1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/list_sort.h>
22 #include "ctree.h"
23 #include "transaction.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "compat.h"
29 #include "tree-log.h"
30 #include "hash.h"
31
32 /* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40
41 /*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
84 /*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_ALL 2
96
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode,
99 int inode_only);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108
109 /*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
132 /*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root)
139 {
140 int ret;
141 int err = 0;
142
143 mutex_lock(&root->log_mutex);
144 if (root->log_root) {
145 if (!root->log_start_pid) {
146 root->log_start_pid = current->pid;
147 root->log_multiple_pids = false;
148 } else if (root->log_start_pid != current->pid) {
149 root->log_multiple_pids = true;
150 }
151
152 atomic_inc(&root->log_batch);
153 atomic_inc(&root->log_writers);
154 mutex_unlock(&root->log_mutex);
155 return 0;
156 }
157 root->log_multiple_pids = false;
158 root->log_start_pid = current->pid;
159 mutex_lock(&root->fs_info->tree_log_mutex);
160 if (!root->fs_info->log_root_tree) {
161 ret = btrfs_init_log_root_tree(trans, root->fs_info);
162 if (ret)
163 err = ret;
164 }
165 if (err == 0 && !root->log_root) {
166 ret = btrfs_add_log_tree(trans, root);
167 if (ret)
168 err = ret;
169 }
170 mutex_unlock(&root->fs_info->tree_log_mutex);
171 atomic_inc(&root->log_batch);
172 atomic_inc(&root->log_writers);
173 mutex_unlock(&root->log_mutex);
174 return err;
175 }
176
177 /*
178 * returns 0 if there was a log transaction running and we were able
179 * to join, or returns -ENOENT if there were not transactions
180 * in progress
181 */
join_running_log_trans(struct btrfs_root * root)182 static int join_running_log_trans(struct btrfs_root *root)
183 {
184 int ret = -ENOENT;
185
186 smp_mb();
187 if (!root->log_root)
188 return -ENOENT;
189
190 mutex_lock(&root->log_mutex);
191 if (root->log_root) {
192 ret = 0;
193 atomic_inc(&root->log_writers);
194 }
195 mutex_unlock(&root->log_mutex);
196 return ret;
197 }
198
199 /*
200 * This either makes the current running log transaction wait
201 * until you call btrfs_end_log_trans() or it makes any future
202 * log transactions wait until you call btrfs_end_log_trans()
203 */
btrfs_pin_log_trans(struct btrfs_root * root)204 int btrfs_pin_log_trans(struct btrfs_root *root)
205 {
206 int ret = -ENOENT;
207
208 mutex_lock(&root->log_mutex);
209 atomic_inc(&root->log_writers);
210 mutex_unlock(&root->log_mutex);
211 return ret;
212 }
213
214 /*
215 * indicate we're done making changes to the log tree
216 * and wake up anyone waiting to do a sync
217 */
btrfs_end_log_trans(struct btrfs_root * root)218 void btrfs_end_log_trans(struct btrfs_root *root)
219 {
220 if (atomic_dec_and_test(&root->log_writers)) {
221 smp_mb();
222 if (waitqueue_active(&root->log_writer_wait))
223 wake_up(&root->log_writer_wait);
224 }
225 }
226
227
228 /*
229 * the walk control struct is used to pass state down the chain when
230 * processing the log tree. The stage field tells us which part
231 * of the log tree processing we are currently doing. The others
232 * are state fields used for that specific part
233 */
234 struct walk_control {
235 /* should we free the extent on disk when done? This is used
236 * at transaction commit time while freeing a log tree
237 */
238 int free;
239
240 /* should we write out the extent buffer? This is used
241 * while flushing the log tree to disk during a sync
242 */
243 int write;
244
245 /* should we wait for the extent buffer io to finish? Also used
246 * while flushing the log tree to disk for a sync
247 */
248 int wait;
249
250 /* pin only walk, we record which extents on disk belong to the
251 * log trees
252 */
253 int pin;
254
255 /* what stage of the replay code we're currently in */
256 int stage;
257
258 /* the root we are currently replaying */
259 struct btrfs_root *replay_dest;
260
261 /* the trans handle for the current replay */
262 struct btrfs_trans_handle *trans;
263
264 /* the function that gets used to process blocks we find in the
265 * tree. Note the extent_buffer might not be up to date when it is
266 * passed in, and it must be checked or read if you need the data
267 * inside it
268 */
269 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
270 struct walk_control *wc, u64 gen);
271 };
272
273 /*
274 * process_func used to pin down extents, write them or wait on them
275 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)276 static int process_one_buffer(struct btrfs_root *log,
277 struct extent_buffer *eb,
278 struct walk_control *wc, u64 gen)
279 {
280 int ret = 0;
281
282 if (wc->pin)
283 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
284 eb->start, eb->len);
285
286 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
287 if (wc->write)
288 btrfs_write_tree_block(eb);
289 if (wc->wait)
290 btrfs_wait_tree_block_writeback(eb);
291 }
292 return ret;
293 }
294
295 /*
296 * Item overwrite used by replay and tree logging. eb, slot and key all refer
297 * to the src data we are copying out.
298 *
299 * root is the tree we are copying into, and path is a scratch
300 * path for use in this function (it should be released on entry and
301 * will be released on exit).
302 *
303 * If the key is already in the destination tree the existing item is
304 * overwritten. If the existing item isn't big enough, it is extended.
305 * If it is too large, it is truncated.
306 *
307 * If the key isn't in the destination yet, a new item is inserted.
308 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)309 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
310 struct btrfs_root *root,
311 struct btrfs_path *path,
312 struct extent_buffer *eb, int slot,
313 struct btrfs_key *key)
314 {
315 int ret;
316 u32 item_size;
317 u64 saved_i_size = 0;
318 int save_old_i_size = 0;
319 unsigned long src_ptr;
320 unsigned long dst_ptr;
321 int overwrite_root = 0;
322 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
323
324 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
325 overwrite_root = 1;
326
327 item_size = btrfs_item_size_nr(eb, slot);
328 src_ptr = btrfs_item_ptr_offset(eb, slot);
329
330 /* look for the key in the destination tree */
331 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
332 if (ret < 0)
333 return ret;
334
335 if (ret == 0) {
336 char *src_copy;
337 char *dst_copy;
338 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
339 path->slots[0]);
340 if (dst_size != item_size)
341 goto insert;
342
343 if (item_size == 0) {
344 btrfs_release_path(path);
345 return 0;
346 }
347 dst_copy = kmalloc(item_size, GFP_NOFS);
348 src_copy = kmalloc(item_size, GFP_NOFS);
349 if (!dst_copy || !src_copy) {
350 btrfs_release_path(path);
351 kfree(dst_copy);
352 kfree(src_copy);
353 return -ENOMEM;
354 }
355
356 read_extent_buffer(eb, src_copy, src_ptr, item_size);
357
358 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
359 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
360 item_size);
361 ret = memcmp(dst_copy, src_copy, item_size);
362
363 kfree(dst_copy);
364 kfree(src_copy);
365 /*
366 * they have the same contents, just return, this saves
367 * us from cowing blocks in the destination tree and doing
368 * extra writes that may not have been done by a previous
369 * sync
370 */
371 if (ret == 0) {
372 btrfs_release_path(path);
373 return 0;
374 }
375
376 /*
377 * We need to load the old nbytes into the inode so when we
378 * replay the extents we've logged we get the right nbytes.
379 */
380 if (inode_item) {
381 struct btrfs_inode_item *item;
382 u64 nbytes;
383
384 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
385 struct btrfs_inode_item);
386 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
387 item = btrfs_item_ptr(eb, slot,
388 struct btrfs_inode_item);
389 btrfs_set_inode_nbytes(eb, item, nbytes);
390 }
391 } else if (inode_item) {
392 struct btrfs_inode_item *item;
393
394 /*
395 * New inode, set nbytes to 0 so that the nbytes comes out
396 * properly when we replay the extents.
397 */
398 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
399 btrfs_set_inode_nbytes(eb, item, 0);
400 }
401 insert:
402 btrfs_release_path(path);
403 /* try to insert the key into the destination tree */
404 ret = btrfs_insert_empty_item(trans, root, path,
405 key, item_size);
406
407 /* make sure any existing item is the correct size */
408 if (ret == -EEXIST) {
409 u32 found_size;
410 found_size = btrfs_item_size_nr(path->nodes[0],
411 path->slots[0]);
412 if (found_size > item_size)
413 btrfs_truncate_item(root, path, item_size, 1);
414 else if (found_size < item_size)
415 btrfs_extend_item(root, path,
416 item_size - found_size);
417 } else if (ret) {
418 return ret;
419 }
420 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
421 path->slots[0]);
422
423 /* don't overwrite an existing inode if the generation number
424 * was logged as zero. This is done when the tree logging code
425 * is just logging an inode to make sure it exists after recovery.
426 *
427 * Also, don't overwrite i_size on directories during replay.
428 * log replay inserts and removes directory items based on the
429 * state of the tree found in the subvolume, and i_size is modified
430 * as it goes
431 */
432 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
433 struct btrfs_inode_item *src_item;
434 struct btrfs_inode_item *dst_item;
435
436 src_item = (struct btrfs_inode_item *)src_ptr;
437 dst_item = (struct btrfs_inode_item *)dst_ptr;
438
439 if (btrfs_inode_generation(eb, src_item) == 0)
440 goto no_copy;
441
442 if (overwrite_root &&
443 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
444 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
445 save_old_i_size = 1;
446 saved_i_size = btrfs_inode_size(path->nodes[0],
447 dst_item);
448 }
449 }
450
451 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
452 src_ptr, item_size);
453
454 if (save_old_i_size) {
455 struct btrfs_inode_item *dst_item;
456 dst_item = (struct btrfs_inode_item *)dst_ptr;
457 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
458 }
459
460 /* make sure the generation is filled in */
461 if (key->type == BTRFS_INODE_ITEM_KEY) {
462 struct btrfs_inode_item *dst_item;
463 dst_item = (struct btrfs_inode_item *)dst_ptr;
464 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
465 btrfs_set_inode_generation(path->nodes[0], dst_item,
466 trans->transid);
467 }
468 }
469 no_copy:
470 btrfs_mark_buffer_dirty(path->nodes[0]);
471 btrfs_release_path(path);
472 return 0;
473 }
474
475 /*
476 * simple helper to read an inode off the disk from a given root
477 * This can only be called for subvolume roots and not for the log
478 */
read_one_inode(struct btrfs_root * root,u64 objectid)479 static noinline struct inode *read_one_inode(struct btrfs_root *root,
480 u64 objectid)
481 {
482 struct btrfs_key key;
483 struct inode *inode;
484
485 key.objectid = objectid;
486 key.type = BTRFS_INODE_ITEM_KEY;
487 key.offset = 0;
488 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
489 if (IS_ERR(inode)) {
490 inode = NULL;
491 } else if (is_bad_inode(inode)) {
492 iput(inode);
493 inode = NULL;
494 }
495 return inode;
496 }
497
498 /* replays a single extent in 'eb' at 'slot' with 'key' into the
499 * subvolume 'root'. path is released on entry and should be released
500 * on exit.
501 *
502 * extents in the log tree have not been allocated out of the extent
503 * tree yet. So, this completes the allocation, taking a reference
504 * as required if the extent already exists or creating a new extent
505 * if it isn't in the extent allocation tree yet.
506 *
507 * The extent is inserted into the file, dropping any existing extents
508 * from the file that overlap the new one.
509 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)510 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
511 struct btrfs_root *root,
512 struct btrfs_path *path,
513 struct extent_buffer *eb, int slot,
514 struct btrfs_key *key)
515 {
516 int found_type;
517 u64 extent_end;
518 u64 start = key->offset;
519 u64 nbytes = 0;
520 struct btrfs_file_extent_item *item;
521 struct inode *inode = NULL;
522 unsigned long size;
523 int ret = 0;
524
525 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
526 found_type = btrfs_file_extent_type(eb, item);
527
528 if (found_type == BTRFS_FILE_EXTENT_REG ||
529 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
530 nbytes = btrfs_file_extent_num_bytes(eb, item);
531 extent_end = start + nbytes;
532
533 /*
534 * We don't add to the inodes nbytes if we are prealloc or a
535 * hole.
536 */
537 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
538 nbytes = 0;
539 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
540 size = btrfs_file_extent_inline_len(eb, item);
541 nbytes = btrfs_file_extent_ram_bytes(eb, item);
542 extent_end = ALIGN(start + size, root->sectorsize);
543 } else {
544 ret = 0;
545 goto out;
546 }
547
548 inode = read_one_inode(root, key->objectid);
549 if (!inode) {
550 ret = -EIO;
551 goto out;
552 }
553
554 /*
555 * first check to see if we already have this extent in the
556 * file. This must be done before the btrfs_drop_extents run
557 * so we don't try to drop this extent.
558 */
559 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
560 start, 0);
561
562 if (ret == 0 &&
563 (found_type == BTRFS_FILE_EXTENT_REG ||
564 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
565 struct btrfs_file_extent_item cmp1;
566 struct btrfs_file_extent_item cmp2;
567 struct btrfs_file_extent_item *existing;
568 struct extent_buffer *leaf;
569
570 leaf = path->nodes[0];
571 existing = btrfs_item_ptr(leaf, path->slots[0],
572 struct btrfs_file_extent_item);
573
574 read_extent_buffer(eb, &cmp1, (unsigned long)item,
575 sizeof(cmp1));
576 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
577 sizeof(cmp2));
578
579 /*
580 * we already have a pointer to this exact extent,
581 * we don't have to do anything
582 */
583 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
584 btrfs_release_path(path);
585 goto out;
586 }
587 }
588 btrfs_release_path(path);
589
590 /* drop any overlapping extents */
591 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
592 if (ret)
593 goto out;
594
595 if (found_type == BTRFS_FILE_EXTENT_REG ||
596 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
597 u64 offset;
598 unsigned long dest_offset;
599 struct btrfs_key ins;
600
601 ret = btrfs_insert_empty_item(trans, root, path, key,
602 sizeof(*item));
603 if (ret)
604 goto out;
605 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
606 path->slots[0]);
607 copy_extent_buffer(path->nodes[0], eb, dest_offset,
608 (unsigned long)item, sizeof(*item));
609
610 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
611 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
612 ins.type = BTRFS_EXTENT_ITEM_KEY;
613 offset = key->offset - btrfs_file_extent_offset(eb, item);
614
615 if (ins.objectid > 0) {
616 u64 csum_start;
617 u64 csum_end;
618 LIST_HEAD(ordered_sums);
619 /*
620 * is this extent already allocated in the extent
621 * allocation tree? If so, just add a reference
622 */
623 ret = btrfs_lookup_extent(root, ins.objectid,
624 ins.offset);
625 if (ret == 0) {
626 ret = btrfs_inc_extent_ref(trans, root,
627 ins.objectid, ins.offset,
628 0, root->root_key.objectid,
629 key->objectid, offset, 0);
630 if (ret)
631 goto out;
632 } else {
633 /*
634 * insert the extent pointer in the extent
635 * allocation tree
636 */
637 ret = btrfs_alloc_logged_file_extent(trans,
638 root, root->root_key.objectid,
639 key->objectid, offset, &ins);
640 if (ret)
641 goto out;
642 }
643 btrfs_release_path(path);
644
645 if (btrfs_file_extent_compression(eb, item)) {
646 csum_start = ins.objectid;
647 csum_end = csum_start + ins.offset;
648 } else {
649 csum_start = ins.objectid +
650 btrfs_file_extent_offset(eb, item);
651 csum_end = csum_start +
652 btrfs_file_extent_num_bytes(eb, item);
653 }
654
655 ret = btrfs_lookup_csums_range(root->log_root,
656 csum_start, csum_end - 1,
657 &ordered_sums, 0);
658 if (ret)
659 goto out;
660 while (!list_empty(&ordered_sums)) {
661 struct btrfs_ordered_sum *sums;
662 sums = list_entry(ordered_sums.next,
663 struct btrfs_ordered_sum,
664 list);
665 if (!ret)
666 ret = btrfs_csum_file_blocks(trans,
667 root->fs_info->csum_root,
668 sums);
669 list_del(&sums->list);
670 kfree(sums);
671 }
672 if (ret)
673 goto out;
674 } else {
675 btrfs_release_path(path);
676 }
677 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
678 /* inline extents are easy, we just overwrite them */
679 ret = overwrite_item(trans, root, path, eb, slot, key);
680 if (ret)
681 goto out;
682 }
683
684 inode_add_bytes(inode, nbytes);
685 ret = btrfs_update_inode(trans, root, inode);
686 out:
687 if (inode)
688 iput(inode);
689 return ret;
690 }
691
692 /*
693 * when cleaning up conflicts between the directory names in the
694 * subvolume, directory names in the log and directory names in the
695 * inode back references, we may have to unlink inodes from directories.
