1 /*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13
14 #include <linux/buffer_head.h>
15 #include <linux/debugfs.h>
16 #include <linux/genhd.h>
17 #include <linux/module.h>
18 #include <linux/random.h>
19 #include <linux/reboot.h>
20 #include <linux/sysfs.h>
21
22 MODULE_LICENSE("GPL");
23 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
24
25 static const char bcache_magic[] = {
26 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
27 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
28 };
29
30 static const char invalid_uuid[] = {
31 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
32 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
33 };
34
35 /* Default is -1; we skip past it for struct cached_dev's cache mode */
36 const char * const bch_cache_modes[] = {
37 "default",
38 "writethrough",
39 "writeback",
40 "writearound",
41 "none",
42 NULL
43 };
44
45 struct uuid_entry_v0 {
46 uint8_t uuid[16];
47 uint8_t label[32];
48 uint32_t first_reg;
49 uint32_t last_reg;
50 uint32_t invalidated;
51 uint32_t pad;
52 };
53
54 static struct kobject *bcache_kobj;
55 struct mutex bch_register_lock;
56 LIST_HEAD(bch_cache_sets);
57 static LIST_HEAD(uncached_devices);
58
59 static int bcache_major, bcache_minor;
60 static wait_queue_head_t unregister_wait;
61 struct workqueue_struct *bcache_wq;
62
63 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
64
bio_split_pool_free(struct bio_split_pool * p)65 static void bio_split_pool_free(struct bio_split_pool *p)
66 {
67 if (p->bio_split_hook)
68 mempool_destroy(p->bio_split_hook);
69
70 if (p->bio_split)
71 bioset_free(p->bio_split);
72 }
73
bio_split_pool_init(struct bio_split_pool * p)74 static int bio_split_pool_init(struct bio_split_pool *p)
75 {
76 p->bio_split = bioset_create(4, 0);
77 if (!p->bio_split)
78 return -ENOMEM;
79
80 p->bio_split_hook = mempool_create_kmalloc_pool(4,
81 sizeof(struct bio_split_hook));
82 if (!p->bio_split_hook)
83 return -ENOMEM;
84
85 return 0;
86 }
87
88 /* Superblock */
89
read_super(struct cache_sb * sb,struct block_device * bdev,struct page ** res)90 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
91 struct page **res)
92 {
93 const char *err;
94 struct cache_sb *s;
95 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
96 unsigned i;
97
98 if (!bh)
99 return "IO error";
100
101 s = (struct cache_sb *) bh->b_data;
102
103 sb->offset = le64_to_cpu(s->offset);
104 sb->version = le64_to_cpu(s->version);
105
106 memcpy(sb->magic, s->magic, 16);
107 memcpy(sb->uuid, s->uuid, 16);
108 memcpy(sb->set_uuid, s->set_uuid, 16);
109 memcpy(sb->label, s->label, SB_LABEL_SIZE);
110
111 sb->flags = le64_to_cpu(s->flags);
112 sb->seq = le64_to_cpu(s->seq);
113 sb->last_mount = le32_to_cpu(s->last_mount);
114 sb->first_bucket = le16_to_cpu(s->first_bucket);
115 sb->keys = le16_to_cpu(s->keys);
116
117 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
118 sb->d[i] = le64_to_cpu(s->d[i]);
119
120 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
121 sb->version, sb->flags, sb->seq, sb->keys);
122
123 err = "Not a bcache superblock";
124 if (sb->offset != SB_SECTOR)
125 goto err;
126
127 if (memcmp(sb->magic, bcache_magic, 16))
128 goto err;
129
130 err = "Too many journal buckets";
131 if (sb->keys > SB_JOURNAL_BUCKETS)
132 goto err;
133
134 err = "Bad checksum";
135 if (s->csum != csum_set(s))
136 goto err;
137
138 err = "Bad UUID";
139 if (bch_is_zero(sb->uuid, 16))
140 goto err;
141
142 sb->block_size = le16_to_cpu(s->block_size);
143
144 err = "Superblock block size smaller than device block size";
145 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
146 goto err;
147
148 switch (sb->version) {
149 case BCACHE_SB_VERSION_BDEV:
150 sb->data_offset = BDEV_DATA_START_DEFAULT;
151 break;
152 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
153 sb->data_offset = le64_to_cpu(s->data_offset);
154
155 err = "Bad data offset";
156 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
157 goto err;
158
159 break;
160 case BCACHE_SB_VERSION_CDEV:
161 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
162 sb->nbuckets = le64_to_cpu(s->nbuckets);
163 sb->block_size = le16_to_cpu(s->block_size);
164 sb->bucket_size = le16_to_cpu(s->bucket_size);
165
166 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
167 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
168
169 err = "Too many buckets";
170 if (sb->nbuckets > LONG_MAX)
171 goto err;
172
173 err = "Not enough buckets";
174 if (sb->nbuckets < 1 << 7)
175 goto err;
176
177 err = "Bad block/bucket size";
178 if (!is_power_of_2(sb->block_size) ||
179 sb->block_size > PAGE_SECTORS ||
180 !is_power_of_2(sb->bucket_size) ||
181 sb->bucket_size < PAGE_SECTORS)
182 goto err;
183
184 err = "Invalid superblock: device too small";
185 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
186 goto err;
187
188 err = "Bad UUID";
189 if (bch_is_zero(sb->set_uuid, 16))
190 goto err;
191
192 err = "Bad cache device number in set";
193 if (!sb->nr_in_set ||
194 sb->nr_in_set <= sb->nr_this_dev ||
195 sb->nr_in_set > MAX_CACHES_PER_SET)
196 goto err;
197
198 err = "Journal buckets not sequential";
199 for (i = 0; i < sb->keys; i++)
200 if (sb->d[i] != sb->first_bucket + i)
201 goto err;
202
203 err = "Too many journal buckets";
204 if (sb->first_bucket + sb->keys > sb->nbuckets)
205 goto err;
206
207 err = "Invalid superblock: first bucket comes before end of super";
208 if (sb->first_bucket * sb->bucket_size < 16)
209 goto err;
210
211 break;
212 default:
213 err = "Unsupported superblock version";
214 goto err;
215 }
216
217 sb->last_mount = get_seconds();
218 err = NULL;
219
220 get_page(bh->b_page);
221 *res = bh->b_page;
222 err:
223 put_bh(bh);
224 return err;
225 }
226
write_bdev_super_endio(struct bio * bio,int error)227 static void write_bdev_super_endio(struct bio *bio, int error)
228 {
229 struct cached_dev *dc = bio->bi_private;
230 /* XXX: error checking */
231
232 closure_put(&dc->sb_write.cl);
233 }
234
__write_super(struct cache_sb * sb,struct bio * bio)235 static void __write_super(struct cache_sb *sb, struct bio *bio)
236 {
237 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
238 unsigned i;
239
240 bio->bi_sector = SB_SECTOR;
241 bio->bi_rw = REQ_SYNC|REQ_META;
242 bio->bi_size = SB_SIZE;
243 bch_bio_map(bio, NULL);
244
245 out->offset = cpu_to_le64(sb->offset);
246 out->version = cpu_to_le64(sb->version);
247
248 memcpy(out->uuid, sb->uuid, 16);
249 memcpy(out->set_uuid, sb->set_uuid, 16);
250 memcpy(out->label, sb->label, SB_LABEL_SIZE);
251
252 out->flags = cpu_to_le64(sb->flags);
253 out->seq = cpu_to_le64(sb->seq);
254
