• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/list_sort.h>
22 #include "ctree.h"
23 #include "transaction.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "compat.h"
29 #include "tree-log.h"
30 #include "hash.h"
31 
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40 
41 /*
42  * directory trouble cases
43  *
44  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45  * log, we must force a full commit before doing an fsync of the directory
46  * where the unlink was done.
47  * ---> record transid of last unlink/rename per directory
48  *
49  * mkdir foo/some_dir
50  * normal commit
51  * rename foo/some_dir foo2/some_dir
52  * mkdir foo/some_dir
53  * fsync foo/some_dir/some_file
54  *
55  * The fsync above will unlink the original some_dir without recording
56  * it in its new location (foo2).  After a crash, some_dir will be gone
57  * unless the fsync of some_file forces a full commit
58  *
59  * 2) we must log any new names for any file or dir that is in the fsync
60  * log. ---> check inode while renaming/linking.
61  *
62  * 2a) we must log any new names for any file or dir during rename
63  * when the directory they are being removed from was logged.
64  * ---> check inode and old parent dir during rename
65  *
66  *  2a is actually the more important variant.  With the extra logging
67  *  a crash might unlink the old name without recreating the new one
68  *
69  * 3) after a crash, we must go through any directories with a link count
70  * of zero and redo the rm -rf
71  *
72  * mkdir f1/foo
73  * normal commit
74  * rm -rf f1/foo
75  * fsync(f1)
76  *
77  * The directory f1 was fully removed from the FS, but fsync was never
78  * called on f1, only its parent dir.  After a crash the rm -rf must
79  * be replayed.  This must be able to recurse down the entire
80  * directory tree.  The inode link count fixup code takes care of the
81  * ugly details.
82  */
83 
84 /*
85  * stages for the tree walking.  The first
86  * stage (0) is to only pin down the blocks we find
87  * the second stage (1) is to make sure that all the inodes
88  * we find in the log are created in the subvolume.
89  *
90  * The last stage is to deal with directories and links and extents
91  * and all the other fun semantics
92  */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_ALL 2
96 
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root, struct inode *inode,
99 			     int inode_only);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root)
139 {
140 	int ret;
141 	int err = 0;
142 
143 	mutex_lock(&root->log_mutex);
144 	if (root->log_root) {
145 		if (!root->log_start_pid) {
146 			root->log_start_pid = current->pid;
147 			root->log_multiple_pids = false;
148 		} else if (root->log_start_pid != current->pid) {
149 			root->log_multiple_pids = true;
150 		}
151 
152 		atomic_inc(&root->log_batch);
153 		atomic_inc(&root->log_writers);
154 		mutex_unlock(&root->log_mutex);
155 		return 0;
156 	}
157 	root->log_multiple_pids = false;
158 	root->log_start_pid = current->pid;
159 	mutex_lock(&root->fs_info->tree_log_mutex);
160 	if (!root->fs_info->log_root_tree) {
161 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
162 		if (ret)
163 			err = ret;
164 	}
165 	if (err == 0 && !root->log_root) {
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			err = ret;
169 	}
170 	mutex_unlock(&root->fs_info->tree_log_mutex);
171 	atomic_inc(&root->log_batch);
172 	atomic_inc(&root->log_writers);
173 	mutex_unlock(&root->log_mutex);
174 	return err;
175 }
176 
177 /*
178  * returns 0 if there was a log transaction running and we were able
179  * to join, or returns -ENOENT if there were not transactions
180  * in progress
181  */
join_running_log_trans(struct btrfs_root * root)182 static int join_running_log_trans(struct btrfs_root *root)
183 {
184 	int ret = -ENOENT;
185 
186 	smp_mb();
187 	if (!root->log_root)
188 		return -ENOENT;
189 
190 	mutex_lock(&root->log_mutex);
191 	if (root->log_root) {
192 		ret = 0;
193 		atomic_inc(&root->log_writers);
194 	}
195 	mutex_unlock(&root->log_mutex);
196 	return ret;
197 }
198 
199 /*
200  * This either makes the current running log transaction wait
201  * until you call btrfs_end_log_trans() or it makes any future
202  * log transactions wait until you call btrfs_end_log_trans()
203  */
btrfs_pin_log_trans(struct btrfs_root * root)204 int btrfs_pin_log_trans(struct btrfs_root *root)
205 {
206 	int ret = -ENOENT;
207 
208 	mutex_lock(&root->log_mutex);
209 	atomic_inc(&root->log_writers);
210 	mutex_unlock(&root->log_mutex);
211 	return ret;
212 }
213 
214 /*
215  * indicate we're done making changes to the log tree
216  * and wake up anyone waiting to do a sync
217  */
btrfs_end_log_trans(struct btrfs_root * root)218 void btrfs_end_log_trans(struct btrfs_root *root)
219 {
220 	if (atomic_dec_and_test(&root->log_writers)) {
221 		smp_mb();
222 		if (waitqueue_active(&root->log_writer_wait))
223 			wake_up(&root->log_writer_wait);
224 	}
225 }
226 
227 
228 /*
229  * the walk control struct is used to pass state down the chain when
230  * processing the log tree.  The stage field tells us which part
231  * of the log tree processing we are currently doing.  The others
232  * are state fields used for that specific part
233  */
234 struct walk_control {
235 	/* should we free the extent on disk when done?  This is used
236 	 * at transaction commit time while freeing a log tree
237 	 */
238 	int free;
239 
240 	/* should we write out the extent buffer?  This is used
241 	 * while flushing the log tree to disk during a sync
242 	 */
243 	int write;
244 
245 	/* should we wait for the extent buffer io to finish?  Also used
246 	 * while flushing the log tree to disk for a sync
247 	 */
248 	int wait;
249 
250 	/* pin only walk, we record which extents on disk belong to the
251 	 * log trees
252 	 */
253 	int pin;
254 
255 	/* what stage of the replay code we're currently in */
256 	int stage;
257 
258 	/* the root we are currently replaying */
259 	struct btrfs_root *replay_dest;
260 
261 	/* the trans handle for the current replay */
262 	struct btrfs_trans_handle *trans;
263 
264 	/* the function that gets used to process blocks we find in the
265 	 * tree.  Note the extent_buffer might not be up to date when it is
266 	 * passed in, and it must be checked or read if you need the data
267 	 * inside it
268 	 */
269 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
270 			    struct walk_control *wc, u64 gen);
271 };
272 
273 /*
274  * process_func used to pin down extents, write them or wait on them
275  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)276 static int process_one_buffer(struct btrfs_root *log,
277 			      struct extent_buffer *eb,
278 			      struct walk_control *wc, u64 gen)
279 {
280 	int ret = 0;
281 
282 	if (wc->pin)
283 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
284 						      eb->start, eb->len);
285 
286 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
287 		if (wc->write)
288 			btrfs_write_tree_block(eb);
289 		if (wc->wait)
290 			btrfs_wait_tree_block_writeback(eb);
291 	}
292 	return ret;
293 }
294 
295 /*
296  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
297  * to the src data we are copying out.
298  *
299  * root is the tree we are copying into, and path is a scratch
300  * path for use in this function (it should be released on entry and
301  * will be released on exit).
302  *
303  * If the key is already in the destination tree the existing item is
304  * overwritten.  If the existing item isn't big enough, it is extended.
305  * If it is too large, it is truncated.
306  *
307  * If the key isn't in the destination yet, a new item is inserted.
