1 /*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13
14 #include <linux/cgroup.h>
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include "blk-cgroup.h"
19
20 #include <trace/events/bcache.h>
21
22 #define CUTOFF_CACHE_ADD 95
23 #define CUTOFF_CACHE_READA 90
24 #define CUTOFF_WRITEBACK 50
25 #define CUTOFF_WRITEBACK_SYNC 75
26
27 struct kmem_cache *bch_search_cache;
28
29 static void check_should_skip(struct cached_dev *, struct search *);
30
31 /* Cgroup interface */
32
33 #ifdef CONFIG_CGROUP_BCACHE
34 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
35
cgroup_to_bcache(struct cgroup * cgroup)36 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
37 {
38 struct cgroup_subsys_state *css;
39 return cgroup &&
40 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
41 ? container_of(css, struct bch_cgroup, css)
42 : &bcache_default_cgroup;
43 }
44
bch_bio_to_cgroup(struct bio * bio)45 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
46 {
47 struct cgroup_subsys_state *css = bio->bi_css
48 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
49 : task_subsys_state(current, bcache_subsys_id);
50
51 return css
52 ? container_of(css, struct bch_cgroup, css)
53 : &bcache_default_cgroup;
54 }
55
cache_mode_read(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)56 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
57 struct file *file,
58 char __user *buf, size_t nbytes, loff_t *ppos)
59 {
60 char tmp[1024];
61 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
62 cgroup_to_bcache(cgrp)->cache_mode + 1);
63
64 if (len < 0)
65 return len;
66
67 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
68 }
69
cache_mode_write(struct cgroup * cgrp,struct cftype * cft,const char * buf)70 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
71 const char *buf)
72 {
73 int v = bch_read_string_list(buf, bch_cache_modes);
74 if (v < 0)
75 return v;
76
77 cgroup_to_bcache(cgrp)->cache_mode = v - 1;
78 return 0;
79 }
80
bch_verify_read(struct cgroup * cgrp,struct cftype * cft)81 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
82 {
83 return cgroup_to_bcache(cgrp)->verify;
84 }
85
bch_verify_write(struct cgroup * cgrp,struct cftype * cft,u64 val)86 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
87 {
88 cgroup_to_bcache(cgrp)->verify = val;
89 return 0;
90 }
91
bch_cache_hits_read(struct cgroup * cgrp,struct cftype * cft)92 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
93 {
94 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
95 return atomic_read(&bcachecg->stats.cache_hits);
96 }
97
bch_cache_misses_read(struct cgroup * cgrp,struct cftype * cft)98 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
99 {
100 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
101 return atomic_read(&bcachecg->stats.cache_misses);
102 }
103
bch_cache_bypass_hits_read(struct cgroup * cgrp,struct cftype * cft)104 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
105 struct cftype *cft)
106 {
107 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
108 return atomic_read(&bcachecg->stats.cache_bypass_hits);
109 }
110
bch_cache_bypass_misses_read(struct cgroup * cgrp,struct cftype * cft)111 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
112 struct cftype *cft)
113 {
114 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
115 return atomic_read(&bcachecg->stats.cache_bypass_misses);
116 }
117
118 static struct cftype bch_files[] = {
119 {
120 .name = "cache_mode",
121 .read = cache_mode_read,
122 .write_string = cache_mode_write,
123 },
124 {
125 .name = "verify",
126 .read_u64 = bch_verify_read,
127 .write_u64 = bch_verify_write,
128 },
129 {
130 .name = "cache_hits",
131 .read_u64 = bch_cache_hits_read,
132 },
133 {
134 .name = "cache_misses",
135 .read_u64 = bch_cache_misses_read,
136 },
137 {
138 .name = "cache_bypass_hits",
139 .read_u64 = bch_cache_bypass_hits_read,
140 },
141 {
142 .name = "cache_bypass_misses",
143 .read_u64 = bch_cache_bypass_misses_read,
144 },
145 { } /* terminate */
146 };
147
init_bch_cgroup(struct bch_cgroup * cg)148 static void init_bch_cgroup(struct bch_cgroup *cg)
149 {
150 cg->cache_mode = -1;
151 }
152
bcachecg_create(struct cgroup * cgroup)153 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
154 {
155 struct bch_cgroup *cg;
156
157 cg = kzalloc(sizeof(*cg), GFP_KERNEL);
158 if (!cg)
159 return ERR_PTR(-ENOMEM);
160 init_bch_cgroup(cg);
161 return &cg->css;
162 }
163
bcachecg_destroy(struct cgroup * cgroup)164 static void bcachecg_destroy(struct cgroup *cgroup)
165 {
166 struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
167 free_css_id(&bcache_subsys, &cg->css);
168 kfree(cg);
169 }
170
171 struct cgroup_subsys bcache_subsys = {
172 .create = bcachecg_create,
173 .destroy = bcachecg_destroy,
174 .subsys_id = bcache_subsys_id,
175 .name = "bcache",
176 .module = THIS_MODULE,
177 };
178 EXPORT_SYMBOL_GPL(bcache_subsys);
179 #endif
180
cache_mode(struct cached_dev * dc,struct bio * bio)181 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
182 {
183 #ifdef CONFIG_CGROUP_BCACHE
184 int r = bch_bio_to_cgroup(bio)->cache_mode;
185 if (r >= 0)
186 return r;
