpio_mask;
1571 	int i;
1572 
1573 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1574 		if (!(gpio_mask & 1))
1575 			continue;
1576 
1577 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1578 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1579 	}
1580 }
1581 
ath9k_hw_check_dcs(u32 dma_dbg,u32 num_dcu_states,int * hang_state,int * hang_pos)1582 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1583 			       int *hang_state, int *hang_pos)
1584 {
1585 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1586 	u32 chain_state, dcs_pos, i;
1587 
1588 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1589 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1590 		for (i = 0; i < 3; i++) {
1591 			if (chain_state == dcu_chain_state[i]) {
1592 				*hang_state = chain_state;
1593 				*hang_pos = dcs_pos;
1594 				return true;
1595 			}
1596 		}
1597 	}
1598 	return false;
1599 }
1600 
1601 #define DCU_COMPLETE_STATE        1
1602 #define DCU_COMPLETE_STATE_MASK 0x3
1603 #define NUM_STATUS_READS         50
ath9k_hw_detect_mac_hang(struct ath_hw * ah)1604 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1605 {
1606 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1607 	u32 i, hang_pos, hang_state, num_state = 6;
1608 
1609 	comp_state = REG_READ(ah, AR_DMADBG_6);
1610 
1611 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1612 		ath_dbg(ath9k_hw_common(ah), RESET,
1613 			"MAC Hang signature not found at DCU complete\n");
1614 		return false;
1615 	}
1616 
1617 	chain_state = REG_READ(ah, dcs_reg);
1618 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1619 		goto hang_check_iter;
1620 
1621 	dcs_reg = AR_DMADBG_5;
1622 	num_state = 4;
1623 	chain_state = REG_READ(ah, dcs_reg);
1624 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1625 		goto hang_check_iter;
1626 
1627 	ath_dbg(ath9k_hw_common(ah), RESET,
1628 		"MAC Hang signature 1 not found\n");
1629 	return false;
1630 
1631 hang_check_iter:
1632 	ath_dbg(ath9k_hw_common(ah), RESET,
1633 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1634 		chain_state, comp_state, hang_state, hang_pos);
1635 
1636 	for (i = 0; i < NUM_STATUS_READS; i++) {
1637 		chain_state = REG_READ(ah, dcs_reg);
1638 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1639 		comp_state = REG_READ(ah, AR_DMADBG_6);
1640 
1641 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1642 					DCU_COMPLETE_STATE) ||
1643 		    (chain_state != hang_state))
1644 			return false;
1645 	}
1646 
1647 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1648 
1649 	return true;
1650 }
1651 
ath9k_hw_check_alive(struct ath_hw * ah)1652 bool ath9k_hw_check_alive(struct ath_hw *ah)
1653 {
1654 	int count = 50;
1655 	u32 reg;
1656 
1657 	if (AR_SREV_9300(ah))
1658 		return !ath9k_hw_detect_mac_hang(ah);
1659 
1660 	if (AR_SREV_9285_12_OR_LATER(ah))
1661 		return true;
1662 
1663 	do {
1664 		reg = REG_READ(ah, AR_OBS_BUS_1);
1665 
1666 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1667 			continue;
1668 
1669 		switch (reg & 0x7E000B00) {
1670 		case 0x1E000000:
1671 		case 0x52000B00:
1672 		case 0x18000B00:
1673 			continue;
1674 		default:
1675 			return true;
1676 		}
1677 	} while (count-- > 0);
1678 
1679 	return false;
1680 }
1681 EXPORT_SYMBOL(ath9k_hw_check_alive);
1682 
ath9k_hw_init_mfp(struct ath_hw * ah)1683 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1684 {
1685 	/* Setup MFP options for CCMP */
1686 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1687 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1688 		 * frames when constructing CCMP AAD. */
1689 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1690 			      0xc7ff);
1691 		ah->sw_mgmt_crypto = false;
1692 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1693 		/* Disable hardware crypto for management frames */
1694 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1695 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1696 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1697 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1698 		ah->sw_mgmt_crypto = true;
1699 	} else {
1700 		ah->sw_mgmt_crypto = true;
1701 	}
1702 }
1703 
ath9k_hw_reset_opmode(struct ath_hw * ah,u32 macStaId1,u32 saveDefAntenna)1704 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1705 				  u32 macStaId1, u32 saveDefAntenna)
1706 {
1707 	struct ath_common *common = ath9k_hw_common(ah);
1708 
1709 	ENABLE_REGWRITE_BUFFER(ah);
1710 
1711 	REG_RMW(ah, AR_STA_ID1, macStaId1
1712 		  | AR_STA_ID1_RTS_USE_DEF
1713 		  | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1714 		  | ah->sta_id1_defaults,
1715 		  ~AR_STA_ID1_SADH_MASK);
1716 	ath_hw_setbssidmask(common);
1717 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1718 	ath9k_hw_write_associd(ah);
1719 	REG_WRITE(ah, AR_ISR, ~0);
1720 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1721 
1722 	REGWRITE_BUFFER_FLUSH(ah);
1723 
1724 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1725 }
1726 
ath9k_hw_init_queues(struct ath_hw * ah)1727 static void ath9k_hw_init_queues(struct ath_hw *ah)
1728 {
1729 	int i;
1730 
1731 	ENABLE_REGWRITE_BUFFER(ah);
1732 
1733 	for (i = 0; i < AR_NUM_DCU; i++)
1734 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1735 
1736 	REGWRITE_BUFFER_FLUSH(ah);
1737 
1738 	ah->intr_txqs = 0;
1739 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1740 		ath9k_hw_resettxqueue(ah, i);
1741 }
1742 
1743 /*
1744  * For big endian systems turn on swapping for descriptors
1745  */
ath9k_hw_init_desc(struct ath_hw * ah)1746 static void ath9k_hw_init_desc(struct ath_hw *ah)
1747 {
1748 	struct ath_common *common = ath9k_hw_common(ah);
1749 
1750 	if (AR_SREV_9100(ah)) {
1751 		u32 mask;
1752 		mask = REG_READ(ah, AR_CFG);
1753 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1754 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1755 				mask);
1756 		} else {
1757 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1758 			REG_WRITE(ah, AR_CFG, mask);
1759 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1760 				REG_READ(ah, AR_CFG));
1761 		}
1762 	} else {
1763 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1764 			/* Configure AR9271 target WLAN */
1765 			if (AR_SREV_9271(ah))
1766 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1767 			else
1768 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1769 		}
1770 #ifdef __BIG_ENDIAN
1771 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1772 			 AR_SREV_9550(ah))
1773 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1774 		else
1775 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1776 #endif
1777 	}
1778 }
1779 
1780 /*
1781  * Fast channel change:
1782  * (Change synthesizer based on channel freq without resetting chip)
1783  *
1784  * Don't do FCC when
1785  *   - Flag is not set
1786  *   - Chip is just coming out of full sleep
1787  *   - Channel to be set is same as current channel
1788  *   - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1789  */
ath9k_hw_do_fastcc(struct ath_hw * ah,struct ath9k_channel * chan)1790 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1791 {
1792 	struct ath_common *common = ath9k_hw_common(ah);
1793 	int ret;
1794 
1795 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1796 		goto fail;
1797 
1798 	if (ah->chip_fullsleep)
1799 		goto fail;
1800 
1801 	if (!ah->curchan)
1802 		goto fail;
1803 
1804 	if (chan->channel == ah->curchan->channel)
1805 		goto fail;
1806 
1807 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1808 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1809 		goto fail;
1810 
1811 	if ((chan->channelFlags & CHANNEL_ALL) !=
1812 	    (ah->curchan->channelFlags & CHANNEL_ALL))
1813 		goto fail;
1814 
1815 	if (!ath9k_hw_check_alive(ah))
1816 		goto fail;
1817 
1818 	/*
1819 	 * For AR9462, make sure that calibration data for
1820 	 * re-using are present.
