1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "ar9003_phy.h"
28 #include "debug.h"
29 #include "ath9k.h"
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37
ath9k_init(void)38 static int __init ath9k_init(void)
39 {
40 return 0;
41 }
42 module_init(ath9k_init);
43
ath9k_exit(void)44 static void __exit ath9k_exit(void)
45 {
46 return;
47 }
48 module_exit(ath9k_exit);
49
50 /* Private hardware callbacks */
51
ath9k_hw_init_cal_settings(struct ath_hw * ah)52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56
ath9k_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 struct ath9k_channel *chan)
59 {
60 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62
ath9k_hw_init_mode_gain_regs(struct ath_hw * ah)63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 return;
67
68 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70
ath9k_hw_ani_cache_ini_regs(struct ath_hw * ah)71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 /* You will not have this callback if using the old ANI */
74 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 return;
76
77 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79
80 /********************/
81 /* Helper Functions */
82 /********************/
83
84 #ifdef CONFIG_ATH9K_DEBUGFS
85
ath9k_debug_sync_cause(struct ath_common * common,u32 sync_cause)86 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
87 {
88 struct ath_softc *sc = common->priv;
89 if (sync_cause)
90 sc->debug.stats.istats.sync_cause_all++;
91 if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
92 sc->debug.stats.istats.sync_rtc_irq++;
93 if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
94 sc->debug.stats.istats.sync_mac_irq++;
95 if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
96 sc->debug.stats.istats.eeprom_illegal_access++;
97 if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
98 sc->debug.stats.istats.apb_timeout++;
99 if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
100 sc->debug.stats.istats.pci_mode_conflict++;
101 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
102 sc->debug.stats.istats.host1_fatal++;
103 if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
104 sc->debug.stats.istats.host1_perr++;
105 if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
106 sc->debug.stats.istats.trcv_fifo_perr++;
107 if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
108 sc->debug.stats.istats.radm_cpl_ep++;
109 if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
110 sc->debug.stats.istats.radm_cpl_dllp_abort++;
111 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
112 sc->debug.stats.istats.radm_cpl_tlp_abort++;
113 if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
114 sc->debug.stats.istats.radm_cpl_ecrc_err++;
115 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
116 sc->debug.stats.istats.radm_cpl_timeout++;
117 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
118 sc->debug.stats.istats.local_timeout++;
119 if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
120 sc->debug.stats.istats.pm_access++;
121 if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
122 sc->debug.stats.istats.mac_awake++;
123 if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
124 sc->debug.stats.istats.mac_asleep++;
125 if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
126 sc->debug.stats.istats.mac_sleep_access++;
127 }
128 #endif
129
130
ath9k_hw_set_clockrate(struct ath_hw * ah)131 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
132 {
133 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
134 struct ath_common *common = ath9k_hw_common(ah);
135 unsigned int clockrate;
136
137 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
138 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
139 clockrate = 117;
140 else if (!ah->curchan) /* should really check for CCK instead */
141 clockrate = ATH9K_CLOCK_RATE_CCK;
142 else if (conf->chandef.chan->band == IEEE80211_BAND_2GHZ)
143 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
144 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
145 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
146 else
147 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
148
149 if (conf_is_ht40(conf))
150 clockrate *= 2;
151
152 if (ah->curchan) {
153 if (IS_CHAN_HALF_RATE(ah->curchan))
154 clockrate /= 2;
155 if (IS_CHAN_QUARTER_RATE(ah->curchan))
156 clockrate /= 4;
157 }
158
159 common->clockrate = clockrate;
160 }
161
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)162 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
163 {
164 struct ath_common *common = ath9k_hw_common(ah);
165
166 return usecs * common->clockrate;
167 }
168
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)169 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
170 {
171 int i;
172
173 BUG_ON(timeout < AH_TIME_QUANTUM);
174
175 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
176 if ((REG_READ(ah, reg) & mask) == val)
177 return true;
178
179 udelay(AH_TIME_QUANTUM);
180 }
181
182 ath_dbg(ath9k_hw_common(ah), ANY,
183 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
184 timeout, reg, REG_READ(ah, reg), mask, val);
185
186 return false;
187 }
188 EXPORT_SYMBOL(ath9k_hw_wait);
189
ath9k_hw_synth_delay(struct ath_hw * ah,struct ath9k_channel * chan,int hw_delay)190 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
191 int hw_delay)
192 {
193 if (IS_CHAN_B(chan))
194 hw_delay = (4 * hw_delay) / 22;
195 else
196 hw_delay /= 10;
197
198 if (IS_CHAN_HALF_RATE(chan))
199 hw_delay *= 2;
200 else if (IS_CHAN_QUARTER_RATE(chan))
201 hw_delay *= 4;
202
203 udelay(hw_delay + BASE_ACTIVATE_DELAY);
204 }
205
ath9k_hw_write_array(struct ath_hw * ah,const struct ar5416IniArray * array,int column,unsigned int * writecnt)206 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
207 int column, unsigned int *writecnt)
208 {
209 int r;
210
211 ENABLE_REGWRITE_BUFFER(ah);
212 for (r = 0; r < array->ia_rows; r++) {
213 REG_WRITE(ah, INI_RA(array, r, 0),
214 INI_RA(array, r, column));
215 DO_DELAY(*writecnt);
216 }
217 REGWRITE_BUFFER_FLUSH(ah);
218 }
219
ath9k_hw_reverse_bits(u32 val,u32 n)220 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
221 {
222 u32 retval;
223 int i;
224
225 for (i = 0, retval = 0; i < n; i++) {
226 retval = (retval << 1) | (val & 1);
227 val >>= 1;
228 }
229 return retval;
230 }
231
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)232 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
233 u8 phy, int kbps,
234 u32 frameLen, u16 rateix,
235 bool shortPreamble)
236 {
237 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
238
239 if (kbps == 0)
240 return 0;
241
242 switch (phy) {
243 case WLAN_RC_PHY_CCK:
244 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
245 if (shortPreamble)
246 phyTime >>= 1;
247 numBits = frameLen << 3;
248 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
249 break;
250 case WLAN_RC_PHY_OFDM:
251 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
252 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
253 numBits = OFDM_PLCP_BITS + (frameLen << 3);
254 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
255 txTime = OFDM_SIFS_TIME_QUARTER
256 + OFDM_PREAMBLE_TIME_QUARTER
257 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
258 } else if (ah->curchan &&
259 IS_CHAN_HALF_RATE(ah->curchan)) {
260 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
261 numBits = OFDM_PLCP_BITS + (frameLen << 3);
262 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
263 txTime = OFDM_SIFS_TIME_HALF +
264 OFDM_PREAMBLE_TIME_HALF
265 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
266 } else {
267 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
268 numBits = OFDM_PLCP_BITS + (frameLen << 3);
269 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
270 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
271 + (numSymbols * OFDM_SYMBOL_TIME);
272 }
273 break;
274 default:
275 ath_err(ath9k_hw_common(ah),
276 "Unknown phy %u (rate ix %u)\n", phy, rateix);
277 txTime = 0;
278 break;
279 }
280
281 return txTime;
282 }
283 EXPORT_SYMBOL(ath9k_hw_computetxtime);
284
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)285 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
286 struct ath9k_channel *chan,
287 struct chan_centers *centers)
288 {
289 int8_t extoff;
290
291 if (!IS_CHAN_HT40(chan)) {
292 centers->ctl_center = centers->ext_center =
293 centers->synth_center = chan->channel;
294 return;
295 }
296
297 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
298 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
299 centers->synth_center =
300 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
301 extoff = 1;
302 } else {
303 centers->synth_center =
304 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
305 extoff = -1;
306 }
307
308 centers->ctl_center =
309 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
310 /* 25 MHz spacing is supported by hw but not on upper layers */
311 centers->ext_center =
312 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
313 }
314
315 /******************/
316 /* Chip Revisions */
317 /******************/
318
ath9k_hw_read_revisions(struct ath_hw * ah)319 static void ath9k_hw_read_revisions(struct ath_hw *ah)
320 {
321 u32 val;
322
323 switch (ah->hw_version.devid) {
324 case AR5416_AR9100_DEVID:
325 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
326 break;
327 case AR9300_DEVID_AR9330:
328 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
329 if (ah->get_mac_revision) {
330 ah->hw_version.macRev = ah->get_mac_revision();
331 } else {
332 val = REG_READ(ah, AR_SREV);
333 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
334 }
335 return;
336 case AR9300_DEVID_AR9340:
337 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
338 val = REG_READ(ah, AR_SREV);
339 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
340 return;
341 case AR9300_DEVID_QCA955X:
342 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
343 return;
344 }
345
346 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
347
348 if (val == 0xFF) {
349 val = REG_READ(ah, AR_SREV);
350 ah->hw_version.macVersion =
351 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
352 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
353
354 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
355 ah->is_pciexpress = true;
356 else
357 ah->is_pciexpress = (val &
358 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
359 } else {
360 if (!AR_SREV_9100(ah))
361 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
362
363 ah->hw_version.macRev = val & AR_SREV_REVISION;
364
365 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
366 ah->is_pciexpress = true;
367 }
368 }
369
370 /************************************/
371 /* HW Attach, Detach, Init Routines */
372 /************************************/
373
ath9k_hw_disablepcie(struct ath_hw * ah)374 static void ath9k_hw_disablepcie(struct ath_hw *ah)
375 {
376 if (!AR_SREV_5416(ah))
377 return;
378
379 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
380 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
381 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
382 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
383 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
384 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
385 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
386 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
387 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
388
389 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
390 }
391
392 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)393 static bool ath9k_hw_chip_test(struct ath_hw *ah)
394 {
395 struct ath_common *common = ath9k_hw_common(ah);
396 u32 regAddr[2] = { AR_STA_ID0 };
397 u32 regHold[2];
398 static const u32 patternData[4] = {
399 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
400 };
401 int i, j, loop_max;
402
403 if (!AR_SREV_9300_20_OR_LATER(ah)) {
404 loop_max = 2;
405 regAddr[1] = AR_PHY_BASE + (8 << 2);
406 } else
407 loop_max = 1;
408
409 for (i = 0; i < loop_max; i++) {
410 u32 addr = regAddr[i];
411 u32 wrData, rdData;
412
413 regHold[i] = REG_READ(ah, addr);
414 for (j = 0; j < 0x100; j++) {
415 wrData = (j << 16) | j;
416 REG_WRITE(ah, addr, wrData);
417 rdData = REG_READ(ah, addr);
418 if (rdData != wrData) {
419 ath_err(common,
420 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
421 addr, wrData, rdData);
422 return false;
423 }
424 }
425 for (j = 0; j < 4; j++) {
426 wrData = patternData[j];
427 REG_WRITE(ah, addr, wrData);
428 rdData = REG_READ(ah, addr);
429 if (wrData != rdData) {
430 ath_err(common,
431 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
432 addr, wrData, rdData);
433 return false;
434 }
435 }
436 REG_WRITE(ah, regAddr[i], regHold[i]);
437 }
438 udelay(100);
439
440 return true;
441 }
442
ath9k_hw_init_config(struct ath_hw * ah)443 static void ath9k_hw_init_config(struct ath_hw *ah)
444 {
445 int i;
446
447 ah->config.dma_beacon_response_time = 1;
448 ah->config.sw_beacon_response_time = 6;
449 ah->config.additional_swba_backoff = 0;
450 ah->config.ack_6mb = 0x0;
451 ah->config.cwm_ignore_extcca = 0;
452 ah->config.pcie_clock_req = 0;
453 ah->config.pcie_waen = 0;
454 ah->config.analog_shiftreg = 1;
455 ah->config.enable_ani = true;
456
457 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
458 ah->config.spurchans[i][0] = AR_NO_SPUR;
459 ah->config.spurchans[i][1] = AR_NO_SPUR;
460 }
461
462 ah->config.rx_intr_mitigation = true;
463 ah->config.pcieSerDesWrite = true;
464
465 /*
466 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
467 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
468 * This means we use it for all AR5416 devices, and the few
469 * minor PCI AR9280 devices out there.