308  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)309 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
310 				   struct btrfs_root *root,
311 				   struct btrfs_path *path,
312 				   struct extent_buffer *eb, int slot,
313 				   struct btrfs_key *key)
314 {
315 	int ret;
316 	u32 item_size;
317 	u64 saved_i_size = 0;
318 	int save_old_i_size = 0;
319 	unsigned long src_ptr;
320 	unsigned long dst_ptr;
321 	int overwrite_root = 0;
322 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
323 
324 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
325 		overwrite_root = 1;
326 
327 	item_size = btrfs_item_size_nr(eb, slot);
328 	src_ptr = btrfs_item_ptr_offset(eb, slot);
329 
330 	/* look for the key in the destination tree */
331 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
332 	if (ret < 0)
333 		return ret;
334 
335 	if (ret == 0) {
336 		char *src_copy;
337 		char *dst_copy;
338 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
339 						  path->slots[0]);
340 		if (dst_size != item_size)
341 			goto insert;
342 
343 		if (item_size == 0) {
344 			btrfs_release_path(path);
345 			return 0;
346 		}
347 		dst_copy = kmalloc(item_size, GFP_NOFS);
348 		src_copy = kmalloc(item_size, GFP_NOFS);
349 		if (!dst_copy || !src_copy) {
350 			btrfs_release_path(path);
351 			kfree(dst_copy);
352 			kfree(src_copy);
353 			return -ENOMEM;
354 		}
355 
356 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
357 
358 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
359 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
360 				   item_size);
361 		ret = memcmp(dst_copy, src_copy, item_size);
362 
363 		kfree(dst_copy);
364 		kfree(src_copy);
365 		/*
366 		 * they have the same contents, just return, this saves
367 		 * us from cowing blocks in the destination tree and doing
368 		 * extra writes that may not have been done by a previous
369 		 * sync
370 		 */
371 		if (ret == 0) {
372 			btrfs_release_path(path);
373 			return 0;
374 		}
375 
376 		/*
377 		 * We need to load the old nbytes into the inode so when we
378 		 * replay the extents we've logged we get the right nbytes.
379 		 */
380 		if (inode_item) {
381 			struct btrfs_inode_item *item;
382 			u64 nbytes;
383 
384 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
385 					      struct btrfs_inode_item);
386 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
387 			item = btrfs_item_ptr(eb, slot,
388 					      struct btrfs_inode_item);
389 			btrfs_set_inode_nbytes(eb, item, nbytes);
390 		}
391 	} else if (inode_item) {
392 		struct btrfs_inode_item *item;
393 
394 		/*
395 		 * New inode, set nbytes to 0 so that the nbytes comes out
396 		 * properly when we replay the extents.
397 		 */
398 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
399 		btrfs_set_inode_nbytes(eb, item, 0);
400 	}
401 insert:
402 	btrfs_release_path(path);
403 	/* try to insert the key into the destination tree */
404 	ret = btrfs_insert_empty_item(trans, root, path,
405 				      key, item_size);
406 
407 	/* make sure any existing item is the correct size */
408 	if (ret == -EEXIST) {
409 		u32 found_size;
410 		found_size = btrfs_item_size_nr(path->nodes[0],
411 						path->slots[0]);
412 		if (found_size > item_size)
413 			btrfs_truncate_item(root, path, item_size, 1);
414 		else if (found_size < item_size)
415 			btrfs_extend_item(root, path,
416 					  item_size - found_size);
417 	} else if (ret) {
418 		return ret;
419 	}
420 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
421 					path->slots[0]);
422 
423 	/* don't overwrite an existing inode if the generation number
424 	 * was logged as zero.  This is done when the tree logging code
425 	 * is just logging an inode to make sure it exists after recovery.
426 	 *
427 	 * Also, don't overwrite i_size on directories during replay.
428 	 * log replay inserts and removes directory items based on the
429 	 * state of the tree found in the subvolume, and i_size is modified
430 	 * as it goes
431 	 */
432 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
433 		struct btrfs_inode_item *src_item;
434 		struct btrfs_inode_item *dst_item;
435 
436 		src_item = (struct btrfs_inode_item *)src_ptr;
437 		dst_item = (struct btrfs_inode_item *)dst_ptr;
438 
439 		if (btrfs_inode_generation(eb, src_item) == 0)
440 			goto no_copy;
441 
442 		if (overwrite_root &&
443 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
444 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
445 			save_old_i_size = 1;
446 			saved_i_size = btrfs_inode_size(path->nodes[0],
447 							dst_item);
448 		}
449 	}
450 
451 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
452 			   src_ptr, item_size);
453 
454 	if (save_old_i_size) {
455 		struct btrfs_inode_item *dst_item;
456 		dst_item = (struct btrfs_inode_item *)dst_ptr;
457 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
458 	}
459 
460 	/* make sure the generation is filled in */
461 	if (key->type == BTRFS_INODE_ITEM_KEY) {
462 		struct btrfs_inode_item *dst_item;
463 		dst_item = (struct btrfs_inode_item *)dst_ptr;
464 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
465 			btrfs_set_inode_generation(path->nodes[0], dst_item,
466 						   trans->transid);
467 		}
468 	}
469 no_copy:
470 	btrfs_mark_buffer_dirty(path->nodes[0]);
471 	btrfs_release_path(path);
472 	return 0;
473 }
474 
475 /*
476  * simple helper to read an inode off the disk from a given root
477  * This can only be called for subvolume roots and not for the log
478  */
read_one_inode(struct btrfs_root * root,u64 objectid)479 static noinline struct inode *read_one_inode(struct btrfs_root *root,
480 					     u64 objectid)
481 {
482 	struct btrfs_key key;
483 	struct inode *inode;
484 
485 	key.objectid = objectid;
486 	key.type = BTRFS_INODE_ITEM_KEY;
487 	key.offset = 0;
488 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
489 	if (IS_ERR(inode)) {
490 		inode = NULL;
491 	} else if (is_bad_inode(inode)) {
492 		iput(inode);
493 		inode = NULL;
494 	}
495 	return inode;
496 }
497 
498 /* replays a single extent in 'eb' at 'slot' with 'key' into the
499  * subvolume 'root'.  path is released on entry and should be released
500  * on exit.
501  *
502  * extents in the log tree have not been allocated out of the extent
503  * tree yet.  So, this completes the allocation, taking a reference
504  * as required if the extent already exists or creating a new extent
505  * if it isn't in the extent allocation tree yet.
506  *
507  * The extent is inserted into the file, dropping any existing extents
508  * from the file that overlap the new one.
509  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)510 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
511 				      struct btrfs_root *root,
512 				      struct btrfs_path *path,
513 				      struct extent_buffer *eb, int slot,
514 				      struct btrfs_key *key)
515 {
516 	int found_type;
517 	u64 extent_end;
518 	u64 start = key->offset;
519 	u64 nbytes = 0;
520 	struct btrfs_file_extent_item *item;
521 	struct inode *inode = NULL;
522 	unsigned long size;
523 	int ret = 0;
524 
525 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
526 	found_type = btrfs_file_extent_type(eb, item);
527 
528 	if (found_type == BTRFS_FILE_EXTENT_REG ||
529 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
530 		nbytes = btrfs_file_extent_num_bytes(eb, item);
531 		extent_end = start + nbytes;
532 
533 		/*
534 		 * We don't add to the inodes nbytes if we are prealloc or a
535 		 * hole.
536 		 */
537 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
538 			nbytes = 0;
539 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
540 		size = btrfs_file_extent_inline_len(eb, item);
541 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
542 		extent_end = ALIGN(start + size, root->sectorsize);
543 	} else {
544 		ret = 0;
545 		goto out;
546 	}
547 
548 	inode = read_one_inode(root, key->objectid);
549 	if (!inode) {
550 		ret = -EIO;
551 		goto out;
552 	}
553 
554 	/*
555 	 * first check to see if we already have this extent in the
556 	 * file.  This must be done before the btrfs_drop_extents run
557 	 * so we don't try to drop this extent.