187 #endif
188 return BDEV_CACHE_MODE(&dc->sb);
189 }
190
verify(struct cached_dev * dc,struct bio * bio)191 static bool verify(struct cached_dev *dc, struct bio *bio)
192 {
193 #ifdef CONFIG_CGROUP_BCACHE
194 if (bch_bio_to_cgroup(bio)->verify)
195 return true;
196 #endif
197 return dc->verify;
198 }
199
bio_csum(struct bio * bio,struct bkey * k)200 static void bio_csum(struct bio *bio, struct bkey *k)
201 {
202 struct bio_vec *bv;
203 uint64_t csum = 0;
204 int i;
205
206 bio_for_each_segment(bv, bio, i) {
207 void *d = kmap(bv->bv_page) + bv->bv_offset;
208 csum = bch_crc64_update(csum, d, bv->bv_len);
209 kunmap(bv->bv_page);
210 }
211
212 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
213 }
214
215 /* Insert data into cache */
216
bio_invalidate(struct closure * cl)217 static void bio_invalidate(struct closure *cl)
218 {
219 struct btree_op *op = container_of(cl, struct btree_op, cl);
220 struct bio *bio = op->cache_bio;
221
222 pr_debug("invalidating %i sectors from %llu",
223 bio_sectors(bio), (uint64_t) bio->bi_sector);
224
225 while (bio_sectors(bio)) {
226 unsigned len = min(bio_sectors(bio), 1U << 14);
227
228 if (bch_keylist_realloc(&op->keys, 0, op->c))
229 goto out;
230
231 bio->bi_sector += len;
232 bio->bi_size -= len << 9;
233
234 bch_keylist_add(&op->keys,
235 &KEY(op->inode, bio->bi_sector, len));
236 }
237
238 op->insert_data_done = true;
239 bio_put(bio);
240 out:
241 continue_at(cl, bch_journal, bcache_wq);
242 }
243
244 struct open_bucket {
245 struct list_head list;
246 struct task_struct *last;
247 unsigned sectors_free;
248 BKEY_PADDED(key);
249 };
250
bch_open_buckets_free(struct cache_set * c)251 void bch_open_buckets_free(struct cache_set *c)
252 {
253 struct open_bucket *b;
254
255 while (!list_empty(&c->data_buckets)) {
256 b = list_first_entry(&c->data_buckets,
257 struct open_bucket, list);
258 list_del(&b->list);
259 kfree(b);
260 }
261 }
262
bch_open_buckets_alloc(struct cache_set * c)263 int bch_open_buckets_alloc(struct cache_set *c)
264 {
265 int i;
266
267 spin_lock_init(&c->data_bucket_lock);
268
269 for (i = 0; i < 6; i++) {
270 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
271 if (!b)
272 return -ENOMEM;
273
274 list_add(&b->list, &c->data_buckets);
275 }
276
277 return 0;
278 }
279
280 /*
281 * We keep multiple buckets open for writes, and try to segregate different
282 * write streams for better cache utilization: first we look for a bucket where
283 * the last write to it was sequential with the current write, and failing that
284 * we look for a bucket that was last used by the same task.
285 *
286 * The ideas is if you've got multiple tasks pulling data into the cache at the
287 * same time, you'll get better cache utilization if you try to segregate their
288 * data and preserve locality.
289 *
290 * For example, say you've starting Firefox at the same time you're copying a
291 * bunch of files. Firefox will likely end up being fairly hot and stay in the
292 * cache awhile, but the data you copied might not be; if you wrote all that
293 * data to the same buckets it'd get invalidated at the same time.
294 *
295 * Both of those tasks will be doing fairly random IO so we can't rely on
296 * detecting sequential IO to segregate their data, but going off of the task
297 * should be a sane heuristic.
298 */
pick_data_bucket(struct cache_set * c,const struct bkey * search,struct task_struct * task,struct bkey * alloc)299 static struct open_bucket *pick_data_bucket(struct cache_set *c,
300 const struct bkey *search,
301 struct task_struct *task,
302 struct bkey *alloc)
303 {
304 struct open_bucket *ret, *ret_task = NULL;
305
306 list_for_each_entry_reverse(ret, &c->data_buckets, list)
307 if (!bkey_cmp(&ret->key, search))
308 goto found;
309 else if (ret->last == task)
310 ret_task = ret;
311
312 ret = ret_task ?: list_first_entry(&c->data_buckets,
313 struct open_bucket, list);
314 found:
315 if (!ret->sectors_free && KEY_PTRS(alloc)) {
316 ret->sectors_free = c->sb.bucket_size;
317 bkey_copy(&ret->key, alloc);
318 bkey_init(alloc);
319 }
320
321 if (!ret->sectors_free)
322 ret = NULL;
323
324 return ret;
325 }
326
327 /*
328 * Allocates some space in the cache to write to, and k to point to the newly
329 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
330 * end of the newly allocated space).
331 *
332 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
333 * sectors were actually allocated.
334 *
335 * If s->writeback is true, will not fail.
336 */
bch_alloc_sectors(struct bkey * k,unsigned sectors,struct search * s)337 static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
338 struct search *s)
339 {
340 struct cache_set *c = s->op.c;
341 struct open_bucket *b;
342 BKEY_PADDED(key) alloc;
343 struct closure cl, *w = NULL;
344 unsigned i;
345
346 if (s->writeback) {
347 closure_init_stack(&cl);
348 w = &cl;
349 }
350
351 /*
352 * We might have to allocate a new bucket, which we can't do with a
353 * spinlock held. So if we have to allocate, we drop the lock, allocate
354 * and then retry. KEY_PTRS() indicates whether alloc points to
355 * allocated bucket(s).