1821 	 */
1822 	if (AR_SREV_9462(ah) && (ah->caldata &&
1823 				 (!ah->caldata->done_txiqcal_once ||
1824 				  !ah->caldata->done_txclcal_once ||
1825 				  !ah->caldata->rtt_done)))
1826 		goto fail;
1827 
1828 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1829 		ah->curchan->channel, chan->channel);
1830 
1831 	ret = ath9k_hw_channel_change(ah, chan);
1832 	if (!ret)
1833 		goto fail;
1834 
1835 	if (ath9k_hw_mci_is_enabled(ah))
1836 		ar9003_mci_2g5g_switch(ah, false);
1837 
1838 	ath9k_hw_loadnf(ah, ah->curchan);
1839 	ath9k_hw_start_nfcal(ah, true);
1840 
1841 	if (AR_SREV_9271(ah))
1842 		ar9002_hw_load_ani_reg(ah, chan);
1843 
1844 	return 0;
1845 fail:
1846 	return -EINVAL;
1847 }
1848 
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool fastcc)1849 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1850 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1851 {
1852 	struct ath_common *common = ath9k_hw_common(ah);
1853 	u32 saveLedState;
1854 	u32 saveDefAntenna;
1855 	u32 macStaId1;
1856 	u64 tsf = 0;
1857 	int r;
1858 	bool start_mci_reset = false;
1859 	bool save_fullsleep = ah->chip_fullsleep;
1860 
1861 	if (ath9k_hw_mci_is_enabled(ah)) {
1862 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1863 		if (start_mci_reset)
1864 			return 0;
1865 	}
1866 
1867 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1868 		return -EIO;
1869 
1870 	if (ah->curchan && !ah->chip_fullsleep)
1871 		ath9k_hw_getnf(ah, ah->curchan);
1872 
1873 	ah->caldata = caldata;
1874 	if (caldata && (chan->channel != caldata->channel ||
1875 			chan->channelFlags != caldata->channelFlags)) {
1876 		/* Operating channel changed, reset channel calibration data */
1877 		memset(caldata, 0, sizeof(*caldata));
1878 		ath9k_init_nfcal_hist_buffer(ah, chan);
1879 	} else if (caldata) {
1880 		caldata->paprd_packet_sent = false;
1881 	}
1882 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1883 
1884 	if (fastcc) {
1885 		r = ath9k_hw_do_fastcc(ah, chan);
1886 		if (!r)
1887 			return r;
1888 	}
1889 
1890 	if (ath9k_hw_mci_is_enabled(ah))
1891 		ar9003_mci_stop_bt(ah, save_fullsleep);
1892 
1893 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1894 	if (saveDefAntenna == 0)
1895 		saveDefAntenna = 1;
1896 
1897 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1898 
1899 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1900 	if (AR_SREV_9100(ah) ||
1901 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1902 		tsf = ath9k_hw_gettsf64(ah);
1903 
1904 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1905 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1906 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1907 
1908 	ath9k_hw_mark_phy_inactive(ah);
1909 
1910 	ah->paprd_table_write_done = false;
1911 
1912 	/* Only required on the first reset */
1913 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1914 		REG_WRITE(ah,
1915 			  AR9271_RESET_POWER_DOWN_CONTROL,
1916 			  AR9271_RADIO_RF_RST);
1917 		udelay(50);
1918 	}
1919 
1920 	if (!ath9k_hw_chip_reset(ah, chan)) {
1921 		ath_err(common, "Chip reset failed\n");
1922 		return -EINVAL;
1923 	}
1924 
1925 	/* Only required on the first reset */
1926 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1927 		ah->htc_reset_init = false;
1928 		REG_WRITE(ah,
1929 			  AR9271_RESET_POWER_DOWN_CONTROL,
1930 			  AR9271_GATE_MAC_CTL);
1931 		udelay(50);
1932 	}
1933 
1934 	/* Restore TSF */
1935 	if (tsf)
1936 		ath9k_hw_settsf64(ah, tsf);
1937 
1938 	if (AR_SREV_9280_20_OR_LATER(ah))
1939 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1940 
1941 	if (!AR_SREV_9300_20_OR_LATER(ah))
1942 		ar9002_hw_enable_async_fifo(ah);
1943 
1944 	r = ath9k_hw_process_ini(ah, chan);
1945 	if (r)
1946 		return r;
1947 
1948 	if (ath9k_hw_mci_is_enabled(ah))
1949 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1950 
1951 	/*
1952 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1953 	 * right after the chip reset. When that happens, write a new
1954 	 * value after the initvals have been applied, with an offset
1955 	 * based on measured time difference
1956 	 */
1957 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1958 		tsf += 1500;
1959 		ath9k_hw_settsf64(ah, tsf);
1960 	}
1961 
1962 	ath9k_hw_init_mfp(ah);
1963 
1964 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1965 		ath9k_hw_set_delta_slope(ah, chan);
1966 
1967 	ath9k_hw_spur_mitigate_freq(ah, chan);
1968 	ah->eep_ops->set_board_values(ah, chan);
1969 
1970 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1971 
1972 	r = ath9k_hw_rf_set_freq(ah, chan);
1973 	if (r)
1974 		return r;
1975 
1976 	ath9k_hw_set_clockrate(ah);
1977 
1978 	ath9k_hw_init_queues(ah);
1979 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1980 	ath9k_hw_ani_cache_ini_regs(ah);
1981 	ath9k_hw_init_qos(ah);
1982 
1983 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1984 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1985 
1986 	ath9k_hw_init_global_settings(ah);