470 *
471 * Serialization is required because these devices do not handle
472 * well the case of two concurrent reads/writes due to the latency
473 * involved. During one read/write another read/write can be issued
474 * on another CPU while the previous read/write may still be working
475 * on our hardware, if we hit this case the hardware poops in a loop.
476 * We prevent this by serializing reads and writes.
477 *
478 * This issue is not present on PCI-Express devices or pre-AR5416
479 * devices (legacy, 802.11abg).
480 */
481 if (num_possible_cpus() > 1)
482 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
483 }
484
ath9k_hw_init_defaults(struct ath_hw * ah)485 static void ath9k_hw_init_defaults(struct ath_hw *ah)
486 {
487 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
488
489 regulatory->country_code = CTRY_DEFAULT;
490 regulatory->power_limit = MAX_RATE_POWER;
491
492 ah->hw_version.magic = AR5416_MAGIC;
493 ah->hw_version.subvendorid = 0;
494
495 ah->atim_window = 0;
496 ah->sta_id1_defaults =
497 AR_STA_ID1_CRPT_MIC_ENABLE |
498 AR_STA_ID1_MCAST_KSRCH;
499 if (AR_SREV_9100(ah))
500 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
501 ah->slottime = ATH9K_SLOT_TIME_9;
502 ah->globaltxtimeout = (u32) -1;
503 ah->power_mode = ATH9K_PM_UNDEFINED;
504 ah->htc_reset_init = true;
505 }
506
ath9k_hw_init_macaddr(struct ath_hw * ah)507 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
508 {
509 struct ath_common *common = ath9k_hw_common(ah);
510 u32 sum;
511 int i;
512 u16 eeval;
513 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
514
515 sum = 0;
516 for (i = 0; i < 3; i++) {
517 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
518 sum += eeval;
519 common->macaddr[2 * i] = eeval >> 8;
520 common->macaddr[2 * i + 1] = eeval & 0xff;
521 }
522 if (sum == 0 || sum == 0xffff * 3)
523 return -EADDRNOTAVAIL;
524
525 return 0;
526 }
527
ath9k_hw_post_init(struct ath_hw * ah)528 static int ath9k_hw_post_init(struct ath_hw *ah)
529 {
530 struct ath_common *common = ath9k_hw_common(ah);
531 int ecode;
532
533 if (common->bus_ops->ath_bus_type != ATH_USB) {
534 if (!ath9k_hw_chip_test(ah))
535 return -ENODEV;
536 }
537
538 if (!AR_SREV_9300_20_OR_LATER(ah)) {
539 ecode = ar9002_hw_rf_claim(ah);
540 if (ecode != 0)
541 return ecode;
542 }
543
544 ecode = ath9k_hw_eeprom_init(ah);
545 if (ecode != 0)
546 return ecode;
547
548 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
549 ah->eep_ops->get_eeprom_ver(ah),
550 ah->eep_ops->get_eeprom_rev(ah));
551
552 if (ah->config.enable_ani)
553 ath9k_hw_ani_init(ah);
554
555 return 0;
556 }
557
ath9k_hw_attach_ops(struct ath_hw * ah)558 static int ath9k_hw_attach_ops(struct ath_hw *ah)
559 {
560 if (!AR_SREV_9300_20_OR_LATER(ah))
561 return ar9002_hw_attach_ops(ah);
562
563 ar9003_hw_attach_ops(ah);
564 return 0;
565 }
566
567 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)568 static int __ath9k_hw_init(struct ath_hw *ah)
569 {
570 struct ath_common *common = ath9k_hw_common(ah);
571 int r = 0;
572
573 ath9k_hw_read_revisions(ah);
574
575 /*
576 * Read back AR_WA into a permanent copy and set bits 14 and 17.
577 * We need to do this to avoid RMW of this register. We cannot
578 * read the reg when chip is asleep.
579 */
580 ah->WARegVal = REG_READ(ah, AR_WA);
581 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
582 AR_WA_ASPM_TIMER_BASED_DISABLE);
583
584 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
585 ath_err(common, "Couldn't reset chip\n");
586 return -EIO;
587 }
588
589 if (AR_SREV_9462(ah))
590 ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
591
592 if (AR_SREV_9565(ah)) {
593 ah->WARegVal |= AR_WA_BIT22;
594 REG_WRITE(ah, AR_WA, ah->WARegVal);
595 }
596
597 ath9k_hw_init_defaults(ah);
598 ath9k_hw_init_config(ah);
599
600 r = ath9k_hw_attach_ops(ah);
601 if (r)
602 return r;
603
604 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
605 ath_err(common, "Couldn't wakeup chip\n");
606 return -EIO;
607 }
608
609 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
610 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
611 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
612 !ah->is_pciexpress)) {
613 ah->config.serialize_regmode =
614 SER_REG_MODE_ON;
615 } else {
616 ah->config.serialize_regmode =
617 SER_REG_MODE_OFF;
618 }
619 }
620
621 ath_dbg(common, RESET, "serialize_regmode is %d\n",
622 ah->config.serialize_regmode);
623
624 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
625 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
626 else
627 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
628
629 switch (ah->hw_version.macVersion) {
630 case AR_SREV_VERSION_5416_PCI:
631 case AR_SREV_VERSION_5416_PCIE:
632 case AR_SREV_VERSION_9160:
633 case AR_SREV_VERSION_9100:
634 case AR_SREV_VERSION_9280:
635 case AR_SREV_VERSION_9285:
636 case AR_SREV_VERSION_9287:
637 case AR_SREV_VERSION_9271:
638 case AR_SREV_VERSION_9300:
639 case AR_SREV_VERSION_9330:
640 case AR_SREV_VERSION_9485:
641 case AR_SREV_VERSION_9340:
642 case AR_SREV_VERSION_9462:
643 case AR_SREV_VERSION_9550:
644 case AR_SREV_VERSION_9565:
645 break;
646 default:
647 ath_err(common,
648 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
649 ah->hw_version.macVersion, ah->hw_version.macRev);
650 return -EOPNOTSUPP;
651 }
652
653 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
654 AR_SREV_9330(ah) || AR_SREV_9550(ah))
655 ah->is_pciexpress = false;
656
657 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
658 ath9k_hw_init_cal_settings(ah);
659
660 ah->ani_function = ATH9K_ANI_ALL;
661 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
662 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
663 if (!AR_SREV_9300_20_OR_LATER(ah))
664 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
665
666 if (!ah->is_pciexpress)
667 ath9k_hw_disablepcie(ah);
668
669 r = ath9k_hw_post_init(ah);
670 if (r)
671 return r;
672
673 ath9k_hw_init_mode_gain_regs(ah);
674 r = ath9k_hw_fill_cap_info(ah);
675 if (r)
676 return r;
677
678 r = ath9k_hw_init_macaddr(ah);
679 if (r) {
680 ath_err(common, "Failed to initialize MAC address\n");
681 return r;
682 }
683
684 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
685 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
686 else
687 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
688
689 if (AR_SREV_9330(ah))
690 ah->bb_watchdog_timeout_ms = 85;
691 else
692 ah->bb_watchdog_timeout_ms = 25;
693
694 common->state = ATH_HW_INITIALIZED;
695
696 return 0;
697 }
698
ath9k_hw_init(struct ath_hw * ah)699 int ath9k_hw_init(struct ath_hw *ah)
700 {
701 int ret;
702 struct ath_common *common = ath9k_hw_common(ah);
703
704 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
705 switch (ah->hw_version.devid) {
706 case AR5416_DEVID_PCI:
707 case AR5416_DEVID_PCIE:
708 case AR5416_AR9100_DEVID:
709 case AR9160_DEVID_PCI:
710 case AR9280_DEVID_PCI:
711 case AR9280_DEVID_PCIE:
712 case AR9285_DEVID_PCIE:
713 case AR9287_DEVID_PCI:
714 case AR9287_DEVID_PCIE:
715 case AR2427_DEVID_PCIE:
716 case AR9300_DEVID_PCIE:
717 case AR9300_DEVID_AR9485_PCIE:
718 case AR9300_DEVID_AR9330:
719 case AR9300_DEVID_AR9340:
720 case AR9300_DEVID_QCA955X:
721 case AR9300_DEVID_AR9580:
722 case AR9300_DEVID_AR9462:
723 case AR9485_DEVID_AR1111:
724 case AR9300_DEVID_AR9565:
725 break;
726 default:
727 if (common->bus_ops->ath_bus_type == ATH_USB)
728 break;
729 ath_err(common, "Hardware device ID 0x%04x not supported\n",
730 ah->hw_version.devid);
731 return -EOPNOTSUPP;
732 }
733
734 ret = __ath9k_hw_init(ah);
735 if (ret) {
736 ath_err(common,
737 "Unable to initialize hardware; initialization status: %d\n",
738 ret);
739 return ret;
740 }
741
742 return 0;
743 }
744 EXPORT_SYMBOL(ath9k_hw_init);
745
ath9k_hw_init_qos(struct ath_hw * ah)746 static void ath9k_hw_init_qos(struct ath_hw *ah)
747 {
748 ENABLE_REGWRITE_BUFFER(ah);
749
750 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
751 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
752
753 REG_WRITE(ah, AR_QOS_NO_ACK,
754 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
755 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
756 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
757
758 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
759 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
760 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
761 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
762 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
763
764 REGWRITE_BUFFER_FLUSH(ah);
765 }
766
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)767 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
768 {
769 struct ath_common *common = ath9k_hw_common(ah);
770 int i = 0;
771
772 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
773 udelay(100);
774 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
775
776 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
777
778 udelay(100);
779
780 if (WARN_ON_ONCE(i >= 100)) {
781 ath_err(common, "PLL4 meaurement not done\n");
782 break;
783 }
784
785 i++;
786 }
787
788 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
789 }
790 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
791
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)792 static void ath9k_hw_init_pll(struct ath_hw *ah,
793 struct ath9k_channel *chan)
794 {
795 u32 pll;
796
797 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
798 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
799 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
800 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
801 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
802 AR_CH0_DPLL2_KD, 0x40);
803 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
804 AR_CH0_DPLL2_KI, 0x4);
805
806 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
807 AR_CH0_BB_DPLL1_REFDIV, 0x5);
808 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
809 AR_CH0_BB_DPLL1_NINI, 0x58);
810 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
811 AR_CH0_BB_DPLL1_NFRAC, 0x0);
812
813 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
814 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
815 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
816 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
817 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
818 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
819
820 /* program BB PLL phase_shift to 0x6 */
821 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
822 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
823
824 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
825 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
826 udelay(1000);
827 } else if (AR_SREV_9330(ah)) {
828 u32 ddr_dpll2, pll_control2, kd;
829
830 if (ah->is_clk_25mhz) {
831 ddr_dpll2 = 0x18e82f01;
832 pll_control2 = 0xe04a3d;
833 kd = 0x1d;
834 } else {
835 ddr_dpll2 = 0x19e82f01;
836 pll_control2 = 0x886666;
837 kd = 0x3d;
838 }
839
840 /* program DDR PLL ki and kd value */
841 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
842
843 /* program DDR PLL phase_shift */
844 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
845 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
846
847 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
848 udelay(1000);
849
850 /* program refdiv, nint, frac to RTC register */
851 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