356 */
357
358 bkey_init(&alloc.key);
359 spin_lock(&c->data_bucket_lock);
360
361 while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
362 unsigned watermark = s->op.write_prio
363 ? WATERMARK_MOVINGGC
364 : WATERMARK_NONE;
365
366 spin_unlock(&c->data_bucket_lock);
367
368 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
369 return false;
370
371 spin_lock(&c->data_bucket_lock);
372 }
373
374 /*
375 * If we had to allocate, we might race and not need to allocate the
376 * second time we call find_data_bucket(). If we allocated a bucket but
377 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
378 */
379 if (KEY_PTRS(&alloc.key))
380 __bkey_put(c, &alloc.key);
381
382 for (i = 0; i < KEY_PTRS(&b->key); i++)
383 EBUG_ON(ptr_stale(c, &b->key, i));
384
385 /* Set up the pointer to the space we're allocating: */
386
387 for (i = 0; i < KEY_PTRS(&b->key); i++)
388 k->ptr[i] = b->key.ptr[i];
389
390 sectors = min(sectors, b->sectors_free);
391
392 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
393 SET_KEY_SIZE(k, sectors);
394 SET_KEY_PTRS(k, KEY_PTRS(&b->key));
395
396 /*
397 * Move b to the end of the lru, and keep track of what this bucket was
398 * last used for:
399 */
400 list_move_tail(&b->list, &c->data_buckets);
401 bkey_copy_key(&b->key, k);
402 b->last = s->task;
403
404 b->sectors_free -= sectors;
405
406 for (i = 0; i < KEY_PTRS(&b->key); i++) {
407 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
408
409 atomic_long_add(sectors,
410 &PTR_CACHE(c, &b->key, i)->sectors_written);
411 }
412
413 if (b->sectors_free < c->sb.block_size)
414 b->sectors_free = 0;
415
416 /*
417 * k takes refcounts on the buckets it points to until it's inserted
418 * into the btree, but if we're done with this bucket we just transfer
419 * get_data_bucket()'s refcount.
420 */
421 if (b->sectors_free)
422 for (i = 0; i < KEY_PTRS(&b->key); i++)
423 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
424
425 spin_unlock(&c->data_bucket_lock);
426 return true;
427 }
428
bch_insert_data_error(struct closure * cl)429 static void bch_insert_data_error(struct closure *cl)
430 {
431 struct btree_op *op = container_of(cl, struct btree_op, cl);
432
433 /*
434 * Our data write just errored, which means we've got a bunch of keys to
435 * insert that point to data that wasn't succesfully written.
436 *
437 * We don't have to insert those keys but we still have to invalidate
438 * that region of the cache - so, if we just strip off all the pointers
439 * from the keys we'll accomplish just that.
440 */
441
442 struct bkey *src = op->keys.bottom, *dst = op->keys.bottom;
443
444 while (src != op->keys.top) {
445 struct bkey *n = bkey_next(src);
446
447 SET_KEY_PTRS(src, 0);
448 bkey_copy(dst, src);
449
450 dst = bkey_next(dst);
451 src = n;
452 }
453
454 op->keys.top = dst;
455
456 bch_journal(cl);
457 }
458
bch_insert_data_endio(struct bio * bio,int error)459 static void bch_insert_data_endio(struct bio *bio, int error)
460 {
461 struct closure *cl = bio->bi_private;
462 struct btree_op *op = container_of(cl, struct btree_op, cl);
463 struct search *s = container_of(op, struct search, op);
464
465 if (error) {
466 /* TODO: We could try to recover from this. */
467 if (s->writeback)
468 s->error = error;
469 else if (s->write)
470 set_closure_fn(cl, bch_insert_data_error, bcache_wq);
471 else
472 set_closure_fn(cl, NULL, NULL);
473 }
474
475 bch_bbio_endio(op->c, bio, error, "writing data to cache");
476 }
477
bch_insert_data_loop(struct closure * cl)478 static void bch_insert_data_loop(struct closure *cl)
479 {
480 struct btree_op *op = container_of(cl, struct btree_op, cl);
481 struct search *s = container_of(op, struct search, op);
482 struct bio *bio = op->cache_bio, *n;
483
484 if (op->skip)
485 return bio_invalidate(cl);
486
487 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
488 set_gc_sectors(op->c);
489 bch_queue_gc(op->c);
490 }
491
492 do {
493 unsigned i;
494 struct bkey *k;
495 struct bio_set *split = s->d
496 ? s->d->bio_split : op->c->bio_split;
497
498 /* 1 for the device pointer and 1 for the chksum */
499 if (bch_keylist_realloc(&op->keys,
500 1 + (op->csum ? 1 : 0),
501 op->c))
502 continue_at(cl, bch_journal, bcache_wq);
503
504 k = op->keys.top;
505 bkey_init(k);
506 SET_KEY_INODE(k, op->inode);
507 SET_KEY_OFFSET(k, bio->bi_sector);
508
509 if (!bch_alloc_sectors(k, bio_sectors(bio), s))
510 goto err;
511
512 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
513 if (!n) {
514 __bkey_put(op->c, k);
515 continue_at(cl, bch_insert_data_loop, bcache_wq);
516 }
517
518 n->bi_end_io = bch_insert_data_endio;
519 n->bi_private = cl;
520
521 if (s->writeback) {
522 SET_KEY_DIRTY(k, true);
523
524 for (i = 0; i < KEY_PTRS(k); i++)
525 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
526 GC_MARK_DIRTY);
527 }
528
529 SET_KEY_CSUM(k, op->csum);
530 if (KEY_CSUM(k))
531 bio_csum(n, k);
532
533 pr_debug("%s", pkey(k));
534 bch_keylist_push(&op->keys);
535
536 trace_bcache_cache_insert(n, n->bi_sector, n->bi_bdev);
537 n->bi_rw |= REQ_WRITE;
538 bch_submit_bbio(n, op->c, k, 0);
539 } while (n != bio);
540
541 op->insert_data_done = true;
542 continue_at(cl, bch_journal, bcache_wq);
543 err:
544 /* bch_alloc_sectors() blocks if s->writeback = true */
545 BUG_ON(s->writeback);
546
547 /*
548 * But if it's not a writeback write we'd rather just bail out if
549 * there aren't any buckets ready to write to - it might take awhile and
550 * we might be starving btree writes for gc or something.