1987 
1988 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1989 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1990 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1991 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1992 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1993 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1994 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1995 	}
1996 
1997 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1998 
1999 	ath9k_hw_set_dma(ah);
2000 
2001 	if (!ath9k_hw_mci_is_enabled(ah))
2002 		REG_WRITE(ah, AR_OBS, 8);
2003 
2004 	if (ah->config.rx_intr_mitigation) {
2005 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2006 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2007 	}
2008 
2009 	if (ah->config.tx_intr_mitigation) {
2010 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2011 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2012 	}
2013 
2014 	ath9k_hw_init_bb(ah, chan);
2015 
2016 	if (caldata) {
2017 		caldata->done_txiqcal_once = false;
2018 		caldata->done_txclcal_once = false;
2019 	}
2020 	if (!ath9k_hw_init_cal(ah, chan))
2021 		return -EIO;
2022 
2023 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2024 		return -EIO;
2025 
2026 	ENABLE_REGWRITE_BUFFER(ah);
2027 
2028 	ath9k_hw_restore_chainmask(ah);
2029 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2030 
2031 	REGWRITE_BUFFER_FLUSH(ah);
2032 
2033 	ath9k_hw_init_desc(ah);
2034 
2035 	if (ath9k_hw_btcoex_is_enabled(ah))
2036 		ath9k_hw_btcoex_enable(ah);
2037 
2038 	if (ath9k_hw_mci_is_enabled(ah))
2039 		ar9003_mci_check_bt(ah);
2040 
2041 	ath9k_hw_loadnf(ah, chan);
2042 	ath9k_hw_start_nfcal(ah, true);
2043 
2044 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2045 		ar9003_hw_bb_watchdog_config(ah);
2046 		ar9003_hw_disable_phy_restart(ah);
2047 	}
2048 
2049 	ath9k_hw_apply_gpio_override(ah);
2050 
2051 	if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
2052 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2053 
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL(ath9k_hw_reset);
2057 
2058 /******************************/
2059 /* Power Management (Chipset) */
2060 /******************************/
2061 
2062 /*
2063  * Notify Power Mgt is disabled in self-generated frames.
2064  * If requested, force chip to sleep.
2065  */
ath9k_set_power_sleep(struct ath_hw * ah)2066 static void ath9k_set_power_sleep(struct ath_hw *ah)
2067 {
2068 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2069 
2070 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2071 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2072 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2073 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2074 		/* xxx Required for WLAN only case ? */
2075 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2076 		udelay(100);
2077 	}
2078 
2079 	/*
2080 	 * Clear the RTC force wake bit to allow the
2081 	 * mac to go to sleep.
2082 	 */
2083 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2084 
2085 	if (ath9k_hw_mci_is_enabled(ah))
2086 		udelay(100);
2087 
2088 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2089 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2090 
2091 	/* Shutdown chip. Active low */
2092 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2093 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2094 		udelay(2);
2095 	}
2096 
2097 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2098 	if (AR_SREV_9300_20_OR_LATER(ah))
2099 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2100 }
2101 
2102 /*
2103  * Notify Power Management is enabled in self-generating
2104  * frames. If request, set power mode of chip to
2105  * auto/normal.  Duration in units of 128us (1/8 TU).
2106  */
ath9k_set_power_network_sleep(struct ath_hw * ah)2107 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2108 {
2109 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2110 
2111 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2112 
2113 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2114 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2115 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2116 			  AR_RTC_FORCE_WAKE_ON_INT);
2117 	} else {
2118 
2119 		/* When chip goes into network sleep, it could be waken
2120 		 * up by MCI_INT interrupt caused by BT's HW messages
2121 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2122 		 * rate (~100us). This will cause chip to leave and
2123 		 * re-enter network sleep mode frequently, which in
2124 		 * consequence will have WLAN MCI HW to generate lots of
2125 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2126 		 * BT CPU to busy to process.
2127 		 */
2128 		if (ath9k_hw_mci_is_enabled(ah))
2129 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2130 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2131 		/*
2132 		 * Clear the RTC force wake bit to allow the
2133 		 * mac to go to sleep.
