• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _BCACHE_BSET_H
2 #define _BCACHE_BSET_H
3 
4 /*
5  * BKEYS:
6  *
7  * A bkey contains a key, a size field, a variable number of pointers, and some
8  * ancillary flag bits.
9  *
10  * We use two different functions for validating bkeys, bch_ptr_invalid and
11  * bch_ptr_bad().
12  *
13  * bch_ptr_invalid() primarily filters out keys and pointers that would be
14  * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
15  * pointer that occur in normal practice but don't point to real data.
16  *
17  * The one exception to the rule that ptr_invalid() filters out invalid keys is
18  * that it also filters out keys of size 0 - these are keys that have been
19  * completely overwritten. It'd be safe to delete these in memory while leaving
20  * them on disk, just unnecessary work - so we filter them out when resorting
21  * instead.
22  *
23  * We can't filter out stale keys when we're resorting, because garbage
24  * collection needs to find them to ensure bucket gens don't wrap around -
25  * unless we're rewriting the btree node those stale keys still exist on disk.
26  *
27  * We also implement functions here for removing some number of sectors from the
28  * front or the back of a bkey - this is mainly used for fixing overlapping
29  * extents, by removing the overlapping sectors from the older key.
30  *
31  * BSETS:
32  *
33  * A bset is an array of bkeys laid out contiguously in memory in sorted order,
34  * along with a header. A btree node is made up of a number of these, written at
35  * different times.
36  *
37  * There could be many of them on disk, but we never allow there to be more than
38  * 4 in memory - we lazily resort as needed.
39  *
40  * We implement code here for creating and maintaining auxiliary search trees
41  * (described below) for searching an individial bset, and on top of that we
42  * implement a btree iterator.
43  *
44  * BTREE ITERATOR:
45  *
46  * Most of the code in bcache doesn't care about an individual bset - it needs
47  * to search entire btree nodes and iterate over them in sorted order.
48  *
49  * The btree iterator code serves both functions; it iterates through the keys
50  * in a btree node in sorted order, starting from either keys after a specific
51  * point (if you pass it a search key) or the start of the btree node.
52  *
53  * AUXILIARY SEARCH TREES:
54  *
55  * Since keys are variable length, we can't use a binary search on a bset - we
56  * wouldn't be able to find the start of the next key. But binary searches are
57  * slow anyways, due to terrible cache behaviour; bcache originally used binary
58  * searches and that code topped out at under 50k lookups/second.
59  *
60  * So we need to construct some sort of lookup table. Since we only insert keys
61  * into the last (unwritten) set, most of the keys within a given btree node are
62  * usually in sets that are mostly constant. We use two different types of
63  * lookup tables to take advantage of this.
64  *
65  * Both lookup tables share in common that they don't index every key in the
66  * set; they index one key every BSET_CACHELINE bytes, and then a linear search
67  * is used for the rest.
68  *
69  * For sets that have been written to disk and are no longer being inserted
70  * into, we construct a binary search tree in an array - traversing a binary
71  * search tree in an array gives excellent locality of reference and is very
72  * fast, since both children of any node are adjacent to each other in memory
73  * (and their grandchildren, and great grandchildren...) - this means
74  * prefetching can be used to great effect.
75  *
76  * It's quite useful performance wise to keep these nodes small - not just
77  * because they're more likely to be in L2, but also because we can prefetch
78  * more nodes on a single cacheline and thus prefetch more iterations in advance
79  * when traversing this tree.
80  *
81  * Nodes in the auxiliary search tree must contain both a key to compare against
82  * (we don't want to fetch the key from the set, that would defeat the purpose),
83  * and a pointer to the key. We use a few tricks to compress both of these.
84  *
85  * To compress the pointer, we take advantage of the fact that one node in the
86  * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
87  * a function (to_inorder()) that takes the index of a node in a binary tree and
88  * returns what its index would be in an inorder traversal, so we only have to
89  * store the low bits of the offset.