255 out->last_mount = cpu_to_le32(sb->last_mount);
256 out->first_bucket = cpu_to_le16(sb->first_bucket);
257 out->keys = cpu_to_le16(sb->keys);
258
259 for (i = 0; i < sb->keys; i++)
260 out->d[i] = cpu_to_le64(sb->d[i]);
261
262 out->csum = csum_set(out);
263
264 pr_debug("ver %llu, flags %llu, seq %llu",
265 sb->version, sb->flags, sb->seq);
266
267 submit_bio(REQ_WRITE, bio);
268 }
269
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)270 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
271 {
272 struct closure *cl = &dc->sb_write.cl;
273 struct bio *bio = &dc->sb_bio;
274
275 closure_lock(&dc->sb_write, parent);
276
277 bio_reset(bio);
278 bio->bi_bdev = dc->bdev;
279 bio->bi_end_io = write_bdev_super_endio;
280 bio->bi_private = dc;
281
282 closure_get(cl);
283 __write_super(&dc->sb, bio);
284
285 closure_return(cl);
286 }
287
write_super_endio(struct bio * bio,int error)288 static void write_super_endio(struct bio *bio, int error)
289 {
290 struct cache *ca = bio->bi_private;
291
292 bch_count_io_errors(ca, error, "writing superblock");
293 closure_put(&ca->set->sb_write.cl);
294 }
295
bcache_write_super(struct cache_set * c)296 void bcache_write_super(struct cache_set *c)
297 {
298 struct closure *cl = &c->sb_write.cl;
299 struct cache *ca;
300 unsigned i;
301
302 closure_lock(&c->sb_write, &c->cl);
303
304 c->sb.seq++;
305
306 for_each_cache(ca, c, i) {
307 struct bio *bio = &ca->sb_bio;
308
309 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
310 ca->sb.seq = c->sb.seq;
311 ca->sb.last_mount = c->sb.last_mount;
312
313 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
314
315 bio_reset(bio);
316 bio->bi_bdev = ca->bdev;
317 bio->bi_end_io = write_super_endio;
318 bio->bi_private = ca;
319
320 closure_get(cl);
321 __write_super(&ca->sb, bio);
322 }
323
324 closure_return(cl);
325 }
326
327 /* UUID io */
328
uuid_endio(struct bio * bio,int error)329 static void uuid_endio(struct bio *bio, int error)
330 {
331 struct closure *cl = bio->bi_private;
332 struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
333
334 cache_set_err_on(error, c, "accessing uuids");
335 bch_bbio_free(bio, c);
336 closure_put(cl);
337 }
338
uuid_io(struct cache_set * c,unsigned long rw,struct bkey * k,struct closure * parent)339 static void uuid_io(struct cache_set *c, unsigned long rw,
340 struct bkey *k, struct closure *parent)
341 {
342 struct closure *cl = &c->uuid_write.cl;
343 struct uuid_entry *u;
344 unsigned i;
345
346 BUG_ON(!parent);
347 closure_lock(&c->uuid_write, parent);
348
349 for (i = 0; i < KEY_PTRS(k); i++) {
350 struct bio *bio = bch_bbio_alloc(c);
351
352 bio->bi_rw = REQ_SYNC|REQ_META|rw;
353 bio->bi_size = KEY_SIZE(k) << 9;
354
355 bio->bi_end_io = uuid_endio;
356 bio->bi_private = cl;
357 bch_bio_map(bio, c->uuids);
358
359 bch_submit_bbio(bio, c, k, i);
360
361 if (!(rw & WRITE))
362 break;
363 }
364
365 pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read",
366 pkey(&c->uuid_bucket));
367
368 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
369 if (!bch_is_zero(u->uuid, 16))
370 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
371 u - c->uuids, u->uuid, u->label,
372 u->first_reg, u->last_reg, u->invalidated);
373
374 closure_return(cl);
375 }
376
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)377 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
378 {
379 struct bkey *k = &j->uuid_bucket;
380
381 if (__bch_ptr_invalid(c, 1, k))
382 return "bad uuid pointer";
383
384 bkey_copy(&c->uuid_bucket, k);
385 uuid_io(c, READ_SYNC, k, cl);
386
387 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
388 struct uuid_entry_v0 *u0 = (void *) c->uuids;
389 struct uuid_entry *u1 = (void *) c->uuids;
390 int i;
391
392 closure_sync(cl);
393
394 /*
395 * Since the new uuid entry is bigger than the old, we have to
396 * convert starting at the highest memory address and work down
397 * in order to do it in place
398 */
399
400 for (i = c->nr_uuids - 1;
401 i >= 0;
402 --i) {
403 memcpy(u1[i].uuid, u0[i].uuid, 16);
404 memcpy(u1[i].label, u0[i].label, 32);
405
406 u1[i].first_reg = u0[i].first_reg;
407 u1[i].last_reg = u0[i].last_reg;
408 u1[i].invalidated = u0[i].invalidated;
409
410 u1[i].flags = 0;
411 u1[i].sectors = 0;
412 }
413 }
414
415 return NULL;
416 }
417
__uuid_write(struct cache_set * c)418 static int __uuid_write(struct cache_set *c)
419 {
420 BKEY_PADDED(key) k;
421 struct closure cl;
422 closure_init_stack(&cl);
423
424 lockdep_assert_held(&bch_register_lock);
425
426 if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
427 return 1;
428
429 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
430 uuid_io(c, REQ_WRITE, &k.key, &cl);
431 closure_sync(&cl);
432
433 bkey_copy(&c->uuid_bucket, &k.key);
434 __bkey_put(c, &k.key);
435 return 0;
436 }
437
bch_uuid_write(struct cache_set * c)438 int bch_uuid_write(struct cache_set *c)
439 {
440 int ret = __uuid_write(c);
441
442 if (!ret)
443 bch_journal_meta(c, NULL);
444
445 return ret;
446 }
447
uuid_find(struct cache_set * c,const char * uuid)448 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
449 {
450 struct uuid_entry *u;
451
452 for (u = c->uuids;
453 u < c->uuids + c->nr_uuids; u++)
454 if (!memcmp(u->uuid, uuid, 16))
455 return u;
456
457 return NULL;
458 }
459
uuid_find_empty(struct cache_set * c)460 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
461 {
462 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
463 return uuid_find(c, zero_uuid);
464 }
465
466 /*
467 * Bucket priorities/gens:
468 *
469 * For each bucket, we store on disk its
470 * 8 bit gen
471 * 16 bit priority
472 *
473 * See alloc.c for an explanation of the gen. The priority is used to implement
474 * lru (and in the future other) cache replacement policies; for most purposes
475 * it's just an opaque integer.
476 *
477 * The gens and the priorities don't have a whole lot to do with each other, and
478 * it's actually the gens that must be written out at specific times - it's no
479 * big deal if the priorities don't get written, if we lose them we just reuse
480 * buckets in suboptimal order.
481 *
482 * On disk they're stored in a packed array, and in as many buckets are required
483 * to fit them all. The buckets we use to store them form a list; the journal
484 * header points to the first bucket, the first bucket points to the second
485 * bucket, et cetera.
486 *
487 * This code is used by the allocation code; periodically (whenever it runs out
488 * of buckets to allocate from) the allocation code will invalidate some
489 * buckets, but it can't use those buckets until their new gens are safely on
490 * disk.