2134 		 */
2135 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2136 
2137 		if (ath9k_hw_mci_is_enabled(ah))
2138 			udelay(30);
2139 	}
2140 
2141 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2142 	if (AR_SREV_9300_20_OR_LATER(ah))
2143 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2144 }
2145 
ath9k_hw_set_power_awake(struct ath_hw * ah)2146 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2147 {
2148 	u32 val;
2149 	int i;
2150 
2151 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2152 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2153 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2154 		udelay(10);
2155 	}
2156 
2157 	if ((REG_READ(ah, AR_RTC_STATUS) &
2158 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2159 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2160 			return false;
2161 		}
2162 		if (!AR_SREV_9300_20_OR_LATER(ah))
2163 			ath9k_hw_init_pll(ah, NULL);
2164 	}
2165 	if (AR_SREV_9100(ah))
2166 		REG_SET_BIT(ah, AR_RTC_RESET,
2167 			    AR_RTC_RESET_EN);
2168 
2169 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2170 		    AR_RTC_FORCE_WAKE_EN);
2171 	udelay(50);
2172 
2173 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2174 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2175 		if (val == AR_RTC_STATUS_ON)
2176 			break;
2177 		udelay(50);
2178 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2179 			    AR_RTC_FORCE_WAKE_EN);
2180 	}
2181 	if (i == 0) {
2182 		ath_err(ath9k_hw_common(ah),
2183 			"Failed to wakeup in %uus\n",
2184 			POWER_UP_TIME / 20);
2185 		return false;
2186 	}
2187 
2188 	if (ath9k_hw_mci_is_enabled(ah))
2189 		ar9003_mci_set_power_awake(ah);
2190 
2191 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2192 
2193 	return true;
2194 }
2195 
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2196 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2197 {
2198 	struct ath_common *common = ath9k_hw_common(ah);
2199 	int status = true;
2200 	static const char *modes[] = {
2201 		"AWAKE",
2202 		"FULL-SLEEP",
2203 		"NETWORK SLEEP",
2204 		"UNDEFINED"
2205 	};
2206 
2207 	if (ah->power_mode == mode)
2208 		return status;
2209 
2210 	ath_dbg(common, RESET, "%s -> %s\n",
2211 		modes[ah->power_mode], modes[mode]);
2212 
2213 	switch (mode) {
2214 	case ATH9K_PM_AWAKE:
2215 		status = ath9k_hw_set_power_awake(ah);
2216 		break;
2217 	case ATH9K_PM_FULL_SLEEP:
2218 		if (ath9k_hw_mci_is_enabled(ah))
2219 			ar9003_mci_set_full_sleep(ah);
2220 
2221 		ath9k_set_power_sleep(ah);
2222 		ah->chip_fullsleep = true;
2223 		break;
2224 	case ATH9K_PM_NETWORK_SLEEP:
2225 		ath9k_set_power_network_sleep(ah);
2226 		break;
2227 	default:
2228 		ath_err(common, "Unknown power mode %u\n", mode);
2229 		return false;
2230 	}
2231 	ah->power_mode = mode;
2232 
2233 	/*
2234 	 * XXX: If this warning never comes up after a while then
2235 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2236 	 * ath9k_hw_setpower() return type void.
2237 	 */
2238 
2239 	if (!(ah->ah_flags & AH_UNPLUGGED))
2240 		ATH_DBG_WARN_ON_ONCE(!status);
2241 
2242 	return status;
2243 }
2244 EXPORT_SYMBOL(ath9k_hw_setpower);
2245 
2246 /*******************/
2247 /* Beacon Handling */
2248 /*******************/
2249 
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2250 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2251 {
2252 	int flags = 0;
2253 
2254 	ENABLE_REGWRITE_BUFFER(ah);
2255 
2256 	switch (ah->opmode) {
2257 	case NL80211_IFTYPE_ADHOC:
2258 	case NL80211_IFTYPE_MESH_POINT:
2259 		REG_SET_BIT(ah, AR_TXCFG,
2260 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2261 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2262 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2263 		flags |= AR_NDP_TIMER_EN;
2264 	case NL80211_IFTYPE_AP:
2265 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2266 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2267 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2268 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2269 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2270 		flags |=
2271 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2272 		break;
2273 	default:
2274 		ath_dbg(ath9k_hw_common(ah), BEACON,
2275 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2276 		return;
2277 		break;
2278 	}
2279 
2280 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2281 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2282 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2283 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2284 
2285 	REGWRITE_BUFFER_FLUSH(ah);
2286 
2287 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2288 }
2289 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2290 
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2291 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2292 				    const struct ath9k_beacon_state *bs)
2293 {
2294 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2295 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2296 	struct ath_common *common = ath9k_hw_common(ah);
2297 
2298 	ENABLE_REGWRITE_BUFFER(ah);
2299 
2300 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2301 
2302 	REG_WRITE(ah, AR_BEACON_PERIOD,
2303 		  TU_TO_USEC(bs->bs_intval));
2304 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2305 		  TU_TO_USEC(bs->bs_intval));
2306 
2307 	REGWRITE_BUFFER_FLUSH(ah);
2308 
2309 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2310 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2311 
2312 	beaconintval = bs->bs_intval;
2313 
2314 	if (bs->bs_sleepduration > beaconintval)
2315 		beaconintval = bs->bs_sleepduration;
2316 
2317 	dtimperiod = bs->bs_dtimperiod;
2318 	if (bs->bs_sleepduration > dtimperiod)
2319 		dtimperiod = bs->bs_sleepduration;
2320 
2321 	if (beaconintval == dtimperiod)
2322 		nextTbtt = bs->bs_nextdtim;
2323 	else
2324 		nextTbtt = bs->bs_nexttbtt;
2325 
2326 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2327 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2328 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2329 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2330 
2331 	ENABLE_REGWRITE_BUFFER(ah);
2332 
2333 	REG_WRITE(ah, AR_NEXT_DTIM,
2334 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2335 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2336 
2337 	REG_WRITE(ah, AR_SLEEP1,
2338 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2339 		  | AR_SLEEP1_ASSUME_DTIM);
2340 
2341 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2342 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2343 	else
2344 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2345 
2346 	REG_WRITE(ah, AR_SLEEP2,
2347 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2348 
2349 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2350 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2351 
2352 	REGWRITE_BUFFER_FLUSH(ah);
2353 
2354 	REG_SET_BIT(ah, AR_TIMER_MODE,
2355 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2356 		    AR_DTIM_TIMER_EN);
2357 
2358 	/* TSF Out of Range Threshold */
2359 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2360 }
2361 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2362 
2363 /*******************/
2364 /* HW Capabilities */
2365 /*******************/
2366 
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2367 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2368 {
2369 	eeprom_chainmask &= chip_chainmask;
2370 	if (eeprom_chainmask)
2371 		return eeprom_chainmask;
2372 	else
2373 		return chip_chainmask;
2374 }
2375 
2376 /**
2377  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2378  * @ah: the atheros hardware data structure
2379  *
2380  * We enable DFS support upstream on chipsets which have passed a series
2381  * of tests. The testing requirements are going to be documented. Desired
2382  * test requirements are documented at:
2383  *
2384  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2385  *
2386  * Once a new chipset gets properly tested an individual commit can be used
2387  * to document the testing for DFS for that chipset.