696 *
697 * This is a helper function to do the unlink of a specific directory
698 * item
699 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct inode * dir,struct btrfs_dir_item * di)700 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
701 struct btrfs_root *root,
702 struct btrfs_path *path,
703 struct inode *dir,
704 struct btrfs_dir_item *di)
705 {
706 struct inode *inode;
707 char *name;
708 int name_len;
709 struct extent_buffer *leaf;
710 struct btrfs_key location;
711 int ret;
712
713 leaf = path->nodes[0];
714
715 btrfs_dir_item_key_to_cpu(leaf, di, &location);
716 name_len = btrfs_dir_name_len(leaf, di);
717 name = kmalloc(name_len, GFP_NOFS);
718 if (!name)
719 return -ENOMEM;
720
721 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
722 btrfs_release_path(path);
723
724 inode = read_one_inode(root, location.objectid);
725 if (!inode) {
726 ret = -EIO;
727 goto out;
728 }
729
730 ret = link_to_fixup_dir(trans, root, path, location.objectid);
731 if (ret)
732 goto out;
733
734 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
735 if (ret)
736 goto out;
737 btrfs_run_delayed_items(trans, root);
738 out:
739 kfree(name);
740 iput(inode);
741 return ret;
742 }
743
744 /*
745 * helper function to see if a given name and sequence number found
746 * in an inode back reference are already in a directory and correctly
747 * point to this inode
748 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)749 static noinline int inode_in_dir(struct btrfs_root *root,
750 struct btrfs_path *path,
751 u64 dirid, u64 objectid, u64 index,
752 const char *name, int name_len)
753 {
754 struct btrfs_dir_item *di;
755 struct btrfs_key location;
756 int match = 0;
757
758 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
759 index, name, name_len, 0);
760 if (di && !IS_ERR(di)) {
761 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
762 if (location.objectid != objectid)
763 goto out;
764 } else
765 goto out;
766 btrfs_release_path(path);
767
768 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
769 if (di && !IS_ERR(di)) {
770 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
771 if (location.objectid != objectid)
772 goto out;
773 } else
774 goto out;
775 match = 1;
776 out:
777 btrfs_release_path(path);
778 return match;
779 }
780
781 /*
782 * helper function to check a log tree for a named back reference in
783 * an inode. This is used to decide if a back reference that is
784 * found in the subvolume conflicts with what we find in the log.
785 *
786 * inode backreferences may have multiple refs in a single item,
787 * during replay we process one reference at a time, and we don't
788 * want to delete valid links to a file from the subvolume if that
789 * link is also in the log.
790 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,char * name,int namelen)791 static noinline int backref_in_log(struct btrfs_root *log,
792 struct btrfs_key *key,
793 u64 ref_objectid,
794 char *name, int namelen)
795 {
796 struct btrfs_path *path;
797 struct btrfs_inode_ref *ref;
798 unsigned long ptr;
799 unsigned long ptr_end;
800 unsigned long name_ptr;
801 int found_name_len;
802 int item_size;
803 int ret;
804 int match = 0;
805
806 path = btrfs_alloc_path();
807 if (!path)
808 return -ENOMEM;
809
810 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
811 if (ret != 0)
812 goto out;
813
814 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
815
816 if (key->type == BTRFS_INODE_EXTREF_KEY) {
817 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
818 name, namelen, NULL))
819 match = 1;
820
821 goto out;
822 }
823
824 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
825 ptr_end = ptr + item_size;
826 while (ptr < ptr_end) {
827 ref = (struct btrfs_inode_ref *)ptr;
828 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
829 if (found_name_len == namelen) {
830 name_ptr = (unsigned long)(ref + 1);
831 ret = memcmp_extent_buffer(path->nodes[0], name,
832 name_ptr, namelen);
833 if (ret == 0) {
834 match = 1;
835 goto out;
836 }
837 }
838 ptr = (unsigned long)(ref + 1) + found_name_len;
839 }
840 out:
841 btrfs_free_path(path);
842 return match;
843 }
844
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct inode * dir,struct inode * inode,struct extent_buffer * eb,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)845 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
846 struct btrfs_root *root,
847 struct btrfs_path *path,
848 struct btrfs_root *log_root,
849 struct inode *dir, struct inode *inode,
850 struct extent_buffer *eb,
851 u64 inode_objectid, u64 parent_objectid,
852 u64 ref_index, char *name, int namelen,
853 int *search_done)
854 {
855 int ret;
856 char *victim_name;
857 int victim_name_len;
858 struct extent_buffer *leaf;
859 struct btrfs_dir_item *di;
860 struct btrfs_key search_key;
861 struct btrfs_inode_extref *extref;
862
863 again:
864 /* Search old style refs */
865 search_key.objectid = inode_objectid;
866 search_key.type = BTRFS_INODE_REF_KEY;
867 search_key.offset = parent_objectid;
868 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
869 if (ret == 0) {
870 struct btrfs_inode_ref *victim_ref;
871 unsigned long ptr;
872 unsigned long ptr_end;
873
874 leaf = path->nodes[0];
875
876 /* are we trying to overwrite a back ref for the root directory
877 * if so, just jump out, we're done
878 */
879 if (search_key.objectid == search_key.offset)
880 return 1;
881
882 /* check all the names in this back reference to see
883 * if they are in the log. if so, we allow them to stay
884 * otherwise they must be unlinked as a conflict
885 */
886 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
887 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
888 while (ptr < ptr_end) {
889 victim_ref = (struct btrfs_inode_ref *)ptr;
890 victim_name_len = btrfs_inode_ref_name_len(leaf,
891 victim_ref);
892 victim_name = kmalloc(victim_name_len, GFP_NOFS);
893 if (!victim_name)
894 return -ENOMEM;
895
896 read_extent_buffer(leaf, victim_name,
897 (unsigned long)(victim_ref + 1),
898 victim_name_len);
899
900 if (!backref_in_log(log_root, &search_key,
901 parent_objectid,
902 victim_name,
903 victim_name_len)) {
904 btrfs_inc_nlink(inode);
905 btrfs_release_path(path);
906
907 ret = btrfs_unlink_inode(trans, root, dir,
908 inode, victim_name,
909 victim_name_len);
910 kfree(victim_name);
911 if (ret)
912 return ret;
913 btrfs_run_delayed_items(trans, root);
914 *search_done = 1;
915 goto again;
916 }
917 kfree(victim_name);
918
919 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
920 }
921
922 /*
923 * NOTE: we have searched root tree and checked the
924 * coresponding ref, it does not need to check again.
925 */
926 *search_done = 1;
927 }
928 btrfs_release_path(path);
929
930 /* Same search but for extended refs */
931 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
932 inode_objectid, parent_objectid, 0,
933 0);
934 if (!IS_ERR_OR_NULL(extref)) {
935 u32 item_size;
936 u32 cur_offset = 0;
937 unsigned long base;
938 struct inode *victim_parent;
939
940 leaf = path->nodes[0];
941
942 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
943 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
944
945 while (cur_offset < item_size) {
946 extref = (struct btrfs_inode_extref *)base + cur_offset;
947
948 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
949
950 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
951 goto next;
952
953 victim_name = kmalloc(victim_name_len, GFP_NOFS);
954 if (!victim_name)
955 return -ENOMEM;
956 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
957 victim_name_len);
958
959 search_key.objectid = inode_objectid;
960 search_key.type = BTRFS_INODE_EXTREF_KEY;
961 search_key.offset = btrfs_extref_hash(parent_objectid,
962 victim_name,
963 victim_name_len);
964 ret = 0;
965 if (!backref_in_log(log_root, &search_key,
966 parent_objectid, victim_name,
967 victim_name_len)) {
968 ret = -ENOENT;
969 victim_parent = read_one_inode(root,
970 parent_objectid);
971 if (victim_parent) {
972 btrfs_inc_nlink(inode);
973 btrfs_release_path(path);
974
975 ret = btrfs_unlink_inode(trans, root,
976 victim_parent,
977 inode,
978 victim_name,
979 victim_name_len);
980 btrfs_run_delayed_items(trans, root);
981 }
982 iput(victim_parent);
983 kfree(victim_name);
984 if (ret)
985 return ret;
986 *search_done = 1;
987 goto again;
988 }
989 kfree(victim_name);
990 if (ret)
991 return ret;
992 next:
993 cur_offset += victim_name_len + sizeof(*extref);
994 }
995 *search_done = 1;
996 }
997 btrfs_release_path(path);
998
999 /* look for a conflicting sequence number */
1000 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1001 ref_index, name, namelen, 0);
1002 if (di && !IS_ERR(di)) {
1003 ret = drop_one_dir_item(trans, root, path, dir, di);
1004 if (ret)
1005 return ret;
1006 }
1007 btrfs_release_path(path);
1008
1009 /* look for a conflicing name */
1010 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1011 name, namelen, 0);
1012 if (di && !IS_ERR(di)) {
1013 ret = drop_one_dir_item(trans, root, path, dir, di);
1014 if (ret)
1015 return ret;
1016 }
1017 btrfs_release_path(path);
1018
1019 return 0;
1020 }
1021
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1022 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1023 u32 *namelen, char **name, u64 *index,
1024 u64 *parent_objectid)
1025 {
1026 struct btrfs_inode_extref *extref;
1027
1028 extref = (struct btrfs_inode_extref *)ref_ptr;
1029
1030 *namelen = btrfs_inode_extref_name_len(eb, extref);
1031 *name = kmalloc(*namelen, GFP_NOFS);
1032 if (*name == NULL)
1033 return -ENOMEM;
1034
1035 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1036 *namelen);
1037
1038 *index = btrfs_inode_extref_index(eb, extref);
1039 if (parent_objectid)
1040 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1041
1042 return 0;
1043 }
1044
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1045 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1046 u32 *namelen, char **name, u64 *index)
1047 {
1048 struct btrfs_inode_ref *ref;
1049
1050 ref = (struct btrfs_inode_ref *)ref_ptr;
1051
1052 *namelen = btrfs_inode_ref_name_len(eb, ref);
1053 *name = kmalloc(*namelen, GFP_NOFS);
1054 if (*name == NULL)
1055 return -ENOMEM;
1056
1057 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1058
1059 *index = btrfs_inode_ref_index(eb, ref);
1060
1061 return 0;
1062 }
1063
1064 /*
1065 * replay one inode back reference item found in the log tree.
1066 * eb, slot and key refer to the buffer and key found in the log tree.
1067 * root is the destination we are replaying into, and path is for temp
1068 * use by this function. (it should be released on return).
1069 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1070 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root,
1072 struct btrfs_root *log,
1073 struct btrfs_path *path,
1074 struct extent_buffer *eb, int slot,
1075 struct btrfs_key *key)
1076 {
1077 struct inode *dir;
1078 struct inode *inode;
1079 unsigned long ref_ptr;
1080 unsigned long ref_end;
1081 char *name;
1082 int namelen;
1083 int ret;
1084 int search_done = 0;
1085 int log_ref_ver = 0;
1086 u64 parent_objectid;
1087 u64 inode_objectid;
1088 u64 ref_index = 0;
1089 int ref_struct_size;
1090
1091 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1092 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1093
1094 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1095 struct btrfs_inode_extref *r;
1096
1097 ref_struct_size = sizeof(struct btrfs_inode_extref);
1098 log_ref_ver = 1;
1099 r = (struct btrfs_inode_extref *)ref_ptr;
1100 parent_objectid = btrfs_inode_extref_parent(eb, r);
1101 } else {
1102 ref_struct_size = sizeof(struct btrfs_inode_ref);
1103 parent_objectid = key->offset;
1104 }
1105 inode_objectid = key->objectid;
1106
1107 /*
1108 * it is possible that we didn't log all the parent directories
1109 * for a given inode. If we don't find the dir, just don't
1110 * copy the back ref in. The link count fixup code will take
1111 * care of the rest
1112 */
1113 dir = read_one_inode(root, parent_objectid);
1114 if (!dir)
1115 return -ENOENT;
1116
1117 inode = read_one_inode(root, inode_objectid);
1118 if (!inode) {
1119 iput(dir);
1120 return -EIO;
1121 }
1122
1123 while (ref_ptr < ref_end) {
1124 if (log_ref_ver) {
1125 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1126 &ref_index, &parent_objectid);
1127 /*
1128 * parent object can change from one array
1129 * item to another.
1130 */
1131 if (!dir)
1132 dir = read_one_inode(root, parent_objectid);
1133 if (!dir)
1134 return -ENOENT;
1135 } else {
1136 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1137 &ref_index);
1138 }
1139 if (ret)
1140 return ret;
1141
1142 /* if we already have a perfect match, we're done */
1143 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1144 ref_index, name, namelen)) {
1145 /*
1146 * look for a conflicting back reference in the
1147 * metadata. if we find one we have to unlink that name
1148 * of the file before we add our new link. Later on, we
1149 * overwrite any existing back reference, and we don't
1150 * want to create dangling pointers in the directory.