491 */
492
prio_endio(struct bio * bio,int error)493 static void prio_endio(struct bio *bio, int error)
494 {
495 struct cache *ca = bio->bi_private;
496
497 cache_set_err_on(error, ca->set, "accessing priorities");
498 bch_bbio_free(bio, ca->set);
499 closure_put(&ca->prio);
500 }
501
prio_io(struct cache * ca,uint64_t bucket,unsigned long rw)502 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
503 {
504 struct closure *cl = &ca->prio;
505 struct bio *bio = bch_bbio_alloc(ca->set);
506
507 closure_init_stack(cl);
508
509 bio->bi_sector = bucket * ca->sb.bucket_size;
510 bio->bi_bdev = ca->bdev;
511 bio->bi_rw = REQ_SYNC|REQ_META|rw;
512 bio->bi_size = bucket_bytes(ca);
513
514 bio->bi_end_io = prio_endio;
515 bio->bi_private = ca;
516 bch_bio_map(bio, ca->disk_buckets);
517
518 closure_bio_submit(bio, &ca->prio, ca);
519 closure_sync(cl);
520 }
521
522 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu", \
523 fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
524
bch_prio_write(struct cache * ca)525 void bch_prio_write(struct cache *ca)
526 {
527 int i;
528 struct bucket *b;
529 struct closure cl;
530
531 closure_init_stack(&cl);
532
533 lockdep_assert_held(&ca->set->bucket_lock);
534
535 for (b = ca->buckets;
536 b < ca->buckets + ca->sb.nbuckets; b++)
537 b->disk_gen = b->gen;
538
539 ca->disk_buckets->seq++;
540
541 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
542 &ca->meta_sectors_written);
543
544 pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
545 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
546 blktrace_msg(ca, "Starting priorities: " buckets_free(ca));
547
548 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
549 long bucket;
550 struct prio_set *p = ca->disk_buckets;
551 struct bucket_disk *d = p->data;
552 struct bucket_disk *end = d + prios_per_bucket(ca);
553
554 for (b = ca->buckets + i * prios_per_bucket(ca);
555 b < ca->buckets + ca->sb.nbuckets && d < end;
556 b++, d++) {
557 d->prio = cpu_to_le16(b->prio);
558 d->gen = b->gen;
559 }
560
561 p->next_bucket = ca->prio_buckets[i + 1];
562 p->magic = pset_magic(ca);
563 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
564
565 bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
566 BUG_ON(bucket == -1);
567
568 mutex_unlock(&ca->set->bucket_lock);
569 prio_io(ca, bucket, REQ_WRITE);
570 mutex_lock(&ca->set->bucket_lock);
571
572 ca->prio_buckets[i] = bucket;
573 atomic_dec_bug(&ca->buckets[bucket].pin);
574 }
575
576 mutex_unlock(&ca->set->bucket_lock);
577
578 bch_journal_meta(ca->set, &cl);
579 closure_sync(&cl);
580
581 mutex_lock(&ca->set->bucket_lock);
582
583 ca->need_save_prio = 0;
584
585 /*
586 * Don't want the old priorities to get garbage collected until after we
587 * finish writing the new ones, and they're journalled
588 */
589 for (i = 0; i < prio_buckets(ca); i++)
590 ca->prio_last_buckets[i] = ca->prio_buckets[i];
591 }
592
prio_read(struct cache * ca,uint64_t bucket)593 static void prio_read(struct cache *ca, uint64_t bucket)
594 {
595 struct prio_set *p = ca->disk_buckets;
596 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
597 struct bucket *b;
598 unsigned bucket_nr = 0;
599
600 for (b = ca->buckets;
601 b < ca->buckets + ca->sb.nbuckets;
602 b++, d++) {
603 if (d == end) {
604 ca->prio_buckets[bucket_nr] = bucket;
605 ca->prio_last_buckets[bucket_nr] = bucket;
606 bucket_nr++;
607
608 prio_io(ca, bucket, READ_SYNC);
609
610 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
611 pr_warn("bad csum reading priorities");
612
613 if (p->magic != pset_magic(ca))
614 pr_warn("bad magic reading priorities");
615
616 bucket = p->next_bucket;
617 d = p->data;
618 }
619
620 b->prio = le16_to_cpu(d->prio);
621 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
622 }
623 }
624
625 /* Bcache device */
626
open_dev(struct block_device * b,fmode_t mode)627 static int open_dev(struct block_device *b, fmode_t mode)
628 {
629 struct bcache_device *d = b->bd_disk->private_data;
630 if (atomic_read(&d->closing))
631 return -ENXIO;
632
633 closure_get(&d->cl);
634 return 0;
635 }
636
release_dev(struct gendisk * b,fmode_t mode)637 static void release_dev(struct gendisk *b, fmode_t mode)
638 {
639 struct bcache_device *d = b->private_data;
640 closure_put(&d->cl);
641 }
642
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)643 static int ioctl_dev(struct block_device *b, fmode_t mode,
644 unsigned int cmd, unsigned long arg)
645 {
646 struct bcache_device *d = b->bd_disk->private_data;
647 return d->ioctl(d, mode, cmd, arg);
648 }
649
650 static const struct block_device_operations bcache_ops = {
651 .open = open_dev,
652 .release = release_dev,
653 .ioctl = ioctl_dev,
654 .owner = THIS_MODULE,
655 };
656
bcache_device_stop(struct bcache_device * d)657 void bcache_device_stop(struct bcache_device *d)
658 {
659 if (!atomic_xchg(&d->closing, 1))
660 closure_queue(&d->cl);
661 }
662
bcache_device_unlink(struct bcache_device * d)663 static void bcache_device_unlink(struct bcache_device *d)
664 {
665 unsigned i;
666 struct cache *ca;
667
668 sysfs_remove_link(&d->c->kobj, d->name);
669 sysfs_remove_link(&d->kobj, "cache");
670
671 for_each_cache(ca, d->c, i)
672 bd_unlink_disk_holder(ca->bdev, d->disk);
673 }
674
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)675 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
676 const char *name)
677 {
678 unsigned i;
679 struct cache *ca;
680
681 for_each_cache(ca, d->c, i)
682 bd_link_disk_holder(ca->bdev, d->disk);
683
684 snprintf(d->name, BCACHEDEVNAME_SIZE,
685 "%s%u", name, d->id);
686
687 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
688 sysfs_create_link(&c->kobj, &d->kobj, d->name),
689 "Couldn't create device <-> cache set symlinks");
690 }
691
bcache_device_detach(struct bcache_device * d)692 static void bcache_device_detach(struct bcache_device *d)
693 {
694 lockdep_assert_held(&bch_register_lock);
695
696 if (atomic_read(&d->detaching)) {
697 struct uuid_entry *u = d->c->uuids + d->id;
698
699 SET_UUID_FLASH_ONLY(u, 0);
700 memcpy(u->uuid, invalid_uuid, 16);
701 u->invalidated = cpu_to_le32(get_seconds());
702 bch_uuid_write(d->c);
703
704 atomic_set(&d->detaching, 0);
705 }
706
707 bcache_device_unlink(d);
708
709 d->c->devices[d->id] = NULL;