852
853 /* program BB PLL kd and ki value */
854 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
855 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
856
857 /* program BB PLL phase_shift */
858 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
859 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
860 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
861 u32 regval, pll2_divint, pll2_divfrac, refdiv;
862
863 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
864 udelay(1000);
865
866 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
867 udelay(100);
868
869 if (ah->is_clk_25mhz) {
870 pll2_divint = 0x54;
871 pll2_divfrac = 0x1eb85;
872 refdiv = 3;
873 } else {
874 if (AR_SREV_9340(ah)) {
875 pll2_divint = 88;
876 pll2_divfrac = 0;
877 refdiv = 5;
878 } else {
879 pll2_divint = 0x11;
880 pll2_divfrac = 0x26666;
881 refdiv = 1;
882 }
883 }
884
885 regval = REG_READ(ah, AR_PHY_PLL_MODE);
886 regval |= (0x1 << 16);
887 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
888 udelay(100);
889
890 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
891 (pll2_divint << 18) | pll2_divfrac);
892 udelay(100);
893
894 regval = REG_READ(ah, AR_PHY_PLL_MODE);
895 if (AR_SREV_9340(ah))
896 regval = (regval & 0x80071fff) | (0x1 << 30) |
897 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
898 else
899 regval = (regval & 0x80071fff) | (0x3 << 30) |
900 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
901 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
902 REG_WRITE(ah, AR_PHY_PLL_MODE,
903 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
904 udelay(1000);
905 }
906
907 pll = ath9k_hw_compute_pll_control(ah, chan);
908 if (AR_SREV_9565(ah))
909 pll |= 0x40000;
910 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
911
912 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
913 AR_SREV_9550(ah))
914 udelay(1000);
915
916 /* Switch the core clock for ar9271 to 117Mhz */
917 if (AR_SREV_9271(ah)) {
918 udelay(500);
919 REG_WRITE(ah, 0x50040, 0x304);
920 }
921
922 udelay(RTC_PLL_SETTLE_DELAY);
923
924 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
925
926 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
927 if (ah->is_clk_25mhz) {
928 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
929 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
930 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
931 } else {
932 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
933 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
934 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
935 }
936 udelay(100);
937 }
938 }
939
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)940 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
941 enum nl80211_iftype opmode)
942 {
943 u32 sync_default = AR_INTR_SYNC_DEFAULT;
944 u32 imr_reg = AR_IMR_TXERR |
945 AR_IMR_TXURN |
946 AR_IMR_RXERR |
947 AR_IMR_RXORN |
948 AR_IMR_BCNMISC;
949
950 if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
951 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
952
953 if (AR_SREV_9300_20_OR_LATER(ah)) {
954 imr_reg |= AR_IMR_RXOK_HP;
955 if (ah->config.rx_intr_mitigation)
956 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
957 else
958 imr_reg |= AR_IMR_RXOK_LP;
959
960 } else {
961 if (ah->config.rx_intr_mitigation)
962 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
963 else
964 imr_reg |= AR_IMR_RXOK;
965 }
966
967 if (ah->config.tx_intr_mitigation)
968 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
969 else
970 imr_reg |= AR_IMR_TXOK;
971
972 ENABLE_REGWRITE_BUFFER(ah);
973
974 REG_WRITE(ah, AR_IMR, imr_reg);
975 ah->imrs2_reg |= AR_IMR_S2_GTT;
976 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
977
978 if (!AR_SREV_9100(ah)) {
979 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
980 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
981 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
982 }
983
984 REGWRITE_BUFFER_FLUSH(ah);
985
986 if (AR_SREV_9300_20_OR_LATER(ah)) {
987 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
988 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
989 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
990 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
991 }
992 }
993
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)994 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
995 {
996 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
997 val = min(val, (u32) 0xFFFF);
998 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
999 }
1000
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)1001 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1002 {
1003 u32 val = ath9k_hw_mac_to_clks(ah, us);
1004 val = min(val, (u32) 0xFFFF);
1005 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1006 }
1007
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)1008 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1009 {
1010 u32 val = ath9k_hw_mac_to_clks(ah, us);
1011 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1012 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1013 }
1014
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)1015 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1016 {
1017 u32 val = ath9k_hw_mac_to_clks(ah, us);
1018 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1019 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1020 }
1021
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)1022 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1023 {
1024 if (tu > 0xFFFF) {
1025 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1026 tu);
1027 ah->globaltxtimeout = (u32) -1;
1028 return false;
1029 } else {
1030 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1031 ah->globaltxtimeout = tu;
1032 return true;
1033 }
1034 }
1035
ath9k_hw_init_global_settings(struct ath_hw * ah)1036 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1037 {
1038 struct ath_common *common = ath9k_hw_common(ah);
1039 struct ieee80211_conf *conf = &common->hw->conf;
1040 const struct ath9k_channel *chan = ah->curchan;
1041 int acktimeout, ctstimeout, ack_offset = 0;
1042 int slottime;
1043 int sifstime;
1044 int rx_lat = 0, tx_lat = 0, eifs = 0;
1045 u32 reg;
1046
1047 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1048 ah->misc_mode);
1049
1050 if (!chan)
1051 return;
1052
1053 if (ah->misc_mode != 0)
1054 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1055
1056 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1057 rx_lat = 41;
1058 else
1059 rx_lat = 37;
1060 tx_lat = 54;
1061
1062 if (IS_CHAN_5GHZ(chan))
1063 sifstime = 16;
1064 else
1065 sifstime = 10;
1066
1067 if (IS_CHAN_HALF_RATE(chan)) {
1068 eifs = 175;
1069 rx_lat *= 2;
1070 tx_lat *= 2;
1071 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1072 tx_lat += 11;
1073
1074 sifstime *= 2;
1075 ack_offset = 16;
1076 slottime = 13;
1077 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1078 eifs = 340;
1079 rx_lat = (rx_lat * 4) - 1;
1080 tx_lat *= 4;
1081 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082 tx_lat += 22;
1083
1084 sifstime *= 4;
1085 ack_offset = 32;
1086 slottime = 21;
1087 } else {
1088 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1089 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1090 reg = AR_USEC_ASYNC_FIFO;
1091 } else {
1092 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1093 common->clockrate;
1094 reg = REG_READ(ah, AR_USEC);
1095 }
1096 rx_lat = MS(reg, AR_USEC_RX_LAT);
1097 tx_lat = MS(reg, AR_USEC_TX_LAT);
1098
1099 slottime = ah->slottime;
1100 }
1101
1102 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1103 slottime += 3 * ah->coverage_class;
1104 acktimeout = slottime + sifstime + ack_offset;
1105 ctstimeout = acktimeout;
1106
1107 /*
1108 * Workaround for early ACK timeouts, add an offset to match the
1109 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1110 * This was initially only meant to work around an issue with delayed
1111 * BA frames in some implementations, but it has been found to fix ACK
1112 * timeout issues in other cases as well.
1113 */
1114 if (conf->chandef.chan &&
1115 conf->chandef.chan->band == IEEE80211_BAND_2GHZ &&
1116 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1117 acktimeout += 64 - sifstime - ah->slottime;
1118 ctstimeout += 48 - sifstime - ah->slottime;
1119 }
1120
1121
1122 ath9k_hw_set_sifs_time(ah, sifstime);
1123 ath9k_hw_setslottime(ah, slottime);
1124 ath9k_hw_set_ack_timeout(ah, acktimeout);
1125 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1126 if (ah->globaltxtimeout != (u32) -1)
1127 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1128
1129 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1130 REG_RMW(ah, AR_USEC,
1131 (common->clockrate - 1) |
1132 SM(rx_lat, AR_USEC_RX_LAT) |
1133 SM(tx_lat, AR_USEC_TX_LAT),
1134 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1135
1136 }
1137 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1138
ath9k_hw_deinit(struct ath_hw * ah)1139 void ath9k_hw_deinit(struct ath_hw *ah)
1140 {
1141 struct ath_common *common = ath9k_hw_common(ah);
1142
1143 if (common->state < ATH_HW_INITIALIZED)
1144 return;
1145
1146 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1147 }
1148 EXPORT_SYMBOL(ath9k_hw_deinit);
1149
1150 /*******/
1151 /* INI */
1152 /*******/
1153
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1154 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1155 {
1156 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1157
1158 if (IS_CHAN_B(chan))
1159 ctl |= CTL_11B;
1160 else if (IS_CHAN_G(chan))
1161 ctl |= CTL_11G;
1162 else
1163 ctl |= CTL_11A;
1164
1165 return ctl;
1166 }
1167
1168 /****************************************/
1169 /* Reset and Channel Switching Routines */
1170 /****************************************/
1171
ath9k_hw_set_dma(struct ath_hw * ah)1172 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1173 {
1174 struct ath_common *common = ath9k_hw_common(ah);
1175 int txbuf_size;
1176
1177 ENABLE_REGWRITE_BUFFER(ah);
1178
1179 /*
1180 * set AHB_MODE not to do cacheline prefetches
1181 */
1182 if (!AR_SREV_9300_20_OR_LATER(ah))
1183 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1184
1185 /*
1186 * let mac dma reads be in 128 byte chunks
1187 */
1188 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1189
1190 REGWRITE_BUFFER_FLUSH(ah);
1191
1192 /*
1193 * Restore TX Trigger Level to its pre-reset value.
1194 * The initial value depends on whether aggregation is enabled, and is
1195 * adjusted whenever underruns are detected.
1196 */
1197 if (!AR_SREV_9300_20_OR_LATER(ah))
1198 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1199
1200 ENABLE_REGWRITE_BUFFER(ah);
1201
1202 /*
1203 * let mac dma writes be in 128 byte chunks
1204 */
1205 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1206
1207 /*
1208 * Setup receive FIFO threshold to hold off TX activities
1209 */
1210 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1211
1212 if (AR_SREV_9300_20_OR_LATER(ah)) {
1213 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1214 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1215
1216 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1217 ah->caps.rx_status_len);
1218 }
1219
1220 /*
1221 * reduce the number of usable entries in PCU TXBUF to avoid
1222 * wrap around issues.
1223 */
1224 if (AR_SREV_9285(ah)) {
1225 /* For AR9285 the number of Fifos are reduced to half.