1151 */
1152
1153 if (!search_done) {
1154 ret = __add_inode_ref(trans, root, path, log,
1155 dir, inode, eb,
1156 inode_objectid,
1157 parent_objectid,
1158 ref_index, name, namelen,
1159 &search_done);
1160 if (ret == 1) {
1161 ret = 0;
1162 goto out;
1163 }
1164 if (ret)
1165 goto out;
1166 }
1167
1168 /* insert our name */
1169 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1170 0, ref_index);
1171 if (ret)
1172 goto out;
1173
1174 btrfs_update_inode(trans, root, inode);
1175 }
1176
1177 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1178 kfree(name);
1179 if (log_ref_ver) {
1180 iput(dir);
1181 dir = NULL;
1182 }
1183 }
1184
1185 /* finally write the back reference in the inode */
1186 ret = overwrite_item(trans, root, path, eb, slot, key);
1187 out:
1188 btrfs_release_path(path);
1189 iput(dir);
1190 iput(inode);
1191 return ret;
1192 }
1193
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 offset)1194 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1195 struct btrfs_root *root, u64 offset)
1196 {
1197 int ret;
1198 ret = btrfs_find_orphan_item(root, offset);
1199 if (ret > 0)
1200 ret = btrfs_insert_orphan_item(trans, root, offset);
1201 return ret;
1202 }
1203
count_inode_extrefs(struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)1204 static int count_inode_extrefs(struct btrfs_root *root,
1205 struct inode *inode, struct btrfs_path *path)
1206 {
1207 int ret = 0;
1208 int name_len;
1209 unsigned int nlink = 0;
1210 u32 item_size;
1211 u32 cur_offset = 0;
1212 u64 inode_objectid = btrfs_ino(inode);
1213 u64 offset = 0;
1214 unsigned long ptr;
1215 struct btrfs_inode_extref *extref;
1216 struct extent_buffer *leaf;
1217
1218 while (1) {
1219 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1220 &extref, &offset);
1221 if (ret)
1222 break;
1223
1224 leaf = path->nodes[0];
1225 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1226 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1227
1228 while (cur_offset < item_size) {
1229 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1230 name_len = btrfs_inode_extref_name_len(leaf, extref);
1231
1232 nlink++;
1233
1234 cur_offset += name_len + sizeof(*extref);
1235 }
1236
1237 offset++;
1238 btrfs_release_path(path);
1239 }
1240 btrfs_release_path(path);
1241
1242 if (ret < 0)
1243 return ret;
1244 return nlink;
1245 }
1246
count_inode_refs(struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)1247 static int count_inode_refs(struct btrfs_root *root,
1248 struct inode *inode, struct btrfs_path *path)
1249 {
1250 int ret;
1251 struct btrfs_key key;
1252 unsigned int nlink = 0;
1253 unsigned long ptr;
1254 unsigned long ptr_end;
1255 int name_len;
1256 u64 ino = btrfs_ino(inode);
1257
1258 key.objectid = ino;
1259 key.type = BTRFS_INODE_REF_KEY;
1260 key.offset = (u64)-1;
1261
1262 while (1) {
1263 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1264 if (ret < 0)
1265 break;
1266 if (ret > 0) {
1267 if (path->slots[0] == 0)
1268 break;
1269 path->slots[0]--;
1270 }
1271 btrfs_item_key_to_cpu(path->nodes[0], &key,
1272 path->slots[0]);
1273 if (key.objectid != ino ||
1274 key.type != BTRFS_INODE_REF_KEY)
1275 break;
1276 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1277 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1278 path->slots[0]);
1279 while (ptr < ptr_end) {
1280 struct btrfs_inode_ref *ref;
1281
1282 ref = (struct btrfs_inode_ref *)ptr;
1283 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1284 ref);
1285 ptr = (unsigned long)(ref + 1) + name_len;
1286 nlink++;
1287 }
1288
1289 if (key.offset == 0)
1290 break;
1291 key.offset--;
1292 btrfs_release_path(path);
1293 }
1294 btrfs_release_path(path);
1295
1296 return nlink;
1297 }
1298
1299 /*
1300 * There are a few corners where the link count of the file can't
1301 * be properly maintained during replay. So, instead of adding
1302 * lots of complexity to the log code, we just scan the backrefs
1303 * for any file that has been through replay.
1304 *
1305 * The scan will update the link count on the inode to reflect the
1306 * number of back refs found. If it goes down to zero, the iput
1307 * will free the inode.
1308 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1309 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1310 struct btrfs_root *root,
1311 struct inode *inode)
1312 {
1313 struct btrfs_path *path;
1314 int ret;
1315 u64 nlink = 0;
1316 u64 ino = btrfs_ino(inode);
1317
1318 path = btrfs_alloc_path();
1319 if (!path)
1320 return -ENOMEM;
1321
1322 ret = count_inode_refs(root, inode, path);
1323 if (ret < 0)
1324 goto out;
1325
1326 nlink = ret;
1327
1328 ret = count_inode_extrefs(root, inode, path);
1329 if (ret == -ENOENT)
1330 ret = 0;
1331
1332 if (ret < 0)
1333 goto out;
1334
1335 nlink += ret;
1336
1337 ret = 0;
1338
1339 if (nlink != inode->i_nlink) {
1340 set_nlink(inode, nlink);
1341 btrfs_update_inode(trans, root, inode);
1342 }
1343 BTRFS_I(inode)->index_cnt = (u64)-1;
1344
1345 if (inode->i_nlink == 0) {
1346 if (S_ISDIR(inode->i_mode)) {
1347 ret = replay_dir_deletes(trans, root, NULL, path,
1348 ino, 1);
1349 if (ret)
1350 goto out;
1351 }
1352 ret = insert_orphan_item(trans, root, ino);
1353 }
1354
1355 out:
1356 btrfs_free_path(path);
1357 return ret;
1358 }
1359
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1360 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path)
1363 {
1364 int ret;
1365 struct btrfs_key key;
1366 struct inode *inode;
1367
1368 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1369 key.type = BTRFS_ORPHAN_ITEM_KEY;
1370 key.offset = (u64)-1;
1371 while (1) {
1372 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1373 if (ret < 0)
1374 break;
1375
1376 if (ret == 1) {
1377 if (path->slots[0] == 0)
1378 break;
1379 path->slots[0]--;
1380 }
1381
1382 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1383 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1384 key.type != BTRFS_ORPHAN_ITEM_KEY)
1385 break;
1386
1387 ret = btrfs_del_item(trans, root, path);
1388 if (ret)
1389 goto out;
1390
1391 btrfs_release_path(path);
1392 inode = read_one_inode(root, key.offset);
1393 if (!inode)
1394 return -EIO;
1395
1396 ret = fixup_inode_link_count(trans, root, inode);
1397 iput(inode);
1398 if (ret)
1399 goto out;
1400
1401 /*
1402 * fixup on a directory may create new entries,
1403 * make sure we always look for the highset possible
1404 * offset
1405 */
1406 key.offset = (u64)-1;
1407 }
1408 ret = 0;
1409 out:
1410 btrfs_release_path(path);
1411 return ret;
1412 }
1413
1414
1415 /*
1416 * record a given inode in the fixup dir so we can check its link
1417 * count when replay is done. The link count is incremented here
1418 * so the inode won't go away until we check it
1419 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1420 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1421 struct btrfs_root *root,
1422 struct btrfs_path *path,
1423 u64 objectid)
1424 {
1425 struct btrfs_key key;
1426 int ret = 0;
1427 struct inode *inode;
1428
1429 inode = read_one_inode(root, objectid);
1430 if (!inode)
1431 return -EIO;
1432
1433 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1434 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1435 key.offset = objectid;
1436
1437 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1438
1439 btrfs_release_path(path);
1440 if (ret == 0) {
1441 if (!inode->i_nlink)
1442 set_nlink(inode, 1);
1443 else
1444 btrfs_inc_nlink(inode);
1445 ret = btrfs_update_inode(trans, root, inode);
1446 } else if (ret == -EEXIST) {
1447 ret = 0;
1448 } else {
1449 BUG(); /* Logic Error */
1450 }
1451 iput(inode);
1452
1453 return ret;
1454 }
1455
1456 /*
1457 * when replaying the log for a directory, we only insert names
1458 * for inodes that actually exist. This means an fsync on a directory
1459 * does not implicitly fsync all the new files in it
1460 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 index,char * name,int name_len,u8 type,struct btrfs_key * location)1461 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1462 struct btrfs_root *root,
1463 struct btrfs_path *path,
1464 u64 dirid, u64 index,
1465 char *name, int name_len, u8 type,
1466 struct btrfs_key *location)
1467 {
1468 struct inode *inode;
1469 struct inode *dir;
1470 int ret;
1471
1472 inode = read_one_inode(root, location->objectid);
1473 if (!inode)
1474 return -ENOENT;
1475
1476 dir = read_one_inode(root, dirid);
1477 if (!dir) {
1478 iput(inode);
1479 return -EIO;
1480 }
1481 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1482
1483 /* FIXME, put inode into FIXUP list */
1484
1485 iput(inode);
1486 iput(dir);
1487 return ret;
1488 }
1489
1490 /*
1491 * take a single entry in a log directory item and replay it into
1492 * the subvolume.
1493 *
1494 * if a conflicting item exists in the subdirectory already,
1495 * the inode it points to is unlinked and put into the link count
1496 * fix up tree.
1497 *
1498 * If a name from the log points to a file or directory that does
1499 * not exist in the FS, it is skipped. fsyncs on directories
1500 * do not force down inodes inside that directory, just changes to the
1501 * names or unlinks in a directory.
1502 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1503 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1504 struct btrfs_root *root,
1505 struct btrfs_path *path,
1506 struct extent_buffer *eb,
1507 struct btrfs_dir_item *di,
1508 struct btrfs_key *key)
1509 {
1510 char *name;
1511 int name_len;
1512 struct btrfs_dir_item *dst_di;
1513 struct btrfs_key found_key;
1514 struct btrfs_key log_key;
1515 struct inode *dir;
1516 u8 log_type;
1517 int exists;
1518 int ret = 0;
1519
1520 dir = read_one_inode(root, key->objectid);
1521 if (!dir)
1522 return -EIO;
1523
1524 name_len = btrfs_dir_name_len(eb, di);
1525 name = kmalloc(name_len, GFP_NOFS);
1526 if (!name)
1527 return -ENOMEM;
1528
1529 log_type = btrfs_dir_type(eb, di);
1530 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1531 name_len);
1532
1533 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1534 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1535 if (exists == 0)
1536 exists = 1;
1537 else
1538 exists = 0;
1539 btrfs_release_path(path);
1540
1541 if (key->type == BTRFS_DIR_ITEM_KEY) {
1542 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1543 name, name_len, 1);
1544 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1545 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1546 key->objectid,
1547 key->offset, name,
1548 name_len, 1);
1549 } else {
1550 /* Corruption */
1551 ret = -EINVAL;
1552 goto out;
1553 }
1554 if (IS_ERR_OR_NULL(dst_di)) {
1555 /* we need a sequence number to insert, so we only
1556 * do inserts for the BTRFS_DIR_INDEX_KEY types
1557 */
1558 if (key->type != BTRFS_DIR_INDEX_KEY)
1559 goto out;
1560 goto insert;
1561 }
1562
1563 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1564 /* the existing item matches the logged item */
1565 if (found_key.objectid == log_key.objectid &&
1566 found_key.type == log_key.type &&
1567 found_key.offset == log_key.offset &&
1568 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1569 goto out;
1570 }
1571
1572 /*
1573 * don't drop the conflicting directory entry if the inode
1574 * for the new entry doesn't exist
1575 */
1576 if (!exists)
1577 goto out;
1578
1579 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1580 if (ret)
1581 goto out;
1582
1583 if (key->type == BTRFS_DIR_INDEX_KEY)
1584 goto insert;
1585 out:
1586 btrfs_release_path(path);
1587 kfree(name);
1588 iput(dir);
1589 return ret;
1590
1591 insert:
1592 btrfs_release_path(path);
1593 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1594 name, name_len, log_type, &log_key);
1595 if (ret && ret != -ENOENT)
1596 goto out;
1597 ret = 0;
1598 goto out;
1599 }
1600
1601 /*
1602 * find all the names in a directory item and reconcile them into
1603 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1604 * one name in a directory item, but the same code gets used for
1605 * both directory index types
1606 */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1607 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1608 struct btrfs_root *root,
1609 struct btrfs_path *path,
1610 struct extent_buffer *eb, int slot,
1611 struct btrfs_key *key)
1612 {
1613 int ret;
1614 u32 item_size = btrfs_item_size_nr(eb, slot);
1615 struct btrfs_dir_item *di;
1616 int name_len;
1617 unsigned long ptr;
1618 unsigned long ptr_end;
1619
1620 ptr = btrfs_item_ptr_offset(eb, slot);
1621 ptr_end = ptr + item_size;
1622 while (ptr < ptr_end) {
1623 di = (struct btrfs_dir_item *)ptr;
1624 if (verify_dir_item(root, eb, di))
1625 return -EIO;
1626 name_len = btrfs_dir_name_len(eb, di);
1627 ret = replay_one_name(trans, root, path, eb, di, key);
1628 if (ret)
1629 return ret;
1630 ptr = (unsigned long)(di + 1);
1631 ptr += name_len;
1632 }
1633 return 0;
1634 }
1635
1636 /*
1637 * directory replay has two parts. There are the standard directory
1638 * items in the log copied from the subvolume, and range items
1639 * created in the log while the subvolume was logged.
1640 *
1641 * The range items tell us which parts of the key space the log
1642 * is authoritative for. During replay, if a key in the subvolume
1643 * directory is in a logged range item, but not actually in the log
1644 * that means it was deleted from the directory before the fsync
1645 * and should be removed.