90  *
91  * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
92  * compress that,  we take advantage of the fact that when we're traversing the
93  * search tree at every iteration we know that both our search key and the key
94  * we're looking for lie within some range - bounded by our previous
95  * comparisons. (We special case the start of a search so that this is true even
96  * at the root of the tree).
97  *
98  * So we know the key we're looking for is between a and b, and a and b don't
99  * differ higher than bit 50, we don't need to check anything higher than bit
100  * 50.
101  *
102  * We don't usually need the rest of the bits, either; we only need enough bits
103  * to partition the key range we're currently checking.  Consider key n - the
104  * key our auxiliary search tree node corresponds to, and key p, the key
105  * immediately preceding n.  The lowest bit we need to store in the auxiliary
106  * search tree is the highest bit that differs between n and p.
107  *
108  * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
109  * comparison. But we'd really like our nodes in the auxiliary search tree to be
110  * of fixed size.
111  *
112  * The solution is to make them fixed size, and when we're constructing a node
113  * check if p and n differed in the bits we needed them to. If they don't we
114  * flag that node, and when doing lookups we fallback to comparing against the
115  * real key. As long as this doesn't happen to often (and it seems to reliably
116  * happen a bit less than 1% of the time), we win - even on failures, that key
117  * is then more likely to be in cache than if we were doing binary searches all
118  * the way, since we're touching so much less memory.
119  *
120  * The keys in the auxiliary search tree are stored in (software) floating
121  * point, with an exponent and a mantissa. The exponent needs to be big enough
122  * to address all the bits in the original key, but the number of bits in the
123  * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
124  *
125  * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
126  * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
127  * We need one node per 128 bytes in the btree node, which means the auxiliary
128  * search trees take up 3% as much memory as the btree itself.
129  *
130  * Constructing these auxiliary search trees is moderately expensive, and we
131  * don't want to be constantly rebuilding the search tree for the last set
132  * whenever we insert another key into it. For the unwritten set, we use a much
133  * simpler lookup table - it's just a flat array, so index i in the lookup table
134  * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
135  * within each byte range works the same as with the auxiliary search trees.
136  *
137  * These are much easier to keep up to date when we insert a key - we do it
138  * somewhat lazily; when we shift a key up we usually just increment the pointer
139  * to it, only when it would overflow do we go to the trouble of finding the
140  * first key in that range of bytes again.
141  */
142 
143 /* Btree key comparison/iteration */
144 
145 struct btree_iter {
146 	size_t size, used;
147 	struct btree_iter_set {
148 		struct bkey *k, *end;
149 	} data[MAX_BSETS];
150 };
151 
152 struct bset_tree {
153 	/*
154 	 * We construct a binary tree in an array as if the array
155 	 * started at 1, so that things line up on the same cachelines
156 	 * better: see comments in bset.c at cacheline_to_bkey() for
157 	 * details
158 	 */
159 
160 	/* size of the binary tree and prev array */
161 	unsigned	size;
162 
163 	/* function of size - precalculated for to_inorder() */
164 	unsigned	extra;
165 
166 	/* copy of the last key in the set */
167 	struct bkey	end;
168 	struct bkey_float *tree;
169 
170 	/*
171 	 * The nodes in the bset tree point to specific keys - this
172 	 * array holds the sizes of the previous key.
173 	 *
174 	 * Conceptually it's a member of struct bkey_float, but we want
175 	 * to keep bkey_float to 4 bytes and prev isn't used in the fast
176 	 * path.