558 	 */
559 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
560 				       start, 0);
561 
562 	if (ret == 0 &&
563 	    (found_type == BTRFS_FILE_EXTENT_REG ||
564 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
565 		struct btrfs_file_extent_item cmp1;
566 		struct btrfs_file_extent_item cmp2;
567 		struct btrfs_file_extent_item *existing;
568 		struct extent_buffer *leaf;
569 
570 		leaf = path->nodes[0];
571 		existing = btrfs_item_ptr(leaf, path->slots[0],
572 					  struct btrfs_file_extent_item);
573 
574 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
575 				   sizeof(cmp1));
576 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
577 				   sizeof(cmp2));
578 
579 		/*
580 		 * we already have a pointer to this exact extent,
581 		 * we don't have to do anything
582 		 */
583 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
584 			btrfs_release_path(path);
585 			goto out;
586 		}
587 	}
588 	btrfs_release_path(path);
589 
590 	/* drop any overlapping extents */
591 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
592 	if (ret)
593 		goto out;
594 
595 	if (found_type == BTRFS_FILE_EXTENT_REG ||
596 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
597 		u64 offset;
598 		unsigned long dest_offset;
599 		struct btrfs_key ins;
600 
601 		ret = btrfs_insert_empty_item(trans, root, path, key,
602 					      sizeof(*item));
603 		if (ret)
604 			goto out;
605 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
606 						    path->slots[0]);
607 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
608 				(unsigned long)item,  sizeof(*item));
609 
610 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
611 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
612 		ins.type = BTRFS_EXTENT_ITEM_KEY;
613 		offset = key->offset - btrfs_file_extent_offset(eb, item);
614 
615 		if (ins.objectid > 0) {
616 			u64 csum_start;
617 			u64 csum_end;
618 			LIST_HEAD(ordered_sums);
619 			/*
620 			 * is this extent already allocated in the extent
621 			 * allocation tree?  If so, just add a reference
622 			 */
623 			ret = btrfs_lookup_extent(root, ins.objectid,
624 						ins.offset);
625 			if (ret == 0) {
626 				ret = btrfs_inc_extent_ref(trans, root,
627 						ins.objectid, ins.offset,
628 						0, root->root_key.objectid,
629 						key->objectid, offset, 0);
630 				if (ret)
631 					goto out;
632 			} else {
633 				/*
634 				 * insert the extent pointer in the extent
635 				 * allocation tree
636 				 */
637 				ret = btrfs_alloc_logged_file_extent(trans,
638 						root, root->root_key.objectid,
639 						key->objectid, offset, &ins);
640 				if (ret)
641 					goto out;
642 			}
643 			btrfs_release_path(path);
644 
645 			if (btrfs_file_extent_compression(eb, item)) {
646 				csum_start = ins.objectid;
647 				csum_end = csum_start + ins.offset;
648 			} else {
649 				csum_start = ins.objectid +
650 					btrfs_file_extent_offset(eb, item);
651 				csum_end = csum_start +
652 					btrfs_file_extent_num_bytes(eb, item);
653 			}
654 
655 			ret = btrfs_lookup_csums_range(root->log_root,
656 						csum_start, csum_end - 1,
657 						&ordered_sums, 0);
658 			if (ret)
659 				goto out;
660 			while (!list_empty(&ordered_sums)) {
661 				struct btrfs_ordered_sum *sums;
662 				sums = list_entry(ordered_sums.next,
663 						struct btrfs_ordered_sum,
664 						list);
665 				if (!ret)
666 					ret = btrfs_csum_file_blocks(trans,
667 						root->fs_info->csum_root,
668 						sums);
669 				list_del(&sums->list);
670 				kfree(sums);
671 			}
672 			if (ret)
673 				goto out;
674 		} else {
675 			btrfs_release_path(path);
676 		}
677 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
678 		/* inline extents are easy, we just overwrite them */
679 		ret = overwrite_item(trans, root, path, eb, slot, key);
680 		if (ret)
681 			goto out;
682 	}
683 
684 	inode_add_bytes(inode, nbytes);
685 	ret = btrfs_update_inode(trans, root, inode);
686 out:
687 	if (inode)
688 		iput(inode);
689 	return ret;
690 }
691 
692 /*
693  * when cleaning up conflicts between the directory names in the
694  * subvolume, directory names in the log and directory names in the
695  * inode back references, we may have to unlink inodes from directories.
696  *
697  * This is a helper function to do the unlink of a specific directory
698  * item
699  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct inode * dir,struct btrfs_dir_item * di)700 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
701 				      struct btrfs_root *root,
702 				      struct btrfs_path *path,
703 				      struct inode *dir,
704 				      struct btrfs_dir_item *di)
705 {
706 	struct inode *inode;
707 	char *name;
708 	int name_len;
709 	struct extent_buffer *leaf;
710 	struct btrfs_key location;
711 	int ret;
712 
713 	leaf = path->nodes[0];
714 
715 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
716 	name_len = btrfs_dir_name_len(leaf, di);
717 	name = kmalloc(name_len, GFP_NOFS);
718 	if (!name)
719 		return -ENOMEM;
720 
721 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
722 	btrfs_release_path(path);
723 
724 	inode = read_one_inode(root, location.objectid);
725 	if (!inode) {
726 		ret = -EIO;
727 		goto out;
728 	}
729 
730 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
731 	if (ret)
732 		goto out;
733 
734 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
735 	if (ret)
736 		goto out;
737 	btrfs_run_delayed_items(trans, root);
738 out:
739 	kfree(name);
740 	iput(inode);
741 	return ret;
742 }
743 
744 /*
745  * helper function to see if a given name and sequence number found
746  * in an inode back reference are already in a directory and correctly
747  * point to this inode
748  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)749 static noinline int inode_in_dir(struct btrfs_root *root,
750 				 struct btrfs_path *path,
751 				 u64 dirid, u64 objectid, u64 index,
752 				 const char *name, int name_len)
753 {
754 	struct btrfs_dir_item *di;
755 	struct btrfs_key location;
756 	int match = 0;
757 
758 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
759 					 index, name, name_len, 0);
760 	if (di && !IS_ERR(di)) {
761 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
762 		if (location.objectid != objectid)
763 			goto out;
764 	} else
765 		goto out;
766 	btrfs_release_path(path);
767 
768 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
769 	if (di && !IS_ERR(di)) {
770 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
771 		if (location.objectid != objectid)
772 			goto out;
773 	} else
774 		goto out;
775 	match = 1;
776 out:
777 	btrfs_release_path(path);
778 	return match;
779 }
780 
781 /*
782  * helper function to check a log tree for a named back reference in
783  * an inode.  This is used to decide if a back reference that is
784  * found in the subvolume conflicts with what we find in the log.
785  *
786  * inode backreferences may have multiple refs in a single item,
787  * during replay we process one reference at a time, and we don't
788  * want to delete valid links to a file from the subvolume if that
789  * link is also in the log.