1226 * So set the usable tx buf size also to half to
1227 * avoid data/delimiter underruns
1228 */
1229 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1230 } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1231 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1232 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1233 } else {
1234 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1235 }
1236
1237 if (!AR_SREV_9271(ah))
1238 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1239
1240 REGWRITE_BUFFER_FLUSH(ah);
1241
1242 if (AR_SREV_9300_20_OR_LATER(ah))
1243 ath9k_hw_reset_txstatus_ring(ah);
1244 }
1245
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1246 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1247 {
1248 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1249 u32 set = AR_STA_ID1_KSRCH_MODE;
1250
1251 switch (opmode) {
1252 case NL80211_IFTYPE_ADHOC:
1253 case NL80211_IFTYPE_MESH_POINT:
1254 set |= AR_STA_ID1_ADHOC;
1255 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1256 break;
1257 case NL80211_IFTYPE_AP:
1258 set |= AR_STA_ID1_STA_AP;
1259 /* fall through */
1260 case NL80211_IFTYPE_STATION:
1261 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1262 break;
1263 default:
1264 if (!ah->is_monitoring)
1265 set = 0;
1266 break;
1267 }
1268 REG_RMW(ah, AR_STA_ID1, set, mask);
1269 }
1270
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1271 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1272 u32 *coef_mantissa, u32 *coef_exponent)
1273 {
1274 u32 coef_exp, coef_man;
1275
1276 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1277 if ((coef_scaled >> coef_exp) & 0x1)
1278 break;
1279
1280 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1281
1282 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1283
1284 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1285 *coef_exponent = coef_exp - 16;
1286 }
1287
ath9k_hw_set_reset(struct ath_hw * ah,int type)1288 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1289 {
1290 u32 rst_flags;
1291 u32 tmpReg;
1292
1293 if (AR_SREV_9100(ah)) {
1294 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1295 AR_RTC_DERIVED_CLK_PERIOD, 1);
1296 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1297 }
1298
1299 ENABLE_REGWRITE_BUFFER(ah);
1300
1301 if (AR_SREV_9300_20_OR_LATER(ah)) {
1302 REG_WRITE(ah, AR_WA, ah->WARegVal);
1303 udelay(10);
1304 }
1305
1306 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1307 AR_RTC_FORCE_WAKE_ON_INT);
1308
1309 if (AR_SREV_9100(ah)) {
1310 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1311 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1312 } else {
1313 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1314 if (AR_SREV_9340(ah))
1315 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1316 else
1317 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1318 AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1319
1320 if (tmpReg) {
1321 u32 val;
1322 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1323
1324 val = AR_RC_HOSTIF;
1325 if (!AR_SREV_9300_20_OR_LATER(ah))
1326 val |= AR_RC_AHB;
1327 REG_WRITE(ah, AR_RC, val);
1328
1329 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1330 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1331
1332 rst_flags = AR_RTC_RC_MAC_WARM;
1333 if (type == ATH9K_RESET_COLD)
1334 rst_flags |= AR_RTC_RC_MAC_COLD;
1335 }
1336
1337 if (AR_SREV_9330(ah)) {
1338 int npend = 0;
1339 int i;
1340
1341 /* AR9330 WAR:
1342 * call external reset function to reset WMAC if:
1343 * - doing a cold reset
1344 * - we have pending frames in the TX queues
1345 */
1346
1347 for (i = 0; i < AR_NUM_QCU; i++) {
1348 npend = ath9k_hw_numtxpending(ah, i);
1349 if (npend)
1350 break;
1351 }
1352
1353 if (ah->external_reset &&
1354 (npend || type == ATH9K_RESET_COLD)) {
1355 int reset_err = 0;
1356
1357 ath_dbg(ath9k_hw_common(ah), RESET,
1358 "reset MAC via external reset\n");
1359
1360 reset_err = ah->external_reset();
1361 if (reset_err) {
1362 ath_err(ath9k_hw_common(ah),
1363 "External reset failed, err=%d\n",
1364 reset_err);
1365 return false;
1366 }
1367
1368 REG_WRITE(ah, AR_RTC_RESET, 1);
1369 }
1370 }
1371
1372 if (ath9k_hw_mci_is_enabled(ah))
1373 ar9003_mci_check_gpm_offset(ah);
1374
1375 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1376
1377 REGWRITE_BUFFER_FLUSH(ah);
1378
1379 udelay(50);
1380
1381 REG_WRITE(ah, AR_RTC_RC, 0);
1382 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1383 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1384 return false;
1385 }
1386
1387 if (!AR_SREV_9100(ah))
1388 REG_WRITE(ah, AR_RC, 0);
1389
1390 if (AR_SREV_9100(ah))
1391 udelay(50);
1392
1393 return true;
1394 }
1395
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1396 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1397 {
1398 ENABLE_REGWRITE_BUFFER(ah);
1399
1400 if (AR_SREV_9300_20_OR_LATER(ah)) {
1401 REG_WRITE(ah, AR_WA, ah->WARegVal);
1402 udelay(10);
1403 }
1404
1405 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1406 AR_RTC_FORCE_WAKE_ON_INT);
1407
1408 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1409 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1410
1411 REG_WRITE(ah, AR_RTC_RESET, 0);
1412
1413 REGWRITE_BUFFER_FLUSH(ah);
1414
1415 if (!AR_SREV_9300_20_OR_LATER(ah))
1416 udelay(2);
1417
1418 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1419 REG_WRITE(ah, AR_RC, 0);
1420
1421 REG_WRITE(ah, AR_RTC_RESET, 1);
1422
1423 if (!ath9k_hw_wait(ah,
1424 AR_RTC_STATUS,
1425 AR_RTC_STATUS_M,
1426 AR_RTC_STATUS_ON,
1427 AH_WAIT_TIMEOUT)) {
1428 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1429 return false;
1430 }
1431
1432 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1433 }
1434
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1435 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1436 {
1437 bool ret = false;
1438
1439 if (AR_SREV_9300_20_OR_LATER(ah)) {
1440 REG_WRITE(ah, AR_WA, ah->WARegVal);
1441 udelay(10);
1442 }
1443
1444 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1445 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1446
1447 if (!ah->reset_power_on)
1448 type = ATH9K_RESET_POWER_ON;
1449
1450 switch (type) {
1451 case ATH9K_RESET_POWER_ON:
1452 ret = ath9k_hw_set_reset_power_on(ah);
1453 if (ret)
1454 ah->reset_power_on = true;
1455 break;
1456 case ATH9K_RESET_WARM:
1457 case ATH9K_RESET_COLD:
1458 ret = ath9k_hw_set_reset(ah, type);
1459 break;
1460 default:
1461 break;
1462 }
1463
1464 return ret;
1465 }
1466
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1467 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1468 struct ath9k_channel *chan)
1469 {
1470 int reset_type = ATH9K_RESET_WARM;
1471
1472 if (AR_SREV_9280(ah)) {
1473 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1474 reset_type = ATH9K_RESET_POWER_ON;
1475 else
1476 reset_type = ATH9K_RESET_COLD;
1477 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1478 (REG_READ(ah, AR_CR) & AR_CR_RXE))
1479 reset_type = ATH9K_RESET_COLD;
1480
1481 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1482 return false;
1483
1484 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1485 return false;
1486
1487 ah->chip_fullsleep = false;
1488
1489 if (AR_SREV_9330(ah))
1490 ar9003_hw_internal_regulator_apply(ah);
1491 ath9k_hw_init_pll(ah, chan);
1492 ath9k_hw_set_rfmode(ah, chan);
1493
1494 return true;
1495 }
1496
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1497 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1498 struct ath9k_channel *chan)
1499 {
1500 struct ath_common *common = ath9k_hw_common(ah);
1501 u32 qnum;
1502 int r;
1503 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1504 bool band_switch, mode_diff;
1505 u8 ini_reloaded;
1506
1507 band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1508 (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1509 CHANNEL_5GHZ));
1510 mode_diff = (chan->chanmode != ah->curchan->chanmode);
1511
1512 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1513 if (ath9k_hw_numtxpending(ah, qnum)) {
1514 ath_dbg(common, QUEUE,
1515 "Transmit frames pending on queue %d\n", qnum);
1516 return false;
1517 }
1518 }
1519
1520 if (!ath9k_hw_rfbus_req(ah)) {
1521 ath_err(common, "Could not kill baseband RX\n");
1522 return false;
1523 }
1524
1525 if (edma && (band_switch || mode_diff)) {
1526 ath9k_hw_mark_phy_inactive(ah);
1527 udelay(5);
1528
1529 ath9k_hw_init_pll(ah, NULL);
1530
1531 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1532 ath_err(common, "Failed to do fast channel change\n");
1533 return false;
1534 }
1535 }
1536
1537 ath9k_hw_set_channel_regs(ah, chan);
1538
1539 r = ath9k_hw_rf_set_freq(ah, chan);
1540 if (r) {
1541 ath_err(common, "Failed to set channel\n");
1542 return false;
1543 }
1544 ath9k_hw_set_clockrate(ah);
1545 ath9k_hw_apply_txpower(ah, chan, false);
1546 ath9k_hw_rfbus_done(ah);
1547
1548 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1549 ath9k_hw_set_delta_slope(ah, chan);
1550
1551 ath9k_hw_spur_mitigate_freq(ah, chan);
1552
1553 if (edma && (band_switch || mode_diff)) {
1554 ah->ah_flags |= AH_FASTCC;
1555 if (band_switch || ini_reloaded)
1556 ah->eep_ops->set_board_values(ah, chan);
1557
1558 ath9k_hw_init_bb(ah, chan);
1559
1560 if (band_switch || ini_reloaded)
1561 ath9k_hw_init_cal(ah, chan);
1562 ah->ah_flags &= ~AH_FASTCC;
1563 }
1564
1565 return true;
1566 }
1567
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1568 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1569 {
1570 u32 gpio_mask = ah->gpio_mask;
1571 int i;
1572
1573 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1574 if (!(gpio_mask & 1))
1575 continue;
1576
1577 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1578 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1579 }
1580 }
1581
ath9k_hw_check_dcs(u32 dma_dbg,u32 num_dcu_states,int * hang_state,int * hang_pos)1582 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1583 int *hang_state, int *hang_pos)
1584 {
1585 static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1586 u32 chain_state, dcs_pos, i;
1587
1588 for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1589 chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1590 for (i = 0; i < 3; i++) {
1591 if (chain_state == dcu_chain_state[i]) {
1592 *hang_state = chain_state;
1593 *hang_pos = dcs_pos;
1594 return true;
1595 }
1596 }
1597 }
1598 return false;
1599 }
1600
1601 #define DCU_COMPLETE_STATE 1
1602 #define DCU_COMPLETE_STATE_MASK 0x3
1603 #define NUM_STATUS_READS 50
ath9k_hw_detect_mac_hang(struct ath_hw * ah)1604 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1605 {
1606 u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1607 u32 i, hang_pos, hang_state, num_state = 6;
1608
1609 comp_state = REG_READ(ah, AR_DMADBG_6);
1610
1611 if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1612 ath_dbg(ath9k_hw_common(ah), RESET,
1613 "MAC Hang signature not found at DCU complete\n");
1614 return false;
1615 }
1616
1617 chain_state = REG_READ(ah, dcs_reg);
1618 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1619 goto hang_check_iter;
1620
1621 dcs_reg = AR_DMADBG_5;
1622 num_state = 4;
1623 chain_state = REG_READ(ah, dcs_reg);
1624 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1625 goto hang_check_iter;
1626
1627 ath_dbg(ath9k_hw_common(ah), RESET,
1628 "MAC Hang signature 1 not found\n");
1629 return false;
1630
1631 hang_check_iter:
1632 ath_dbg(ath9k_hw_common(ah), RESET,
1633 "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1634 chain_state, comp_state, hang_state, hang_pos);
1635
1636 for (i = 0; i < NUM_STATUS_READS; i++) {
1637 chain_state = REG_READ(ah, dcs_reg);
1638 chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1639 comp_state = REG_READ(ah, AR_DMADBG_6);
1640
1641 if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1642 DCU_COMPLETE_STATE) ||
1643 (chain_state != hang_state))
1644 return false;
1645 }
1646
1647 ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1648
1649 return true;