551 */
552
553 if (s->write) {
554 /*
555 * Writethrough write: We can't complete the write until we've
556 * updated the index. But we don't want to delay the write while
557 * we wait for buckets to be freed up, so just invalidate the
558 * rest of the write.
559 */
560 op->skip = true;
561 return bio_invalidate(cl);
562 } else {
563 /*
564 * From a cache miss, we can just insert the keys for the data
565 * we have written or bail out if we didn't do anything.
566 */
567 op->insert_data_done = true;
568 bio_put(bio);
569
570 if (!bch_keylist_empty(&op->keys))
571 continue_at(cl, bch_journal, bcache_wq);
572 else
573 closure_return(cl);
574 }
575 }
576
577 /**
578 * bch_insert_data - stick some data in the cache
579 *
580 * This is the starting point for any data to end up in a cache device; it could
581 * be from a normal write, or a writeback write, or a write to a flash only
582 * volume - it's also used by the moving garbage collector to compact data in
583 * mostly empty buckets.
584 *
585 * It first writes the data to the cache, creating a list of keys to be inserted
586 * (if the data had to be fragmented there will be multiple keys); after the
587 * data is written it calls bch_journal, and after the keys have been added to
588 * the next journal write they're inserted into the btree.
589 *
590 * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
591 * and op->inode is used for the key inode.
592 *
593 * If op->skip is true, instead of inserting the data it invalidates the region
594 * of the cache represented by op->cache_bio and op->inode.
595 */
bch_insert_data(struct closure * cl)596 void bch_insert_data(struct closure *cl)
597 {
598 struct btree_op *op = container_of(cl, struct btree_op, cl);
599
600 bch_keylist_init(&op->keys);
601 bio_get(op->cache_bio);
602 bch_insert_data_loop(cl);
603 }
604
bch_btree_insert_async(struct closure * cl)605 void bch_btree_insert_async(struct closure *cl)
606 {
607 struct btree_op *op = container_of(cl, struct btree_op, cl);
608 struct search *s = container_of(op, struct search, op);
609
610 if (bch_btree_insert(op, op->c)) {
611 s->error = -ENOMEM;
612 op->insert_data_done = true;
613 }
614
615 if (op->insert_data_done) {
616 bch_keylist_free(&op->keys);
617 closure_return(cl);
618 } else
619 continue_at(cl, bch_insert_data_loop, bcache_wq);
620 }
621
622 /* Common code for the make_request functions */
623
request_endio(struct bio * bio,int error)624 static void request_endio(struct bio *bio, int error)
625 {
626 struct closure *cl = bio->bi_private;
627
628 if (error) {
629 struct search *s = container_of(cl, struct search, cl);
630 s->error = error;
631 /* Only cache read errors are recoverable */
632 s->recoverable = false;
633 }
634
635 bio_put(bio);
636 closure_put(cl);
637 }
638
bch_cache_read_endio(struct bio * bio,int error)639 void bch_cache_read_endio(struct bio *bio, int error)
640 {
641 struct bbio *b = container_of(bio, struct bbio, bio);
642 struct closure *cl = bio->bi_private;
643 struct search *s = container_of(cl, struct search, cl);
644
645 /*
646 * If the bucket was reused while our bio was in flight, we might have
647 * read the wrong data. Set s->error but not error so it doesn't get
648 * counted against the cache device, but we'll still reread the data
649 * from the backing device.
650 */
651
652 if (error)
653 s->error = error;
654 else if (ptr_stale(s->op.c, &b->key, 0)) {
655 atomic_long_inc(&s->op.c->cache_read_races);
656 s->error = -EINTR;
657 }
658
659 bch_bbio_endio(s->op.c, bio, error, "reading from cache");
660 }
661
bio_complete(struct search * s)662 static void bio_complete(struct search *s)
663 {
664 if (s->orig_bio) {
665 int cpu, rw = bio_data_dir(s->orig_bio);
666 unsigned long duration = jiffies - s->start_time;
667
668 cpu = part_stat_lock();
669 part_round_stats(cpu, &s->d->disk->part0);
670 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
671 part_stat_unlock();
672
673 trace_bcache_request_end(s, s->orig_bio);
674 bio_endio(s->orig_bio, s->error);
675 s->orig_bio = NULL;
676 }
677 }
678
do_bio_hook(struct search * s)679 static void do_bio_hook(struct search *s)
680 {
681 struct bio *bio = &s->bio.bio;
682 memcpy(bio, s->orig_bio, sizeof(struct bio));
683
684 bio->bi_end_io = request_endio;
685 bio->bi_private = &s->cl;
686 atomic_set(&bio->bi_cnt, 3);
687 }
688
search_free(struct closure * cl)689 static void search_free(struct closure *cl)
690 {
691 struct search *s = container_of(cl, struct search, cl);
692 bio_complete(s);
693
694 if (s->op.cache_bio)
695 bio_put(s->op.cache_bio);
696
697 if (s->unaligned_bvec)
698 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
699
700 closure_debug_destroy(cl);
701 mempool_free(s, s->d->c->search);
702 }
703
search_alloc(struct bio * bio,struct bcache_device * d)704 static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
705 {
706 struct bio_vec *bv;
707 struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
708 memset(s, 0, offsetof(struct search, op.keys));