790  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,char * name,int namelen)791 static noinline int backref_in_log(struct btrfs_root *log,
792 				   struct btrfs_key *key,
793 				   u64 ref_objectid,
794 				   char *name, int namelen)
795 {
796 	struct btrfs_path *path;
797 	struct btrfs_inode_ref *ref;
798 	unsigned long ptr;
799 	unsigned long ptr_end;
800 	unsigned long name_ptr;
801 	int found_name_len;
802 	int item_size;
803 	int ret;
804 	int match = 0;
805 
806 	path = btrfs_alloc_path();
807 	if (!path)
808 		return -ENOMEM;
809 
810 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
811 	if (ret != 0)
812 		goto out;
813 
814 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
815 
816 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
817 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
818 						   name, namelen, NULL))
819 			match = 1;
820 
821 		goto out;
822 	}
823 
824 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
825 	ptr_end = ptr + item_size;
826 	while (ptr < ptr_end) {
827 		ref = (struct btrfs_inode_ref *)ptr;
828 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
829 		if (found_name_len == namelen) {
830 			name_ptr = (unsigned long)(ref + 1);
831 			ret = memcmp_extent_buffer(path->nodes[0], name,
832 						   name_ptr, namelen);
833 			if (ret == 0) {
834 				match = 1;
835 				goto out;
836 			}
837 		}
838 		ptr = (unsigned long)(ref + 1) + found_name_len;
839 	}
840 out:
841 	btrfs_free_path(path);
842 	return match;
843 }
844 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct inode * dir,struct inode * inode,struct extent_buffer * eb,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)845 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
846 				  struct btrfs_root *root,
847 				  struct btrfs_path *path,
848 				  struct btrfs_root *log_root,
849 				  struct inode *dir, struct inode *inode,
850 				  struct extent_buffer *eb,
851 				  u64 inode_objectid, u64 parent_objectid,
852 				  u64 ref_index, char *name, int namelen,
853 				  int *search_done)
854 {
855 	int ret;
856 	char *victim_name;
857 	int victim_name_len;
858 	struct extent_buffer *leaf;
859 	struct btrfs_dir_item *di;
860 	struct btrfs_key search_key;
861 	struct btrfs_inode_extref *extref;
862 
863 again:
864 	/* Search old style refs */
865 	search_key.objectid = inode_objectid;
866 	search_key.type = BTRFS_INODE_REF_KEY;
867 	search_key.offset = parent_objectid;
868 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
869 	if (ret == 0) {
870 		struct btrfs_inode_ref *victim_ref;
871 		unsigned long ptr;
872 		unsigned long ptr_end;
873 
874 		leaf = path->nodes[0];
875 
876 		/* are we trying to overwrite a back ref for the root directory
877 		 * if so, just jump out, we're done
878 		 */
879 		if (search_key.objectid == search_key.offset)
880 			return 1;
881 
882 		/* check all the names in this back reference to see
883 		 * if they are in the log.  if so, we allow them to stay
884 		 * otherwise they must be unlinked as a conflict
885 		 */
886 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
887 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
888 		while (ptr < ptr_end) {
889 			victim_ref = (struct btrfs_inode_ref *)ptr;
890 			victim_name_len = btrfs_inode_ref_name_len(leaf,
891 								   victim_ref);
892 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
893 			if (!victim_name)
894 				return -ENOMEM;
895 
896 			read_extent_buffer(leaf, victim_name,
897 					   (unsigned long)(victim_ref + 1),
898 					   victim_name_len);
899 
900 			if (!backref_in_log(log_root, &search_key,
901 					    parent_objectid,
902 					    victim_name,
903 					    victim_name_len)) {
904 				btrfs_inc_nlink(inode);
905 				btrfs_release_path(path);
906 
907 				ret = btrfs_unlink_inode(trans, root, dir,
908 							 inode, victim_name,
909 							 victim_name_len);
910 				kfree(victim_name);
911 				if (ret)
912 					return ret;
913 				btrfs_run_delayed_items(trans, root);
914 				*search_done = 1;
915 				goto again;
916 			}
917 			kfree(victim_name);
918 
919 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
920 		}
921 
922 		/*
923 		 * NOTE: we have searched root tree and checked the
924 		 * coresponding ref, it does not need to check again.
925 		 */
926 		*search_done = 1;
927 	}
928 	btrfs_release_path(path);
929 
930 	/* Same search but for extended refs */
931 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
932 					   inode_objectid, parent_objectid, 0,
933 					   0);
934 	if (!IS_ERR_OR_NULL(extref)) {
935 		u32 item_size;
936 		u32 cur_offset = 0;
937 		unsigned long base;
938 		struct inode *victim_parent;
939 
940 		leaf = path->nodes[0];
941 
942 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
943 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
944 
945 		while (cur_offset < item_size) {
946 			extref = (struct btrfs_inode_extref *)base + cur_offset;
947 
948 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
949 
950 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
951 				goto next;
952 
953 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
954 			if (!victim_name)
955 				return -ENOMEM;
956 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
957 					   victim_name_len);
958 
959 			search_key.objectid = inode_objectid;
960 			search_key.type = BTRFS_INODE_EXTREF_KEY;
961 			search_key.offset = btrfs_extref_hash(parent_objectid,
962 							      victim_name,
963 							      victim_name_len);
964 			ret = 0;
965 			if (!backref_in_log(log_root, &search_key,
966 					    parent_objectid, victim_name,
967 					    victim_name_len)) {
968 				ret = -ENOENT;
969 				victim_parent = read_one_inode(root,
970 							       parent_objectid);
971 				if (victim_parent) {
972 					btrfs_inc_nlink(inode);
973 					btrfs_release_path(path);
974 
975 					ret = btrfs_unlink_inode(trans, root,
976 								 victim_parent,
977 								 inode,
978 								 victim_name,
979 								 victim_name_len);
980 					btrfs_run_delayed_items(trans, root);
981 				}
982 				iput(victim_parent);
983 				kfree(victim_name);
984 				if (ret)
985 					return ret;
986 				*search_done = 1;
987 				goto again;
988 			}
989 			kfree(victim_name);
990 			if (ret)
991 				return ret;
992 next:
993 			cur_offset += victim_name_len + sizeof(*extref);
994 		}
995 		*search_done = 1;
996 	}
997 	btrfs_release_path(path);
998 
999 	/* look for a conflicting sequence number */
1000 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1001 					 ref_index, name, namelen, 0);
1002 	if (di && !IS_ERR(di)) {
1003 		ret = drop_one_dir_item(trans, root, path, dir, di);
1004 		if (ret)
1005 			return ret;
1006 	}
1007 	btrfs_release_path(path);
1008 
1009 	/* look for a conflicing name */
1010 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1011 				   name, namelen, 0);
1012 	if (di && !IS_ERR(di)) {
1013 		ret = drop_one_dir_item(trans, root, path, dir, di);
1014 		if (ret)
1015 			return ret;
1016 	}
1017 	btrfs_release_path(path);
1018 
1019 	return 0;
1020 }
1021 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1022 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1023 			     u32 *namelen, char **name, u64 *index,
1024 			     u64 *parent_objectid)
1025 {
1026 	struct btrfs_inode_extref *extref;
1027 
1028 	extref = (struct btrfs_inode_extref *)ref_ptr;
1029 
1030 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1031 	*name = kmalloc(*namelen, GFP_NOFS);
1032 	if (*name == NULL)
1033 		return -ENOMEM;
1034 
1035 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1036 			   *namelen);
1037 
1038 	*index = btrfs_inode_extref_index(eb, extref);
1039 	if (parent_objectid)
1040 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1041 
1042 	return 0;
1043 }
1044 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1045 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1046 			  u32 *namelen, char **name, u64 *index)
1047 {
1048 	struct btrfs_inode_ref *ref;
1049 
1050 	ref = (struct btrfs_inode_ref *)ref_ptr;
1051 
1052 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1053 	*name = kmalloc(*namelen, GFP_NOFS);
1054 	if (*name == NULL)
1055 		return -ENOMEM;
1056 
1057 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1058 
1059 	*index = btrfs_inode_ref_index(eb, ref);
1060 
1061 	return 0;
1062 }
1063 
1064 /*
1065  * replay one inode back reference item found in the log tree.
1066  * eb, slot and key refer to the buffer and key found in the log tree.