710 closure_put(&d->c->caching);
711 d->c = NULL;
712 }
713
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned id)714 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
715 unsigned id)
716 {
717 BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
718
719 d->id = id;
720 d->c = c;
721 c->devices[id] = d;
722
723 closure_get(&c->caching);
724 }
725
bcache_device_free(struct bcache_device * d)726 static void bcache_device_free(struct bcache_device *d)
727 {
728 lockdep_assert_held(&bch_register_lock);
729
730 pr_info("%s stopped", d->disk->disk_name);
731
732 if (d->c)
733 bcache_device_detach(d);
734 if (d->disk && d->disk->flags & GENHD_FL_UP)
735 del_gendisk(d->disk);
736 if (d->disk && d->disk->queue)
737 blk_cleanup_queue(d->disk->queue);
738 if (d->disk)
739 put_disk(d->disk);
740
741 bio_split_pool_free(&d->bio_split_hook);
742 if (d->unaligned_bvec)
743 mempool_destroy(d->unaligned_bvec);
744 if (d->bio_split)
745 bioset_free(d->bio_split);
746
747 closure_debug_destroy(&d->cl);
748 }
749
bcache_device_init(struct bcache_device * d,unsigned block_size)750 static int bcache_device_init(struct bcache_device *d, unsigned block_size)
751 {
752 struct request_queue *q;
753
754 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
755 !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
756 sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
757 bio_split_pool_init(&d->bio_split_hook) ||
758 !(d->disk = alloc_disk(1)) ||
759 !(q = blk_alloc_queue(GFP_KERNEL)))
760 return -ENOMEM;
761
762 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
763
764 d->disk->major = bcache_major;
765 d->disk->first_minor = bcache_minor++;
766 d->disk->fops = &bcache_ops;
767 d->disk->private_data = d;
768
769 blk_queue_make_request(q, NULL);
770 d->disk->queue = q;
771 q->queuedata = d;
772 q->backing_dev_info.congested_data = d;
773 q->limits.max_hw_sectors = UINT_MAX;
774 q->limits.max_sectors = UINT_MAX;
775 q->limits.max_segment_size = UINT_MAX;
776 q->limits.max_segments = BIO_MAX_PAGES;
777 q->limits.max_discard_sectors = UINT_MAX;
778 q->limits.io_min = block_size;
779 q->limits.logical_block_size = block_size;
780 q->limits.physical_block_size = block_size;
781 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
782 clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
783 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
784
785 return 0;
786 }
787
788 /* Cached device */
789
calc_cached_dev_sectors(struct cache_set * c)790 static void calc_cached_dev_sectors(struct cache_set *c)
791 {
792 uint64_t sectors = 0;
793 struct cached_dev *dc;
794
795 list_for_each_entry(dc, &c->cached_devs, list)
796 sectors += bdev_sectors(dc->bdev);
797
798 c->cached_dev_sectors = sectors;
799 }
800
bch_cached_dev_run(struct cached_dev * dc)801 void bch_cached_dev_run(struct cached_dev *dc)
802 {
803 struct bcache_device *d = &dc->disk;
804
805 if (atomic_xchg(&dc->running, 1))
806 return;
807
808 if (!d->c &&
809 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
810 struct closure cl;
811 closure_init_stack(&cl);
812
813 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
814 bch_write_bdev_super(dc, &cl);
815 closure_sync(&cl);
816 }
817
818 add_disk(d->disk);
819 bd_link_disk_holder(dc->bdev, dc->disk.disk);
820 #if 0
821 char *env[] = { "SYMLINK=label" , NULL };
822 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
823 #endif
824 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
825 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
826 pr_debug("error creating sysfs link");
827 }
828
cached_dev_detach_finish(struct work_struct * w)829 static void cached_dev_detach_finish(struct work_struct *w)
830 {
831 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
832 char buf[BDEVNAME_SIZE];
833 struct closure cl;
834 closure_init_stack(&cl);
835
836 BUG_ON(!atomic_read(&dc->disk.detaching));
837 BUG_ON(atomic_read(&dc->count));
838
839 mutex_lock(&bch_register_lock);
840
841 memset(&dc->sb.set_uuid, 0, 16);
842 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
843
844 bch_write_bdev_super(dc, &cl);
845 closure_sync(&cl);
846
847 bcache_device_detach(&dc->disk);
848 list_move(&dc->list, &uncached_devices);
849
850 mutex_unlock(&bch_register_lock);
851
852 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
853
854 /* Drop ref we took in cached_dev_detach() */
855 closure_put(&dc->disk.cl);
856 }
857
bch_cached_dev_detach(struct cached_dev * dc)858 void bch_cached_dev_detach(struct cached_dev *dc)
859 {
860 lockdep_assert_held(&bch_register_lock);
861
862 if (atomic_read(&dc->disk.closing))
863 return;
864
865 if (atomic_xchg(&dc->disk.detaching, 1))
866 return;
867
868 /*
869 * Block the device from being closed and freed until we're finished
870 * detaching
871 */
872 closure_get(&dc->disk.cl);
873
874 bch_writeback_queue(dc);
875 cached_dev_put(dc);
876 }
877
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c)878 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
879 {
880 uint32_t rtime = cpu_to_le32(get_seconds());
881 struct uuid_entry *u;
882 char buf[BDEVNAME_SIZE];
883
884 bdevname(dc->bdev, buf);
885
886 if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
887 return -ENOENT;
888
889 if (dc->disk.c) {
890 pr_err("Can't attach %s: already attached", buf);
891 return -EINVAL;
892 }
893
894 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
895 pr_err("Can't attach %s: shutting down", buf);
896 return -EINVAL;
897 }
898
899 if (dc->sb.block_size < c->sb.block_size) {
900 /* Will die */
901 pr_err("Couldn't attach %s: block size less than set's block size",
902 buf);
903 return -EINVAL;
904 }
905
906 u = uuid_find(c, dc->sb.uuid);
907
908 if (u &&
909 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
910 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
911 memcpy(u->uuid, invalid_uuid, 16);
912 u->invalidated = cpu_to_le32(get_seconds());
913 u = NULL;
914 }
915
916 if (!u) {
917 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
918 pr_err("Couldn't find uuid for %s in set", buf);
919 return -ENOENT;
920 }
921
922 u = uuid_find_empty(c);
923 if (!u) {
924 pr_err("Not caching %s, no room for UUID", buf);
925 return -EINVAL;
926 }
927 }
928
929 /* Deadlocks since we're called via sysfs...