177 	 */
178 	uint8_t		*prev;
179 
180 	/* The actual btree node, with pointers to each sorted set */
181 	struct bset	*data;
182 };
183 
bkey_cmp(const struct bkey * l,const struct bkey * r)184 static __always_inline int64_t bkey_cmp(const struct bkey *l,
185 					const struct bkey *r)
186 {
187 	return unlikely(KEY_INODE(l) != KEY_INODE(r))
188 		? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
189 		: (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
190 }
191 
bkey_u64s(const struct bkey * k)192 static inline size_t bkey_u64s(const struct bkey *k)
193 {
194 	BUG_ON(KEY_CSUM(k) > 1);
195 	return 2 + KEY_PTRS(k) + (KEY_CSUM(k) ? 1 : 0);
196 }
197 
bkey_bytes(const struct bkey * k)198 static inline size_t bkey_bytes(const struct bkey *k)
199 {
200 	return bkey_u64s(k) * sizeof(uint64_t);
201 }
202 
bkey_copy(struct bkey * dest,const struct bkey * src)203 static inline void bkey_copy(struct bkey *dest, const struct bkey *src)
204 {
205 	memcpy(dest, src, bkey_bytes(src));
206 }
207 
bkey_copy_key(struct bkey * dest,const struct bkey * src)208 static inline void bkey_copy_key(struct bkey *dest, const struct bkey *src)
209 {
210 	if (!src)
211 		src = &KEY(0, 0, 0);
212 
213 	SET_KEY_INODE(dest, KEY_INODE(src));
214 	SET_KEY_OFFSET(dest, KEY_OFFSET(src));
215 }
216 
bkey_next(const struct bkey * k)217 static inline struct bkey *bkey_next(const struct bkey *k)
218 {
219 	uint64_t *d = (void *) k;
220 	return (struct bkey *) (d + bkey_u64s(k));
221 }
222 
223 /* Keylists */
224 
225 struct keylist {
226 	struct bkey		*top;
227 	union {
228 		uint64_t		*list;
229 		struct bkey		*bottom;
230 	};
231 
232 	/* Enough room for btree_split's keys without realloc */
233 #define KEYLIST_INLINE		16
234 	uint64_t		d[KEYLIST_INLINE];
235 };
236 
bch_keylist_init(struct keylist * l)237 static inline void bch_keylist_init(struct keylist *l)
238 {
239 	l->top = (void *) (l->list = l->d);
240 }
241 
bch_keylist_push(struct keylist * l)242 static inline void bch_keylist_push(struct keylist *l)
243 {
244 	l->top = bkey_next(l->top);
245 }
246 
bch_keylist_add(struct keylist * l,struct bkey * k)247 static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
248 {
249 	bkey_copy(l->top, k);
250 	bch_keylist_push(l);
251 }
252 
bch_keylist_empty(struct keylist * l)253 static inline bool bch_keylist_empty(struct keylist *l)
254 {
255 	return l->top == (void *) l->list;
256 }
257 
bch_keylist_free(struct keylist * l)258 static inline void bch_keylist_free(struct keylist *l)
259 {
260 	if (l->list != l->d)
261 		kfree(l->list);
262 }
263 
264 void bch_keylist_copy(struct keylist *, struct keylist *);
265 struct bkey *bch_keylist_pop(struct keylist *);
266 int bch_keylist_realloc(struct keylist *, int, struct cache_set *);
267 
268 void bch_bkey_copy_single_ptr(struct bkey *, const struct bkey *,
269 			      unsigned);
270 bool __bch_cut_front(const struct bkey *, struct bkey *);
271 bool __bch_cut_back(const struct bkey *, struct bkey *);
272 
bch_cut_front(const struct bkey * where,struct bkey * k)273 static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
274 {
275 	BUG_ON(bkey_cmp(where, k) > 0);
276 	return __bch_cut_front(where, k);
277 }
278 
bch_cut_back(const struct bkey * where,struct bkey * k)279 static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
280 {
281 	BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
282 	return __bch_cut_back(where, k);
283 }
284 
285 const char *bch_ptr_status(struct cache_set *, const struct bkey *);
286 bool __bch_ptr_invalid(struct cache_set *, int level, const struct bkey *);
287 bool bch_ptr_bad(struct btree *, const struct bkey *);
288 