709
710 __closure_init(&s->cl, NULL);
711
712 s->op.inode = d->id;
713 s->op.c = d->c;
714 s->d = d;
715 s->op.lock = -1;
716 s->task = current;
717 s->orig_bio = bio;
718 s->write = (bio->bi_rw & REQ_WRITE) != 0;
719 s->op.flush_journal = (bio->bi_rw & REQ_FLUSH) != 0;
720 s->op.skip = (bio->bi_rw & REQ_DISCARD) != 0;
721 s->recoverable = 1;
722 s->start_time = jiffies;
723 do_bio_hook(s);
724
725 if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
726 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
727 memcpy(bv, bio_iovec(bio),
728 sizeof(struct bio_vec) * bio_segments(bio));
729
730 s->bio.bio.bi_io_vec = bv;
731 s->unaligned_bvec = 1;
732 }
733
734 return s;
735 }
736
btree_read_async(struct closure * cl)737 static void btree_read_async(struct closure *cl)
738 {
739 struct btree_op *op = container_of(cl, struct btree_op, cl);
740
741 int ret = btree_root(search_recurse, op->c, op);
742
743 if (ret == -EAGAIN)
744 continue_at(cl, btree_read_async, bcache_wq);
745
746 closure_return(cl);
747 }
748
749 /* Cached devices */
750
cached_dev_bio_complete(struct closure * cl)751 static void cached_dev_bio_complete(struct closure *cl)
752 {
753 struct search *s = container_of(cl, struct search, cl);
754 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
755
756 search_free(cl);
757 cached_dev_put(dc);
758 }
759
760 /* Process reads */
761
cached_dev_read_complete(struct closure * cl)762 static void cached_dev_read_complete(struct closure *cl)
763 {
764 struct search *s = container_of(cl, struct search, cl);
765
766 if (s->op.insert_collision)
767 bch_mark_cache_miss_collision(s);
768
769 if (s->op.cache_bio) {
770 int i;
771 struct bio_vec *bv;
772
773 __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
774 __free_page(bv->bv_page);
775 }
776
777 cached_dev_bio_complete(cl);
778 }
779
request_read_error(struct closure * cl)780 static void request_read_error(struct closure *cl)
781 {
782 struct search *s = container_of(cl, struct search, cl);
783 struct bio_vec *bv;
784 int i;
785
786 if (s->recoverable) {
787 /* The cache read failed, but we can retry from the backing
788 * device.
789 */
790 pr_debug("recovering at sector %llu",
791 (uint64_t) s->orig_bio->bi_sector);
792
793 s->error = 0;
794 bv = s->bio.bio.bi_io_vec;
795 do_bio_hook(s);
796 s->bio.bio.bi_io_vec = bv;
797
798 if (!s->unaligned_bvec)
799 bio_for_each_segment(bv, s->orig_bio, i)
800 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
801 else
802 memcpy(s->bio.bio.bi_io_vec,
803 bio_iovec(s->orig_bio),
804 sizeof(struct bio_vec) *
805 bio_segments(s->orig_bio));
806
807 /* XXX: invalidate cache */
808
809 trace_bcache_read_retry(&s->bio.bio);
810 closure_bio_submit(&s->bio.bio, &s->cl, s->d);
811 }
812
813 continue_at(cl, cached_dev_read_complete, NULL);
814 }
815
request_read_done(struct closure * cl)816 static void request_read_done(struct closure *cl)
817 {
818 struct search *s = container_of(cl, struct search, cl);
819 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
820
821 /*
822 * s->cache_bio != NULL implies that we had a cache miss; cache_bio now
823 * contains data ready to be inserted into the cache.
824 *
825 * First, we copy the data we just read from cache_bio's bounce buffers
826 * to the buffers the original bio pointed to:
827 */
828
829 if (s->op.cache_bio) {
830 struct bio_vec *src, *dst;
831 unsigned src_offset, dst_offset, bytes;
832 void *dst_ptr;
833
834 bio_reset(s->op.cache_bio);
835 s->op.cache_bio->bi_sector = s->cache_miss->bi_sector;
836 s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev;
837 s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
838 bch_bio_map(s->op.cache_bio, NULL);
839
840 src = bio_iovec(s->op.cache_bio);
841 dst = bio_iovec(s->cache_miss);
842 src_offset = src->bv_offset;
843 dst_offset = dst->bv_offset;
844 dst_ptr = kmap(dst->bv_page);
845
846 while (1) {
847 if (dst_offset == dst->bv_offset + dst->bv_len) {
848 kunmap(dst->bv_page);
849 dst++;
850 if (dst == bio_iovec_idx(s->cache_miss,
851 s->cache_miss->bi_vcnt))
852 break;
853
854 dst_offset = dst->bv_offset;
855 dst_ptr = kmap(dst->bv_page);
856 }
857
858 if (src_offset == src->bv_offset + src->bv_len) {
859 src++;
860 if (src == bio_iovec_idx(s->op.cache_bio,
861 s->op.cache_bio->bi_vcnt))
862 BUG();
863
864 src_offset = src->bv_offset;
865 }
866
867 bytes = min(dst->bv_offset + dst->bv_len - dst_offset,
868 src->bv_offset + src->bv_len - src_offset);
869
870 memcpy(dst_ptr + dst_offset,
871 page_address(src->bv_page) + src_offset,
872 bytes);
873
874 src_offset += bytes;
875 dst_offset += bytes;
876 }
877
878 bio_put(s->cache_miss);
879 s->cache_miss = NULL;
880 }
881
882 if (verify(dc, &s->bio.bio) && s->recoverable)
883 bch_data_verify(s);
884
885 bio_complete(s);
886
887 if (s->op.cache_bio &&
888 !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
889 s->op.type = BTREE_REPLACE;
890 closure_call(&s->op.cl, bch_insert_data, NULL, cl);
891 }
892
893 continue_at(cl, cached_dev_read_complete, NULL);