1067  * root is the destination we are replaying into, and path is for temp
1068  * use by this function.  (it should be released on return).
1069  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1070 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1071 				  struct btrfs_root *root,
1072 				  struct btrfs_root *log,
1073 				  struct btrfs_path *path,
1074 				  struct extent_buffer *eb, int slot,
1075 				  struct btrfs_key *key)
1076 {
1077 	struct inode *dir;
1078 	struct inode *inode;
1079 	unsigned long ref_ptr;
1080 	unsigned long ref_end;
1081 	char *name;
1082 	int namelen;
1083 	int ret;
1084 	int search_done = 0;
1085 	int log_ref_ver = 0;
1086 	u64 parent_objectid;
1087 	u64 inode_objectid;
1088 	u64 ref_index = 0;
1089 	int ref_struct_size;
1090 
1091 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1092 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1093 
1094 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1095 		struct btrfs_inode_extref *r;
1096 
1097 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1098 		log_ref_ver = 1;
1099 		r = (struct btrfs_inode_extref *)ref_ptr;
1100 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1101 	} else {
1102 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1103 		parent_objectid = key->offset;
1104 	}
1105 	inode_objectid = key->objectid;
1106 
1107 	/*
1108 	 * it is possible that we didn't log all the parent directories
1109 	 * for a given inode.  If we don't find the dir, just don't
1110 	 * copy the back ref in.  The link count fixup code will take
1111 	 * care of the rest
1112 	 */
1113 	dir = read_one_inode(root, parent_objectid);
1114 	if (!dir)
1115 		return -ENOENT;
1116 
1117 	inode = read_one_inode(root, inode_objectid);
1118 	if (!inode) {
1119 		iput(dir);
1120 		return -EIO;
1121 	}
1122 
1123 	while (ref_ptr < ref_end) {
1124 		if (log_ref_ver) {
1125 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1126 						&ref_index, &parent_objectid);
1127 			/*
1128 			 * parent object can change from one array
1129 			 * item to another.
1130 			 */
1131 			if (!dir)
1132 				dir = read_one_inode(root, parent_objectid);
1133 			if (!dir)
1134 				return -ENOENT;
1135 		} else {
1136 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1137 					     &ref_index);
1138 		}
1139 		if (ret)
1140 			return ret;
1141 
1142 		/* if we already have a perfect match, we're done */
1143 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1144 				  ref_index, name, namelen)) {
1145 			/*
1146 			 * look for a conflicting back reference in the
1147 			 * metadata. if we find one we have to unlink that name
1148 			 * of the file before we add our new link.  Later on, we
1149 			 * overwrite any existing back reference, and we don't
1150 			 * want to create dangling pointers in the directory.
1151 			 */
1152 
1153 			if (!search_done) {
1154 				ret = __add_inode_ref(trans, root, path, log,
1155 						      dir, inode, eb,
1156 						      inode_objectid,
1157 						      parent_objectid,
1158 						      ref_index, name, namelen,
1159 						      &search_done);
1160 				if (ret == 1) {
1161 					ret = 0;
1162 					goto out;
1163 				}
1164 				if (ret)
1165 					goto out;
1166 			}
1167 
1168 			/* insert our name */
1169 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1170 					     0, ref_index);
1171 			if (ret)
1172 				goto out;
1173 
1174 			btrfs_update_inode(trans, root, inode);
1175 		}
1176 
1177 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1178 		kfree(name);
1179 		if (log_ref_ver) {
1180 			iput(dir);
1181 			dir = NULL;
1182 		}
1183 	}
1184 
1185 	/* finally write the back reference in the inode */
1186 	ret = overwrite_item(trans, root, path, eb, slot, key);
1187 out:
1188 	btrfs_release_path(path);
1189 	iput(dir);
1190 	iput(inode);
1191 	return ret;
1192 }
1193 
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 offset)1194 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1195 			      struct btrfs_root *root, u64 offset)
1196 {
1197 	int ret;
1198 	ret = btrfs_find_orphan_item(root, offset);
1199 	if (ret > 0)
1200 		ret = btrfs_insert_orphan_item(trans, root, offset);
1201 	return ret;
1202 }
1203 
count_inode_extrefs(struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)1204 static int count_inode_extrefs(struct btrfs_root *root,
1205 			       struct inode *inode, struct btrfs_path *path)
1206 {
1207 	int ret = 0;
1208 	int name_len;
1209 	unsigned int nlink = 0;
1210 	u32 item_size;
1211 	u32 cur_offset = 0;
1212 	u64 inode_objectid = btrfs_ino(inode);
1213 	u64 offset = 0;
1214 	unsigned long ptr;
1215 	struct btrfs_inode_extref *extref;
1216 	struct extent_buffer *leaf;
1217 
1218 	while (1) {
1219 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1220 					    &extref, &offset);
1221 		if (ret)
1222 			break;
1223 
1224 		leaf = path->nodes[0];
1225 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1226 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1227 
1228 		while (cur_offset < item_size) {
1229 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1230 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1231 
1232 			nlink++;
1233 
1234 			cur_offset += name_len + sizeof(*extref);
1235 		}
1236 
1237 		offset++;
1238 		btrfs_release_path(path);
1239 	}
1240 	btrfs_release_path(path);
1241 
1242 	if (ret < 0)
1243 		return ret;
1244 	return nlink;
1245 }
1246 
count_inode_refs(struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)1247 static int count_inode_refs(struct btrfs_root *root,
1248 			       struct inode *inode, struct btrfs_path *path)
1249 {
1250 	int ret;
1251 	struct btrfs_key key;
1252 	unsigned int nlink = 0;
1253 	unsigned long ptr;
1254 	unsigned long ptr_end;
1255 	int name_len;
1256 	u64 ino = btrfs_ino(inode);
1257 
1258 	key.objectid = ino;
1259 	key.type = BTRFS_INODE_REF_KEY;
1260 	key.offset = (u64)-1;
1261 
1262 	while (1) {
1263 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1264 		if (ret < 0)
1265 			break;
1266 		if (ret > 0) {
1267 			if (path->slots[0] == 0)
1268 				break;
1269 			path->slots[0]--;
1270 		}
1271 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1272 				      path->slots[0]);
1273 		if (key.objectid != ino ||
1274 		    key.type != BTRFS_INODE_REF_KEY)
1275 			break;
1276 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1277 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1278 						   path->slots[0]);
1279 		while (ptr < ptr_end) {
1280 			struct btrfs_inode_ref *ref;
1281 
1282 			ref = (struct btrfs_inode_ref *)ptr;
1283 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1284 							    ref);
1285 			ptr = (unsigned long)(ref + 1) + name_len;
1286 			nlink++;
1287 		}
1288 
1289 		if (key.offset == 0)
1290 			break;
1291 		key.offset--;
1292 		btrfs_release_path(path);
1293 	}
1294 	btrfs_release_path(path);
1295 
1296 	return nlink;
1297 }
1298 
1299 /*
1300  * There are a few corners where the link count of the file can't
1301  * be properly maintained during replay.  So, instead of adding
1302  * lots of complexity to the log code, we just scan the backrefs
1303  * for any file that has been through replay.
1304  *
1305  * The scan will update the link count on the inode to reflect the
1306  * number of back refs found.  If it goes down to zero, the iput
1307  * will free the inode.