1646 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)1647 static noinline int find_dir_range(struct btrfs_root *root,
1648 struct btrfs_path *path,
1649 u64 dirid, int key_type,
1650 u64 *start_ret, u64 *end_ret)
1651 {
1652 struct btrfs_key key;
1653 u64 found_end;
1654 struct btrfs_dir_log_item *item;
1655 int ret;
1656 int nritems;
1657
1658 if (*start_ret == (u64)-1)
1659 return 1;
1660
1661 key.objectid = dirid;
1662 key.type = key_type;
1663 key.offset = *start_ret;
1664
1665 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1666 if (ret < 0)
1667 goto out;
1668 if (ret > 0) {
1669 if (path->slots[0] == 0)
1670 goto out;
1671 path->slots[0]--;
1672 }
1673 if (ret != 0)
1674 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1675
1676 if (key.type != key_type || key.objectid != dirid) {
1677 ret = 1;
1678 goto next;
1679 }
1680 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1681 struct btrfs_dir_log_item);
1682 found_end = btrfs_dir_log_end(path->nodes[0], item);
1683
1684 if (*start_ret >= key.offset && *start_ret <= found_end) {
1685 ret = 0;
1686 *start_ret = key.offset;
1687 *end_ret = found_end;
1688 goto out;
1689 }
1690 ret = 1;
1691 next:
1692 /* check the next slot in the tree to see if it is a valid item */
1693 nritems = btrfs_header_nritems(path->nodes[0]);
1694 if (path->slots[0] >= nritems) {
1695 ret = btrfs_next_leaf(root, path);
1696 if (ret)
1697 goto out;
1698 } else {
1699 path->slots[0]++;
1700 }
1701
1702 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1703
1704 if (key.type != key_type || key.objectid != dirid) {
1705 ret = 1;
1706 goto out;
1707 }
1708 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1709 struct btrfs_dir_log_item);
1710 found_end = btrfs_dir_log_end(path->nodes[0], item);
1711 *start_ret = key.offset;
1712 *end_ret = found_end;
1713 ret = 0;
1714 out:
1715 btrfs_release_path(path);
1716 return ret;
1717 }
1718
1719 /*
1720 * this looks for a given directory item in the log. If the directory
1721 * item is not in the log, the item is removed and the inode it points
1722 * to is unlinked
1723 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)1724 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1725 struct btrfs_root *root,
1726 struct btrfs_root *log,
1727 struct btrfs_path *path,
1728 struct btrfs_path *log_path,
1729 struct inode *dir,
1730 struct btrfs_key *dir_key)
1731 {
1732 int ret;
1733 struct extent_buffer *eb;
1734 int slot;
1735 u32 item_size;
1736 struct btrfs_dir_item *di;
1737 struct btrfs_dir_item *log_di;
1738 int name_len;
1739 unsigned long ptr;
1740 unsigned long ptr_end;
1741 char *name;
1742 struct inode *inode;
1743 struct btrfs_key location;
1744
1745 again:
1746 eb = path->nodes[0];
1747 slot = path->slots[0];
1748 item_size = btrfs_item_size_nr(eb, slot);
1749 ptr = btrfs_item_ptr_offset(eb, slot);
1750 ptr_end = ptr + item_size;
1751 while (ptr < ptr_end) {
1752 di = (struct btrfs_dir_item *)ptr;
1753 if (verify_dir_item(root, eb, di)) {
1754 ret = -EIO;
1755 goto out;
1756 }
1757
1758 name_len = btrfs_dir_name_len(eb, di);
1759 name = kmalloc(name_len, GFP_NOFS);
1760 if (!name) {
1761 ret = -ENOMEM;
1762 goto out;
1763 }
1764 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1765 name_len);
1766 log_di = NULL;
1767 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1768 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1769 dir_key->objectid,
1770 name, name_len, 0);
1771 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1772 log_di = btrfs_lookup_dir_index_item(trans, log,
1773 log_path,
1774 dir_key->objectid,
1775 dir_key->offset,
1776 name, name_len, 0);
1777 }
1778 if (IS_ERR_OR_NULL(log_di)) {
1779 btrfs_dir_item_key_to_cpu(eb, di, &location);
1780 btrfs_release_path(path);
1781 btrfs_release_path(log_path);
1782 inode = read_one_inode(root, location.objectid);
1783 if (!inode) {
1784 kfree(name);
1785 return -EIO;
1786 }
1787
1788 ret = link_to_fixup_dir(trans, root,
1789 path, location.objectid);
1790 if (ret) {
1791 kfree(name);
1792 iput(inode);
1793 goto out;
1794 }
1795
1796 btrfs_inc_nlink(inode);
1797 ret = btrfs_unlink_inode(trans, root, dir, inode,
1798 name, name_len);
1799 if (!ret)
1800 btrfs_run_delayed_items(trans, root);
1801 kfree(name);
1802 iput(inode);
1803 if (ret)
1804 goto out;
1805
1806 /* there might still be more names under this key
1807 * check and repeat if required
1808 */
1809 ret = btrfs_search_slot(NULL, root, dir_key, path,
1810 0, 0);
1811 if (ret == 0)
1812 goto again;
1813 ret = 0;
1814 goto out;
1815 }
1816 btrfs_release_path(log_path);
1817 kfree(name);
1818
1819 ptr = (unsigned long)(di + 1);
1820 ptr += name_len;
1821 }
1822 ret = 0;
1823 out:
1824 btrfs_release_path(path);
1825 btrfs_release_path(log_path);
1826 return ret;
1827 }
1828
1829 /*
1830 * deletion replay happens before we copy any new directory items
1831 * out of the log or out of backreferences from inodes. It
1832 * scans the log to find ranges of keys that log is authoritative for,
1833 * and then scans the directory to find items in those ranges that are
1834 * not present in the log.
1835 *
1836 * Anything we don't find in the log is unlinked and removed from the
1837 * directory.
1838 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)1839 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1840 struct btrfs_root *root,
1841 struct btrfs_root *log,
1842 struct btrfs_path *path,
1843 u64 dirid, int del_all)
1844 {
1845 u64 range_start;
1846 u64 range_end;
1847 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1848 int ret = 0;
1849 struct btrfs_key dir_key;
1850 struct btrfs_key found_key;
1851 struct btrfs_path *log_path;
1852 struct inode *dir;
1853
1854 dir_key.objectid = dirid;
1855 dir_key.type = BTRFS_DIR_ITEM_KEY;
1856 log_path = btrfs_alloc_path();
1857 if (!log_path)
1858 return -ENOMEM;
1859
1860 dir = read_one_inode(root, dirid);
1861 /* it isn't an error if the inode isn't there, that can happen
1862 * because we replay the deletes before we copy in the inode item
1863 * from the log
1864 */
1865 if (!dir) {
1866 btrfs_free_path(log_path);
1867 return 0;
1868 }
1869 again:
1870 range_start = 0;
1871 range_end = 0;
1872 while (1) {
1873 if (del_all)
1874 range_end = (u64)-1;
1875 else {
1876 ret = find_dir_range(log, path, dirid, key_type,
1877 &range_start, &range_end);
1878 if (ret != 0)
1879 break;
1880 }
1881
1882 dir_key.offset = range_start;
1883 while (1) {
1884 int nritems;
1885 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1886 0, 0);
1887 if (ret < 0)
1888 goto out;
1889
1890 nritems = btrfs_header_nritems(path->nodes[0]);
1891 if (path->slots[0] >= nritems) {
1892 ret = btrfs_next_leaf(root, path);
1893 if (ret)
1894 break;
1895 }
1896 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1897 path->slots[0]);
1898 if (found_key.objectid != dirid ||
1899 found_key.type != dir_key.type)
1900 goto next_type;
1901
1902 if (found_key.offset > range_end)
1903 break;
1904
1905 ret = check_item_in_log(trans, root, log, path,
1906 log_path, dir,
1907 &found_key);
1908 if (ret)
1909 goto out;
1910 if (found_key.offset == (u64)-1)
1911 break;
1912 dir_key.offset = found_key.offset + 1;
1913 }
1914 btrfs_release_path(path);
1915 if (range_end == (u64)-1)
1916 break;
1917 range_start = range_end + 1;
1918 }
1919
1920 next_type:
1921 ret = 0;
1922 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1923 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1924 dir_key.type = BTRFS_DIR_INDEX_KEY;
1925 btrfs_release_path(path);
1926 goto again;
1927 }
1928 out:
1929 btrfs_release_path(path);
1930 btrfs_free_path(log_path);
1931 iput(dir);
1932 return ret;
1933 }
1934
1935 /*
1936 * the process_func used to replay items from the log tree. This
1937 * gets called in two different stages. The first stage just looks
1938 * for inodes and makes sure they are all copied into the subvolume.
1939 *
1940 * The second stage copies all the other item types from the log into
1941 * the subvolume. The two stage approach is slower, but gets rid of
1942 * lots of complexity around inodes referencing other inodes that exist
1943 * only in the log (references come from either directory items or inode
1944 * back refs).
1945 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)1946 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1947 struct walk_control *wc, u64 gen)
1948 {
1949 int nritems;
1950 struct btrfs_path *path;
1951 struct btrfs_root *root = wc->replay_dest;
1952 struct btrfs_key key;
1953 int level;
1954 int i;
1955 int ret;
1956
1957 ret = btrfs_read_buffer(eb, gen);
1958 if (ret)
1959 return ret;
1960
1961 level = btrfs_header_level(eb);
1962
1963 if (level != 0)
1964 return 0;
1965
1966 path = btrfs_alloc_path();
1967 if (!path)
1968 return -ENOMEM;
1969
1970 nritems = btrfs_header_nritems(eb);
1971 for (i = 0; i < nritems; i++) {
1972 btrfs_item_key_to_cpu(eb, &key, i);
1973
1974 /* inode keys are done during the first stage */
1975 if (key.type == BTRFS_INODE_ITEM_KEY &&
1976 wc->stage == LOG_WALK_REPLAY_INODES) {
1977 struct btrfs_inode_item *inode_item;
1978 u32 mode;
1979
1980 inode_item = btrfs_item_ptr(eb, i,
1981 struct btrfs_inode_item);
1982 mode = btrfs_inode_mode(eb, inode_item);
1983 if (S_ISDIR(mode)) {
1984 ret = replay_dir_deletes(wc->trans,
1985 root, log, path, key.objectid, 0);
1986 if (ret)
1987 break;
1988 }
1989 ret = overwrite_item(wc->trans, root, path,
1990 eb, i, &key);
1991 if (ret)
1992 break;
1993
1994 /* for regular files, make sure corresponding
1995 * orhpan item exist. extents past the new EOF
1996 * will be truncated later by orphan cleanup.
1997 */
1998 if (S_ISREG(mode)) {
1999 ret = insert_orphan_item(wc->trans, root,
2000 key.objectid);
2001 if (ret)
2002 break;
2003 }
2004
2005 ret = link_to_fixup_dir(wc->trans, root,
2006 path, key.objectid);
2007 if (ret)
2008 break;
2009 }
2010 if (wc->stage < LOG_WALK_REPLAY_ALL)
2011 continue;
2012
2013 /* these keys are simply copied */
2014 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2015 ret = overwrite_item(wc->trans, root, path,
2016 eb, i, &key);
2017 if (ret)
2018 break;
2019 } else if (key.type == BTRFS_INODE_REF_KEY) {
2020 ret = add_inode_ref(wc->trans, root, log, path,
2021 eb, i, &key);
2022 if (ret && ret != -ENOENT)
2023 break;
2024 ret = 0;
2025 } else if (key.type == BTRFS_INODE_EXTREF_KEY) {
2026 ret = add_inode_ref(wc->trans, root, log, path,
2027 eb, i, &key);
2028 if (ret && ret != -ENOENT)
2029 break;
2030 ret = 0;
2031 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2032 ret = replay_one_extent(wc->trans, root, path,
2033 eb, i, &key);
2034 if (ret)
2035 break;
2036 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
2037 key.type == BTRFS_DIR_INDEX_KEY) {
2038 ret = replay_one_dir_item(wc->trans, root, path,
2039 eb, i, &key);
2040 if (ret)
2041 break;
2042 }
2043 }
2044 btrfs_free_path(path);
2045 return ret;
2046 }
2047
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2048 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2049 struct btrfs_root *root,
2050 struct btrfs_path *path, int *level,
2051 struct walk_control *wc)
2052 {
2053 u64 root_owner;
2054 u64 bytenr;
2055 u64 ptr_gen;
2056 struct extent_buffer *next;
2057 struct extent_buffer *cur;
2058 struct extent_buffer *parent;
2059 u32 blocksize;
2060 int ret = 0;
2061
2062 WARN_ON(*level < 0);
2063 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2064
2065 while (*level > 0) {
2066 WARN_ON(*level < 0);
2067 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2068 cur = path->nodes[*level];
2069
2070 if (btrfs_header_level(cur) != *level)
2071 WARN_ON(1);
2072
2073 if (path->slots[*level] >=
2074 btrfs_header_nritems(cur))
2075 break;
2076
2077 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2078 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2079 blocksize = btrfs_level_size(root, *level - 1);
2080
2081 parent = path->nodes[*level];
2082 root_owner = btrfs_header_owner(parent);
2083
2084 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2085 if (!next)
2086 return -ENOMEM;
2087
2088 if (*level == 1) {
2089 ret = wc->process_func(root, next, wc, ptr_gen);
2090 if (ret) {
2091 free_extent_buffer(next);
2092 return ret;
2093 }
2094
2095 path->slots[*level]++;
2096 if (wc->free) {
2097 ret = btrfs_read_buffer(next, ptr_gen);
2098 if (ret) {
2099 free_extent_buffer(next);
2100 return ret;
2101 }
2102
2103 btrfs_tree_lock(next);
2104 btrfs_set_lock_blocking(next);
2105 clean_tree_block(trans, root, next);
2106 btrfs_wait_tree_block_writeback(next);
2107 btrfs_tree_unlock(next);
2108
2109 WARN_ON(root_owner !=
2110 BTRFS_TREE_LOG_OBJECTID);
2111 ret = btrfs_free_and_pin_reserved_extent(root,
2112 bytenr, blocksize);
2113 if (ret) {
2114 free_extent_buffer(next);
2115 return ret;
2116 }
2117 }
2118 free_extent_buffer(next);
2119 continue;
2120 }
2121 ret = btrfs_read_buffer(next, ptr_gen);
2122 if (ret) {
2123 free_extent_buffer(next);
2124 return ret;
2125 }
2126
2127 WARN_ON(*level <= 0);
2128 if (path->nodes[*level-1])
2129 free_extent_buffer(path->nodes[*level-1]);
2130 path->nodes[*level-1] = next;
2131 *level = btrfs_header_level(next);
2132 path->slots[*level] = 0;
2133 cond_resched();
2134 }
2135 WARN_ON(*level < 0);
2136 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2137
2138 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2139
2140 cond_resched();
2141 return 0;
2142 }
2143
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2144 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2145 struct btrfs_root *root,
2146 struct btrfs_path *path, int *level,
2147 struct walk_control *wc)
2148 {
2149 u64 root_owner;
2150 int i;
2151 int slot;
2152 int ret;
2153
2154 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2155 slot = path->slots[i];
2156 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2157 path->slots[i]++;
2158 *level = i;
2159 WARN_ON(*level == 0);
2160 return 0;
2161 } else {
2162 struct extent_buffer *parent;
2163 if (path->nodes[*level] == root->node)
2164 parent = path->nodes[*level];
2165 else
2166 parent = path->nodes[*level + 1];
2167
2168 root_owner = btrfs_header_owner(parent);
2169 ret = wc->process_func(root, path->nodes[*level], wc,
2170 btrfs_header_generation(path->nodes[*level]));
2171 if (ret)
2172 return ret;
2173
2174 if (wc->free) {
2175 struct extent_buffer *next;
2176
2177 next = path->nodes[*level];
2178
2179 btrfs_tree_lock(next);
2180 btrfs_set_lock_blocking(next);
2181 clean_tree_block(trans, root, next);
2182 btrfs_wait_tree_block_writeback(next);
2183 btrfs_tree_unlock(next);
2184
2185 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2186 ret = btrfs_free_and_pin_reserved_extent(root,
2187 path->nodes[*level]->start,
2188 path->nodes[*level]->len);
2189 if (ret)
2190 return ret;
2191 }
2192 free_extent_buffer(path->nodes[*level]);
2193 path->nodes[*level] = NULL;
2194 *level = i + 1;
2195 }
2196 }
2197 return 1;
2198 }
2199
2200 /*
2201 * drop the reference count on the tree rooted at 'snap'. This traverses
2202 * the tree freeing any blocks that have a ref count of zero after being
2203 * decremented.