1650 }
1651
ath9k_hw_check_alive(struct ath_hw * ah)1652 bool ath9k_hw_check_alive(struct ath_hw *ah)
1653 {
1654 int count = 50;
1655 u32 reg;
1656
1657 if (AR_SREV_9300(ah))
1658 return !ath9k_hw_detect_mac_hang(ah);
1659
1660 if (AR_SREV_9285_12_OR_LATER(ah))
1661 return true;
1662
1663 do {
1664 reg = REG_READ(ah, AR_OBS_BUS_1);
1665
1666 if ((reg & 0x7E7FFFEF) == 0x00702400)
1667 continue;
1668
1669 switch (reg & 0x7E000B00) {
1670 case 0x1E000000:
1671 case 0x52000B00:
1672 case 0x18000B00:
1673 continue;
1674 default:
1675 return true;
1676 }
1677 } while (count-- > 0);
1678
1679 return false;
1680 }
1681 EXPORT_SYMBOL(ath9k_hw_check_alive);
1682
ath9k_hw_init_mfp(struct ath_hw * ah)1683 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1684 {
1685 /* Setup MFP options for CCMP */
1686 if (AR_SREV_9280_20_OR_LATER(ah)) {
1687 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1688 * frames when constructing CCMP AAD. */
1689 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1690 0xc7ff);
1691 ah->sw_mgmt_crypto = false;
1692 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1693 /* Disable hardware crypto for management frames */
1694 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1695 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1696 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1697 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1698 ah->sw_mgmt_crypto = true;
1699 } else {
1700 ah->sw_mgmt_crypto = true;
1701 }
1702 }
1703
ath9k_hw_reset_opmode(struct ath_hw * ah,u32 macStaId1,u32 saveDefAntenna)1704 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1705 u32 macStaId1, u32 saveDefAntenna)
1706 {
1707 struct ath_common *common = ath9k_hw_common(ah);
1708
1709 ENABLE_REGWRITE_BUFFER(ah);
1710
1711 REG_RMW(ah, AR_STA_ID1, macStaId1
1712 | AR_STA_ID1_RTS_USE_DEF
1713 | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1714 | ah->sta_id1_defaults,
1715 ~AR_STA_ID1_SADH_MASK);
1716 ath_hw_setbssidmask(common);
1717 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1718 ath9k_hw_write_associd(ah);
1719 REG_WRITE(ah, AR_ISR, ~0);
1720 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1721
1722 REGWRITE_BUFFER_FLUSH(ah);
1723
1724 ath9k_hw_set_operating_mode(ah, ah->opmode);
1725 }
1726
ath9k_hw_init_queues(struct ath_hw * ah)1727 static void ath9k_hw_init_queues(struct ath_hw *ah)
1728 {
1729 int i;
1730
1731 ENABLE_REGWRITE_BUFFER(ah);
1732
1733 for (i = 0; i < AR_NUM_DCU; i++)
1734 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1735
1736 REGWRITE_BUFFER_FLUSH(ah);
1737
1738 ah->intr_txqs = 0;
1739 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1740 ath9k_hw_resettxqueue(ah, i);
1741 }
1742
1743 /*
1744 * For big endian systems turn on swapping for descriptors
1745 */
ath9k_hw_init_desc(struct ath_hw * ah)1746 static void ath9k_hw_init_desc(struct ath_hw *ah)
1747 {
1748 struct ath_common *common = ath9k_hw_common(ah);
1749
1750 if (AR_SREV_9100(ah)) {
1751 u32 mask;
1752 mask = REG_READ(ah, AR_CFG);
1753 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1754 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1755 mask);
1756 } else {
1757 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1758 REG_WRITE(ah, AR_CFG, mask);
1759 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1760 REG_READ(ah, AR_CFG));
1761 }
1762 } else {
1763 if (common->bus_ops->ath_bus_type == ATH_USB) {
1764 /* Configure AR9271 target WLAN */
1765 if (AR_SREV_9271(ah))
1766 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1767 else
1768 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1769 }
1770 #ifdef __BIG_ENDIAN
1771 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1772 AR_SREV_9550(ah))
1773 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1774 else
1775 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1776 #endif
1777 }
1778 }
1779
1780 /*
1781 * Fast channel change:
1782 * (Change synthesizer based on channel freq without resetting chip)
1783 *
1784 * Don't do FCC when
1785 * - Flag is not set
1786 * - Chip is just coming out of full sleep
1787 * - Channel to be set is same as current channel
1788 * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1789 */
ath9k_hw_do_fastcc(struct ath_hw * ah,struct ath9k_channel * chan)1790 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1791 {
1792 struct ath_common *common = ath9k_hw_common(ah);
1793 int ret;
1794
1795 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1796 goto fail;
1797
1798 if (ah->chip_fullsleep)
1799 goto fail;
1800
1801 if (!ah->curchan)
1802 goto fail;
1803
1804 if (chan->channel == ah->curchan->channel)
1805 goto fail;
1806
1807 if ((ah->curchan->channelFlags | chan->channelFlags) &
1808 (CHANNEL_HALF | CHANNEL_QUARTER))
1809 goto fail;
1810
1811 if ((chan->channelFlags & CHANNEL_ALL) !=
1812 (ah->curchan->channelFlags & CHANNEL_ALL))
1813 goto fail;
1814
1815 if (!ath9k_hw_check_alive(ah))
1816 goto fail;
1817
1818 /*
1819 * For AR9462, make sure that calibration data for
1820 * re-using are present.
1821 */
1822 if (AR_SREV_9462(ah) && (ah->caldata &&
1823 (!ah->caldata->done_txiqcal_once ||
1824 !ah->caldata->done_txclcal_once ||
1825 !ah->caldata->rtt_done)))
1826 goto fail;
1827
1828 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1829 ah->curchan->channel, chan->channel);
1830
1831 ret = ath9k_hw_channel_change(ah, chan);
1832 if (!ret)
1833 goto fail;
1834
1835 if (ath9k_hw_mci_is_enabled(ah))
1836 ar9003_mci_2g5g_switch(ah, false);
1837
1838 ath9k_hw_loadnf(ah, ah->curchan);
1839 ath9k_hw_start_nfcal(ah, true);
1840
1841 if (AR_SREV_9271(ah))
1842 ar9002_hw_load_ani_reg(ah, chan);
1843
1844 return 0;
1845 fail:
1846 return -EINVAL;
1847 }
1848
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool fastcc)1849 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1850 struct ath9k_hw_cal_data *caldata, bool fastcc)
1851 {
1852 struct ath_common *common = ath9k_hw_common(ah);
1853 u32 saveLedState;
1854 u32 saveDefAntenna;
1855 u32 macStaId1;
1856 u64 tsf = 0;
1857 int r;
1858 bool start_mci_reset = false;
1859 bool save_fullsleep = ah->chip_fullsleep;
1860
1861 if (ath9k_hw_mci_is_enabled(ah)) {
1862 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1863 if (start_mci_reset)
1864 return 0;
1865 }
1866
1867 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1868 return -EIO;
1869
1870 if (ah->curchan && !ah->chip_fullsleep)
1871 ath9k_hw_getnf(ah, ah->curchan);
1872
1873 ah->caldata = caldata;
1874 if (caldata && (chan->channel != caldata->channel ||
1875 chan->channelFlags != caldata->channelFlags)) {
1876 /* Operating channel changed, reset channel calibration data */
1877 memset(caldata, 0, sizeof(*caldata));
1878 ath9k_init_nfcal_hist_buffer(ah, chan);
1879 } else if (caldata) {
1880 caldata->paprd_packet_sent = false;
1881 }
1882 ah->noise = ath9k_hw_getchan_noise(ah, chan);
1883
1884 if (fastcc) {
1885 r = ath9k_hw_do_fastcc(ah, chan);
1886 if (!r)
1887 return r;
1888 }
1889
1890 if (ath9k_hw_mci_is_enabled(ah))
1891 ar9003_mci_stop_bt(ah, save_fullsleep);
1892
1893 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1894 if (saveDefAntenna == 0)
1895 saveDefAntenna = 1;
1896
1897 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1898
1899 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1900 if (AR_SREV_9100(ah) ||
1901 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1902 tsf = ath9k_hw_gettsf64(ah);
1903
1904 saveLedState = REG_READ(ah, AR_CFG_LED) &
1905 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1906 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1907
1908 ath9k_hw_mark_phy_inactive(ah);
1909
1910 ah->paprd_table_write_done = false;
1911
1912 /* Only required on the first reset */
1913 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1914 REG_WRITE(ah,
1915 AR9271_RESET_POWER_DOWN_CONTROL,
1916 AR9271_RADIO_RF_RST);
1917 udelay(50);
1918 }
1919
1920 if (!ath9k_hw_chip_reset(ah, chan)) {
1921 ath_err(common, "Chip reset failed\n");
1922 return -EINVAL;
1923 }
1924
1925 /* Only required on the first reset */
1926 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1927 ah->htc_reset_init = false;
1928 REG_WRITE(ah,
1929 AR9271_RESET_POWER_DOWN_CONTROL,
1930 AR9271_GATE_MAC_CTL);
1931 udelay(50);
1932 }
1933
1934 /* Restore TSF */
1935 if (tsf)
1936 ath9k_hw_settsf64(ah, tsf);
1937
1938 if (AR_SREV_9280_20_OR_LATER(ah))
1939 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1940
1941 if (!AR_SREV_9300_20_OR_LATER(ah))
1942 ar9002_hw_enable_async_fifo(ah);
1943
1944 r = ath9k_hw_process_ini(ah, chan);
1945 if (r)
1946 return r;
1947
1948 if (ath9k_hw_mci_is_enabled(ah))
1949 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1950
1951 /*
1952 * Some AR91xx SoC devices frequently fail to accept TSF writes
1953 * right after the chip reset. When that happens, write a new
1954 * value after the initvals have been applied, with an offset
1955 * based on measured time difference
1956 */
1957 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1958 tsf += 1500;
1959 ath9k_hw_settsf64(ah, tsf);
1960 }
1961
1962 ath9k_hw_init_mfp(ah);
1963
1964 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1965 ath9k_hw_set_delta_slope(ah, chan);
1966
1967 ath9k_hw_spur_mitigate_freq(ah, chan);
1968 ah->eep_ops->set_board_values(ah, chan);
1969
1970 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1971
1972 r = ath9k_hw_rf_set_freq(ah, chan);
1973 if (r)
1974 return r;
1975
1976 ath9k_hw_set_clockrate(ah);
1977
1978 ath9k_hw_init_queues(ah);
1979 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1980 ath9k_hw_ani_cache_ini_regs(ah);
1981 ath9k_hw_init_qos(ah);
1982
1983 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1984 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1985
1986 ath9k_hw_init_global_settings(ah);
1987
1988 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1989 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1990 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1991 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1992 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1993 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1994 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1995 }
1996
1997 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1998
1999 ath9k_hw_set_dma(ah);
2000
2001 if (!ath9k_hw_mci_is_enabled(ah))
2002 REG_WRITE(ah, AR_OBS, 8);
2003
2004 if (ah->config.rx_intr_mitigation) {
2005 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2006 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2007 }
2008
2009 if (ah->config.tx_intr_mitigation) {
2010 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2011 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2012 }
2013
2014 ath9k_hw_init_bb(ah, chan);
2015
2016 if (caldata) {
2017 caldata->done_txiqcal_once = false;
2018 caldata->done_txclcal_once = false;
2019 }
2020 if (!ath9k_hw_init_cal(ah, chan))
2021 return -EIO;
2022
2023 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2024 return -EIO;
2025
2026 ENABLE_REGWRITE_BUFFER(ah);
2027
2028 ath9k_hw_restore_chainmask(ah);
2029 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2030
2031 REGWRITE_BUFFER_FLUSH(ah);
2032
2033 ath9k_hw_init_desc(ah);
2034
2035 if (ath9k_hw_btcoex_is_enabled(ah))
2036 ath9k_hw_btcoex_enable(ah);
2037
2038 if (ath9k_hw_mci_is_enabled(ah))
2039 ar9003_mci_check_bt(ah);
2040
2041 ath9k_hw_loadnf(ah, chan);
2042 ath9k_hw_start_nfcal(ah, true);
2043
2044 if (AR_SREV_9300_20_OR_LATER(ah)) {
2045 ar9003_hw_bb_watchdog_config(ah);
2046 ar9003_hw_disable_phy_restart(ah);
2047 }
2048
2049 ath9k_hw_apply_gpio_override(ah);
2050
2051 if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
2052 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2053
2054 return 0;
2055 }
2056 EXPORT_SYMBOL(ath9k_hw_reset);
2057
2058 /******************************/
2059 /* Power Management (Chipset) */
2060 /******************************/
2061
2062 /*
2063 * Notify Power Mgt is disabled in self-generated frames.