2388  */
ath9k_hw_dfs_tested(struct ath_hw * ah)2389 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2390 {
2391 
2392 	switch (ah->hw_version.macVersion) {
2393 	/* for temporary testing DFS with 9280 */
2394 	case AR_SREV_VERSION_9280:
2395 	/* AR9580 will likely be our first target to get testing on */
2396 	case AR_SREV_VERSION_9580:
2397 		return true;
2398 	default:
2399 		return false;
2400 	}
2401 }
2402 
ath9k_hw_fill_cap_info(struct ath_hw * ah)2403 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2404 {
2405 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2406 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2407 	struct ath_common *common = ath9k_hw_common(ah);
2408 	unsigned int chip_chainmask;
2409 
2410 	u16 eeval;
2411 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2412 
2413 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2414 	regulatory->current_rd = eeval;
2415 
2416 	if (ah->opmode != NL80211_IFTYPE_AP &&
2417 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2418 		if (regulatory->current_rd == 0x64 ||
2419 		    regulatory->current_rd == 0x65)
2420 			regulatory->current_rd += 5;
2421 		else if (regulatory->current_rd == 0x41)
2422 			regulatory->current_rd = 0x43;
2423 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2424 			regulatory->current_rd);
2425 	}
2426 
2427 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2428 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2429 		ath_err(common,
2430 			"no band has been marked as supported in EEPROM\n");
2431 		return -EINVAL;
2432 	}
2433 
2434 	if (eeval & AR5416_OPFLAGS_11A)
2435 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2436 
2437 	if (eeval & AR5416_OPFLAGS_11G)
2438 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2439 
2440 	if (AR_SREV_9485(ah) ||
2441 	    AR_SREV_9285(ah) ||
2442 	    AR_SREV_9330(ah) ||
2443 	    AR_SREV_9565(ah))
2444 		chip_chainmask = 1;
2445 	else if (AR_SREV_9462(ah))
2446 		chip_chainmask = 3;
2447 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2448 		chip_chainmask = 7;
2449 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2450 		chip_chainmask = 3;
2451 	else
2452 		chip_chainmask = 7;
2453 
2454 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2455 	/*
2456 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2457 	 * the EEPROM.
2458 	 */
2459 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2460 	    !(eeval & AR5416_OPFLAGS_11A) &&
2461 	    !(AR_SREV_9271(ah)))
2462 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2463 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2464 	else if (AR_SREV_9100(ah))
2465 		pCap->rx_chainmask = 0x7;
2466 	else
2467 		/* Use rx_chainmask from EEPROM. */
2468 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2469 
2470 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2471 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2472 	ah->txchainmask = pCap->tx_chainmask;
2473 	ah->rxchainmask = pCap->rx_chainmask;
2474 
2475 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2476 
2477 	/* enable key search for every frame in an aggregate */
2478 	if (AR_SREV_9300_20_OR_LATER(ah))
2479 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2480 
2481 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2482 
2483 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2484 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2485 	else
2486 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2487 
2488 	if (AR_SREV_9271(ah))
2489 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2490 	else if (AR_DEVID_7010(ah))
2491 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2492 	else if (AR_SREV_9300_20_OR_LATER(ah))
2493 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2494 	else if (AR_SREV_9287_11_OR_LATER(ah))
2495 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2496 	else if (AR_SREV_9285_12_OR_LATER(ah))
2497 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2498 	else if (AR_SREV_9280_20_OR_LATER(ah))
2499 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2500 	else
2501 		pCap->num_gpio_pins = AR_NUM_GPIO;
2502 
2503 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2504 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2505 	else
2506 		pCap->rts_aggr_limit = (8 * 1024);
2507 
2508 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2509 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2510 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2511 		ah->rfkill_gpio =
2512 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2513 		ah->rfkill_polarity =
2514 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2515 
2516 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2517 	}
2518 #endif
2519 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2520 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2521 	else
2522 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2523 
2524 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2525 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2526 	else
2527 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2528 
2529 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2530 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2531 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2532 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2533 
2534 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2535 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2536 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2537 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2538 		pCap->txs_len = sizeof(struct ar9003_txs);
2539 	} else {
2540 		pCap->tx_desc_len = sizeof(struct ath_desc);
2541 		if (AR_SREV_9280_20(ah))
2542 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2543 	}
2544 
2545 	if (AR_SREV_9300_20_OR_LATER(ah))
2546 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2547 
2548 	if (AR_SREV_9300_20_OR_LATER(ah))
2549 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2550 
2551 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2552 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2553 
2554 	if (AR_SREV_9285(ah))
2555 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2556 			ant_div_ctl1 =
2557 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2558 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2559 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2560 		}
2561 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2562 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2563 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2564 	}
2565 
2566 
2567 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2568 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2569 		/*
2570 		 * enable the diversity-combining algorithm only when
2571 		 * both enable_lna_div and enable_fast_div are set
2572 		 *		Table for Diversity
2573 		 * ant_div_alt_lnaconf		bit 0-1
2574 		 * ant_div_main_lnaconf		bit 2-3
2575 		 * ant_div_alt_gaintb		bit 4
2576 		 * ant_div_main_gaintb		bit 5
2577 		 * enable_ant_div_lnadiv	bit 6
2578 		 * enable_ant_fast_div		bit 7
2579 		 */
2580 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2581 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2582 	}
2583 
2584 	if (ath9k_hw_dfs_tested(ah))
2585 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2586 
2587 	tx_chainmask = pCap->tx_chainmask;
2588 	rx_chainmask = pCap->rx_chainmask;
2589 	while (tx_chainmask || rx_chainmask) {
2590 		if (tx_chainmask & BIT(0))
2591 			pCap->max_txchains++;
2592 		if (rx_chainmask & BIT(0))
2593 			pCap->max_rxchains++;
2594 
2595 		tx_chainmask >>= 1;
2596 		rx_chainmask >>= 1;
2597 	}
2598 
2599 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2600 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2601 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2602 
2603 		if (AR_SREV_9462_20(ah))