930 sysfs_remove_file(&dc->kobj, &sysfs_attach);
931 */
932
933 if (bch_is_zero(u->uuid, 16)) {
934 struct closure cl;
935 closure_init_stack(&cl);
936
937 memcpy(u->uuid, dc->sb.uuid, 16);
938 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
939 u->first_reg = u->last_reg = rtime;
940 bch_uuid_write(c);
941
942 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
943 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
944
945 bch_write_bdev_super(dc, &cl);
946 closure_sync(&cl);
947 } else {
948 u->last_reg = rtime;
949 bch_uuid_write(c);
950 }
951
952 bcache_device_attach(&dc->disk, c, u - c->uuids);
953 list_move(&dc->list, &c->cached_devs);
954 calc_cached_dev_sectors(c);
955
956 smp_wmb();
957 /*
958 * dc->c must be set before dc->count != 0 - paired with the mb in
959 * cached_dev_get()
960 */
961 atomic_set(&dc->count, 1);
962
963 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
964 atomic_set(&dc->has_dirty, 1);
965 atomic_inc(&dc->count);
966 bch_writeback_queue(dc);
967 }
968
969 bch_cached_dev_run(dc);
970 bcache_device_link(&dc->disk, c, "bdev");
971
972 pr_info("Caching %s as %s on set %pU",
973 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
974 dc->disk.c->sb.set_uuid);
975 return 0;
976 }
977
bch_cached_dev_release(struct kobject * kobj)978 void bch_cached_dev_release(struct kobject *kobj)
979 {
980 struct cached_dev *dc = container_of(kobj, struct cached_dev,
981 disk.kobj);
982 kfree(dc);
983 module_put(THIS_MODULE);
984 }
985
cached_dev_free(struct closure * cl)986 static void cached_dev_free(struct closure *cl)
987 {
988 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
989
990 cancel_delayed_work_sync(&dc->writeback_rate_update);
991
992 mutex_lock(&bch_register_lock);
993
994 if (atomic_read(&dc->running))
995 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
996 bcache_device_free(&dc->disk);
997 list_del(&dc->list);
998
999 mutex_unlock(&bch_register_lock);
1000
1001 if (!IS_ERR_OR_NULL(dc->bdev)) {
1002 if (dc->bdev->bd_disk)
1003 blk_sync_queue(bdev_get_queue(dc->bdev));
1004
1005 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1006 }
1007
1008 wake_up(&unregister_wait);
1009
1010 kobject_put(&dc->disk.kobj);
1011 }
1012
cached_dev_flush(struct closure * cl)1013 static void cached_dev_flush(struct closure *cl)
1014 {
1015 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1016 struct bcache_device *d = &dc->disk;
1017
1018 bch_cache_accounting_destroy(&dc->accounting);
1019 kobject_del(&d->kobj);
1020
1021 continue_at(cl, cached_dev_free, system_wq);
1022 }
1023
cached_dev_init(struct cached_dev * dc,unsigned block_size)1024 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1025 {
1026 int ret;
1027 struct io *io;
1028 struct request_queue *q = bdev_get_queue(dc->bdev);
1029
1030 __module_get(THIS_MODULE);
1031 INIT_LIST_HEAD(&dc->list);
1032 closure_init(&dc->disk.cl, NULL);
1033 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1034 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1035 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1036 closure_init_unlocked(&dc->sb_write);
1037 INIT_LIST_HEAD(&dc->io_lru);
1038 spin_lock_init(&dc->io_lock);
1039 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1040
1041 dc->sequential_merge = true;
1042 dc->sequential_cutoff = 4 << 20;
1043
1044 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1045 list_add(&io->lru, &dc->io_lru);
1046 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1047 }
1048
1049 ret = bcache_device_init(&dc->disk, block_size);
1050 if (ret)
1051 return ret;
1052
1053 set_capacity(dc->disk.disk,
1054 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1055
1056 dc->disk.disk->queue->backing_dev_info.ra_pages =
1057 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1058 q->backing_dev_info.ra_pages);
1059
1060 bch_cached_dev_request_init(dc);
1061 bch_cached_dev_writeback_init(dc);
1062 return 0;
1063 }
1064
1065 /* Cached device - bcache superblock */
1066
register_bdev(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cached_dev * dc)1067 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1068 struct block_device *bdev,
1069 struct cached_dev *dc)
1070 {
1071 char name[BDEVNAME_SIZE];
1072 const char *err = "cannot allocate memory";
1073 struct cache_set *c;
1074
1075 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1076 dc->bdev = bdev;
1077 dc->bdev->bd_holder = dc;
1078
1079 bio_init(&dc->sb_bio);
1080 dc->sb_bio.bi_max_vecs = 1;
1081 dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
1082 dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1083 get_page(sb_page);
1084
1085 if (cached_dev_init(dc, sb->block_size << 9))
1086 goto err;
1087
1088 err = "error creating kobject";
1089 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1090 "bcache"))
1091 goto err;
1092 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1093 goto err;
1094
1095 pr_info("registered backing device %s", bdevname(bdev, name));
1096
1097 list_add(&dc->list, &uncached_devices);
1098 list_for_each_entry(c, &bch_cache_sets, list)
1099 bch_cached_dev_attach(dc, c);
1100
1101 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1102 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1103 bch_cached_dev_run(dc);
1104
1105 return;
1106 err:
1107 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1108 bcache_device_stop(&dc->disk);
1109 }
1110
1111 /* Flash only volumes */
1112
bch_flash_dev_release(struct kobject * kobj)1113 void bch_flash_dev_release(struct kobject *kobj)
1114 {
1115 struct bcache_device *d = container_of(kobj, struct bcache_device,
1116 kobj);
1117 kfree(d);
1118 }
1119
flash_dev_free(struct closure * cl)1120 static void flash_dev_free(struct closure *cl)
1121 {
1122 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1123 bcache_device_free(d);
1124 kobject_put(&d->kobj);
1125 }
1126
flash_dev_flush(struct closure * cl)1127 static void flash_dev_flush(struct closure *cl)
1128 {
1129 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1130
1131 bcache_device_unlink(d);
1132 kobject_del(&d->kobj);
1133 continue_at(cl, flash_dev_free, system_wq);
1134 }
1135
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1136 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1137 {
1138 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1139 GFP_KERNEL);
1140 if (!d)
1141 return -ENOMEM;
1142
1143 closure_init(&d->cl, NULL);
1144 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1145
1146 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1147
1148 if (bcache_device_init(d, block_bytes(c)))
1149 goto err;
1150
1151 bcache_device_attach(d, c, u - c->uuids);
1152 set_capacity(d->disk, u->sectors);
1153 bch_flash_dev_request_init(d);
1154 add_disk(d->disk);
1155
1156 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1157 goto err;
1158
1159 bcache_device_link(d, c, "volume");
1160
1161 return 0;
1162 err:
1163 kobject_put(&d->kobj);
1164 return -ENOMEM;
1165 }
1166
flash_devs_run(struct cache_set * c)1167 static int flash_devs_run(struct cache_set *c)
1168 {
1169 int ret = 0;
1170 struct uuid_entry *u;
1171
1172 for (u = c->uuids;
1173 u < c->uuids + c->nr_uuids && !ret;
1174 u++)
1175 if (UUID_FLASH_ONLY(u))
1176 ret = flash_dev_run(c, u);
1177
1178 return ret;
1179 }
1180
bch_flash_dev_create(struct cache_set * c,uint64_t size)1181 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1182 {
1183 struct uuid_entry *u;
1184
1185 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1186 return -EINTR;
1187
1188 u = uuid_find_empty(c);
1189 if (!u) {
1190 pr_err("Can't create volume, no room for UUID");
1191 return -EINVAL;
1192 }
1193
1194 get_random_bytes(u->uuid, 16);
1195 memset(u->label, 0, 32);
1196 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1197
1198 SET_UUID_FLASH_ONLY(u, 1);
1199 u->sectors = size >> 9;
1200
1201 bch_uuid_write(c);
1202
1203 return flash_dev_run(c, u);