2064 * If requested, force chip to sleep.
2065 */
ath9k_set_power_sleep(struct ath_hw * ah)2066 static void ath9k_set_power_sleep(struct ath_hw *ah)
2067 {
2068 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2069
2070 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2071 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2072 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2073 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2074 /* xxx Required for WLAN only case ? */
2075 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2076 udelay(100);
2077 }
2078
2079 /*
2080 * Clear the RTC force wake bit to allow the
2081 * mac to go to sleep.
2082 */
2083 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2084
2085 if (ath9k_hw_mci_is_enabled(ah))
2086 udelay(100);
2087
2088 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2089 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2090
2091 /* Shutdown chip. Active low */
2092 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2093 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2094 udelay(2);
2095 }
2096
2097 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2098 if (AR_SREV_9300_20_OR_LATER(ah))
2099 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2100 }
2101
2102 /*
2103 * Notify Power Management is enabled in self-generating
2104 * frames. If request, set power mode of chip to
2105 * auto/normal. Duration in units of 128us (1/8 TU).
2106 */
ath9k_set_power_network_sleep(struct ath_hw * ah)2107 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2108 {
2109 struct ath9k_hw_capabilities *pCap = &ah->caps;
2110
2111 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2112
2113 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2114 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2115 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2116 AR_RTC_FORCE_WAKE_ON_INT);
2117 } else {
2118
2119 /* When chip goes into network sleep, it could be waken
2120 * up by MCI_INT interrupt caused by BT's HW messages
2121 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2122 * rate (~100us). This will cause chip to leave and
2123 * re-enter network sleep mode frequently, which in
2124 * consequence will have WLAN MCI HW to generate lots of
2125 * SYS_WAKING and SYS_SLEEPING messages which will make
2126 * BT CPU to busy to process.
2127 */
2128 if (ath9k_hw_mci_is_enabled(ah))
2129 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2130 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2131 /*
2132 * Clear the RTC force wake bit to allow the
2133 * mac to go to sleep.
2134 */
2135 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2136
2137 if (ath9k_hw_mci_is_enabled(ah))
2138 udelay(30);
2139 }
2140
2141 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2142 if (AR_SREV_9300_20_OR_LATER(ah))
2143 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2144 }
2145
ath9k_hw_set_power_awake(struct ath_hw * ah)2146 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2147 {
2148 u32 val;
2149 int i;
2150
2151 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2152 if (AR_SREV_9300_20_OR_LATER(ah)) {
2153 REG_WRITE(ah, AR_WA, ah->WARegVal);
2154 udelay(10);
2155 }
2156
2157 if ((REG_READ(ah, AR_RTC_STATUS) &
2158 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2159 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2160 return false;
2161 }
2162 if (!AR_SREV_9300_20_OR_LATER(ah))
2163 ath9k_hw_init_pll(ah, NULL);
2164 }
2165 if (AR_SREV_9100(ah))
2166 REG_SET_BIT(ah, AR_RTC_RESET,
2167 AR_RTC_RESET_EN);
2168
2169 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2170 AR_RTC_FORCE_WAKE_EN);
2171 udelay(50);
2172
2173 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2174 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2175 if (val == AR_RTC_STATUS_ON)
2176 break;
2177 udelay(50);
2178 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2179 AR_RTC_FORCE_WAKE_EN);
2180 }
2181 if (i == 0) {
2182 ath_err(ath9k_hw_common(ah),
2183 "Failed to wakeup in %uus\n",
2184 POWER_UP_TIME / 20);
2185 return false;
2186 }
2187
2188 if (ath9k_hw_mci_is_enabled(ah))
2189 ar9003_mci_set_power_awake(ah);
2190
2191 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2192
2193 return true;
2194 }
2195
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2196 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2197 {
2198 struct ath_common *common = ath9k_hw_common(ah);
2199 int status = true;
2200 static const char *modes[] = {
2201 "AWAKE",
2202 "FULL-SLEEP",
2203 "NETWORK SLEEP",
2204 "UNDEFINED"
2205 };
2206
2207 if (ah->power_mode == mode)
2208 return status;
2209
2210 ath_dbg(common, RESET, "%s -> %s\n",
2211 modes[ah->power_mode], modes[mode]);
2212
2213 switch (mode) {
2214 case ATH9K_PM_AWAKE:
2215 status = ath9k_hw_set_power_awake(ah);
2216 break;
2217 case ATH9K_PM_FULL_SLEEP:
2218 if (ath9k_hw_mci_is_enabled(ah))
2219 ar9003_mci_set_full_sleep(ah);
2220
2221 ath9k_set_power_sleep(ah);
2222 ah->chip_fullsleep = true;
2223 break;
2224 case ATH9K_PM_NETWORK_SLEEP:
2225 ath9k_set_power_network_sleep(ah);
2226 break;
2227 default:
2228 ath_err(common, "Unknown power mode %u\n", mode);
2229 return false;
2230 }
2231 ah->power_mode = mode;
2232
2233 /*
2234 * XXX: If this warning never comes up after a while then
2235 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2236 * ath9k_hw_setpower() return type void.
2237 */
2238
2239 if (!(ah->ah_flags & AH_UNPLUGGED))
2240 ATH_DBG_WARN_ON_ONCE(!status);
2241
2242 return status;
2243 }
2244 EXPORT_SYMBOL(ath9k_hw_setpower);
2245
2246 /*******************/
2247 /* Beacon Handling */
2248 /*******************/
2249
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2250 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2251 {
2252 int flags = 0;
2253
2254 ENABLE_REGWRITE_BUFFER(ah);
2255
2256 switch (ah->opmode) {
2257 case NL80211_IFTYPE_ADHOC:
2258 case NL80211_IFTYPE_MESH_POINT:
2259 REG_SET_BIT(ah, AR_TXCFG,
2260 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2261 REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2262 TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2263 flags |= AR_NDP_TIMER_EN;
2264 case NL80211_IFTYPE_AP:
2265 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2266 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2267 TU_TO_USEC(ah->config.dma_beacon_response_time));
2268 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2269 TU_TO_USEC(ah->config.sw_beacon_response_time));
2270 flags |=
2271 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2272 break;
2273 default:
2274 ath_dbg(ath9k_hw_common(ah), BEACON,
2275 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2276 return;
2277 break;
2278 }
2279
2280 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2281 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2282 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2283 REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2284
2285 REGWRITE_BUFFER_FLUSH(ah);
2286
2287 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2288 }
2289 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2290
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2291 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2292 const struct ath9k_beacon_state *bs)
2293 {
2294 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2295 struct ath9k_hw_capabilities *pCap = &ah->caps;
2296 struct ath_common *common = ath9k_hw_common(ah);
2297
2298 ENABLE_REGWRITE_BUFFER(ah);
2299
2300 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2301
2302 REG_WRITE(ah, AR_BEACON_PERIOD,
2303 TU_TO_USEC(bs->bs_intval));
2304 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2305 TU_TO_USEC(bs->bs_intval));
2306
2307 REGWRITE_BUFFER_FLUSH(ah);
2308
2309 REG_RMW_FIELD(ah, AR_RSSI_THR,
2310 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2311
2312 beaconintval = bs->bs_intval;
2313
2314 if (bs->bs_sleepduration > beaconintval)
2315 beaconintval = bs->bs_sleepduration;
2316
2317 dtimperiod = bs->bs_dtimperiod;
2318 if (bs->bs_sleepduration > dtimperiod)
2319 dtimperiod = bs->bs_sleepduration;
2320
2321 if (beaconintval == dtimperiod)
2322 nextTbtt = bs->bs_nextdtim;
2323 else
2324 nextTbtt = bs->bs_nexttbtt;
2325
2326 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2327 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2328 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2329 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2330
2331 ENABLE_REGWRITE_BUFFER(ah);
2332
2333 REG_WRITE(ah, AR_NEXT_DTIM,
2334 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2335 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2336
2337 REG_WRITE(ah, AR_SLEEP1,
2338 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2339 | AR_SLEEP1_ASSUME_DTIM);
2340
2341 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2342 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2343 else
2344 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2345
2346 REG_WRITE(ah, AR_SLEEP2,
2347 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2348
2349 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2350 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2351
2352 REGWRITE_BUFFER_FLUSH(ah);
2353
2354 REG_SET_BIT(ah, AR_TIMER_MODE,
2355 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2356 AR_DTIM_TIMER_EN);
2357
2358 /* TSF Out of Range Threshold */
2359 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2360 }
2361 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2362
2363 /*******************/
2364 /* HW Capabilities */
2365 /*******************/
2366
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2367 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2368 {
2369 eeprom_chainmask &= chip_chainmask;
2370 if (eeprom_chainmask)
2371 return eeprom_chainmask;
2372 else
2373 return chip_chainmask;
2374 }
2375
2376 /**
2377 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2378 * @ah: the atheros hardware data structure
2379 *
2380 * We enable DFS support upstream on chipsets which have passed a series
2381 * of tests. The testing requirements are going to be documented. Desired
2382 * test requirements are documented at:
2383 *
2384 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2385 *
2386 * Once a new chipset gets properly tested an individual commit can be used
2387 * to document the testing for DFS for that chipset.
2388 */
ath9k_hw_dfs_tested(struct ath_hw * ah)2389 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2390 {
2391
2392 switch (ah->hw_version.macVersion) {
2393 /* for temporary testing DFS with 9280 */
2394 case AR_SREV_VERSION_9280:
2395 /* AR9580 will likely be our first target to get testing on */
2396 case AR_SREV_VERSION_9580:
2397 return true;
2398 default:
2399 return false;
2400 }
2401 }
2402
ath9k_hw_fill_cap_info(struct ath_hw * ah)2403 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2404 {
2405 struct ath9k_hw_capabilities *pCap = &ah->caps;
2406 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2407 struct ath_common *common = ath9k_hw_common(ah);
2408 unsigned int chip_chainmask;
2409
2410 u16 eeval;
2411 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2412
2413 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2414 regulatory->current_rd = eeval;
2415
2416 if (ah->opmode != NL80211_IFTYPE_AP &&
2417 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2418 if (regulatory->current_rd == 0x64 ||
2419 regulatory->current_rd == 0x65)
2420 regulatory->current_rd += 5;
2421 else if (regulatory->current_rd == 0x41)
2422 regulatory->current_rd = 0x43;
2423 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2424 regulatory->current_rd);
2425 }
2426
2427 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2428 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2429 ath_err(common,
2430 "no band has been marked as supported in EEPROM\n");
2431 return -EINVAL;
2432 }
2433
2434 if (eeval & AR5416_OPFLAGS_11A)
2435 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2436
2437 if (eeval & AR5416_OPFLAGS_11G)
2438 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2439
2440 if (AR_SREV_9485(ah) ||
2441 AR_SREV_9285(ah) ||
2442 AR_SREV_9330(ah) ||
2443 AR_SREV_9565(ah))
2444 chip_chainmask = 1;
2445 else if (AR_SREV_9462(ah))
2446 chip_chainmask = 3;
2447 else if (!AR_SREV_9280_20_OR_LATER(ah))
2448 chip_chainmask = 7;
2449 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2450 chip_chainmask = 3;
2451 else
2452 chip_chainmask = 7;
2453
2454 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2455 /*
2456 * For AR9271 we will temporarilly uses the rx chainmax as read from
2457 * the EEPROM.