2204 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2205 static int walk_log_tree(struct btrfs_trans_handle *trans,
2206 struct btrfs_root *log, struct walk_control *wc)
2207 {
2208 int ret = 0;
2209 int wret;
2210 int level;
2211 struct btrfs_path *path;
2212 int orig_level;
2213
2214 path = btrfs_alloc_path();
2215 if (!path)
2216 return -ENOMEM;
2217
2218 level = btrfs_header_level(log->node);
2219 orig_level = level;
2220 path->nodes[level] = log->node;
2221 extent_buffer_get(log->node);
2222 path->slots[level] = 0;
2223
2224 while (1) {
2225 wret = walk_down_log_tree(trans, log, path, &level, wc);
2226 if (wret > 0)
2227 break;
2228 if (wret < 0) {
2229 ret = wret;
2230 goto out;
2231 }
2232
2233 wret = walk_up_log_tree(trans, log, path, &level, wc);
2234 if (wret > 0)
2235 break;
2236 if (wret < 0) {
2237 ret = wret;
2238 goto out;
2239 }
2240 }
2241
2242 /* was the root node processed? if not, catch it here */
2243 if (path->nodes[orig_level]) {
2244 ret = wc->process_func(log, path->nodes[orig_level], wc,
2245 btrfs_header_generation(path->nodes[orig_level]));
2246 if (ret)
2247 goto out;
2248 if (wc->free) {
2249 struct extent_buffer *next;
2250
2251 next = path->nodes[orig_level];
2252
2253 btrfs_tree_lock(next);
2254 btrfs_set_lock_blocking(next);
2255 clean_tree_block(trans, log, next);
2256 btrfs_wait_tree_block_writeback(next);
2257 btrfs_tree_unlock(next);
2258
2259 WARN_ON(log->root_key.objectid !=
2260 BTRFS_TREE_LOG_OBJECTID);
2261 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2262 next->len);
2263 if (ret)
2264 goto out;
2265 }
2266 }
2267
2268 out:
2269 btrfs_free_path(path);
2270 return ret;
2271 }
2272
2273 /*
2274 * helper function to update the item for a given subvolumes log root
2275 * in the tree of log roots
2276 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log)2277 static int update_log_root(struct btrfs_trans_handle *trans,
2278 struct btrfs_root *log)
2279 {
2280 int ret;
2281
2282 if (log->log_transid == 1) {
2283 /* insert root item on the first sync */
2284 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2285 &log->root_key, &log->root_item);
2286 } else {
2287 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2288 &log->root_key, &log->root_item);
2289 }
2290 return ret;
2291 }
2292
wait_log_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long transid)2293 static int wait_log_commit(struct btrfs_trans_handle *trans,
2294 struct btrfs_root *root, unsigned long transid)
2295 {
2296 DEFINE_WAIT(wait);
2297 int index = transid % 2;
2298
2299 /*
2300 * we only allow two pending log transactions at a time,
2301 * so we know that if ours is more than 2 older than the
2302 * current transaction, we're done
2303 */
2304 do {
2305 prepare_to_wait(&root->log_commit_wait[index],
2306 &wait, TASK_UNINTERRUPTIBLE);
2307 mutex_unlock(&root->log_mutex);
2308
2309 if (root->fs_info->last_trans_log_full_commit !=
2310 trans->transid && root->log_transid < transid + 2 &&
2311 atomic_read(&root->log_commit[index]))
2312 schedule();
2313
2314 finish_wait(&root->log_commit_wait[index], &wait);
2315 mutex_lock(&root->log_mutex);
2316 } while (root->fs_info->last_trans_log_full_commit !=
2317 trans->transid && root->log_transid < transid + 2 &&
2318 atomic_read(&root->log_commit[index]));
2319 return 0;
2320 }
2321
wait_for_writer(struct btrfs_trans_handle * trans,struct btrfs_root * root)2322 static void wait_for_writer(struct btrfs_trans_handle *trans,
2323 struct btrfs_root *root)
2324 {
2325 DEFINE_WAIT(wait);
2326 while (root->fs_info->last_trans_log_full_commit !=
2327 trans->transid && atomic_read(&root->log_writers)) {
2328 prepare_to_wait(&root->log_writer_wait,
2329 &wait, TASK_UNINTERRUPTIBLE);
2330 mutex_unlock(&root->log_mutex);
2331 if (root->fs_info->last_trans_log_full_commit !=
2332 trans->transid && atomic_read(&root->log_writers))
2333 schedule();
2334 mutex_lock(&root->log_mutex);
2335 finish_wait(&root->log_writer_wait, &wait);
2336 }
2337 }
2338
2339 /*
2340 * btrfs_sync_log does sends a given tree log down to the disk and
2341 * updates the super blocks to record it. When this call is done,
2342 * you know that any inodes previously logged are safely on disk only
2343 * if it returns 0.
2344 *
2345 * Any other return value means you need to call btrfs_commit_transaction.
2346 * Some of the edge cases for fsyncing directories that have had unlinks
2347 * or renames done in the past mean that sometimes the only safe
2348 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2349 * that has happened.
2350 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)2351 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2352 struct btrfs_root *root)
2353 {
2354 int index1;
2355 int index2;
2356 int mark;
2357 int ret;
2358 struct btrfs_root *log = root->log_root;
2359 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2360 unsigned long log_transid = 0;
2361
2362 mutex_lock(&root->log_mutex);
2363 log_transid = root->log_transid;
2364 index1 = root->log_transid % 2;
2365 if (atomic_read(&root->log_commit[index1])) {
2366 wait_log_commit(trans, root, root->log_transid);
2367 mutex_unlock(&root->log_mutex);
2368 return 0;
2369 }
2370 atomic_set(&root->log_commit[index1], 1);
2371
2372 /* wait for previous tree log sync to complete */
2373 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2374 wait_log_commit(trans, root, root->log_transid - 1);
2375 while (1) {
2376 int batch = atomic_read(&root->log_batch);
2377 /* when we're on an ssd, just kick the log commit out */
2378 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2379 mutex_unlock(&root->log_mutex);
2380 schedule_timeout_uninterruptible(1);
2381 mutex_lock(&root->log_mutex);
2382 }
2383 wait_for_writer(trans, root);
2384 if (batch == atomic_read(&root->log_batch))
2385 break;
2386 }
2387
2388 /* bail out if we need to do a full commit */
2389 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2390 ret = -EAGAIN;
2391 btrfs_free_logged_extents(log, log_transid);
2392 mutex_unlock(&root->log_mutex);
2393 goto out;
2394 }
2395
2396 if (log_transid % 2 == 0)
2397 mark = EXTENT_DIRTY;
2398 else
2399 mark = EXTENT_NEW;
2400
2401 /* we start IO on all the marked extents here, but we don't actually
2402 * wait for them until later.
2403 */
2404 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2405 if (ret) {
2406 btrfs_abort_transaction(trans, root, ret);
2407 btrfs_free_logged_extents(log, log_transid);
2408 mutex_unlock(&root->log_mutex);
2409 goto out;
2410 }
2411
2412 btrfs_set_root_node(&log->root_item, log->node);
2413
2414 root->log_transid++;
2415 log->log_transid = root->log_transid;
2416 root->log_start_pid = 0;
2417 smp_mb();
2418 /*
2419 * IO has been started, blocks of the log tree have WRITTEN flag set
2420 * in their headers. new modifications of the log will be written to
2421 * new positions. so it's safe to allow log writers to go in.
2422 */
2423 mutex_unlock(&root->log_mutex);
2424
2425 mutex_lock(&log_root_tree->log_mutex);
2426 atomic_inc(&log_root_tree->log_batch);
2427 atomic_inc(&log_root_tree->log_writers);
2428 mutex_unlock(&log_root_tree->log_mutex);
2429
2430 ret = update_log_root(trans, log);
2431
2432 mutex_lock(&log_root_tree->log_mutex);
2433 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2434 smp_mb();
2435 if (waitqueue_active(&log_root_tree->log_writer_wait))
2436 wake_up(&log_root_tree->log_writer_wait);
2437 }
2438
2439 if (ret) {
2440 if (ret != -ENOSPC) {
2441 btrfs_abort_transaction(trans, root, ret);
2442 mutex_unlock(&log_root_tree->log_mutex);
2443 goto out;
2444 }
2445 root->fs_info->last_trans_log_full_commit = trans->transid;
2446 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2447 btrfs_free_logged_extents(log, log_transid);
2448 mutex_unlock(&log_root_tree->log_mutex);
2449 ret = -EAGAIN;
2450 goto out;
2451 }
2452
2453 index2 = log_root_tree->log_transid % 2;
2454 if (atomic_read(&log_root_tree->log_commit[index2])) {
2455 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2456 wait_log_commit(trans, log_root_tree,
2457 log_root_tree->log_transid);
2458 btrfs_free_logged_extents(log, log_transid);
2459 mutex_unlock(&log_root_tree->log_mutex);
2460 ret = 0;
2461 goto out;
2462 }
2463 atomic_set(&log_root_tree->log_commit[index2], 1);
2464
2465 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2466 wait_log_commit(trans, log_root_tree,
2467 log_root_tree->log_transid - 1);
2468 }
2469
2470 wait_for_writer(trans, log_root_tree);
2471
2472 /*
2473 * now that we've moved on to the tree of log tree roots,
2474 * check the full commit flag again
2475 */
2476 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2477 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2478 btrfs_free_logged_extents(log, log_transid);
2479 mutex_unlock(&log_root_tree->log_mutex);
2480 ret = -EAGAIN;
2481 goto out_wake_log_root;
2482 }
2483
2484 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2485 &log_root_tree->dirty_log_pages,
2486 EXTENT_DIRTY | EXTENT_NEW);
2487 if (ret) {
2488 btrfs_abort_transaction(trans, root, ret);
2489 btrfs_free_logged_extents(log, log_transid);
2490 mutex_unlock(&log_root_tree->log_mutex);
2491 goto out_wake_log_root;
2492 }
2493 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2494 btrfs_wait_logged_extents(log, log_transid);
2495
2496 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2497 log_root_tree->node->start);
2498 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2499 btrfs_header_level(log_root_tree->node));
2500
2501 log_root_tree->log_transid++;
2502 smp_mb();
2503
2504 mutex_unlock(&log_root_tree->log_mutex);
2505
2506 /*
2507 * nobody else is going to jump in and write the the ctree
2508 * super here because the log_commit atomic below is protecting
2509 * us. We must be called with a transaction handle pinning
2510 * the running transaction open, so a full commit can't hop
2511 * in and cause problems either.
2512 */
2513 btrfs_scrub_pause_super(root);
2514 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2515 btrfs_scrub_continue_super(root);
2516 if (ret) {
2517 btrfs_abort_transaction(trans, root, ret);
2518 goto out_wake_log_root;
2519 }
2520
2521 mutex_lock(&root->log_mutex);
2522 if (root->last_log_commit < log_transid)
2523 root->last_log_commit = log_transid;
2524 mutex_unlock(&root->log_mutex);
2525
2526 out_wake_log_root:
2527 atomic_set(&log_root_tree->log_commit[index2], 0);
2528 smp_mb();
2529 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2530 wake_up(&log_root_tree->log_commit_wait[index2]);
2531 out:
2532 atomic_set(&root->log_commit[index1], 0);
2533 smp_mb();
2534 if (waitqueue_active(&root->log_commit_wait[index1]))
2535 wake_up(&root->log_commit_wait[index1]);
2536 return ret;
2537 }
2538
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)2539 static void free_log_tree(struct btrfs_trans_handle *trans,
2540 struct btrfs_root *log)
2541 {
2542 int ret;
2543 u64 start;
2544 u64 end;
2545 struct walk_control wc = {
2546 .free = 1,
2547 .process_func = process_one_buffer
2548 };
2549
2550 if (trans) {
2551 ret = walk_log_tree(trans, log, &wc);
2552
2553 /* I don't think this can happen but just in case */
2554 if (ret)
2555 btrfs_abort_transaction(trans, log, ret);
2556 }
2557
2558 while (1) {
2559 ret = find_first_extent_bit(&log->dirty_log_pages,
2560 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2561 NULL);
2562 if (ret)
2563 break;
2564
2565 clear_extent_bits(&log->dirty_log_pages, start, end,
2566 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2567 }
2568
2569 /*
2570 * We may have short-circuited the log tree with the full commit logic
2571 * and left ordered extents on our list, so clear these out to keep us
2572 * from leaking inodes and memory.
2573 */
2574 btrfs_free_logged_extents(log, 0);
2575 btrfs_free_logged_extents(log, 1);
2576
2577 free_extent_buffer(log->node);
2578 kfree(log);
2579 }
2580
2581 /*
2582 * free all the extents used by the tree log. This should be called
2583 * at commit time of the full transaction
2584 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)2585 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2586 {
2587 if (root->log_root) {
2588 free_log_tree(trans, root->log_root);
2589 root->log_root = NULL;
2590 }
2591 return 0;
2592 }
2593
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2594 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2595 struct btrfs_fs_info *fs_info)
2596 {
2597 if (fs_info->log_root_tree) {
2598 free_log_tree(trans, fs_info->log_root_tree);
2599 fs_info->log_root_tree = NULL;
2600 }
2601 return 0;
2602 }
2603
2604 /*
2605 * If both a file and directory are logged, and unlinks or renames are
2606 * mixed in, we have a few interesting corners:
2607 *
2608 * create file X in dir Y
2609 * link file X to X.link in dir Y
2610 * fsync file X
2611 * unlink file X but leave X.link
2612 * fsync dir Y
2613 *
2614 * After a crash we would expect only X.link to exist. But file X
2615 * didn't get fsync'd again so the log has back refs for X and X.link.
2616 *
2617 * We solve this by removing directory entries and inode backrefs from the
2618 * log when a file that was logged in the current transaction is
2619 * unlinked. Any later fsync will include the updated log entries, and
2620 * we'll be able to reconstruct the proper directory items from backrefs.
2621 *
2622 * This optimizations allows us to avoid relogging the entire inode
2623 * or the entire directory.