2604 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2605 	}
2606 
2607 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2608 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
2609 				 ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
2610 
2611 		if (AR_SREV_9280(ah))
2612 			pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
2613 	}
2614 
2615 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2616 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2617 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2618 
2619 	return 0;
2620 }
2621 
2622 /****************************/
2623 /* GPIO / RFKILL / Antennae */
2624 /****************************/
2625 
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2626 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2627 					 u32 gpio, u32 type)
2628 {
2629 	int addr;
2630 	u32 gpio_shift, tmp;
2631 
2632 	if (gpio > 11)
2633 		addr = AR_GPIO_OUTPUT_MUX3;
2634 	else if (gpio > 5)
2635 		addr = AR_GPIO_OUTPUT_MUX2;
2636 	else
2637 		addr = AR_GPIO_OUTPUT_MUX1;
2638 
2639 	gpio_shift = (gpio % 6) * 5;
2640 
2641 	if (AR_SREV_9280_20_OR_LATER(ah)
2642 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2643 		REG_RMW(ah, addr, (type << gpio_shift),
2644 			(0x1f << gpio_shift));
2645 	} else {
2646 		tmp = REG_READ(ah, addr);
2647 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2648 		tmp &= ~(0x1f << gpio_shift);
2649 		tmp |= (type << gpio_shift);
2650 		REG_WRITE(ah, addr, tmp);
2651 	}
2652 }
2653 
ath9k_hw_cfg_gpio_input(struct ath_hw * ah,u32 gpio)2654 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2655 {
2656 	u32 gpio_shift;
2657 
2658 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2659 
2660 	if (AR_DEVID_7010(ah)) {
2661 		gpio_shift = gpio;
2662 		REG_RMW(ah, AR7010_GPIO_OE,
2663 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2664 			(AR7010_GPIO_OE_MASK << gpio_shift));
2665 		return;
2666 	}
2667 
2668 	gpio_shift = gpio << 1;
2669 	REG_RMW(ah,
2670 		AR_GPIO_OE_OUT,
2671 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2672 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2673 }
2674 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2675 
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2676 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2677 {
2678 #define MS_REG_READ(x, y) \
2679 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2680 
2681 	if (gpio >= ah->caps.num_gpio_pins)
2682 		return 0xffffffff;
2683 
2684 	if (AR_DEVID_7010(ah)) {
2685 		u32 val;
2686 		val = REG_READ(ah, AR7010_GPIO_IN);
2687 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2688 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2689 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2690 			AR_GPIO_BIT(gpio)) != 0;
2691 	else if (AR_SREV_9271(ah))
2692 		return MS_REG_READ(AR9271, gpio) != 0;
2693 	else if (AR_SREV_9287_11_OR_LATER(ah))
2694 		return MS_REG_READ(AR9287, gpio) != 0;
2695 	else if (AR_SREV_9285_12_OR_LATER(ah))
2696 		return MS_REG_READ(AR9285, gpio) != 0;
2697 	else if (AR_SREV_9280_20_OR_LATER(ah))
2698 		return MS_REG_READ(AR928X, gpio) != 0;
2699 	else
2700 		return MS_REG_READ(AR, gpio) != 0;
2701 }
2702 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2703 
ath9k_hw_cfg_output(struct ath_hw * ah,u32 gpio,u32 ah_signal_type)2704 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2705 			 u32 ah_signal_type)
2706 {
2707 	u32 gpio_shift;
2708 
2709 	if (AR_DEVID_7010(ah)) {
2710 		gpio_shift = gpio;
2711 		REG_RMW(ah, AR7010_GPIO_OE,
2712 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2713 			(AR7010_GPIO_OE_MASK << gpio_shift));
2714 		return;
2715 	}
2716 
2717 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2718 	gpio_shift = 2 * gpio;
2719 	REG_RMW(ah,
2720 		AR_GPIO_OE_OUT,
2721 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2722 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2723 }
2724 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2725 
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2726 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2727 {
2728 	if (AR_DEVID_7010(ah)) {
2729 		val = val ? 0 : 1;
2730 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2731 			AR_GPIO_BIT(gpio));
2732 		return;
2733 	}
2734 
2735 	if (AR_SREV_9271(ah))
2736 		val = ~val;
2737 
2738 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2739 		AR_GPIO_BIT(gpio));
2740 }
2741 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2742 
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2743 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2744 {
2745 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2746 }
2747 EXPORT_SYMBOL(ath9k_hw_setantenna);
2748 
2749 /*********************/
2750 /* General Operation */
2751 /*********************/
2752 
ath9k_hw_getrxfilter(struct ath_hw * ah)2753 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2754 {
2755 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2756 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2757 
2758 	if (phybits & AR_PHY_ERR_RADAR)
2759 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2760 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2761 		bits |= ATH9K_RX_FILTER_PHYERR;
2762 
2763 	return bits;
2764 }
2765 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2766 
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2767 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2768 {
2769 	u32 phybits;
2770 
2771 	ENABLE_REGWRITE_BUFFER(ah);
2772 
2773 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2774 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2775 
2776 	REG_WRITE(ah, AR_RX_FILTER, bits);
2777 
2778 	phybits = 0;
2779 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2780 		phybits |= AR_PHY_ERR_RADAR;
2781 	if (bits & ATH9K_RX_FILTER_PHYERR)
2782 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2783 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2784 
2785 	if (phybits)
2786 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2787 	else
2788 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2789 
2790 	REGWRITE_BUFFER_FLUSH(ah);
2791 }
2792 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2793 
ath9k_hw_phy_disable(struct ath_hw * ah)2794 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2795 {
2796 	if (ath9k_hw_mci_is_enabled(ah))
2797 		ar9003_mci_bt_gain_ctrl(ah);
2798 
2799 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2800 		return false;
2801 
2802 	ath9k_hw_init_pll(ah, NULL);
2803 	ah->htc_reset_init = true;
2804 	return true;
2805 }
2806 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2807 
ath9k_hw_disable(struct ath_hw * ah)2808 bool ath9k_hw_disable(struct ath_hw *ah)
2809 {
2810 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2811 		return false;
2812 
2813 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2814 		return false;
2815 
2816 	ath9k_hw_init_pll(ah, NULL);
2817 	return true;
2818 }
2819 EXPORT_SYMBOL(ath9k_hw_disable);
2820 
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2821 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2822 {
2823 	enum eeprom_param gain_param;
2824 
2825 	if (IS_CHAN_2GHZ(chan))
2826 		gain_param = EEP_ANTENNA_GAIN_2G;
2827 	else
2828 		gain_param = EEP_ANTENNA_GAIN_5G;
2829 
2830 	return ah->eep_ops->get_eeprom(ah, gain_param);
2831 }
2832 
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan,bool test)2833 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2834 			    bool test)
2835 {
2836 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2837 	struct ieee80211_channel *channel;
2838 	int chan_pwr, new_pwr, max_gain;
2839 	int ant_gain, ant_reduction = 0;
2840 
2841 	if (!chan)
2842 		return;
2843 
2844 	channel = chan->chan;
2845 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2846 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2847 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2848 