2458 */
2459 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2460 !(eeval & AR5416_OPFLAGS_11A) &&
2461 !(AR_SREV_9271(ah)))
2462 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2463 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2464 else if (AR_SREV_9100(ah))
2465 pCap->rx_chainmask = 0x7;
2466 else
2467 /* Use rx_chainmask from EEPROM. */
2468 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2469
2470 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2471 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2472 ah->txchainmask = pCap->tx_chainmask;
2473 ah->rxchainmask = pCap->rx_chainmask;
2474
2475 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2476
2477 /* enable key search for every frame in an aggregate */
2478 if (AR_SREV_9300_20_OR_LATER(ah))
2479 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2480
2481 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2482
2483 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2484 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2485 else
2486 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2487
2488 if (AR_SREV_9271(ah))
2489 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2490 else if (AR_DEVID_7010(ah))
2491 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2492 else if (AR_SREV_9300_20_OR_LATER(ah))
2493 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2494 else if (AR_SREV_9287_11_OR_LATER(ah))
2495 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2496 else if (AR_SREV_9285_12_OR_LATER(ah))
2497 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2498 else if (AR_SREV_9280_20_OR_LATER(ah))
2499 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2500 else
2501 pCap->num_gpio_pins = AR_NUM_GPIO;
2502
2503 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2504 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2505 else
2506 pCap->rts_aggr_limit = (8 * 1024);
2507
2508 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2509 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2510 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2511 ah->rfkill_gpio =
2512 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2513 ah->rfkill_polarity =
2514 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2515
2516 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2517 }
2518 #endif
2519 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2520 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2521 else
2522 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2523
2524 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2525 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2526 else
2527 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2528
2529 if (AR_SREV_9300_20_OR_LATER(ah)) {
2530 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2531 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2532 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2533
2534 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2535 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2536 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2537 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2538 pCap->txs_len = sizeof(struct ar9003_txs);
2539 } else {
2540 pCap->tx_desc_len = sizeof(struct ath_desc);
2541 if (AR_SREV_9280_20(ah))
2542 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2543 }
2544
2545 if (AR_SREV_9300_20_OR_LATER(ah))
2546 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2547
2548 if (AR_SREV_9300_20_OR_LATER(ah))
2549 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2550
2551 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2552 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2553
2554 if (AR_SREV_9285(ah))
2555 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2556 ant_div_ctl1 =
2557 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2558 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2559 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2560 }
2561 if (AR_SREV_9300_20_OR_LATER(ah)) {
2562 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2563 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2564 }
2565
2566
2567 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2568 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2569 /*
2570 * enable the diversity-combining algorithm only when
2571 * both enable_lna_div and enable_fast_div are set
2572 * Table for Diversity
2573 * ant_div_alt_lnaconf bit 0-1
2574 * ant_div_main_lnaconf bit 2-3
2575 * ant_div_alt_gaintb bit 4
2576 * ant_div_main_gaintb bit 5
2577 * enable_ant_div_lnadiv bit 6
2578 * enable_ant_fast_div bit 7
2579 */
2580 if ((ant_div_ctl1 >> 0x6) == 0x3)
2581 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2582 }
2583
2584 if (ath9k_hw_dfs_tested(ah))
2585 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2586
2587 tx_chainmask = pCap->tx_chainmask;
2588 rx_chainmask = pCap->rx_chainmask;
2589 while (tx_chainmask || rx_chainmask) {
2590 if (tx_chainmask & BIT(0))
2591 pCap->max_txchains++;
2592 if (rx_chainmask & BIT(0))
2593 pCap->max_rxchains++;
2594
2595 tx_chainmask >>= 1;
2596 rx_chainmask >>= 1;
2597 }
2598
2599 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2600 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2601 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2602
2603 if (AR_SREV_9462_20(ah))
2604 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2605 }
2606
2607 if (AR_SREV_9280_20_OR_LATER(ah)) {
2608 pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
2609 ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
2610
2611 if (AR_SREV_9280(ah))
2612 pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
2613 }
2614
2615 if (AR_SREV_9300_20_OR_LATER(ah) &&
2616 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2617 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2618
2619 return 0;
2620 }
2621
2622 /****************************/
2623 /* GPIO / RFKILL / Antennae */
2624 /****************************/
2625
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2626 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2627 u32 gpio, u32 type)
2628 {
2629 int addr;
2630 u32 gpio_shift, tmp;
2631
2632 if (gpio > 11)
2633 addr = AR_GPIO_OUTPUT_MUX3;
2634 else if (gpio > 5)
2635 addr = AR_GPIO_OUTPUT_MUX2;
2636 else
2637 addr = AR_GPIO_OUTPUT_MUX1;
2638
2639 gpio_shift = (gpio % 6) * 5;
2640
2641 if (AR_SREV_9280_20_OR_LATER(ah)
2642 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2643 REG_RMW(ah, addr, (type << gpio_shift),
2644 (0x1f << gpio_shift));
2645 } else {
2646 tmp = REG_READ(ah, addr);
2647 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2648 tmp &= ~(0x1f << gpio_shift);
2649 tmp |= (type << gpio_shift);
2650 REG_WRITE(ah, addr, tmp);
2651 }
2652 }
2653
ath9k_hw_cfg_gpio_input(struct ath_hw * ah,u32 gpio)2654 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2655 {
2656 u32 gpio_shift;
2657
2658 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2659
2660 if (AR_DEVID_7010(ah)) {
2661 gpio_shift = gpio;
2662 REG_RMW(ah, AR7010_GPIO_OE,
2663 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2664 (AR7010_GPIO_OE_MASK << gpio_shift));
2665 return;
2666 }
2667
2668 gpio_shift = gpio << 1;
2669 REG_RMW(ah,
2670 AR_GPIO_OE_OUT,
2671 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2672 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2673 }
2674 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2675
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2676 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2677 {
2678 #define MS_REG_READ(x, y) \
2679 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2680
2681 if (gpio >= ah->caps.num_gpio_pins)
2682 return 0xffffffff;
2683
2684 if (AR_DEVID_7010(ah)) {
2685 u32 val;
2686 val = REG_READ(ah, AR7010_GPIO_IN);
2687 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2688 } else if (AR_SREV_9300_20_OR_LATER(ah))
2689 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2690 AR_GPIO_BIT(gpio)) != 0;
2691 else if (AR_SREV_9271(ah))
2692 return MS_REG_READ(AR9271, gpio) != 0;
2693 else if (AR_SREV_9287_11_OR_LATER(ah))
2694 return MS_REG_READ(AR9287, gpio) != 0;
2695 else if (AR_SREV_9285_12_OR_LATER(ah))
2696 return MS_REG_READ(AR9285, gpio) != 0;
2697 else if (AR_SREV_9280_20_OR_LATER(ah))
2698 return MS_REG_READ(AR928X, gpio) != 0;
2699 else
2700 return MS_REG_READ(AR, gpio) != 0;
2701 }
2702 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2703
ath9k_hw_cfg_output(struct ath_hw * ah,u32 gpio,u32 ah_signal_type)2704 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2705 u32 ah_signal_type)
2706 {
2707 u32 gpio_shift;
2708
2709 if (AR_DEVID_7010(ah)) {
2710 gpio_shift = gpio;
2711 REG_RMW(ah, AR7010_GPIO_OE,
2712 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2713 (AR7010_GPIO_OE_MASK << gpio_shift));
2714 return;
2715 }
2716
2717 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2718 gpio_shift = 2 * gpio;
2719 REG_RMW(ah,
2720 AR_GPIO_OE_OUT,
2721 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2722 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2723 }
2724 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2725
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2726 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2727 {
2728 if (AR_DEVID_7010(ah)) {
2729 val = val ? 0 : 1;
2730 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2731 AR_GPIO_BIT(gpio));
2732 return;
2733 }
2734
2735 if (AR_SREV_9271(ah))
2736 val = ~val;
2737
2738 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2739 AR_GPIO_BIT(gpio));
2740 }
2741 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2742
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2743 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2744 {
2745 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2746 }
2747 EXPORT_SYMBOL(ath9k_hw_setantenna);
2748
2749 /*********************/
2750 /* General Operation */
2751 /*********************/
2752
ath9k_hw_getrxfilter(struct ath_hw * ah)2753 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2754 {
2755 u32 bits = REG_READ(ah, AR_RX_FILTER);
2756 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2757
2758 if (phybits & AR_PHY_ERR_RADAR)
2759 bits |= ATH9K_RX_FILTER_PHYRADAR;
2760 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2761 bits |= ATH9K_RX_FILTER_PHYERR;
2762
2763 return bits;
2764 }
2765 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2766
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2767 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2768 {
2769 u32 phybits;
2770
2771 ENABLE_REGWRITE_BUFFER(ah);
2772
2773 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2774 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2775
2776 REG_WRITE(ah, AR_RX_FILTER, bits);
2777
2778 phybits = 0;
2779 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2780 phybits |= AR_PHY_ERR_RADAR;
2781 if (bits & ATH9K_RX_FILTER_PHYERR)
2782 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2783 REG_WRITE(ah, AR_PHY_ERR, phybits);
2784
2785 if (phybits)
2786 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2787 else
2788 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2789
2790 REGWRITE_BUFFER_FLUSH(ah);
2791 }
2792 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2793
ath9k_hw_phy_disable(struct ath_hw * ah)2794 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2795 {
2796 if (ath9k_hw_mci_is_enabled(ah))
2797 ar9003_mci_bt_gain_ctrl(ah);
2798
2799 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2800 return false;
2801
2802 ath9k_hw_init_pll(ah, NULL);
2803 ah->htc_reset_init = true;
2804 return true;
2805 }
2806 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2807
ath9k_hw_disable(struct ath_hw * ah)2808 bool ath9k_hw_disable(struct ath_hw *ah)
2809 {
2810 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2811 return false;
2812
2813 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2814 return false;
2815
2816 ath9k_hw_init_pll(ah, NULL);
2817 return true;
2818 }
2819 EXPORT_SYMBOL(ath9k_hw_disable);
2820
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2821 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2822 {
2823 enum eeprom_param gain_param;
2824
2825 if (IS_CHAN_2GHZ(chan))
2826 gain_param = EEP_ANTENNA_GAIN_2G;
2827 else
2828 gain_param = EEP_ANTENNA_GAIN_5G;
2829
2830 return ah->eep_ops->get_eeprom(ah, gain_param);
2831 }
2832
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan,bool test)2833 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2834 bool test)
2835 {
2836 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2837 struct ieee80211_channel *channel;
2838 int chan_pwr, new_pwr, max_gain;
2839 int ant_gain, ant_reduction = 0;
2840
2841 if (!chan)
2842 return;
2843
2844 channel = chan->chan;
2845 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2846 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2847 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2848
2849 ant_gain = get_antenna_gain(ah, chan);
2850 if (ant_gain > max_gain)
2851 ant_reduction = ant_gain - max_gain;
2852
2853 ah->eep_ops->set_txpower(ah, chan,
2854 ath9k_regd_get_ctl(reg, chan),
2855 ant_reduction, new_pwr, test);
2856 }
2857