2624 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * dir,u64 index)2625 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2626 struct btrfs_root *root,
2627 const char *name, int name_len,
2628 struct inode *dir, u64 index)
2629 {
2630 struct btrfs_root *log;
2631 struct btrfs_dir_item *di;
2632 struct btrfs_path *path;
2633 int ret;
2634 int err = 0;
2635 int bytes_del = 0;
2636 u64 dir_ino = btrfs_ino(dir);
2637
2638 if (BTRFS_I(dir)->logged_trans < trans->transid)
2639 return 0;
2640
2641 ret = join_running_log_trans(root);
2642 if (ret)
2643 return 0;
2644
2645 mutex_lock(&BTRFS_I(dir)->log_mutex);
2646
2647 log = root->log_root;
2648 path = btrfs_alloc_path();
2649 if (!path) {
2650 err = -ENOMEM;
2651 goto out_unlock;
2652 }
2653
2654 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2655 name, name_len, -1);
2656 if (IS_ERR(di)) {
2657 err = PTR_ERR(di);
2658 goto fail;
2659 }
2660 if (di) {
2661 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2662 bytes_del += name_len;
2663 if (ret) {
2664 err = ret;
2665 goto fail;
2666 }
2667 }
2668 btrfs_release_path(path);
2669 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2670 index, name, name_len, -1);
2671 if (IS_ERR(di)) {
2672 err = PTR_ERR(di);
2673 goto fail;
2674 }
2675 if (di) {
2676 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2677 bytes_del += name_len;
2678 if (ret) {
2679 err = ret;
2680 goto fail;
2681 }
2682 }
2683
2684 /* update the directory size in the log to reflect the names
2685 * we have removed
2686 */
2687 if (bytes_del) {
2688 struct btrfs_key key;
2689
2690 key.objectid = dir_ino;
2691 key.offset = 0;
2692 key.type = BTRFS_INODE_ITEM_KEY;
2693 btrfs_release_path(path);
2694
2695 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2696 if (ret < 0) {
2697 err = ret;
2698 goto fail;
2699 }
2700 if (ret == 0) {
2701 struct btrfs_inode_item *item;
2702 u64 i_size;
2703
2704 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2705 struct btrfs_inode_item);
2706 i_size = btrfs_inode_size(path->nodes[0], item);
2707 if (i_size > bytes_del)
2708 i_size -= bytes_del;
2709 else
2710 i_size = 0;
2711 btrfs_set_inode_size(path->nodes[0], item, i_size);
2712 btrfs_mark_buffer_dirty(path->nodes[0]);
2713 } else
2714 ret = 0;
2715 btrfs_release_path(path);
2716 }
2717 fail:
2718 btrfs_free_path(path);
2719 out_unlock:
2720 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2721 if (ret == -ENOSPC) {
2722 root->fs_info->last_trans_log_full_commit = trans->transid;
2723 ret = 0;
2724 } else if (ret < 0)
2725 btrfs_abort_transaction(trans, root, ret);
2726
2727 btrfs_end_log_trans(root);
2728
2729 return err;
2730 }
2731
2732 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * inode,u64 dirid)2733 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2734 struct btrfs_root *root,
2735 const char *name, int name_len,
2736 struct inode *inode, u64 dirid)
2737 {
2738 struct btrfs_root *log;
2739 u64 index;
2740 int ret;
2741
2742 if (BTRFS_I(inode)->logged_trans < trans->transid)
2743 return 0;
2744
2745 ret = join_running_log_trans(root);
2746 if (ret)
2747 return 0;
2748 log = root->log_root;
2749 mutex_lock(&BTRFS_I(inode)->log_mutex);
2750
2751 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2752 dirid, &index);
2753 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2754 if (ret == -ENOSPC) {
2755 root->fs_info->last_trans_log_full_commit = trans->transid;
2756 ret = 0;
2757 } else if (ret < 0 && ret != -ENOENT)
2758 btrfs_abort_transaction(trans, root, ret);
2759 btrfs_end_log_trans(root);
2760
2761 return ret;
2762 }
2763
2764 /*
2765 * creates a range item in the log for 'dirid'. first_offset and
2766 * last_offset tell us which parts of the key space the log should
2767 * be considered authoritative for.
2768 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)2769 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2770 struct btrfs_root *log,
2771 struct btrfs_path *path,
2772 int key_type, u64 dirid,
2773 u64 first_offset, u64 last_offset)
2774 {
2775 int ret;
2776 struct btrfs_key key;
2777 struct btrfs_dir_log_item *item;
2778
2779 key.objectid = dirid;
2780 key.offset = first_offset;
2781 if (key_type == BTRFS_DIR_ITEM_KEY)
2782 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2783 else
2784 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2785 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2786 if (ret)
2787 return ret;
2788
2789 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2790 struct btrfs_dir_log_item);
2791 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2792 btrfs_mark_buffer_dirty(path->nodes[0]);
2793 btrfs_release_path(path);
2794 return 0;
2795 }
2796
2797 /*
2798 * log all the items included in the current transaction for a given
2799 * directory. This also creates the range items in the log tree required
2800 * to replay anything deleted before the fsync
2801 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,u64 min_offset,u64 * last_offset_ret)2802 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2803 struct btrfs_root *root, struct inode *inode,
2804 struct btrfs_path *path,
2805 struct btrfs_path *dst_path, int key_type,
2806 u64 min_offset, u64 *last_offset_ret)
2807 {
2808 struct btrfs_key min_key;
2809 struct btrfs_key max_key;
2810 struct btrfs_root *log = root->log_root;
2811 struct extent_buffer *src;
2812 int err = 0;
2813 int ret;
2814 int i;
2815 int nritems;
2816 u64 first_offset = min_offset;
2817 u64 last_offset = (u64)-1;
2818 u64 ino = btrfs_ino(inode);
2819
2820 log = root->log_root;
2821 max_key.objectid = ino;
2822 max_key.offset = (u64)-1;
2823 max_key.type = key_type;
2824
2825 min_key.objectid = ino;
2826 min_key.type = key_type;
2827 min_key.offset = min_offset;
2828
2829 path->keep_locks = 1;
2830
2831 ret = btrfs_search_forward(root, &min_key, &max_key,
2832 path, trans->transid);
2833
2834 /*
2835 * we didn't find anything from this transaction, see if there
2836 * is anything at all
2837 */
2838 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2839 min_key.objectid = ino;
2840 min_key.type = key_type;
2841 min_key.offset = (u64)-1;
2842 btrfs_release_path(path);
2843 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2844 if (ret < 0) {
2845 btrfs_release_path(path);
2846 return ret;
2847 }
2848 ret = btrfs_previous_item(root, path, ino, key_type);
2849
2850 /* if ret == 0 there are items for this type,
2851 * create a range to tell us the last key of this type.
2852 * otherwise, there are no items in this directory after
2853 * *min_offset, and we create a range to indicate that.
2854 */
2855 if (ret == 0) {
2856 struct btrfs_key tmp;
2857 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2858 path->slots[0]);
2859 if (key_type == tmp.type)
2860 first_offset = max(min_offset, tmp.offset) + 1;
2861 }
2862 goto done;
2863 }
2864
2865 /* go backward to find any previous key */
2866 ret = btrfs_previous_item(root, path, ino, key_type);
2867 if (ret == 0) {
2868 struct btrfs_key tmp;
2869 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2870 if (key_type == tmp.type) {
2871 first_offset = tmp.offset;
2872 ret = overwrite_item(trans, log, dst_path,
2873 path->nodes[0], path->slots[0],
2874 &tmp);
2875 if (ret) {
2876 err = ret;
2877 goto done;
2878 }
2879 }
2880 }
2881 btrfs_release_path(path);
2882
2883 /* find the first key from this transaction again */
2884 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2885 if (ret != 0) {
2886 WARN_ON(1);
2887 goto done;
2888 }
2889
2890 /*
2891 * we have a block from this transaction, log every item in it
2892 * from our directory
2893 */
2894 while (1) {
2895 struct btrfs_key tmp;
2896 src = path->nodes[0];
2897 nritems = btrfs_header_nritems(src);
2898 for (i = path->slots[0]; i < nritems; i++) {
2899 btrfs_item_key_to_cpu(src, &min_key, i);
2900
2901 if (min_key.objectid != ino || min_key.type != key_type)
2902 goto done;
2903 ret = overwrite_item(trans, log, dst_path, src, i,
2904 &min_key);
2905 if (ret) {
2906 err = ret;
2907 goto done;
2908 }
2909 }
2910 path->slots[0] = nritems;
2911
2912 /*
2913 * look ahead to the next item and see if it is also
2914 * from this directory and from this transaction
2915 */
2916 ret = btrfs_next_leaf(root, path);
2917 if (ret == 1) {
2918 last_offset = (u64)-1;
2919 goto done;
2920 }
2921 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2922 if (tmp.objectid != ino || tmp.type != key_type) {
2923 last_offset = (u64)-1;
2924 goto done;
2925 }
2926 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2927 ret = overwrite_item(trans, log, dst_path,
2928 path->nodes[0], path->slots[0],
2929 &tmp);
2930 if (ret)
2931 err = ret;
2932 else
2933 last_offset = tmp.offset;
2934 goto done;
2935 }
2936 }
2937 done:
2938 btrfs_release_path(path);
2939 btrfs_release_path(dst_path);
2940
2941 if (err == 0) {
2942 *last_offset_ret = last_offset;
2943 /*
2944 * insert the log range keys to indicate where the log
2945 * is valid
2946 */
2947 ret = insert_dir_log_key(trans, log, path, key_type,
2948 ino, first_offset, last_offset);
2949 if (ret)
2950 err = ret;
2951 }
2952 return err;
2953 }
2954
2955 /*
2956 * logging directories is very similar to logging inodes, We find all the items
2957 * from the current transaction and write them to the log.
2958 *
2959 * The recovery code scans the directory in the subvolume, and if it finds a
2960 * key in the range logged that is not present in the log tree, then it means
2961 * that dir entry was unlinked during the transaction.
2962 *
2963 * In order for that scan to work, we must include one key smaller than
2964 * the smallest logged by this transaction and one key larger than the largest
2965 * key logged by this transaction.
2966 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)2967 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2968 struct btrfs_root *root, struct inode *inode,
2969 struct btrfs_path *path,
2970 struct btrfs_path *dst_path)
2971 {
2972 u64 min_key;
2973 u64 max_key;
2974 int ret;
2975 int key_type = BTRFS_DIR_ITEM_KEY;
2976
2977 again:
2978 min_key = 0;
2979 max_key = 0;
2980 while (1) {
2981 ret = log_dir_items(trans, root, inode, path,
2982 dst_path, key_type, min_key,
2983 &max_key);
2984 if (ret)
2985 return ret;
2986 if (max_key == (u64)-1)
2987 break;
2988 min_key = max_key + 1;
2989 }
2990
2991 if (key_type == BTRFS_DIR_ITEM_KEY) {
2992 key_type = BTRFS_DIR_INDEX_KEY;
2993 goto again;
2994 }
2995 return 0;
2996 }
2997
2998 /*
2999 * a helper function to drop items from the log before we relog an
3000 * inode. max_key_type indicates the highest item type to remove.
3001 * This cannot be run for file data extents because it does not
3002 * free the extents they point to.
3003 */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3004 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3005 struct btrfs_root *log,
3006 struct btrfs_path *path,
3007 u64 objectid, int max_key_type)
3008 {
3009 int ret;
3010 struct btrfs_key key;
3011 struct btrfs_key found_key;
3012 int start_slot;
3013
3014 key.objectid = objectid;
3015 key.type = max_key_type;
3016 key.offset = (u64)-1;
3017
3018 while (1) {
3019 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3020 BUG_ON(ret == 0); /* Logic error */
3021 if (ret < 0)
3022 break;
3023
3024 if (path->slots[0] == 0)
3025 break;
3026
3027 path->slots[0]--;
3028 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3029 path->slots[0]);
3030
3031 if (found_key.objectid != objectid)
3032 break;
3033
3034 found_key.offset = 0;
3035 found_key.type = 0;
3036 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3037 &start_slot);
3038
3039 ret = btrfs_del_items(trans, log, path, start_slot,
3040 path->slots[0] - start_slot + 1);
3041 /*
3042 * If start slot isn't 0 then we don't need to re-search, we've
3043 * found the last guy with the objectid in this tree.
3044 */
3045 if (ret || start_slot != 0)
3046 break;
3047 btrfs_release_path(path);
3048 }
3049 btrfs_release_path(path);
3050 if (ret > 0)
3051 ret = 0;
3052 return ret;
3053 }
3054
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only)3055 static void fill_inode_item(struct btrfs_trans_handle *trans,
3056 struct extent_buffer *leaf,
3057 struct btrfs_inode_item *item,
3058 struct inode *inode, int log_inode_only)
3059 {
3060 struct btrfs_map_token token;
3061
3062 btrfs_init_map_token(&token);
3063
3064 if (log_inode_only) {
3065 /* set the generation to zero so the recover code
3066 * can tell the difference between an logging
3067 * just to say 'this inode exists' and a logging
3068 * to say 'update this inode with these values'
3069 */
3070 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3071 btrfs_set_token_inode_size(leaf, item, 0, &token);
3072 } else {
3073 btrfs_set_token_inode_generation(leaf, item,
3074 BTRFS_I(inode)->generation,
3075 &token);
3076 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3077 }
3078
3079 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3080 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3081 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3082 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3083
3084 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3085 inode->i_atime.tv_sec, &token);
3086 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3087 inode->i_atime.tv_nsec, &token);
3088
3089 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3090 inode->i_mtime.tv_sec, &token);
3091 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3092 inode->i_mtime.tv_nsec, &token);
3093
3094 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3095 inode->i_ctime.tv_sec, &token);
3096 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3097 inode->i_ctime.tv_nsec, &token);
3098
3099 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3100 &token);
3101
3102 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3103 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3104 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3105 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3106 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3107 }
3108
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct inode * inode)3109 static int log_inode_item(struct btrfs_trans_handle *trans,
3110 struct btrfs_root *log, struct btrfs_path *path,
3111 struct inode *inode)
3112 {
3113 struct btrfs_inode_item *inode_item;
3114 struct btrfs_key key;
3115 int ret;
3116
3117 memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3118 ret = btrfs_insert_empty_item(trans, log, path, &key,
3119 sizeof(*inode_item));
3120 if (ret && ret != -EEXIST)
3121 return ret;
3122 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3123 struct btrfs_inode_item);
3124 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3125 btrfs_release_path(path);
3126 return 0;
3127 }
3128
copy_items(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_path * dst_path,struct extent_buffer * src,int start_slot,int nr,int inode_only)3129 static noinline int copy_items(struct btrfs_trans_handle *trans,
3130 struct inode *inode,
3131 struct btrfs_path *dst_path,
3132 struct extent_buffer *src,
3133 int start_slot, int nr, int inode_only)
3134 {
3135 unsigned long src_offset;
3136 unsigned long dst_offset;
3137 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3138 struct btrfs_file_extent_item *extent;
3139 struct btrfs_inode_item *inode_item;
3140 int ret;
3141 struct btrfs_key *ins_keys;
3142 u32 *ins_sizes;
3143 char *ins_data;
3144 int i;
3145 struct list_head ordered_sums;
3146 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3147
3148 INIT_LIST_HEAD(&ordered_sums);
3149
3150 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3151 nr * sizeof(u32), GFP_NOFS);
3152 if (!ins_data)
3153 return -ENOMEM;
3154
3155 ins_sizes = (u32 *)ins_data;
3156 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3157
3158 for (i = 0; i < nr; i++) {
3159 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3160 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3161 }
3162 ret = btrfs_insert_empty_items(trans, log, dst_path,
3163 ins_keys, ins_sizes, nr);
3164 if (ret) {
3165 kfree(ins_data);
3166 return ret;
3167 }
3168
3169 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3170 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3171 dst_path->slots[0]);
3172
3173 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3174
3175 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3176 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3177 dst_path->slots[0],
3178 struct btrfs_inode_item);
3179 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3180 inode, inode_only == LOG_INODE_EXISTS);
3181 } else {
3182 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3183 src_offset, ins_sizes[i]);
3184 }
3185
3186 /* take a reference on file data extents so that truncates
3187 * or deletes of this inode don't have to relog the inode
3188 * again
3189 */
3190 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3191 !skip_csum) {
3192 int found_type;
3193 extent = btrfs_item_ptr(src, start_slot + i,
3194 struct btrfs_file_extent_item);
3195
3196 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3197 continue;
3198
3199 found_type = btrfs_file_extent_type(src, extent);
3200 if (found_type == BTRFS_FILE_EXTENT_REG) {
3201 u64 ds, dl, cs, cl;
3202 ds = btrfs_file_extent_disk_bytenr(src,
3203 extent);
3204 /* ds == 0 is a hole */
3205 if (ds == 0)
3206 continue;
3207
3208 dl = btrfs_file_extent_disk_num_bytes(src,
3209 extent);
3210 cs = btrfs_file_extent_offset(src, extent);
3211 cl = btrfs_file_extent_num_bytes(src,
3212 extent);
3213 if (btrfs_file_extent_compression(src,
3214 extent)) {
3215 cs = 0;
3216 cl = dl;
3217 }
3218
3219 ret = btrfs_lookup_csums_range(
3220 log->fs_info->csum_root,
3221 ds + cs, ds + cs + cl - 1,
3222 &ordered_sums, 0);
3223 if (ret) {
3224 btrfs_release_path(dst_path);
3225 kfree(ins_data);
3226 return ret;
3227 }
3228 }
3229 }
3230 }
3231
3232 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3233 btrfs_release_path(dst_path);
3234 kfree(ins_data);
3235
3236 /*
3237 * we have to do this after the loop above to avoid changing the
3238 * log tree while trying to change the log tree.