894 }
895
request_read_done_bh(struct closure * cl)896 static void request_read_done_bh(struct closure *cl)
897 {
898 struct search *s = container_of(cl, struct search, cl);
899 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
900
901 bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip);
902
903 if (s->error)
904 continue_at_nobarrier(cl, request_read_error, bcache_wq);
905 else if (s->op.cache_bio || verify(dc, &s->bio.bio))
906 continue_at_nobarrier(cl, request_read_done, bcache_wq);
907 else
908 continue_at_nobarrier(cl, cached_dev_read_complete, NULL);
909 }
910
cached_dev_cache_miss(struct btree * b,struct search * s,struct bio * bio,unsigned sectors)911 static int cached_dev_cache_miss(struct btree *b, struct search *s,
912 struct bio *bio, unsigned sectors)
913 {
914 int ret = 0;
915 unsigned reada;
916 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
917 struct bio *miss;
918
919 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
920 if (!miss)
921 return -EAGAIN;
922
923 if (miss == bio)
924 s->op.lookup_done = true;
925
926 miss->bi_end_io = request_endio;
927 miss->bi_private = &s->cl;
928
929 if (s->cache_miss || s->op.skip)
930 goto out_submit;
931
932 if (miss != bio ||
933 (bio->bi_rw & REQ_RAHEAD) ||
934 (bio->bi_rw & REQ_META) ||
935 s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA)
936 reada = 0;
937 else {
938 reada = min(dc->readahead >> 9,
939 sectors - bio_sectors(miss));
940
941 if (bio_end(miss) + reada > bdev_sectors(miss->bi_bdev))
942 reada = bdev_sectors(miss->bi_bdev) - bio_end(miss);
943 }
944
945 s->cache_bio_sectors = bio_sectors(miss) + reada;
946 s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT,
947 DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
948 dc->disk.bio_split);
949
950 if (!s->op.cache_bio)
951 goto out_submit;
952
953 s->op.cache_bio->bi_sector = miss->bi_sector;
954 s->op.cache_bio->bi_bdev = miss->bi_bdev;
955 s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
956
957 s->op.cache_bio->bi_end_io = request_endio;
958 s->op.cache_bio->bi_private = &s->cl;
959
960 /* btree_search_recurse()'s btree iterator is no good anymore */
961 ret = -EINTR;
962 if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio))
963 goto out_put;
964
965 bch_bio_map(s->op.cache_bio, NULL);
966 if (bch_bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO))
967 goto out_put;
968
969 s->cache_miss = miss;
970 bio_get(s->op.cache_bio);
971
972 trace_bcache_cache_miss(s->orig_bio);
973 closure_bio_submit(s->op.cache_bio, &s->cl, s->d);
974
975 return ret;
976 out_put:
977 bio_put(s->op.cache_bio);
978 s->op.cache_bio = NULL;
979 out_submit:
980 closure_bio_submit(miss, &s->cl, s->d);
981 return ret;
982 }
983
request_read(struct cached_dev * dc,struct search * s)984 static void request_read(struct cached_dev *dc, struct search *s)
985 {
986 struct closure *cl = &s->cl;
987
988 check_should_skip(dc, s);
989 closure_call(&s->op.cl, btree_read_async, NULL, cl);
990
991 continue_at(cl, request_read_done_bh, NULL);
992 }
993
994 /* Process writes */
995
cached_dev_write_complete(struct closure * cl)996 static void cached_dev_write_complete(struct closure *cl)
997 {
998 struct search *s = container_of(cl, struct search, cl);
999 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1000
1001 up_read_non_owner(&dc->writeback_lock);
1002 cached_dev_bio_complete(cl);
1003 }
1004
should_writeback(struct cached_dev * dc,struct bio * bio)1005 static bool should_writeback(struct cached_dev *dc, struct bio *bio)
1006 {
1007 unsigned threshold = (bio->bi_rw & REQ_SYNC)
1008 ? CUTOFF_WRITEBACK_SYNC
1009 : CUTOFF_WRITEBACK;
1010
1011 return !atomic_read(&dc->disk.detaching) &&
1012 cache_mode(dc, bio) == CACHE_MODE_WRITEBACK &&
1013 dc->disk.c->gc_stats.in_use < threshold;
1014 }
1015
request_write(struct cached_dev * dc,struct search * s)1016 static void request_write(struct cached_dev *dc, struct search *s)
1017 {
1018 struct closure *cl = &s->cl;
1019 struct bio *bio = &s->bio.bio;
1020 struct bkey start, end;
1021 start = KEY(dc->disk.id, bio->bi_sector, 0);
1022 end = KEY(dc->disk.id, bio_end(bio), 0);
1023
1024 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
1025
1026 check_should_skip(dc, s);
1027 down_read_non_owner(&dc->writeback_lock);
1028
1029 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1030 s->op.skip = false;
1031 s->writeback = true;
1032 }
1033
1034 if (bio->bi_rw & REQ_DISCARD)
1035 goto skip;
1036
1037 if (s->op.skip)
1038 goto skip;
1039
1040 if (should_writeback(dc, s->orig_bio))
1041 s->writeback = true;
1042
1043 if (!s->writeback) {
1044 s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
1045 dc->disk.bio_split);
1046
1047 trace_bcache_writethrough(s->orig_bio);
1048 closure_bio_submit(bio, cl, s->d);
1049 } else {
1050 s->op.cache_bio = bio;
1051 trace_bcache_writeback(s->orig_bio);
1052 bch_writeback_add(dc, bio_sectors(bio));
1053 }
1054 out:
1055 closure_call(&s->op.cl, bch_insert_data, NULL, cl);