1308  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1309 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1310 					   struct btrfs_root *root,
1311 					   struct inode *inode)
1312 {
1313 	struct btrfs_path *path;
1314 	int ret;
1315 	u64 nlink = 0;
1316 	u64 ino = btrfs_ino(inode);
1317 
1318 	path = btrfs_alloc_path();
1319 	if (!path)
1320 		return -ENOMEM;
1321 
1322 	ret = count_inode_refs(root, inode, path);
1323 	if (ret < 0)
1324 		goto out;
1325 
1326 	nlink = ret;
1327 
1328 	ret = count_inode_extrefs(root, inode, path);
1329 	if (ret == -ENOENT)
1330 		ret = 0;
1331 
1332 	if (ret < 0)
1333 		goto out;
1334 
1335 	nlink += ret;
1336 
1337 	ret = 0;
1338 
1339 	if (nlink != inode->i_nlink) {
1340 		set_nlink(inode, nlink);
1341 		btrfs_update_inode(trans, root, inode);
1342 	}
1343 	BTRFS_I(inode)->index_cnt = (u64)-1;
1344 
1345 	if (inode->i_nlink == 0) {
1346 		if (S_ISDIR(inode->i_mode)) {
1347 			ret = replay_dir_deletes(trans, root, NULL, path,
1348 						 ino, 1);
1349 			if (ret)
1350 				goto out;
1351 		}
1352 		ret = insert_orphan_item(trans, root, ino);
1353 	}
1354 
1355 out:
1356 	btrfs_free_path(path);
1357 	return ret;
1358 }
1359 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1360 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1361 					    struct btrfs_root *root,
1362 					    struct btrfs_path *path)
1363 {
1364 	int ret;
1365 	struct btrfs_key key;
1366 	struct inode *inode;
1367 
1368 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1369 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1370 	key.offset = (u64)-1;
1371 	while (1) {
1372 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1373 		if (ret < 0)
1374 			break;
1375 
1376 		if (ret == 1) {
1377 			if (path->slots[0] == 0)
1378 				break;
1379 			path->slots[0]--;
1380 		}
1381 
1382 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1383 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1384 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1385 			break;
1386 
1387 		ret = btrfs_del_item(trans, root, path);
1388 		if (ret)
1389 			goto out;
1390 
1391 		btrfs_release_path(path);
1392 		inode = read_one_inode(root, key.offset);
1393 		if (!inode)
1394 			return -EIO;
1395 
1396 		ret = fixup_inode_link_count(trans, root, inode);
1397 		iput(inode);
1398 		if (ret)
1399 			goto out;
1400 
1401 		/*
1402 		 * fixup on a directory may create new entries,
1403 		 * make sure we always look for the highset possible
1404 		 * offset
1405 		 */
1406 		key.offset = (u64)-1;
1407 	}
1408 	ret = 0;
1409 out:
1410 	btrfs_release_path(path);
1411 	return ret;
1412 }
1413 
1414 
1415 /*
1416  * record a given inode in the fixup dir so we can check its link
1417  * count when replay is done.  The link count is incremented here
1418  * so the inode won't go away until we check it
1419  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1420 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1421 				      struct btrfs_root *root,
1422 				      struct btrfs_path *path,
1423 				      u64 objectid)
1424 {
1425 	struct btrfs_key key;
1426 	int ret = 0;
1427 	struct inode *inode;
1428 
1429 	inode = read_one_inode(root, objectid);
1430 	if (!inode)
1431 		return -EIO;
1432 
1433 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1434 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1435 	key.offset = objectid;
1436 
1437 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1438 
1439 	btrfs_release_path(path);
1440 	if (ret == 0) {
1441 		if (!inode->i_nlink)
1442 			set_nlink(inode, 1);
1443 		else
1444 			btrfs_inc_nlink(inode);
1445 		ret = btrfs_update_inode(trans, root, inode);
1446 	} else if (ret == -EEXIST) {
1447 		ret = 0;
1448 	} else {
1449 		BUG(); /* Logic Error */
1450 	}
1451 	iput(inode);
1452 
1453 	return ret;
1454 }
1455 
1456 /*
1457  * when replaying the log for a directory, we only insert names
1458  * for inodes that actually exist.  This means an fsync on a directory
1459  * does not implicitly fsync all the new files in it
1460  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 index,char * name,int name_len,u8 type,struct btrfs_key * location)1461 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1462 				    struct btrfs_root *root,
1463 				    struct btrfs_path *path,
1464 				    u64 dirid, u64 index,
1465 				    char *name, int name_len, u8 type,
1466 				    struct btrfs_key *location)
1467 {
1468 	struct inode *inode;
1469 	struct inode *dir;
1470 	int ret;
1471 
1472 	inode = read_one_inode(root, location->objectid);
1473 	if (!inode)
1474 		return -ENOENT;
1475 
1476 	dir = read_one_inode(root, dirid);
1477 	if (!dir) {
1478 		iput(inode);
1479 		return -EIO;
1480 	}
1481 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1482 
1483 	/* FIXME, put inode into FIXUP list */
1484 
1485 	iput(inode);
1486 	iput(dir);
1487 	return ret;
1488 }
1489 
1490 /*
1491  * take a single entry in a log directory item and replay it into
1492  * the subvolume.
1493  *
1494  * if a conflicting item exists in the subdirectory already,
1495  * the inode it points to is unlinked and put into the link count
1496  * fix up tree.
1497  *
1498  * If a name from the log points to a file or directory that does
1499  * not exist in the FS, it is skipped.  fsyncs on directories
1500  * do not force down inodes inside that directory, just changes to the
1501  * names or unlinks in a directory.
1502  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1503 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1504 				    struct btrfs_root *root,
1505 				    struct btrfs_path *path,
1506 				    struct extent_buffer *eb,
1507 				    struct btrfs_dir_item *di,
1508 				    struct btrfs_key *key)
1509 {
1510 	char *name;
1511 	int name_len;
1512 	struct btrfs_dir_item *dst_di;
1513 	struct btrfs_key found_key;
1514 	struct btrfs_key log_key;
1515 	struct inode *dir;
1516 	u8 log_type;
1517 	int exists;
1518 	int ret = 0;
1519 
1520 	dir = read_one_inode(root, key->objectid);
1521 	if (!dir)
1522 		return -EIO;
1523 
1524 	name_len = btrfs_dir_name_len(eb, di);
1525 	name = kmalloc(name_len, GFP_NOFS);
1526 	if (!name)
1527 		return -ENOMEM;
1528 
1529 	log_type = btrfs_dir_type(eb, di);
1530 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1531 		   name_len);
1532 
1533 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1534 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1535 	if (exists == 0)
1536 		exists = 1;
1537 	else
1538 		exists = 0;
1539 	btrfs_release_path(path);
1540 
1541 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1542 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1543 				       name, name_len, 1);
1544 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1545 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1546 						     key->objectid,
1547 						     key->offset, name,
1548 						     name_len, 1);
1549 	} else {
1550 		/* Corruption */
1551 		ret = -EINVAL;
1552 		goto out;
1553 	}
1554 	if (IS_ERR_OR_NULL(dst_di)) {
1555 		/* we need a sequence number to insert, so we only
1556 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1557 		 */
1558 		if (key->type != BTRFS_DIR_INDEX_KEY)
1559 			goto out;
1560 		goto insert;
1561 	}
1562 
1563 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1564 	/* the existing item matches the logged item */
1565 	if (found_key.objectid == log_key.objectid &&
1566 	    found_key.type == log_key.type &&
1567 	    found_key.offset == log_key.offset &&
1568 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1569 		goto out;
1570 	}
1571 
1572 	/*
1573 	 * don't drop the conflicting directory entry if the inode
1574 	 * for the new entry doesn't exist
1575 	 */
1576 	if (!exists)
1577 		goto out;
1578 
1579 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1580 	if (ret)
1581 		goto out;
1582 
1583 	if (key->type == BTRFS_DIR_INDEX_KEY)
1584 		goto insert;
1585 out:
1586 	btrfs_release_path(path);
1587 	kfree(name);
1588 	iput(dir);
1589 	return ret;
1590 
1591 insert:
1592 	btrfs_release_path(path);
1593 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1594 			      name, name_len, log_type, &log_key);
1595 	if (ret && ret != -ENOENT)
1596 		goto out;
1597 	ret = 0;
1598 	goto out;
1599 }
1600 
1601 /*
1602  * find all the names in a directory item and reconcile them into
1603  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1604  * one name in a directory item, but the same code gets used for
1605  * both directory index types
1606  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1607 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1608 					struct btrfs_root *root,
1609 					struct btrfs_path *path,
1610 					struct extent_buffer *eb, int slot,
1611 					struct btrfs_key *key)
1612 {
1613 	int ret;
1614 	u32 item_size = btrfs_item_size_nr(eb, slot);
1615 	struct btrfs_dir_item *di;
1616 	int name_len;
1617 	unsigned long ptr;
1618 	unsigned long ptr_end;
1619 
1620 	ptr = btrfs_item_ptr_offset(eb, slot);
1621 	ptr_end = ptr + item_size;
1622 	while (ptr < ptr_end) {
1623 		di = (struct btrfs_dir_item *)ptr;
1624 		if (verify_dir_item(root, eb, di))
1625 			return -EIO;
1626 		name_len = btrfs_dir_name_len(eb, di);
1627 		ret = replay_one_name(trans, root, path, eb, di, key);
1628 		if (ret)
1629 			return ret;
1630 		ptr = (unsigned long)(di + 1);
1631 		ptr += name_len;
1632 	}
1633 	return 0;
1634 }
1635 
1636 /*
1637  * directory replay has two parts.  There are the standard directory
1638  * items in the log copied from the subvolume, and range items
1639  * created in the log while the subvolume was logged.