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2858 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2859 {
2860 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2861 struct ath9k_channel *chan = ah->curchan;
2862 struct ieee80211_channel *channel = chan->chan;
2863
2864 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2865 if (test)
2866 channel->max_power = MAX_RATE_POWER / 2;
2867
2868 ath9k_hw_apply_txpower(ah, chan, test);
2869
2870 if (test)
2871 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2872 }
2873 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2874
ath9k_hw_setopmode(struct ath_hw * ah)2875 void ath9k_hw_setopmode(struct ath_hw *ah)
2876 {
2877 ath9k_hw_set_operating_mode(ah, ah->opmode);
2878 }
2879 EXPORT_SYMBOL(ath9k_hw_setopmode);
2880
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2881 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2882 {
2883 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2884 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2885 }
2886 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2887
ath9k_hw_write_associd(struct ath_hw * ah)2888 void ath9k_hw_write_associd(struct ath_hw *ah)
2889 {
2890 struct ath_common *common = ath9k_hw_common(ah);
2891
2892 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2893 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2894 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2895 }
2896 EXPORT_SYMBOL(ath9k_hw_write_associd);
2897
2898 #define ATH9K_MAX_TSF_READ 10
2899
ath9k_hw_gettsf64(struct ath_hw * ah)2900 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2901 {
2902 u32 tsf_lower, tsf_upper1, tsf_upper2;
2903 int i;
2904
2905 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2906 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2907 tsf_lower = REG_READ(ah, AR_TSF_L32);
2908 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2909 if (tsf_upper2 == tsf_upper1)
2910 break;
2911 tsf_upper1 = tsf_upper2;
2912 }
2913
2914 WARN_ON( i == ATH9K_MAX_TSF_READ );
2915
2916 return (((u64)tsf_upper1 << 32) | tsf_lower);
2917 }
2918 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2919
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)2920 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2921 {
2922 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2923 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2924 }
2925 EXPORT_SYMBOL(ath9k_hw_settsf64);
2926
ath9k_hw_reset_tsf(struct ath_hw * ah)2927 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2928 {
2929 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2930 AH_TSF_WRITE_TIMEOUT))
2931 ath_dbg(ath9k_hw_common(ah), RESET,
2932 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2933
2934 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2935 }
2936 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2937
ath9k_hw_set_tsfadjust(struct ath_hw * ah,bool set)2938 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2939 {
2940 if (set)
2941 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2942 else
2943 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2944 }
2945 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2946
ath9k_hw_set11nmac2040(struct ath_hw * ah)2947 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2948 {
2949 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2950 u32 macmode;
2951
2952 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2953 macmode = AR_2040_JOINED_RX_CLEAR;
2954 else
2955 macmode = 0;
2956
2957 REG_WRITE(ah, AR_2040_MODE, macmode);
2958 }
2959
2960 /* HW Generic timers configuration */
2961
2962 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2963 {
2964 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2965 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2966 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2967 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2968 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2969 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2970 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2971 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2972 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2973 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2974 AR_NDP2_TIMER_MODE, 0x0002},
2975 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2976 AR_NDP2_TIMER_MODE, 0x0004},
2977 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2978 AR_NDP2_TIMER_MODE, 0x0008},
2979 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2980 AR_NDP2_TIMER_MODE, 0x0010},
2981 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2982 AR_NDP2_TIMER_MODE, 0x0020},
2983 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2984 AR_NDP2_TIMER_MODE, 0x0040},
2985 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2986 AR_NDP2_TIMER_MODE, 0x0080}
2987 };
2988
2989 /* HW generic timer primitives */
2990
2991 /* compute and clear index of rightmost 1 */
rightmost_index(struct ath_gen_timer_table * timer_table,u32 * mask)2992 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2993 {
2994 u32 b;
2995
2996 b = *mask;
2997 b &= (0-b);
2998 *mask &= ~b;
2999 b *= debruijn32;
3000 b >>= 27;
3001
3002 return timer_table->gen_timer_index[b];
3003 }
3004
ath9k_hw_gettsf32(struct ath_hw * ah)3005 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3006 {
3007 return REG_READ(ah, AR_TSF_L32);
3008 }
3009 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3010
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)3011 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3012 void (*trigger)(void *),
3013 void (*overflow)(void *),
3014 void *arg,
3015 u8 timer_index)
3016 {
3017 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3018 struct ath_gen_timer *timer;
3019
3020 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3021 if (timer == NULL)
3022 return NULL;
3023
3024 /* allocate a hardware generic timer slot */
3025 timer_table->timers[timer_index] = timer;
3026 timer->index = timer_index;
3027 timer->trigger = trigger;
3028 timer->overflow = overflow;
3029 timer->arg = arg;
3030
3031 return timer;
3032 }
3033 EXPORT_SYMBOL(ath_gen_timer_alloc);
3034
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 trig_timeout,u32 timer_period)3035 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3036 struct ath_gen_timer *timer,
3037 u32 trig_timeout,
3038 u32 timer_period)
3039 {
3040 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3041 u32 tsf, timer_next;
3042
3043 BUG_ON(!timer_period);
3044
3045 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3046
3047 tsf = ath9k_hw_gettsf32(ah);
3048
3049 timer_next = tsf + trig_timeout;
3050
3051 ath_dbg(ath9k_hw_common(ah), HWTIMER,
3052 "current tsf %x period %x timer_next %x\n",
3053 tsf, timer_period, timer_next);
3054
3055 /*
3056 * Program generic timer registers
3057 */
3058 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3059 timer_next);
3060 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3061 timer_period);
3062 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3063 gen_tmr_configuration[timer->index].mode_mask);
3064
3065 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3066 /*
3067 * Starting from AR9462, each generic timer can select which tsf
3068 * to use. But we still follow the old rule, 0 - 7 use tsf and
3069 * 8 - 15 use tsf2.
3070 */
3071 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3072 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3073 (1 << timer->index));
3074 else
3075 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3076 (1 << timer->index));
3077 }
3078
3079 /* Enable both trigger and thresh interrupt masks */
3080 REG_SET_BIT(ah, AR_IMR_S5,
3081 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3082 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3083 }
3084 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3085
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)3086 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3087 {
3088 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3089
3090 if ((timer->index < AR_FIRST_NDP_TIMER) ||
3091 (timer->index >= ATH_MAX_GEN_TIMER)) {
3092 return;
3093 }
3094
3095 /* Clear generic timer enable bits. */
3096 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3097 gen_tmr_configuration[timer->index].mode_mask);
3098
3099 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3100 /*
3101 * Need to switch back to TSF if it was using TSF2.
3102 */
3103 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3104 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3105 (1 << timer->index));
3106 }
3107 }
3108
3109 /* Disable both trigger and thresh interrupt masks */
3110 REG_CLR_BIT(ah, AR_IMR_S5,
3111 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3112 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3113
3114 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3115 }
3116 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3117
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)3118 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3119 {
3120 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3121
3122 /* free the hardware generic timer slot */
3123 timer_table->timers[timer->index] = NULL;
3124 kfree(timer);
3125 }
3126 EXPORT_SYMBOL(ath_gen_timer_free);
3127
3128 /*
3129 * Generic Timer Interrupts handling
3130 */
ath_gen_timer_isr(struct ath_hw * ah)3131 void ath_gen_timer_isr(struct ath_hw *ah)
3132 {
3133 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3134 struct ath_gen_timer *timer;
3135 struct ath_common *common = ath9k_hw_common(ah);
3136 u32 trigger_mask, thresh_mask, index;
3137
3138 /* get hardware generic timer interrupt status */
3139 trigger_mask = ah->intr_gen_timer_trigger;
3140 thresh_mask = ah->intr_gen_timer_thresh;
3141 trigger_mask &= timer_table->timer_mask.val;
3142 thresh_mask &= timer_table->timer_mask.val;
3143
3144 trigger_mask &= ~thresh_mask;
3145
3146 while (thresh_mask) {
3147 index = rightmost_index(timer_table, &thresh_mask);
3148 timer = timer_table->timers[index];
3149 BUG_ON(!timer);
3150 ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3151 index);
3152 timer->overflow(timer->arg);
3153 }
3154
3155 while (trigger_mask) {
3156 index = rightmost_index(timer_table, &trigger_mask);
3157 timer = timer_table->timers[index];
3158 BUG_ON(!timer);
3159 ath_dbg(common, HWTIMER,
3160 "Gen timer[%d] trigger\n", index);
3161 timer->trigger(timer->arg);
3162 }
3163 }
3164 EXPORT_SYMBOL(ath_gen_timer_isr);
3165
3166 /********/
3167 /* HTC */
3168 /********/
3169
3170 static struct {
3171 u32 version;
3172 const char * name;
3173 } ath_mac_bb_names[] = {
3174 /* Devices with external radios */
3175 { AR_SREV_VERSION_5416_PCI, "5416" },
3176 { AR_SREV_VERSION_5416_PCIE, "5418" },
3177 { AR_SREV_VERSION_9100, "9100" },
3178 { AR_SREV_VERSION_9160, "9160" },
3179 /* Single-chip solutions */
3180 { AR_SREV_VERSION_9280, "9280" },
3181 { AR_SREV_VERSION_9285, "9285" },
3182 { AR_SREV_VERSION_9287, "9287" },
3183 { AR_SREV_VERSION_9271, "9271" },
3184 { AR_SREV_VERSION_9300, "9300" },
3185 { AR_SREV_VERSION_9330, "9330" },
3186 { AR_SREV_VERSION_9340, "9340" },
3187 { AR_SREV_VERSION_9485, "9485" },
3188 { AR_SREV_VERSION_9462, "9462" },
3189 { AR_SREV_VERSION_9550, "9550" },
3190 { AR_SREV_VERSION_9565, "9565" },
3191 };
3192
3193 /* For devices with external radios */
3194 static struct {
3195 u16 version;
3196 const char * name;
3197 } ath_rf_names[] = {
3198 { 0, "5133" },
3199 { AR_RAD5133_SREV_MAJOR, "5133" },
3200 { AR_RAD5122_SREV_MAJOR, "5122" },
3201 { AR_RAD2133_SREV_MAJOR, "2133" },
3202 { AR_RAD2122_SREV_MAJOR, "2122" }
3203 };
3204
3205 /*
3206 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3207 */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3208 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3209 {
3210 int i;
3211
3212 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3213 if (ath_mac_bb_names[i].version == mac_bb_version) {
3214 return ath_mac_bb_names[i].name;
3215 }
3216 }
3217
3218 return "????";
3219 }
3220
3221 /*
3222 * Return the RF name. "????" is returned if the RF is unknown.
3223 * Used for devices with external radios.
3224 */
ath9k_hw_rf_name(u16 rf_version)3225 static const char *ath9k_hw_rf_name(u16 rf_version)
3226 {
3227 int i;
3228
3229 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3230 if (ath_rf_names[i].version == rf_version) {
3231 return ath_rf_names[i].name;
3232 }
3233 }
3234
3235 return "????";
3236 }
3237
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3238 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3239 {
3240 int used;
3241
3242 /* chipsets >= AR9280 are single-chip */
3243 if (AR_SREV_9280_20_OR_LATER(ah)) {
3244 used = snprintf(hw_name, len,
3245 "Atheros AR%s Rev:%x",
3246 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3247 ah->hw_version.macRev);
3248 }
3249 else {
3250 used = snprintf(hw_name, len,
3251 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3252 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3253 ah->hw_version.macRev,
3254 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3255 AR_RADIO_SREV_MAJOR)),
3256 ah->hw_version.phyRev);
3257 }
3258
3259 hw_name[used] = '\0';
3260 }
3261 EXPORT_SYMBOL(ath9k_hw_name);
3262