1056 continue_at(cl, cached_dev_write_complete, NULL);
1057 skip:
1058 s->op.skip = true;
1059 s->op.cache_bio = s->orig_bio;
1060 bio_get(s->op.cache_bio);
1061 trace_bcache_write_skip(s->orig_bio);
1062
1063 if ((bio->bi_rw & REQ_DISCARD) &&
1064 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1065 goto out;
1066
1067 closure_bio_submit(bio, cl, s->d);
1068 goto out;
1069 }
1070
request_nodata(struct cached_dev * dc,struct search * s)1071 static void request_nodata(struct cached_dev *dc, struct search *s)
1072 {
1073 struct closure *cl = &s->cl;
1074 struct bio *bio = &s->bio.bio;
1075
1076 if (bio->bi_rw & REQ_DISCARD) {
1077 request_write(dc, s);
1078 return;
1079 }
1080
1081 if (s->op.flush_journal)
1082 bch_journal_meta(s->op.c, cl);
1083
1084 closure_bio_submit(bio, cl, s->d);
1085
1086 continue_at(cl, cached_dev_bio_complete, NULL);
1087 }
1088
1089 /* Cached devices - read & write stuff */
1090
bch_get_congested(struct cache_set * c)1091 int bch_get_congested(struct cache_set *c)
1092 {
1093 int i;
1094
1095 if (!c->congested_read_threshold_us &&
1096 !c->congested_write_threshold_us)
1097 return 0;
1098
1099 i = (local_clock_us() - c->congested_last_us) / 1024;
1100 if (i < 0)
1101 return 0;
1102
1103 i += atomic_read(&c->congested);
1104 if (i >= 0)
1105 return 0;
1106
1107 i += CONGESTED_MAX;
1108
1109 return i <= 0 ? 1 : fract_exp_two(i, 6);
1110 }
1111
add_sequential(struct task_struct * t)1112 static void add_sequential(struct task_struct *t)
1113 {
1114 ewma_add(t->sequential_io_avg,
1115 t->sequential_io, 8, 0);
1116
1117 t->sequential_io = 0;
1118 }
1119
iohash(struct cached_dev * dc,uint64_t k)1120 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
1121 {
1122 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
1123 }
1124
check_should_skip(struct cached_dev * dc,struct search * s)1125 static void check_should_skip(struct cached_dev *dc, struct search *s)
1126 {
1127 struct cache_set *c = s->op.c;
1128 struct bio *bio = &s->bio.bio;
1129
1130 long rand;
1131 int cutoff = bch_get_congested(c);
1132 unsigned mode = cache_mode(dc, bio);
1133
1134 if (atomic_read(&dc->disk.detaching) ||
1135 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
1136 (bio->bi_rw & REQ_DISCARD))
1137 goto skip;
1138
1139 if (mode == CACHE_MODE_NONE ||
1140 (mode == CACHE_MODE_WRITEAROUND &&
1141 (bio->bi_rw & REQ_WRITE)))
1142 goto skip;
1143
1144 if (bio->bi_sector & (c->sb.block_size - 1) ||
1145 bio_sectors(bio) & (c->sb.block_size - 1)) {
1146 pr_debug("skipping unaligned io");
1147 goto skip;
1148 }
1149
1150 if (!cutoff) {
1151 cutoff = dc->sequential_cutoff >> 9;
1152
1153 if (!cutoff)
1154 goto rescale;
1155
1156 if (mode == CACHE_MODE_WRITEBACK &&
1157 (bio->bi_rw & REQ_WRITE) &&
1158 (bio->bi_rw & REQ_SYNC))
1159 goto rescale;
1160 }
1161
1162 if (dc->sequential_merge) {
1163 struct io *i;
1164
1165 spin_lock(&dc->io_lock);
1166
1167 hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
1168 if (i->last == bio->bi_sector &&
1169 time_before(jiffies, i->jiffies))
1170 goto found;
1171
1172 i = list_first_entry(&dc->io_lru, struct io, lru);
1173
1174 add_sequential(s->task);
1175 i->sequential = 0;
1176 found:
1177 if (i->sequential + bio->bi_size > i->sequential)
1178 i->sequential += bio->bi_size;
1179
1180 i->last = bio_end(bio);
1181 i->jiffies = jiffies + msecs_to_jiffies(5000);
1182 s->task->sequential_io = i->sequential;
1183
1184 hlist_del(&i->hash);
1185 hlist_add_head(&i->hash, iohash(dc, i->last));
1186 list_move_tail(&i->lru, &dc->io_lru);
1187
1188 spin_unlock(&dc->io_lock);
1189 } else {
1190 s->task->sequential_io = bio->bi_size;
1191
1192 add_sequential(s->task);
1193 }
1194
1195 rand = get_random_int();
1196 cutoff -= bitmap_weight(&rand, BITS_PER_LONG);
1197
1198 if (cutoff <= (int) (max(s->task->sequential_io,
1199 s->task->sequential_io_avg) >> 9))
1200 goto skip;
1201
1202 rescale:
1203 bch_rescale_priorities(c, bio_sectors(bio));
1204 return;
1205 skip:
1206 bch_mark_sectors_bypassed(s, bio_sectors(bio));
1207 s->op.skip = true;
1208 }
1209
cached_dev_make_request(struct request_queue * q,struct bio * bio)1210 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1211 {
1212 struct search *s;
1213 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1214 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1215 int cpu, rw = bio_data_dir(bio);
1216
1217 cpu = part_stat_lock();
1218 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1219 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1220 part_stat_unlock();
1221
1222 bio->bi_bdev = dc->bdev;
1223 bio->bi_sector += dc->sb.data_offset;
1224
1225 if (cached_dev_get(dc)) {
1226 s = search_alloc(bio, d);
1227 trace_bcache_request_start(s, bio);
1228
1229 if (!bio_has_data(bio))
1230 request_nodata(dc, s);
1231 else if (rw)
1232 request_write(dc, s);
1233 else
1234 request_read(dc, s);
1235 } else {
1236 if ((bio->bi_rw & REQ_DISCARD) &&
1237 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1238 bio_endio(bio, 0);