1640  *
1641  * The range items tell us which parts of the key space the log
1642  * is authoritative for.  During replay, if a key in the subvolume
1643  * directory is in a logged range item, but not actually in the log
1644  * that means it was deleted from the directory before the fsync
1645  * and should be removed.
1646  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)1647 static noinline int find_dir_range(struct btrfs_root *root,
1648 				   struct btrfs_path *path,
1649 				   u64 dirid, int key_type,
1650 				   u64 *start_ret, u64 *end_ret)
1651 {
1652 	struct btrfs_key key;
1653 	u64 found_end;
1654 	struct btrfs_dir_log_item *item;
1655 	int ret;
1656 	int nritems;
1657 
1658 	if (*start_ret == (u64)-1)
1659 		return 1;
1660 
1661 	key.objectid = dirid;
1662 	key.type = key_type;
1663 	key.offset = *start_ret;
1664 
1665 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1666 	if (ret < 0)
1667 		goto out;
1668 	if (ret > 0) {
1669 		if (path->slots[0] == 0)
1670 			goto out;
1671 		path->slots[0]--;
1672 	}
1673 	if (ret != 0)
1674 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1675 
1676 	if (key.type != key_type || key.objectid != dirid) {
1677 		ret = 1;
1678 		goto next;
1679 	}
1680 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1681 			      struct btrfs_dir_log_item);
1682 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1683 
1684 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1685 		ret = 0;
1686 		*start_ret = key.offset;
1687 		*end_ret = found_end;
1688 		goto out;
1689 	}
1690 	ret = 1;
1691 next:
1692 	/* check the next slot in the tree to see if it is a valid item */
1693 	nritems = btrfs_header_nritems(path->nodes[0]);
1694 	if (path->slots[0] >= nritems) {
1695 		ret = btrfs_next_leaf(root, path);
1696 		if (ret)
1697 			goto out;
1698 	} else {
1699 		path->slots[0]++;
1700 	}
1701 
1702 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1703 
1704 	if (key.type != key_type || key.objectid != dirid) {
1705 		ret = 1;
1706 		goto out;
1707 	}
1708 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1709 			      struct btrfs_dir_log_item);
1710 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1711 	*start_ret = key.offset;
1712 	*end_ret = found_end;
1713 	ret = 0;
1714 out:
1715 	btrfs_release_path(path);
1716 	return ret;
1717 }
1718 
1719 /*
1720  * this looks for a given directory item in the log.  If the directory
1721  * item is not in the log, the item is removed and the inode it points
1722  * to is unlinked
1723  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)1724 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1725 				      struct btrfs_root *root,
1726 				      struct btrfs_root *log,
1727 				      struct btrfs_path *path,
1728 				      struct btrfs_path *log_path,
1729 				      struct inode *dir,
1730 				      struct btrfs_key *dir_key)
1731 {
1732 	int ret;
1733 	struct extent_buffer *eb;
1734 	int slot;
1735 	u32 item_size;
1736 	struct btrfs_dir_item *di;
1737 	struct btrfs_dir_item *log_di;
1738 	int name_len;
1739 	unsigned long ptr;
1740 	unsigned long ptr_end;
1741 	char *name;
1742 	struct inode *inode;
1743 	struct btrfs_key location;
1744 
1745 again:
1746 	eb = path->nodes[0];
1747 	slot = path->slots[0];
1748 	item_size = btrfs_item_size_nr(eb, slot);
1749 	ptr = btrfs_item_ptr_offset(eb, slot);
1750 	ptr_end = ptr + item_size;
1751 	while (ptr < ptr_end) {
1752 		di = (struct btrfs_dir_item *)ptr;
1753 		if (verify_dir_item(root, eb, di)) {
1754 			ret = -EIO;
1755 			goto out;
1756 		}
1757 
1758 		name_len = btrfs_dir_name_len(eb, di);
1759 		name = kmalloc(name_len, GFP_NOFS);
1760 		if (!name) {
1761 			ret = -ENOMEM;
1762 			goto out;
1763 		}
1764 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1765 				  name_len);
1766 		log_di = NULL;
1767 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1768 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1769 						       dir_key->objectid,
1770 						       name, name_len, 0);
1771 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1772 			log_di = btrfs_lookup_dir_index_item(trans, log,
1773 						     log_path,
1774 						     dir_key->objectid,
1775 						     dir_key->offset,
1776 						     name, name_len, 0);
1777 		}
1778 		if (IS_ERR_OR_NULL(log_di)) {
1779 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1780 			btrfs_release_path(path);
1781 			btrfs_release_path(log_path);
1782 			inode = read_one_inode(root, location.objectid);
1783 			if (!inode) {
1784 				kfree(name);
1785 				return -EIO;
1786 			}
1787 
1788 			ret = link_to_fixup_dir(trans, root,
1789 						path, location.objectid);
1790 			if (ret) {
1791 				kfree(name);
1792 				iput(inode);
1793 				goto out;
1794 			}
1795 
1796 			btrfs_inc_nlink(inode);
1797 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1798 						 name, name_len);
1799 			if (!ret)
1800 				btrfs_run_delayed_items(trans, root);
1801 			kfree(name);
1802 			iput(inode);
1803 			if (ret)
1804 				goto out;
1805 
1806 			/* there might still be more names under this key
1807 			 * check and repeat if required
1808 			 */
1809 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1810 						0, 0);
1811 			if (ret == 0)
1812 				goto again;
1813 			ret = 0;
1814 			goto out;
1815 		}
1816 		btrfs_release_path(log_path);
1817 		kfree(name);
1818 
1819 		ptr = (unsigned long)(di + 1);
1820 		ptr += name_len;
1821 	}
1822 	ret = 0;
1823 out:
1824 	btrfs_release_path(path);
1825 	btrfs_release_path(log_path);
1826 	return ret;
1827 }
1828 
1829 /*
1830  * deletion replay happens before we copy any new directory items
1831  * out of the log or out of backreferences from inodes.  It
1832  * scans the log to find ranges of keys that log is authoritative for,
1833  * and then scans the directory to find items in those ranges that are
1834  * not present in the log.