1204 }
1205
1206 /* Cache set */
1207
1208 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1209 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1210 {
1211 va_list args;
1212
1213 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1214 return false;
1215
1216 /* XXX: we can be called from atomic context
1217 acquire_console_sem();
1218 */
1219
1220 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1221
1222 va_start(args, fmt);
1223 vprintk(fmt, args);
1224 va_end(args);
1225
1226 printk(", disabling caching\n");
1227
1228 bch_cache_set_unregister(c);
1229 return true;
1230 }
1231
bch_cache_set_release(struct kobject * kobj)1232 void bch_cache_set_release(struct kobject *kobj)
1233 {
1234 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1235 kfree(c);
1236 module_put(THIS_MODULE);
1237 }
1238
cache_set_free(struct closure * cl)1239 static void cache_set_free(struct closure *cl)
1240 {
1241 struct cache_set *c = container_of(cl, struct cache_set, cl);
1242 struct cache *ca;
1243 unsigned i;
1244
1245 if (!IS_ERR_OR_NULL(c->debug))
1246 debugfs_remove(c->debug);
1247
1248 bch_open_buckets_free(c);
1249 bch_btree_cache_free(c);
1250 bch_journal_free(c);
1251
1252 for_each_cache(ca, c, i)
1253 if (ca)
1254 kobject_put(&ca->kobj);
1255
1256 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1257 free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1258
1259 kfree(c->fill_iter);
1260 if (c->bio_split)
1261 bioset_free(c->bio_split);
1262 if (c->bio_meta)
1263 mempool_destroy(c->bio_meta);
1264 if (c->search)
1265 mempool_destroy(c->search);
1266 kfree(c->devices);
1267
1268 mutex_lock(&bch_register_lock);
1269 list_del(&c->list);
1270 mutex_unlock(&bch_register_lock);
1271
1272 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1273 wake_up(&unregister_wait);
1274
1275 closure_debug_destroy(&c->cl);
1276 kobject_put(&c->kobj);
1277 }
1278
cache_set_flush(struct closure * cl)1279 static void cache_set_flush(struct closure *cl)
1280 {
1281 struct cache_set *c = container_of(cl, struct cache_set, caching);
1282 struct btree *b;
1283
1284 /* Shut down allocator threads */
1285 set_bit(CACHE_SET_STOPPING_2, &c->flags);
1286 wake_up(&c->alloc_wait);
1287
1288 bch_cache_accounting_destroy(&c->accounting);
1289
1290 kobject_put(&c->internal);
1291 kobject_del(&c->kobj);
1292
1293 if (!IS_ERR_OR_NULL(c->root))
1294 list_add(&c->root->list, &c->btree_cache);
1295
1296 /* Should skip this if we're unregistering because of an error */
1297 list_for_each_entry(b, &c->btree_cache, list)
1298 if (btree_node_dirty(b))
1299 bch_btree_write(b, true, NULL);
1300
1301 closure_return(cl);
1302 }
1303
__cache_set_unregister(struct closure * cl)1304 static void __cache_set_unregister(struct closure *cl)
1305 {
1306 struct cache_set *c = container_of(cl, struct cache_set, caching);
1307 struct cached_dev *dc, *t;
1308 size_t i;
1309
1310 mutex_lock(&bch_register_lock);
1311
1312 if (test_bit(CACHE_SET_UNREGISTERING, &c->flags))
1313 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1314 bch_cached_dev_detach(dc);
1315
1316 for (i = 0; i < c->nr_uuids; i++)
1317 if (c->devices[i] && UUID_FLASH_ONLY(&c->uuids[i]))
1318 bcache_device_stop(c->devices[i]);
1319
1320 mutex_unlock(&bch_register_lock);
1321
1322 continue_at(cl, cache_set_flush, system_wq);
1323 }
1324
bch_cache_set_stop(struct cache_set * c)1325 void bch_cache_set_stop(struct cache_set *c)
1326 {
1327 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1328 closure_queue(&c->caching);
1329 }
1330
bch_cache_set_unregister(struct cache_set * c)1331 void bch_cache_set_unregister(struct cache_set *c)
1332 {
1333 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1334 bch_cache_set_stop(c);
1335 }
1336
1337 #define alloc_bucket_pages(gfp, c) \
1338 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1339
bch_cache_set_alloc(struct cache_sb * sb)1340 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1341 {
1342 int iter_size;
1343 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1344 if (!c)
1345 return NULL;
1346
1347 __module_get(THIS_MODULE);
1348 closure_init(&c->cl, NULL);
1349 set_closure_fn(&c->cl, cache_set_free, system_wq);
1350
1351 closure_init(&c->caching, &c->cl);
1352 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1353
1354 /* Maybe create continue_at_noreturn() and use it here? */
1355 closure_set_stopped(&c->cl);
1356 closure_put(&c->cl);
1357
1358 kobject_init(&c->kobj, &bch_cache_set_ktype);
1359 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1360
1361 bch_cache_accounting_init(&c->accounting, &c->cl);
1362
1363 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1364 c->sb.block_size = sb->block_size;
1365 c->sb.bucket_size = sb->bucket_size;
1366 c->sb.nr_in_set = sb->nr_in_set;
1367 c->sb.last_mount = sb->last_mount;
1368 c->bucket_bits = ilog2(sb->bucket_size);
1369 c->block_bits = ilog2(sb->block_size);
1370 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1371
1372 c->btree_pages = c->sb.bucket_size / PAGE_SECTORS;
1373 if (c->btree_pages > BTREE_MAX_PAGES)
1374 c->btree_pages = max_t(int, c->btree_pages / 4,
1375 BTREE_MAX_PAGES);
1376
1377 init_waitqueue_head(&c->alloc_wait);
1378 mutex_init(&c->bucket_lock);
1379 mutex_init(&c->fill_lock);
1380 mutex_init(&c->sort_lock);
1381 spin_lock_init(&c->sort_time_lock);
1382 closure_init_unlocked(&c->sb_write);
1383 closure_init_unlocked(&c->uuid_write);
1384 spin_lock_init(&c->btree_read_time_lock);
1385 bch_moving_init_cache_set(c);
1386
1387 INIT_LIST_HEAD(&c->list);
1388 INIT_LIST_HEAD(&c->cached_devs);
1389 INIT_LIST_HEAD(&c->btree_cache);
1390 INIT_LIST_HEAD(&c->btree_cache_freeable);
1391 INIT_LIST_HEAD(&c->btree_cache_freed);
1392 INIT_LIST_HEAD(&c->data_buckets);
1393
1394 c->search = mempool_create_slab_pool(32, bch_search_cache);
1395 if (!c->search)
1396 goto err;
1397
1398 iter_size = (sb->bucket_size / sb->block_size + 1) *
1399 sizeof(struct btree_iter_set);
1400
1401 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1402 !(c->bio_meta = mempool_create_kmalloc_pool(2,
1403 sizeof(struct bbio) + sizeof(struct bio_vec) *
1404 bucket_pages(c))) ||
1405 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1406 !(c->fill_iter = kmalloc(iter_size, GFP_KERNEL)) ||
1407 !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1408 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1409 bch_journal_alloc(c) ||
1410 bch_btree_cache_alloc(c) ||
1411 bch_open_buckets_alloc(c))
1412 goto err;
1413
1414 c->fill_iter->size = sb->bucket_size / sb->block_size;
1415
1416 c->congested_read_threshold_us = 2000;
1417 c->congested_write_threshold_us = 20000;
1418 c->error_limit = 8 << IO_ERROR_SHIFT;
1419
1420 return c;
1421 err:
1422 bch_cache_set_unregister(c);
1423 return NULL;
1424 }
1425
run_cache_set(struct cache_set * c)1426 static void run_cache_set(struct cache_set *c)
1427 {
1428 const char *err = "cannot allocate memory";
1429 struct cached_dev *dc, *t;
1430 struct cache *ca;
1431 unsigned i;
1432
1433 struct btree_op op;
1434 bch_btree_op_init_stack(&op);
1435 op.lock = SHRT_MAX;
1436
1437 for_each_cache(ca, c, i)
1438 c->nbuckets += ca->sb.nbuckets;
1439
1440 if (CACHE_SYNC(&c->sb)) {
1441 LIST_HEAD(journal);
1442 struct bkey *k;
1443 struct jset *j;
1444
1445 err = "cannot allocate memory for journal";
1446 if (bch_journal_read(c, &journal, &op))
1447 goto err;
1448
1449 pr_debug("btree_journal_read() done");
1450
1451 err = "no journal entries found";
1452 if (list_empty(&journal))
1453 goto err;
1454
1455 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1456
1457 err = "IO error reading priorities";
1458 for_each_cache(ca, c, i)
1459 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1460
1461 /*
1462 * If prio_read() fails it'll call cache_set_error and we'll
1463 * tear everything down right away, but if we perhaps checked
1464 * sooner we could avoid journal replay.