3239 */
3240 ret = 0;
3241 while (!list_empty(&ordered_sums)) {
3242 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3243 struct btrfs_ordered_sum,
3244 list);
3245 if (!ret)
3246 ret = btrfs_csum_file_blocks(trans, log, sums);
3247 list_del(&sums->list);
3248 kfree(sums);
3249 }
3250 return ret;
3251 }
3252
extent_cmp(void * priv,struct list_head * a,struct list_head * b)3253 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3254 {
3255 struct extent_map *em1, *em2;
3256
3257 em1 = list_entry(a, struct extent_map, list);
3258 em2 = list_entry(b, struct extent_map, list);
3259
3260 if (em1->start < em2->start)
3261 return -1;
3262 else if (em1->start > em2->start)
3263 return 1;
3264 return 0;
3265 }
3266
log_one_extent(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_root * root,struct extent_map * em,struct btrfs_path * path)3267 static int log_one_extent(struct btrfs_trans_handle *trans,
3268 struct inode *inode, struct btrfs_root *root,
3269 struct extent_map *em, struct btrfs_path *path)
3270 {
3271 struct btrfs_root *log = root->log_root;
3272 struct btrfs_file_extent_item *fi;
3273 struct extent_buffer *leaf;
3274 struct btrfs_ordered_extent *ordered;
3275 struct list_head ordered_sums;
3276 struct btrfs_map_token token;
3277 struct btrfs_key key;
3278 u64 mod_start = em->mod_start;
3279 u64 mod_len = em->mod_len;
3280 u64 csum_offset;
3281 u64 csum_len;
3282 u64 extent_offset = em->start - em->orig_start;
3283 u64 block_len;
3284 int ret;
3285 int index = log->log_transid % 2;
3286 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3287
3288 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3289 em->start + em->len, NULL, 0);
3290 if (ret)
3291 return ret;
3292
3293 INIT_LIST_HEAD(&ordered_sums);
3294 btrfs_init_map_token(&token);
3295 key.objectid = btrfs_ino(inode);
3296 key.type = BTRFS_EXTENT_DATA_KEY;
3297 key.offset = em->start;
3298
3299 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3300 if (ret)
3301 return ret;
3302 leaf = path->nodes[0];
3303 fi = btrfs_item_ptr(leaf, path->slots[0],
3304 struct btrfs_file_extent_item);
3305
3306 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3307 &token);
3308 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3309 skip_csum = true;
3310 btrfs_set_token_file_extent_type(leaf, fi,
3311 BTRFS_FILE_EXTENT_PREALLOC,
3312 &token);
3313 } else {
3314 btrfs_set_token_file_extent_type(leaf, fi,
3315 BTRFS_FILE_EXTENT_REG,
3316 &token);
3317 if (em->block_start == 0)
3318 skip_csum = true;
3319 }
3320
3321 block_len = max(em->block_len, em->orig_block_len);
3322 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3323 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3324 em->block_start,
3325 &token);
3326 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3327 &token);
3328 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3329 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3330 em->block_start -
3331 extent_offset, &token);
3332 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3333 &token);
3334 } else {
3335 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3336 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3337 &token);
3338 }
3339
3340 btrfs_set_token_file_extent_offset(leaf, fi,
3341 em->start - em->orig_start,
3342 &token);
3343 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3344 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3345 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3346 &token);
3347 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3348 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3349 btrfs_mark_buffer_dirty(leaf);
3350
3351 btrfs_release_path(path);
3352 if (ret) {
3353 return ret;
3354 }
3355
3356 if (skip_csum)
3357 return 0;
3358
3359 if (em->compress_type) {
3360 csum_offset = 0;
3361 csum_len = block_len;
3362 }
3363
3364 /*
3365 * First check and see if our csums are on our outstanding ordered
3366 * extents.
3367 */
3368 again:
3369 spin_lock_irq(&log->log_extents_lock[index]);
3370 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3371 struct btrfs_ordered_sum *sum;
3372
3373 if (!mod_len)
3374 break;
3375
3376 if (ordered->inode != inode)
3377 continue;
3378
3379 if (ordered->file_offset + ordered->len <= mod_start ||
3380 mod_start + mod_len <= ordered->file_offset)
3381 continue;
3382
3383 /*
3384 * We are going to copy all the csums on this ordered extent, so
3385 * go ahead and adjust mod_start and mod_len in case this
3386 * ordered extent has already been logged.
3387 */
3388 if (ordered->file_offset > mod_start) {
3389 if (ordered->file_offset + ordered->len >=
3390 mod_start + mod_len)
3391 mod_len = ordered->file_offset - mod_start;
3392 /*
3393 * If we have this case
3394 *
3395 * |--------- logged extent ---------|
3396 * |----- ordered extent ----|
3397 *
3398 * Just don't mess with mod_start and mod_len, we'll
3399 * just end up logging more csums than we need and it
3400 * will be ok.
3401 */
3402 } else {
3403 if (ordered->file_offset + ordered->len <
3404 mod_start + mod_len) {
3405 mod_len = (mod_start + mod_len) -
3406 (ordered->file_offset + ordered->len);
3407 mod_start = ordered->file_offset +
3408 ordered->len;
3409 } else {
3410 mod_len = 0;
3411 }
3412 }
3413
3414 /*
3415 * To keep us from looping for the above case of an ordered
3416 * extent that falls inside of the logged extent.
3417 */
3418 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3419 &ordered->flags))
3420 continue;
3421 atomic_inc(&ordered->refs);
3422 spin_unlock_irq(&log->log_extents_lock[index]);
3423 /*
3424 * we've dropped the lock, we must either break or
3425 * start over after this.
3426 */
3427
3428 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3429
3430 list_for_each_entry(sum, &ordered->list, list) {
3431 ret = btrfs_csum_file_blocks(trans, log, sum);
3432 if (ret) {
3433 btrfs_put_ordered_extent(ordered);
3434 goto unlocked;
3435 }
3436 }
3437 btrfs_put_ordered_extent(ordered);
3438 goto again;
3439
3440 }
3441 spin_unlock_irq(&log->log_extents_lock[index]);
3442 unlocked:
3443
3444 if (!mod_len || ret)
3445 return ret;
3446
3447 csum_offset = mod_start - em->start;
3448 csum_len = mod_len;
3449
3450 /* block start is already adjusted for the file extent offset. */
3451 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3452 em->block_start + csum_offset,
3453 em->block_start + csum_offset +
3454 csum_len - 1, &ordered_sums, 0);
3455 if (ret)
3456 return ret;
3457
3458 while (!list_empty(&ordered_sums)) {
3459 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3460 struct btrfs_ordered_sum,
3461 list);
3462 if (!ret)
3463 ret = btrfs_csum_file_blocks(trans, log, sums);
3464 list_del(&sums->list);
3465 kfree(sums);
3466 }
3467
3468 return ret;
3469 }
3470
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)3471 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3472 struct btrfs_root *root,
3473 struct inode *inode,
3474 struct btrfs_path *path)
3475 {
3476 struct extent_map *em, *n;
3477 struct list_head extents;
3478 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3479 u64 test_gen;
3480 int ret = 0;
3481 int num = 0;
3482
3483 INIT_LIST_HEAD(&extents);
3484
3485 write_lock(&tree->lock);
3486 test_gen = root->fs_info->last_trans_committed;
3487
3488 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3489 list_del_init(&em->list);
3490
3491 /*
3492 * Just an arbitrary number, this can be really CPU intensive
3493 * once we start getting a lot of extents, and really once we
3494 * have a bunch of extents we just want to commit since it will
3495 * be faster.
3496 */
3497 if (++num > 32768) {
3498 list_del_init(&tree->modified_extents);
3499 ret = -EFBIG;
3500 goto process;
3501 }
3502
3503 if (em->generation <= test_gen)
3504 continue;
3505 /* Need a ref to keep it from getting evicted from cache */
3506 atomic_inc(&em->refs);
3507 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3508 list_add_tail(&em->list, &extents);
3509 num++;
3510 }
3511
3512 list_sort(NULL, &extents, extent_cmp);
3513
3514 process:
3515 while (!list_empty(&extents)) {
3516 em = list_entry(extents.next, struct extent_map, list);
3517
3518 list_del_init(&em->list);
3519
3520 /*
3521 * If we had an error we just need to delete everybody from our
3522 * private list.
3523 */
3524 if (ret) {
3525 clear_em_logging(tree, em);
3526 free_extent_map(em);
3527 continue;
3528 }
3529
3530 write_unlock(&tree->lock);
3531
3532 ret = log_one_extent(trans, inode, root, em, path);
3533 write_lock(&tree->lock);
3534 clear_em_logging(tree, em);
3535 free_extent_map(em);
3536 }
3537 WARN_ON(!list_empty(&extents));
3538 write_unlock(&tree->lock);
3539
3540 btrfs_release_path(path);
3541 return ret;
3542 }
3543
3544 /* log a single inode in the tree log.
3545 * At least one parent directory for this inode must exist in the tree
3546 * or be logged already.
3547 *
3548 * Any items from this inode changed by the current transaction are copied
3549 * to the log tree. An extra reference is taken on any extents in this
3550 * file, allowing us to avoid a whole pile of corner cases around logging
3551 * blocks that have been removed from the tree.
3552 *
3553 * See LOG_INODE_ALL and related defines for a description of what inode_only
3554 * does.
3555 *
3556 * This handles both files and directories.
3557 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,int inode_only)3558 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3559 struct btrfs_root *root, struct inode *inode,
3560 int inode_only)
3561 {
3562 struct btrfs_path *path;
3563 struct btrfs_path *dst_path;
3564 struct btrfs_key min_key;
3565 struct btrfs_key max_key;
3566 struct btrfs_root *log = root->log_root;
3567 struct extent_buffer *src = NULL;
3568 int err = 0;
3569 int ret;
3570 int nritems;
3571 int ins_start_slot = 0;
3572 int ins_nr;
3573 bool fast_search = false;
3574 u64 ino = btrfs_ino(inode);
3575
3576 path = btrfs_alloc_path();
3577 if (!path)
3578 return -ENOMEM;
3579 dst_path = btrfs_alloc_path();
3580 if (!dst_path) {
3581 btrfs_free_path(path);
3582 return -ENOMEM;
3583 }
3584
3585 min_key.objectid = ino;
3586 min_key.type = BTRFS_INODE_ITEM_KEY;
3587 min_key.offset = 0;
3588
3589 max_key.objectid = ino;
3590
3591
3592 /* today the code can only do partial logging of directories */
3593 if (S_ISDIR(inode->i_mode) ||
3594 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3595 &BTRFS_I(inode)->runtime_flags) &&
3596 inode_only == LOG_INODE_EXISTS))
3597 max_key.type = BTRFS_XATTR_ITEM_KEY;
3598 else
3599 max_key.type = (u8)-1;
3600 max_key.offset = (u64)-1;
3601
3602 /* Only run delayed items if we are a dir or a new file */
3603 if (S_ISDIR(inode->i_mode) ||
3604 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3605 ret = btrfs_commit_inode_delayed_items(trans, inode);
3606 if (ret) {
3607 btrfs_free_path(path);
3608 btrfs_free_path(dst_path);
3609 return ret;
3610 }
3611 }
3612
3613 mutex_lock(&BTRFS_I(inode)->log_mutex);
3614
3615 btrfs_get_logged_extents(log, inode);
3616
3617 /*
3618 * a brute force approach to making sure we get the most uptodate
3619 * copies of everything.