1239 else
1240 bch_generic_make_request(bio, &d->bio_split_hook);
1241 }
1242 }
1243
cached_dev_ioctl(struct bcache_device * d,fmode_t mode,unsigned int cmd,unsigned long arg)1244 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1245 unsigned int cmd, unsigned long arg)
1246 {
1247 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1248 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1249 }
1250
cached_dev_congested(void * data,int bits)1251 static int cached_dev_congested(void *data, int bits)
1252 {
1253 struct bcache_device *d = data;
1254 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1255 struct request_queue *q = bdev_get_queue(dc->bdev);
1256 int ret = 0;
1257
1258 if (bdi_congested(&q->backing_dev_info, bits))
1259 return 1;
1260
1261 if (cached_dev_get(dc)) {
1262 unsigned i;
1263 struct cache *ca;
1264
1265 for_each_cache(ca, d->c, i) {
1266 q = bdev_get_queue(ca->bdev);
1267 ret |= bdi_congested(&q->backing_dev_info, bits);
1268 }
1269
1270 cached_dev_put(dc);
1271 }
1272
1273 return ret;
1274 }
1275
bch_cached_dev_request_init(struct cached_dev * dc)1276 void bch_cached_dev_request_init(struct cached_dev *dc)
1277 {
1278 struct gendisk *g = dc->disk.disk;
1279
1280 g->queue->make_request_fn = cached_dev_make_request;
1281 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1282 dc->disk.cache_miss = cached_dev_cache_miss;
1283 dc->disk.ioctl = cached_dev_ioctl;
1284 }
1285
1286 /* Flash backed devices */
1287
flash_dev_cache_miss(struct btree * b,struct search * s,struct bio * bio,unsigned sectors)1288 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1289 struct bio *bio, unsigned sectors)
1290 {
1291 /* Zero fill bio */
1292
1293 while (bio->bi_idx != bio->bi_vcnt) {
1294 struct bio_vec *bv = bio_iovec(bio);
1295 unsigned j = min(bv->bv_len >> 9, sectors);
1296
1297 void *p = kmap(bv->bv_page);
1298 memset(p + bv->bv_offset, 0, j << 9);
1299 kunmap(bv->bv_page);
1300
1301 bv->bv_len -= j << 9;
1302 bv->bv_offset += j << 9;
1303
1304 if (bv->bv_len)
1305 return 0;
1306
1307 bio->bi_sector += j;
1308 bio->bi_size -= j << 9;
1309
1310 bio->bi_idx++;
1311 sectors -= j;
1312 }
1313
1314 s->op.lookup_done = true;
1315
1316 return 0;
1317 }
1318
flash_dev_make_request(struct request_queue * q,struct bio * bio)1319 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1320 {
1321 struct search *s;
1322 struct closure *cl;
1323 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1324 int cpu, rw = bio_data_dir(bio);
1325
1326 cpu = part_stat_lock();
1327 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1328 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1329 part_stat_unlock();
1330
1331 s = search_alloc(bio, d);
1332 cl = &s->cl;
1333 bio = &s->bio.bio;
1334
1335 trace_bcache_request_start(s, bio);
1336
1337 if (bio_has_data(bio) && !rw) {
1338 closure_call(&s->op.cl, btree_read_async, NULL, cl);
1339 } else if (bio_has_data(bio) || s->op.skip) {
1340 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
1341 &KEY(d->id, bio->bi_sector, 0),
1342 &KEY(d->id, bio_end(bio), 0));
1343
1344 s->writeback = true;
1345 s->op.cache_bio = bio;
1346
1347 closure_call(&s->op.cl, bch_insert_data, NULL, cl);
1348 } else {
1349 /* No data - probably a cache flush */
1350 if (s->op.flush_journal)
1351 bch_journal_meta(s->op.c, cl);
1352 }
1353
1354 continue_at(cl, search_free, NULL);
1355 }
1356
flash_dev_ioctl(struct bcache_device * d,fmode_t mode,unsigned int cmd,unsigned long arg)1357 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1358 unsigned int cmd, unsigned long arg)
1359 {
1360 return -ENOTTY;
1361 }
1362
flash_dev_congested(void * data,int bits)1363 static int flash_dev_congested(void *data, int bits)
1364 {
1365 struct bcache_device *d = data;
1366 struct request_queue *q;
1367 struct cache *ca;
1368 unsigned i;
1369 int ret = 0;
1370
1371 for_each_cache(ca, d->c, i) {
1372 q = bdev_get_queue(ca->bdev);
1373 ret |= bdi_congested(&q->backing_dev_info, bits);
1374 }
1375
1376 return ret;
1377 }
1378
bch_flash_dev_request_init(struct bcache_device * d)1379 void bch_flash_dev_request_init(struct bcache_device *d)
1380 {
1381 struct gendisk *g = d->disk;
1382
1383 g->queue->make_request_fn = flash_dev_make_request;
1384 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1385 d->cache_miss = flash_dev_cache_miss;
1386 d->ioctl = flash_dev_ioctl;
1387 }
1388
bch_request_exit(void)1389 void bch_request_exit(void)
1390 {
1391 #ifdef CONFIG_CGROUP_BCACHE
1392 cgroup_unload_subsys(&bcache_subsys);
1393 #endif
1394 if (bch_search_cache)
1395 kmem_cache_destroy(bch_search_cache);
1396 }
1397
bch_request_init(void)1398 int __init bch_request_init(void)
1399 {
1400 bch_search_cache = KMEM_CACHE(search, 0);
1401 if (!bch_search_cache)
1402 return -ENOMEM;
1403
1404 #ifdef CONFIG_CGROUP_BCACHE
1405 cgroup_load_subsys(&bcache_subsys);
1406 init_bch_cgroup(&bcache_default_cgroup);
1407
1408 cgroup_add_cftypes(&bcache_subsys, bch_files);
1409 #endif
1410 return 0;
1411 }
1412