gen_after(uint8_t a,uint8_t b)289 static inline uint8_t gen_after(uint8_t a, uint8_t b)
290 {
291 	uint8_t r = a - b;
292 	return r > 128U ? 0 : r;
293 }
294 
ptr_stale(struct cache_set * c,const struct bkey * k,unsigned i)295 static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
296 				unsigned i)
297 {
298 	return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
299 }
300 
ptr_available(struct cache_set * c,const struct bkey * k,unsigned i)301 static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
302 				 unsigned i)
303 {
304 	return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
305 }
306 
307 
308 typedef bool (*ptr_filter_fn)(struct btree *, const struct bkey *);
309 
310 struct bkey *bch_next_recurse_key(struct btree *, struct bkey *);
311 struct bkey *bch_btree_iter_next(struct btree_iter *);
312 struct bkey *bch_btree_iter_next_filter(struct btree_iter *,
313 					struct btree *, ptr_filter_fn);
314 
315 void bch_btree_iter_push(struct btree_iter *, struct bkey *, struct bkey *);
316 struct bkey *__bch_btree_iter_init(struct btree *, struct btree_iter *,
317 				   struct bkey *, struct bset_tree *);
318 
319 /* 32 bits total: */
320 #define BKEY_MID_BITS		3
321 #define BKEY_EXPONENT_BITS	7
322 #define BKEY_MANTISSA_BITS	22
323 #define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
324 
325 struct bkey_float {
326 	unsigned	exponent:BKEY_EXPONENT_BITS;
327 	unsigned	m:BKEY_MID_BITS;
328 	unsigned	mantissa:BKEY_MANTISSA_BITS;
329 } __packed;
330 
331 /*
332  * BSET_CACHELINE was originally intended to match the hardware cacheline size -
333  * it used to be 64, but I realized the lookup code would touch slightly less
334  * memory if it was 128.
335  *
336  * It definites the number of bytes (in struct bset) per struct bkey_float in
337  * the auxiliar search tree - when we're done searching the bset_float tree we
338  * have this many bytes left that we do a linear search over.
339  *
340  * Since (after level 5) every level of the bset_tree is on a new cacheline,
341  * we're touching one fewer cacheline in the bset tree in exchange for one more
342  * cacheline in the linear search - but the linear search might stop before it
343  * gets to the second cacheline.
344  */
345 
346 #define BSET_CACHELINE		128
347 #define bset_tree_space(b)	(btree_data_space(b) / BSET_CACHELINE)
348 
349 #define bset_tree_bytes(b)	(bset_tree_space(b) * sizeof(struct bkey_float))
350 #define bset_prev_bytes(b)	(bset_tree_space(b) * sizeof(uint8_t))
351 
352 void bch_bset_init_next(struct btree *);
353 
354 void bch_bset_fix_invalidated_key(struct btree *, struct bkey *);
355 void bch_bset_fix_lookup_table(struct btree *, struct bkey *);
356 
357 struct bkey *__bch_bset_search(struct btree *, struct bset_tree *,
358 			   const struct bkey *);
359 
bch_bset_search(struct btree * b,struct bset_tree * t,const struct bkey * search)360 static inline struct bkey *bch_bset_search(struct btree *b, struct bset_tree *t,
361 					   const struct bkey *search)
362 {
363 	return search ? __bch_bset_search(b, t, search) : t->data->start;
364 }
365 
366 bool bch_bkey_try_merge(struct btree *, struct bkey *, struct bkey *);
367 void bch_btree_sort_lazy(struct btree *);
368 void bch_btree_sort_into(struct btree *, struct btree *);
369 void bch_btree_sort_and_fix_extents(struct btree *, struct btree_iter *);
370 void bch_btree_sort_partial(struct btree *, unsigned);
371 
bch_btree_sort(struct btree * b)372 static inline void bch_btree_sort(struct btree *b)
373 {
374 	bch_btree_sort_partial(b, 0);
375 }
376 
377 int bch_bset_print_stats(struct cache_set *, char *);
378 
379 #endif
380