1465 */
1466
1467 k = &j->btree_root;
1468
1469 err = "bad btree root";
1470 if (__bch_ptr_invalid(c, j->btree_level + 1, k))
1471 goto err;
1472
1473 err = "error reading btree root";
1474 c->root = bch_btree_node_get(c, k, j->btree_level, &op);
1475 if (IS_ERR_OR_NULL(c->root))
1476 goto err;
1477
1478 list_del_init(&c->root->list);
1479 rw_unlock(true, c->root);
1480
1481 err = uuid_read(c, j, &op.cl);
1482 if (err)
1483 goto err;
1484
1485 err = "error in recovery";
1486 if (bch_btree_check(c, &op))
1487 goto err;
1488
1489 bch_journal_mark(c, &journal);
1490 bch_btree_gc_finish(c);
1491 pr_debug("btree_check() done");
1492
1493 /*
1494 * bcache_journal_next() can't happen sooner, or
1495 * btree_gc_finish() will give spurious errors about last_gc >
1496 * gc_gen - this is a hack but oh well.
1497 */
1498 bch_journal_next(&c->journal);
1499
1500 for_each_cache(ca, c, i)
1501 closure_call(&ca->alloc, bch_allocator_thread,
1502 system_wq, &c->cl);
1503
1504 /*
1505 * First place it's safe to allocate: btree_check() and
1506 * btree_gc_finish() have to run before we have buckets to
1507 * allocate, and bch_bucket_alloc_set() might cause a journal
1508 * entry to be written so bcache_journal_next() has to be called
1509 * first.
1510 *
1511 * If the uuids were in the old format we have to rewrite them
1512 * before the next journal entry is written:
1513 */
1514 if (j->version < BCACHE_JSET_VERSION_UUID)
1515 __uuid_write(c);
1516
1517 bch_journal_replay(c, &journal, &op);
1518 } else {
1519 pr_notice("invalidating existing data");
1520 /* Don't want invalidate_buckets() to queue a gc yet */
1521 closure_lock(&c->gc, NULL);
1522
1523 for_each_cache(ca, c, i) {
1524 unsigned j;
1525
1526 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1527 2, SB_JOURNAL_BUCKETS);
1528
1529 for (j = 0; j < ca->sb.keys; j++)
1530 ca->sb.d[j] = ca->sb.first_bucket + j;
1531 }
1532
1533 bch_btree_gc_finish(c);
1534
1535 for_each_cache(ca, c, i)
1536 closure_call(&ca->alloc, bch_allocator_thread,
1537 ca->alloc_workqueue, &c->cl);
1538
1539 mutex_lock(&c->bucket_lock);
1540 for_each_cache(ca, c, i)
1541 bch_prio_write(ca);
1542 mutex_unlock(&c->bucket_lock);
1543
1544 wake_up(&c->alloc_wait);
1545
1546 err = "cannot allocate new UUID bucket";
1547 if (__uuid_write(c))
1548 goto err_unlock_gc;
1549
1550 err = "cannot allocate new btree root";
1551 c->root = bch_btree_node_alloc(c, 0, &op.cl);
1552 if (IS_ERR_OR_NULL(c->root))
1553 goto err_unlock_gc;
1554
1555 bkey_copy_key(&c->root->key, &MAX_KEY);
1556 bch_btree_write(c->root, true, &op);
1557
1558 bch_btree_set_root(c->root);
1559 rw_unlock(true, c->root);
1560
1561 /*
1562 * We don't want to write the first journal entry until
1563 * everything is set up - fortunately journal entries won't be
1564 * written until the SET_CACHE_SYNC() here:
1565 */
1566 SET_CACHE_SYNC(&c->sb, true);
1567
1568 bch_journal_next(&c->journal);
1569 bch_journal_meta(c, &op.cl);
1570
1571 /* Unlock */
1572 closure_set_stopped(&c->gc.cl);
1573 closure_put(&c->gc.cl);
1574 }
1575
1576 closure_sync(&op.cl);
1577 c->sb.last_mount = get_seconds();
1578 bcache_write_super(c);
1579
1580 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1581 bch_cached_dev_attach(dc, c);
1582
1583 flash_devs_run(c);
1584
1585 return;
1586 err_unlock_gc:
1587 closure_set_stopped(&c->gc.cl);
1588 closure_put(&c->gc.cl);
1589 err:
1590 closure_sync(&op.cl);
1591 /* XXX: test this, it's broken */
1592 bch_cache_set_error(c, err);
1593 }
1594
can_attach_cache(struct cache * ca,struct cache_set * c)1595 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1596 {
1597 return ca->sb.block_size == c->sb.block_size &&
1598 ca->sb.bucket_size == c->sb.block_size &&
1599 ca->sb.nr_in_set == c->sb.nr_in_set;
1600 }
1601
register_cache_set(struct cache * ca)1602 static const char *register_cache_set(struct cache *ca)
1603 {
1604 char buf[12];
1605 const char *err = "cannot allocate memory";
1606 struct cache_set *c;
1607
1608 list_for_each_entry(c, &bch_cache_sets, list)
1609 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1610 if (c->cache[ca->sb.nr_this_dev])
1611 return "duplicate cache set member";
1612
1613 if (!can_attach_cache(ca, c))
1614 return "cache sb does not match set";
1615
1616 if (!CACHE_SYNC(&ca->sb))
1617 SET_CACHE_SYNC(&c->sb, false);
1618
1619 goto found;
1620 }
1621
1622 c = bch_cache_set_alloc(&ca->sb);
1623 if (!c)
1624 return err;
1625
1626 err = "error creating kobject";
1627 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1628 kobject_add(&c->internal, &c->kobj, "internal"))
1629 goto err;
1630
1631 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1632 goto err;
1633
1634 bch_debug_init_cache_set(c);
1635
1636 list_add(&c->list, &bch_cache_sets);
1637 found:
1638 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1639 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1640 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1641 goto err;
1642
1643 if (ca->sb.seq > c->sb.seq) {
1644 c->sb.version = ca->sb.version;
1645 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1646 c->sb.flags = ca->sb.flags;
1647 c->sb.seq = ca->sb.seq;
1648 pr_debug("set version = %llu", c->sb.version);
1649 }
1650
1651 ca->set = c;
1652 ca->set->cache[ca->sb.nr_this_dev] = ca;
1653 c->cache_by_alloc[c->caches_loaded++] = ca;
1654
1655 if (c->caches_loaded == c->sb.nr_in_set)
1656 run_cache_set(c);
1657
1658 return NULL;
1659 err:
1660 bch_cache_set_unregister(c);
1661 return err;
1662 }
1663
1664 /* Cache device */
1665
bch_cache_release(struct kobject * kobj)1666 void bch_cache_release(struct kobject *kobj)
1667 {
1668 struct cache *ca = container_of(kobj, struct cache, kobj);
1669
1670 if (ca->set)
1671 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1672
1673 bch_cache_allocator_exit(ca);
1674
1675 bio_split_pool_free(&ca->bio_split_hook);
1676
1677 if (ca->alloc_workqueue)
1678 destroy_workqueue(ca->alloc_workqueue);
1679
1680 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1681 kfree(ca->prio_buckets);
1682 vfree(ca->buckets);
1683
1684 free_heap(&ca->heap);
1685 free_fifo(&ca->unused);
1686 free_fifo(&ca->free_inc);
1687 free_fifo(&ca->free);
1688
1689 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1690 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1691
1692 if (!IS_ERR_OR_NULL(ca->bdev)) {
1693 blk_sync_queue(bdev_get_queue(ca->bdev));
1694 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1695 }
1696
1697 kfree(ca);
1698 module_put(THIS_MODULE);
1699 }
1700
cache_alloc(struct cache_sb * sb,struct cache * ca)1701 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1702 {
1703 size_t free;
1704 struct bucket *b;
1705
1706 __module_get(THIS_MODULE);
1707 kobject_init(&ca->kobj, &bch_cache_ktype);
1708
1709 INIT_LIST_HEAD(&ca->discards);
1710
1711 bio_init(&ca->journal.bio);
1712 ca->journal.bio.bi_max_vecs = 8;
1713 ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1714