2849 	ant_gain = get_antenna_gain(ah, chan);
2850 	if (ant_gain > max_gain)
2851 		ant_reduction = ant_gain - max_gain;
2852 
2853 	ah->eep_ops->set_txpower(ah, chan,
2854 				 ath9k_regd_get_ctl(reg, chan),
2855 				 ant_reduction, new_pwr, test);
2856 }
2857 
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2858 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2859 {
2860 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2861 	struct ath9k_channel *chan = ah->curchan;
2862 	struct ieee80211_channel *channel = chan->chan;
2863 
2864 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2865 	if (test)
2866 		channel->max_power = MAX_RATE_POWER / 2;
2867 
2868 	ath9k_hw_apply_txpower(ah, chan, test);
2869 
2870 	if (test)
2871 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2872 }
2873 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2874 
ath9k_hw_setopmode(struct ath_hw * ah)2875 void ath9k_hw_setopmode(struct ath_hw *ah)
2876 {
2877 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2878 }
2879 EXPORT_SYMBOL(ath9k_hw_setopmode);
2880 
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2881 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2882 {
2883 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2884 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2885 }
2886 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2887 
ath9k_hw_write_associd(struct ath_hw * ah)2888 void ath9k_hw_write_associd(struct ath_hw *ah)
2889 {
2890 	struct ath_common *common = ath9k_hw_common(ah);
2891 
2892 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2893 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2894 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2895 }
2896 EXPORT_SYMBOL(ath9k_hw_write_associd);
2897 
2898 #define ATH9K_MAX_TSF_READ 10
2899 
ath9k_hw_gettsf64(struct ath_hw * ah)2900 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2901 {
2902 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2903 	int i;
2904 
2905 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2906 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2907 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2908 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2909 		if (tsf_upper2 == tsf_upper1)
2910 			break;
2911 		tsf_upper1 = tsf_upper2;
2912 	}
2913 
2914 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2915 
2916 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2917 }
2918 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2919 
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)2920 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2921 {
2922 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2923 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2924 }
2925 EXPORT_SYMBOL(ath9k_hw_settsf64);
2926 
ath9k_hw_reset_tsf(struct ath_hw * ah)2927 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2928 {
2929 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2930 			   AH_TSF_WRITE_TIMEOUT))
2931 		ath_dbg(ath9k_hw_common(ah), RESET,
2932 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2933 
2934 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2935 }
2936 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2937 
ath9k_hw_set_tsfadjust(struct ath_hw * ah,bool set)2938 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2939 {
2940 	if (set)
2941 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2942 	else
2943 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2944 }
2945 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2946 
ath9k_hw_set11nmac2040(struct ath_hw * ah)2947 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2948 {
2949 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2950 	u32 macmode;
2951 
2952 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2953 		macmode = AR_2040_JOINED_RX_CLEAR;
2954 	else
2955 		macmode = 0;
2956 
2957 	REG_WRITE(ah, AR_2040_MODE, macmode);
2958 }
2959 
2960 /* HW Generic timers configuration */
2961 
2962 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2963 {
2964 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2965 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2966 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2967 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2968 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2969 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2970 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2971 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2972 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2973 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2974 				AR_NDP2_TIMER_MODE, 0x0002},
2975 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2976 				AR_NDP2_TIMER_MODE, 0x0004},
2977 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2978 				AR_NDP2_TIMER_MODE, 0x0008},
2979 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2980 				AR_NDP2_TIMER_MODE, 0x0010},
2981 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2982 				AR_NDP2_TIMER_MODE, 0x0020},
2983 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2984 				AR_NDP2_TIMER_MODE, 0x0040},
2985 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2986 				AR_NDP2_TIMER_MODE, 0x0080}
2987 };
2988 
2989 /* HW generic timer primitives */
2990 
2991 /* compute and clear index of rightmost 1 */
rightmost_index(struct ath_gen_timer_table * timer_table,u32 * mask)2992 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2993 {
2994 	u32 b;
2995 
2996 	b = *mask;
2997 	b &= (0-b);
2998 	*mask &= ~b;
2999 	b *= debruijn32;
3000 	b >>= 27;
3001 
3002 	return timer_table->gen_timer_index[b];
3003 }
3004 
ath9k_hw_gettsf32(struct ath_hw * ah)3005 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3006 {
3007 	return REG_READ(ah, AR_TSF_L32);
3008 }
3009 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3010 
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)3011 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3012 					  void (*trigger)(void *),
3013 					  void (*overflow)(void *),
3014 					  void *arg,
3015 					  u8 timer_index)
3016 {
3017 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3018 	struct ath_gen_timer *timer;
3019 
3020 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3021 	if (timer == NULL)
3022 		return NULL;
3023 
3024 	/* allocate a hardware generic timer slot */
3025 	timer_table->timers[timer_index] = timer;
3026 	timer->index = timer_index;
3027 	timer->trigger = trigger;
3028 	timer->overflow = overflow;
3029 	timer->arg = arg;
3030 
3031 	return timer;
3032 }
3033 EXPORT_SYMBOL(ath_gen_timer_alloc);
3034 
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 trig_timeout,u32 timer_period)3035 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3036 			      struct ath_gen_timer *timer,
3037 			      u32 trig_timeout,
3038 			      u32 timer_period)
3039 {
3040 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3041 	u32 tsf, timer_next;
3042 
3043 	BUG_ON(!timer_period);
3044 
3045 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3046 
3047 	tsf = ath9k_hw_gettsf32(ah);
3048 
3049 	timer_next = tsf + trig_timeout;
3050 
3051 	ath_dbg(ath9k_hw_common(ah), HWTIMER,
3052 		"current tsf %x period %x timer_next %x\n",
3053 		tsf, timer_period, timer_next);
3054 
3055 	/*
3056 	 * Program generic timer registers
3057 	 */
3058 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3059 		 timer_next);
3060 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3061 		  timer_period);
3062 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3063 		    gen_tmr_configuration[timer->index].mode_mask);
3064 
3065 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3066 		/*
3067 		 * Starting from AR9462, each generic timer can select which tsf
3068 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3069 		 * 8 - 15  use tsf2.