3620 */
3621 if (S_ISDIR(inode->i_mode)) {
3622 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3623
3624 if (inode_only == LOG_INODE_EXISTS)
3625 max_key_type = BTRFS_XATTR_ITEM_KEY;
3626 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3627 } else {
3628 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3629 &BTRFS_I(inode)->runtime_flags)) {
3630 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3631 &BTRFS_I(inode)->runtime_flags);
3632 ret = btrfs_truncate_inode_items(trans, log,
3633 inode, 0, 0);
3634 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3635 &BTRFS_I(inode)->runtime_flags)) {
3636 if (inode_only == LOG_INODE_ALL)
3637 fast_search = true;
3638 max_key.type = BTRFS_XATTR_ITEM_KEY;
3639 ret = drop_objectid_items(trans, log, path, ino,
3640 max_key.type);
3641 } else {
3642 if (inode_only == LOG_INODE_ALL)
3643 fast_search = true;
3644 ret = log_inode_item(trans, log, dst_path, inode);
3645 if (ret) {
3646 err = ret;
3647 goto out_unlock;
3648 }
3649 goto log_extents;
3650 }
3651
3652 }
3653 if (ret) {
3654 err = ret;
3655 goto out_unlock;
3656 }
3657 path->keep_locks = 1;
3658
3659 while (1) {
3660 ins_nr = 0;
3661 ret = btrfs_search_forward(root, &min_key, &max_key,
3662 path, trans->transid);
3663 if (ret != 0)
3664 break;
3665 again:
3666 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3667 if (min_key.objectid != ino)
3668 break;
3669 if (min_key.type > max_key.type)
3670 break;
3671
3672 src = path->nodes[0];
3673 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3674 ins_nr++;
3675 goto next_slot;
3676 } else if (!ins_nr) {
3677 ins_start_slot = path->slots[0];
3678 ins_nr = 1;
3679 goto next_slot;
3680 }
3681
3682 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3683 ins_nr, inode_only);
3684 if (ret) {
3685 err = ret;
3686 goto out_unlock;
3687 }
3688 ins_nr = 1;
3689 ins_start_slot = path->slots[0];
3690 next_slot:
3691
3692 nritems = btrfs_header_nritems(path->nodes[0]);
3693 path->slots[0]++;
3694 if (path->slots[0] < nritems) {
3695 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3696 path->slots[0]);
3697 goto again;
3698 }
3699 if (ins_nr) {
3700 ret = copy_items(trans, inode, dst_path, src,
3701 ins_start_slot,
3702 ins_nr, inode_only);
3703 if (ret) {
3704 err = ret;
3705 goto out_unlock;
3706 }
3707 ins_nr = 0;
3708 }
3709 btrfs_release_path(path);
3710
3711 if (min_key.offset < (u64)-1)
3712 min_key.offset++;
3713 else if (min_key.type < (u8)-1)
3714 min_key.type++;
3715 else if (min_key.objectid < (u64)-1)
3716 min_key.objectid++;
3717 else
3718 break;
3719 }
3720 if (ins_nr) {
3721 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3722 ins_nr, inode_only);
3723 if (ret) {
3724 err = ret;
3725 goto out_unlock;
3726 }
3727 ins_nr = 0;
3728 }
3729
3730 log_extents:
3731 if (fast_search) {
3732 btrfs_release_path(dst_path);
3733 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3734 if (ret) {
3735 err = ret;
3736 goto out_unlock;
3737 }
3738 } else {
3739 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3740 struct extent_map *em, *n;
3741
3742 write_lock(&tree->lock);
3743 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3744 list_del_init(&em->list);
3745 write_unlock(&tree->lock);
3746 }
3747
3748 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3749 btrfs_release_path(path);
3750 btrfs_release_path(dst_path);
3751 ret = log_directory_changes(trans, root, inode, path, dst_path);
3752 if (ret) {
3753 err = ret;
3754 goto out_unlock;
3755 }
3756 }
3757 BTRFS_I(inode)->logged_trans = trans->transid;
3758 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3759 out_unlock:
3760 if (err)
3761 btrfs_free_logged_extents(log, log->log_transid);
3762 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3763
3764 btrfs_free_path(path);
3765 btrfs_free_path(dst_path);
3766 return err;
3767 }
3768
3769 /*
3770 * follow the dentry parent pointers up the chain and see if any
3771 * of the directories in it require a full commit before they can
3772 * be logged. Returns zero if nothing special needs to be done or 1 if
3773 * a full commit is required.
3774 */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)3775 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3776 struct inode *inode,
3777 struct dentry *parent,
3778 struct super_block *sb,
3779 u64 last_committed)
3780 {
3781 int ret = 0;
3782 struct btrfs_root *root;
3783 struct dentry *old_parent = NULL;
3784
3785 /*
3786 * for regular files, if its inode is already on disk, we don't
3787 * have to worry about the parents at all. This is because
3788 * we can use the last_unlink_trans field to record renames
3789 * and other fun in this file.
3790 */
3791 if (S_ISREG(inode->i_mode) &&
3792 BTRFS_I(inode)->generation <= last_committed &&
3793 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3794 goto out;
3795
3796 if (!S_ISDIR(inode->i_mode)) {
3797 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3798 goto out;
3799 inode = parent->d_inode;
3800 }
3801
3802 while (1) {
3803 BTRFS_I(inode)->logged_trans = trans->transid;
3804 smp_mb();
3805
3806 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3807 root = BTRFS_I(inode)->root;
3808
3809 /*
3810 * make sure any commits to the log are forced
3811 * to be full commits
3812 */
3813 root->fs_info->last_trans_log_full_commit =
3814 trans->transid;
3815 ret = 1;
3816 break;
3817 }
3818
3819 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3820 break;
3821
3822 if (IS_ROOT(parent))
3823 break;
3824
3825 parent = dget_parent(parent);
3826 dput(old_parent);
3827 old_parent = parent;
3828 inode = parent->d_inode;
3829
3830 }
3831 dput(old_parent);
3832 out:
3833 return ret;
3834 }
3835
3836 /*
3837 * helper function around btrfs_log_inode to make sure newly created
3838 * parent directories also end up in the log. A minimal inode and backref
3839 * only logging is done of any parent directories that are older than
3840 * the last committed transaction
3841 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct dentry * parent,int exists_only)3842 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3843 struct btrfs_root *root, struct inode *inode,
3844 struct dentry *parent, int exists_only)
3845 {
3846 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3847 struct super_block *sb;
3848 struct dentry *old_parent = NULL;
3849 int ret = 0;
3850 u64 last_committed = root->fs_info->last_trans_committed;
3851
3852 sb = inode->i_sb;
3853
3854 if (btrfs_test_opt(root, NOTREELOG)) {
3855 ret = 1;
3856 goto end_no_trans;
3857 }
3858
3859 if (root->fs_info->last_trans_log_full_commit >
3860 root->fs_info->last_trans_committed) {
3861 ret = 1;
3862 goto end_no_trans;
3863 }
3864
3865 if (root != BTRFS_I(inode)->root ||
3866 btrfs_root_refs(&root->root_item) == 0) {
3867 ret = 1;
3868 goto end_no_trans;
3869 }
3870
3871 ret = check_parent_dirs_for_sync(trans, inode, parent,
3872 sb, last_committed);
3873 if (ret)
3874 goto end_no_trans;
3875
3876 if (btrfs_inode_in_log(inode, trans->transid)) {
3877 ret = BTRFS_NO_LOG_SYNC;
3878 goto end_no_trans;
3879 }
3880
3881 ret = start_log_trans(trans, root);
3882 if (ret)
3883 goto end_trans;
3884
3885 ret = btrfs_log_inode(trans, root, inode, inode_only);
3886 if (ret)
3887 goto end_trans;
3888
3889 /*
3890 * for regular files, if its inode is already on disk, we don't
3891 * have to worry about the parents at all. This is because
3892 * we can use the last_unlink_trans field to record renames
3893 * and other fun in this file.
3894 */
3895 if (S_ISREG(inode->i_mode) &&
3896 BTRFS_I(inode)->generation <= last_committed &&
3897 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3898 ret = 0;
3899 goto end_trans;
3900 }
3901
3902 inode_only = LOG_INODE_EXISTS;
3903 while (1) {
3904 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3905 break;
3906
3907 inode = parent->d_inode;
3908 if (root != BTRFS_I(inode)->root)
3909 break;
3910
3911 if (BTRFS_I(inode)->generation >
3912 root->fs_info->last_trans_committed) {
3913 ret = btrfs_log_inode(trans, root, inode, inode_only);
3914 if (ret)
3915 goto end_trans;
3916 }
3917 if (IS_ROOT(parent))
3918 break;
3919
3920 parent = dget_parent(parent);
3921 dput(old_parent);
3922 old_parent = parent;
3923 }
3924 ret = 0;
3925 end_trans:
3926 dput(old_parent);
3927 if (ret < 0) {
3928 root->fs_info->last_trans_log_full_commit = trans->transid;
3929 ret = 1;
3930 }
3931 btrfs_end_log_trans(root);
3932 end_no_trans:
3933 return ret;
3934 }
3935
3936 /*
3937 * it is not safe to log dentry if the chunk root has added new
3938 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3939 * If this returns 1, you must commit the transaction to safely get your
3940 * data on disk.
3941 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct dentry * dentry)3942 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3943 struct btrfs_root *root, struct dentry *dentry)
3944 {
3945 struct dentry *parent = dget_parent(dentry);
3946 int ret;
3947
3948 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3949 dput(parent);
3950
3951 return ret;
3952 }
3953
3954 /*
3955 * should be called during mount to recover any replay any log trees
3956 * from the FS
3957 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)3958 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3959 {
3960 int ret;
3961 struct btrfs_path *path;
3962 struct btrfs_trans_handle *trans;
3963 struct btrfs_key key;
3964 struct btrfs_key found_key;
3965 struct btrfs_key tmp_key;
3966 struct btrfs_root *log;
3967 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3968 struct walk_control wc = {
3969 .process_func = process_one_buffer,
3970 .stage = 0,
3971 };
3972
3973 path = btrfs_alloc_path();
3974 if (!path)
3975 return -ENOMEM;
3976
3977 fs_info->log_root_recovering = 1;
3978
3979 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3980 if (IS_ERR(trans)) {
3981 ret = PTR_ERR(trans);
3982 goto error;
3983 }
3984
3985 wc.trans = trans;
3986 wc.pin = 1;
3987
3988 ret = walk_log_tree(trans, log_root_tree, &wc);
3989 if (ret) {
3990 btrfs_error(fs_info, ret, "Failed to pin buffers while "
3991 "recovering log root tree.");
3992 goto error;
3993 }
3994
3995 again:
3996 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3997 key.offset = (u64)-1;
3998 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3999
4000 while (1) {
4001 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4002
4003 if (ret < 0) {
4004 btrfs_error(fs_info, ret,
4005 "Couldn't find tree log root.");
4006 goto error;
4007 }
4008 if (ret > 0) {
4009 if (path->slots[0] == 0)
4010 break;
4011 path->slots[0]--;
4012 }
4013 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4014 path->slots[0]);
4015 btrfs_release_path(path);
4016 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4017 break;
4018
4019 log = btrfs_read_fs_root_no_radix(log_root_tree,
4020 &found_key);
4021 if (IS_ERR(log)) {
4022 ret = PTR_ERR(log);
4023 btrfs_error(fs_info, ret,
4024 "Couldn't read tree log root.");
4025 goto error;
4026 }
4027
4028 tmp_key.objectid = found_key.offset;
4029 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4030 tmp_key.offset = (u64)-1;
4031
4032 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4033 if (IS_ERR(wc.replay_dest)) {
4034 ret = PTR_ERR(wc.replay_dest);
4035 free_extent_buffer(log->node);
4036 free_extent_buffer(log->commit_root);
4037 kfree(log);
4038 btrfs_error(fs_info, ret, "Couldn't read target root "
4039 "for tree log recovery.");
4040 goto error;
4041 }
4042
4043 wc.replay_dest->log_root = log;
4044 btrfs_record_root_in_trans(trans, wc.replay_dest);
4045 ret = walk_log_tree(trans, log, &wc);
4046
4047 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4048 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4049 path);
4050 }
4051
4052 key.offset = found_key.offset - 1;
4053 wc.replay_dest->log_root = NULL;
4054 free_extent_buffer(log->node);
4055 free_extent_buffer(log->commit_root);
4056 kfree(log);
4057
4058 if (ret)
4059 goto error;
4060
4061 if (found_key.offset == 0)
4062 break;
4063 }
4064 btrfs_release_path(path);
4065
4066 /* step one is to pin it all, step two is to replay just inodes */
4067 if (wc.pin) {
4068 wc.pin = 0;
4069 wc.process_func = replay_one_buffer;
4070 wc.stage = LOG_WALK_REPLAY_INODES;
4071 goto again;
4072 }
4073 /* step three is to replay everything */
4074 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4075 wc.stage++;
4076 goto again;
4077 }
4078
4079 btrfs_free_path(path);
4080
4081 /* step 4: commit the transaction, which also unpins the blocks */
4082 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4083 if (ret)
4084 return ret;
4085
4086 free_extent_buffer(log_root_tree->node);
4087 log_root_tree->log_root = NULL;
4088 fs_info->log_root_recovering = 0;
4089 kfree(log_root_tree);
4090
4091 return 0;
4092 error:
4093 if (wc.trans)
4094 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4095 btrfs_free_path(path);
4096 return ret;
4097 }
4098
4099 /*
4100 * there are some corner cases where we want to force a full
4101 * commit instead of allowing a directory to be logged.
4102 *
4103 * They revolve around files there were unlinked from the directory, and
4104 * this function updates the parent directory so that a full commit is
4105 * properly done if it is fsync'd later after the unlinks are done.
4106 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct inode * dir,struct inode * inode,int for_rename)4107 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4108 struct inode *dir, struct inode *inode,
4109 int for_rename)
4110 {
4111 /*
4112 * when we're logging a file, if it hasn't been renamed
4113 * or unlinked, and its inode is fully committed on disk,
4114 * we don't have to worry about walking up the directory chain
4115 * to log its parents.
4116 *
4117 * So, we use the last_unlink_trans field to put this transid
4118 * into the file. When the file is logged we check it and
4119 * don't log the parents if the file is fully on disk.
4120 */
4121 if (S_ISREG(inode->i_mode))
4122 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4123
4124 /*
4125 * if this directory was already logged any new
4126 * names for this file/dir will get recorded
4127 */
4128 smp_mb();
4129 if (BTRFS_I(dir)->logged_trans == trans->transid)
4130 return;
4131
4132 /*
4133 * if the inode we're about to unlink was logged,
4134 * the log will be properly updated for any new names
4135 */
4136 if (BTRFS_I(inode)->logged_trans == trans->transid)
4137 return;
4138
4139 /*
4140 * when renaming files across directories, if the directory
4141 * there we're unlinking from gets fsync'd later on, there's
4142 * no way to find the destination directory later and fsync it
4143 * properly. So, we have to be conservative and force commits
4144 * so the new name gets discovered.
4145 */
4146 if (for_rename)
4147 goto record;
4148
4149 /* we can safely do the unlink without any special recording */
4150 return;
4151
4152 record:
4153 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4154 }
4155
4156 /*
4157 * Call this after adding a new name for a file and it will properly
4158 * update the log to reflect the new name.
4159 *
4160 * It will return zero if all goes well, and it will return 1 if a
4161 * full transaction commit is required.
4162 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * old_dir,struct dentry * parent)4163 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4164 struct inode *inode, struct inode *old_dir,
4165 struct dentry *parent)
4166 {
4167 struct btrfs_root * root = BTRFS_I(inode)->root;
4168
4169 /*
4170 * this will force the logging code to walk the dentry chain
4171 * up for the file
4172 */
4173 if (S_ISREG(inode->i_mode))
4174 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4175
4176 /*
4177 * if this inode hasn't been logged and directory we're renaming it
4178 * from hasn't been logged, we don't need to log it
4179 */
4180 if (BTRFS_I(inode)->logged_trans <=
4181 root->fs_info->last_trans_committed &&
4182 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4183 root->fs_info->last_trans_committed))
4184 return 0;
4185
4186 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4187 }
4188
4189