1715 free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1716 free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1717
1718 if (!init_fifo(&ca->free, free, GFP_KERNEL) ||
1719 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
1720 !init_fifo(&ca->unused, free << 2, GFP_KERNEL) ||
1721 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
1722 !(ca->buckets = vzalloc(sizeof(struct bucket) *
1723 ca->sb.nbuckets)) ||
1724 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1725 2, GFP_KERNEL)) ||
1726 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1727 !(ca->alloc_workqueue = alloc_workqueue("bch_allocator", 0, 1)) ||
1728 bio_split_pool_init(&ca->bio_split_hook))
1729 return -ENOMEM;
1730
1731 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1732
1733 for_each_bucket(b, ca)
1734 atomic_set(&b->pin, 0);
1735
1736 if (bch_cache_allocator_init(ca))
1737 goto err;
1738
1739 return 0;
1740 err:
1741 kobject_put(&ca->kobj);
1742 return -ENOMEM;
1743 }
1744
register_cache(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cache * ca)1745 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1746 struct block_device *bdev, struct cache *ca)
1747 {
1748 char name[BDEVNAME_SIZE];
1749 const char *err = "cannot allocate memory";
1750
1751 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1752 ca->bdev = bdev;
1753 ca->bdev->bd_holder = ca;
1754
1755 bio_init(&ca->sb_bio);
1756 ca->sb_bio.bi_max_vecs = 1;
1757 ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
1758 ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1759 get_page(sb_page);
1760
1761 if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1762 ca->discard = CACHE_DISCARD(&ca->sb);
1763
1764 if (cache_alloc(sb, ca) != 0)
1765 goto err;
1766
1767 err = "error creating kobject";
1768 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1769 goto err;
1770
1771 err = register_cache_set(ca);
1772 if (err)
1773 goto err;
1774
1775 pr_info("registered cache device %s", bdevname(bdev, name));
1776 return;
1777 err:
1778 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1779 kobject_put(&ca->kobj);
1780 }
1781
1782 /* Global interfaces/init */
1783
1784 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1785 const char *, size_t);
1786
1787 kobj_attribute_write(register, register_bcache);
1788 kobj_attribute_write(register_quiet, register_bcache);
1789
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)1790 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1791 const char *buffer, size_t size)
1792 {
1793 ssize_t ret = size;
1794 const char *err = "cannot allocate memory";
1795 char *path = NULL;
1796 struct cache_sb *sb = NULL;
1797 struct block_device *bdev = NULL;
1798 struct page *sb_page = NULL;
1799
1800 if (!try_module_get(THIS_MODULE))
1801 return -EBUSY;
1802
1803 mutex_lock(&bch_register_lock);
1804
1805 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1806 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1807 goto err;
1808
1809 err = "failed to open device";
1810 bdev = blkdev_get_by_path(strim(path),
1811 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1812 sb);
1813 if (IS_ERR(bdev)) {
1814 if (bdev == ERR_PTR(-EBUSY))
1815 err = "device busy";
1816 goto err;
1817 }
1818
1819 err = "failed to set blocksize";
1820 if (set_blocksize(bdev, 4096))
1821 goto err_close;
1822
1823 err = read_super(sb, bdev, &sb_page);
1824 if (err)
1825 goto err_close;
1826
1827 if (SB_IS_BDEV(sb)) {
1828 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1829 if (!dc)
1830 goto err_close;
1831
1832 register_bdev(sb, sb_page, bdev, dc);
1833 } else {
1834 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1835 if (!ca)
1836 goto err_close;
1837
1838 register_cache(sb, sb_page, bdev, ca);
1839 }
1840 out:
1841 if (sb_page)
1842 put_page(sb_page);
1843 kfree(sb);
1844 kfree(path);
1845 mutex_unlock(&bch_register_lock);
1846 module_put(THIS_MODULE);
1847 return ret;
1848
1849 err_close:
1850 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1851 err:
1852 if (attr != &ksysfs_register_quiet)
1853 pr_info("error opening %s: %s", path, err);
1854 ret = -EINVAL;
1855 goto out;
1856 }
1857
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)1858 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1859 {
1860 if (code == SYS_DOWN ||
1861 code == SYS_HALT ||
1862 code == SYS_POWER_OFF) {
1863 DEFINE_WAIT(wait);
1864 unsigned long start = jiffies;
1865 bool stopped = false;
1866
1867 struct cache_set *c, *tc;
1868 struct cached_dev *dc, *tdc;
1869
1870 mutex_lock(&bch_register_lock);
1871
1872 if (list_empty(&bch_cache_sets) &&
1873 list_empty(&uncached_devices))
1874 goto out;
1875
1876 pr_info("Stopping all devices:");
1877
1878 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1879 bch_cache_set_stop(c);
1880
1881 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1882 bcache_device_stop(&dc->disk);
1883
1884 /* What's a condition variable? */
1885 while (1) {
1886 long timeout = start + 2 * HZ - jiffies;
1887
1888 stopped = list_empty(&bch_cache_sets) &&
1889 list_empty(&uncached_devices);
1890
1891 if (timeout < 0 || stopped)
1892 break;
1893
1894 prepare_to_wait(&unregister_wait, &wait,
1895 TASK_UNINTERRUPTIBLE);
1896
1897 mutex_unlock(&bch_register_lock);
1898 schedule_timeout(timeout);
1899 mutex_lock(&bch_register_lock);
1900 }
1901
1902 finish_wait(&unregister_wait, &wait);
1903
1904 if (stopped)
1905 pr_info("All devices stopped");
1906 else
1907 pr_notice("Timeout waiting for devices to be closed");
1908 out:
1909 mutex_unlock(&bch_register_lock);
1910 }
1911
1912 return NOTIFY_DONE;
1913 }
1914
1915 static struct notifier_block reboot = {
1916 .notifier_call = bcache_reboot,
1917 .priority = INT_MAX, /* before any real devices */
1918 };
1919
bcache_exit(void)1920 static void bcache_exit(void)
1921 {
1922 bch_debug_exit();
1923 bch_writeback_exit();
1924 bch_request_exit();
1925 bch_btree_exit();
1926 if (bcache_kobj)
1927 kobject_put(bcache_kobj);
1928 if (bcache_wq)
1929 destroy_workqueue(bcache_wq);
1930 unregister_blkdev(bcache_major, "bcache");
1931 unregister_reboot_notifier(&reboot);
1932 }
1933
bcache_init(void)1934 static int __init bcache_init(void)
1935 {
1936 static const struct attribute *files[] = {
1937 &ksysfs_register.attr,
1938 &ksysfs_register_quiet.attr,
1939 NULL
1940 };
1941
1942 mutex_init(&bch_register_lock);
1943 init_waitqueue_head(&unregister_wait);
1944 register_reboot_notifier(&reboot);
1945 closure_debug_init();
1946
1947 bcache_major = register_blkdev(0, "bcache");
1948 if (bcache_major < 0)
1949 return bcache_major;
1950
1951 if (!(bcache_wq = create_workqueue("bcache")) ||
1952 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
1953 sysfs_create_files(bcache_kobj, files) ||
1954 bch_btree_init() ||
1955 bch_request_init() ||
1956 bch_writeback_init() ||
1957 bch_debug_init(bcache_kobj))
1958 goto err;
1959
1960 return 0;
1961 err:
1962 bcache_exit();
1963 return -ENOMEM;
1964 }
1965
1966 module_exit(bcache_exit);
1967 module_init(bcache_init);
1968