3070 		 */
3071 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3072 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3073 				       (1 << timer->index));
3074 		else
3075 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3076 				       (1 << timer->index));
3077 	}
3078 
3079 	/* Enable both trigger and thresh interrupt masks */
3080 	REG_SET_BIT(ah, AR_IMR_S5,
3081 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3082 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3083 }
3084 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3085 
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)3086 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3087 {
3088 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3089 
3090 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3091 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3092 		return;
3093 	}
3094 
3095 	/* Clear generic timer enable bits. */
3096 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3097 			gen_tmr_configuration[timer->index].mode_mask);
3098 
3099 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3100 		/*
3101 		 * Need to switch back to TSF if it was using TSF2.
3102 		 */
3103 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3104 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3105 				    (1 << timer->index));
3106 		}
3107 	}
3108 
3109 	/* Disable both trigger and thresh interrupt masks */
3110 	REG_CLR_BIT(ah, AR_IMR_S5,
3111 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3112 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3113 
3114 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3115 }
3116 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3117 
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)3118 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3119 {
3120 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3121 
3122 	/* free the hardware generic timer slot */
3123 	timer_table->timers[timer->index] = NULL;
3124 	kfree(timer);
3125 }
3126 EXPORT_SYMBOL(ath_gen_timer_free);
3127 
3128 /*
3129  * Generic Timer Interrupts handling
3130  */
ath_gen_timer_isr(struct ath_hw * ah)3131 void ath_gen_timer_isr(struct ath_hw *ah)
3132 {
3133 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3134 	struct ath_gen_timer *timer;
3135 	struct ath_common *common = ath9k_hw_common(ah);
3136 	u32 trigger_mask, thresh_mask, index;
3137 
3138 	/* get hardware generic timer interrupt status */
3139 	trigger_mask = ah->intr_gen_timer_trigger;
3140 	thresh_mask = ah->intr_gen_timer_thresh;
3141 	trigger_mask &= timer_table->timer_mask.val;
3142 	thresh_mask &= timer_table->timer_mask.val;
3143 
3144 	trigger_mask &= ~thresh_mask;
3145 
3146 	while (thresh_mask) {
3147 		index = rightmost_index(timer_table, &thresh_mask);
3148 		timer = timer_table->timers[index];
3149 		BUG_ON(!timer);
3150 		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3151 			index);
3152 		timer->overflow(timer->arg);
3153 	}
3154 
3155 	while (trigger_mask) {
3156 		index = rightmost_index(timer_table, &trigger_mask);
3157 		timer = timer_table->timers[index];
3158 		BUG_ON(!timer);
3159 		ath_dbg(common, HWTIMER,
3160 			"Gen timer[%d] trigger\n", index);
3161 		timer->trigger(timer->arg);
3162 	}
3163 }
3164 EXPORT_SYMBOL(ath_gen_timer_isr);
3165 
3166 /********/
3167 /* HTC  */
3168 /********/
3169 
3170 static struct {
3171 	u32 version;
3172 	const char * name;
3173 } ath_mac_bb_names[] = {
3174 	/* Devices with external radios */
3175 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3176 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3177 	{ AR_SREV_VERSION_9100,		"9100" },
3178 	{ AR_SREV_VERSION_9160,		"9160" },
3179 	/* Single-chip solutions */
3180 	{ AR_SREV_VERSION_9280,		"9280" },
3181 	{ AR_SREV_VERSION_9285,		"9285" },
3182 	{ AR_SREV_VERSION_9287,         "9287" },
3183 	{ AR_SREV_VERSION_9271,         "9271" },
3184 	{ AR_SREV_VERSION_9300,         "9300" },
3185 	{ AR_SREV_VERSION_9330,         "9330" },
3186 	{ AR_SREV_VERSION_9340,		"9340" },
3187 	{ AR_SREV_VERSION_9485,         "9485" },
3188 	{ AR_SREV_VERSION_9462,         "9462" },
3189 	{ AR_SREV_VERSION_9550,         "9550" },
3190 	{ AR_SREV_VERSION_9565,         "9565" },
3191 };
3192 
3193 /* For devices with external radios */
3194 static struct {
3195 	u16 version;
3196 	const char * name;
3197 } ath_rf_names[] = {
3198 	{ 0,				"5133" },
3199 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3200 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3201 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3202 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3203 };
3204 
3205 /*
3206  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3207  */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3208 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3209 {
3210 	int i;
3211 
3212 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3213 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3214 			return ath_mac_bb_names[i].name;
3215 		}
3216 	}
3217 
3218 	return "????";
3219 }
3220 
3221 /*
3222  * Return the RF name. "????" is returned if the RF is unknown.
3223  * Used for devices with external radios.
3224  */
ath9k_hw_rf_name(u16 rf_version)3225 static const char *ath9k_hw_rf_name(u16 rf_version)
3226 {
3227 	int i;
3228 
3229 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3230 		if (ath_rf_names[i].version == rf_version) {
3231 			return ath_rf_names[i].name;
3232 		}
3233 	}
3234 
3235 	return "????";
3236 }
3237 
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3238 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3239 {
3240 	int used;
3241 
3242 	/* chipsets >= AR9280 are single-chip */
3243 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3244 		used = snprintf(hw_name, len,
3245 			       "Atheros AR%s Rev:%x",
3246 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3247 			       ah->hw_version.macRev);
3248 	}
3249 	else {
3250 		used = snprintf(hw_name, len,
3251 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3252 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3253 			       ah->hw_version.macRev,
3254 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3255 						AR_RADIO_SREV_MAJOR)),
3256 			       ah->hw_version.phyRev);
3257 	}
3258 
3259 	hw_name[used] = '\0';
3260 }
3261 EXPORT_SYMBOL(ath9k_hw_name);
3262