1835  *
1836  * Anything we don't find in the log is unlinked and removed from the
1837  * directory.
1838  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)1839 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1840 				       struct btrfs_root *root,
1841 				       struct btrfs_root *log,
1842 				       struct btrfs_path *path,
1843 				       u64 dirid, int del_all)
1844 {
1845 	u64 range_start;
1846 	u64 range_end;
1847 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1848 	int ret = 0;
1849 	struct btrfs_key dir_key;
1850 	struct btrfs_key found_key;
1851 	struct btrfs_path *log_path;
1852 	struct inode *dir;
1853 
1854 	dir_key.objectid = dirid;
1855 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1856 	log_path = btrfs_alloc_path();
1857 	if (!log_path)
1858 		return -ENOMEM;
1859 
1860 	dir = read_one_inode(root, dirid);
1861 	/* it isn't an error if the inode isn't there, that can happen
1862 	 * because we replay the deletes before we copy in the inode item
1863 	 * from the log
1864 	 */
1865 	if (!dir) {
1866 		btrfs_free_path(log_path);
1867 		return 0;
1868 	}
1869 again:
1870 	range_start = 0;
1871 	range_end = 0;
1872 	while (1) {
1873 		if (del_all)
1874 			range_end = (u64)-1;
1875 		else {
1876 			ret = find_dir_range(log, path, dirid, key_type,
1877 					     &range_start, &range_end);
1878 			if (ret != 0)
1879 				break;
1880 		}
1881 
1882 		dir_key.offset = range_start;
1883 		while (1) {
1884 			int nritems;
1885 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1886 						0, 0);
1887 			if (ret < 0)
1888 				goto out;
1889 
1890 			nritems = btrfs_header_nritems(path->nodes[0]);
1891 			if (path->slots[0] >= nritems) {
1892 				ret = btrfs_next_leaf(root, path);
1893 				if (ret)
1894 					break;
1895 			}
1896 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1897 					      path->slots[0]);
1898 			if (found_key.objectid != dirid ||
1899 			    found_key.type != dir_key.type)
1900 				goto next_type;
1901 
1902 			if (found_key.offset > range_end)
1903 				break;
1904 
1905 			ret = check_item_in_log(trans, root, log, path,
1906 						log_path, dir,
1907 						&found_key);
1908 			if (ret)
1909 				goto out;
1910 			if (found_key.offset == (u64)-1)
1911 				break;
1912 			dir_key.offset = found_key.offset + 1;
1913 		}
1914 		btrfs_release_path(path);
1915 		if (range_end == (u64)-1)
1916 			break;
1917 		range_start = range_end + 1;
1918 	}
1919 
1920 next_type:
1921 	ret = 0;
1922 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1923 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1924 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1925 		btrfs_release_path(path);
1926 		goto again;
1927 	}
1928 out:
1929 	btrfs_release_path(path);
1930 	btrfs_free_path(log_path);
1931 	iput(dir);
1932 	return ret;
1933 }
1934 
1935 /*
1936  * the process_func used to replay items from the log tree.  This
1937  * gets called in two different stages.  The first stage just looks
1938  * for inodes and makes sure they are all copied into the subvolume.
1939  *
1940  * The second stage copies all the other item types from the log into
1941  * the subvolume.  The two stage approach is slower, but gets rid of
1942  * lots of complexity around inodes referencing other inodes that exist
1943  * only in the log (references come from either directory items or inode
1944  * back refs).
1945  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)1946 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1947 			     struct walk_control *wc, u64 gen)
1948 {
1949 	int nritems;
1950 	struct btrfs_path *path;
1951 	struct btrfs_root *root = wc->replay_dest;
1952 	struct btrfs_key key;
1953 	int level;
1954 	int i;
1955 	int ret;
1956 
1957 	ret = btrfs_read_buffer(eb, gen);
1958 	if (ret)
1959 		return ret;
1960 
1961 	level = btrfs_header_level(eb);
1962 
1963 	if (level != 0)
1964 		return 0;
1965 
1966 	path = btrfs_alloc_path();
1967 	if (!path)
1968 		return -ENOMEM;
1969 
1970 	nritems = btrfs_header_nritems(eb);
1971 	for (i = 0; i < nritems; i++) {
1972 		btrfs_item_key_to_cpu(eb, &key, i);
1973 
1974 		/* inode keys are done during the first stage */
1975 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1976 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1977 			struct btrfs_inode_item *inode_item;
1978 			u32 mode;
1979 
1980 			inode_item = btrfs_item_ptr(eb, i,
1981 					    struct btrfs_inode_item);
1982 			mode = btrfs_inode_mode(eb, inode_item);
1983 			if (S_ISDIR(mode)) {
1984 				ret = replay_dir_deletes(wc->trans,
1985 					 root, log, path, key.objectid, 0);
1986 				if (ret)
1987 					break;
1988 			}
1989 			ret = overwrite_item(wc->trans, root, path,
1990 					     eb, i, &key);
1991 			if (ret)
1992 				break;
1993 
1994 			/* for regular files, make sure corresponding
1995 			 * orhpan item exist. extents past the new EOF
1996 			 * will be truncated later by orphan cleanup.
1997 			 */
1998 			if (S_ISREG(mode)) {
1999 				ret = insert_orphan_item(wc->trans, root,
2000 							 key.objectid);
2001 				if (ret)
2002 					break;
2003 			}
2004 
2005 			ret = link_to_fixup_dir(wc->trans, root,
2006 						path, key.objectid);
2007 			if (ret)
2008 				break;
2009 		}
2010 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2011 			continue;
2012 
2013 		/* these keys are simply copied */
2014 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2015 			ret = overwrite_item(wc->trans, root, path,
2016 					     eb, i, &key);
2017 			if (ret)
2018 				break;
2019 		} else if (key.type == BTRFS_INODE_REF_KEY) {
2020 			ret = add_inode_ref(wc->trans, root, log, path,
2021 					    eb, i, &key);
2022 			if (ret && ret != -ENOENT)
2023 				break;
2024 			ret = 0;
2025 		} else if (key.type == BTRFS_INODE_EXTREF_KEY) {
2026 			ret = add_inode_ref(wc->trans, root, log, path,
2027 					    eb, i, &key);
2028 			if (ret && ret != -ENOENT)
2029 				break;
2030 			ret = 0;
2031 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2032 			ret = replay_one_extent(wc->trans, root, path,
2033 						eb, i, &key);
2034 			if (ret)
2035 				break;
2036 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
2037 			   key.type == BTRFS_DIR_INDEX_KEY) {
2038 			ret = replay_one_dir_item(wc->trans, root, path,
2039 						  eb, i, &key);
2040 			if (ret)
2041 				break;
2042 		}
2043 	}
2044 	btrfs_free_path(path);
2045 	return ret;
2046 }
2047 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2048 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2049 				   struct btrfs_root *root,
2050 				   struct btrfs_path *path, int *level,
2051 				   struct walk_control *wc)
2052 {
2053 	u64 root_owner;
2054 	u64 bytenr;
2055 	u64 ptr_gen;
2056 	struct extent_buffer *next;
2057 	struct extent_buffer *cur;
2058 	struct extent_buffer *parent;
2059 	u32 blocksize;
2060 	int ret = 0;
2061 
2062 	WARN_ON(*level < 0);
2063 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2064 
2065 	while (*level > 0) {
2066 		WARN_ON(*level < 0);
2067 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2068 		cur = path->nodes[*level];
2069 
2070 		if (btrfs_header_level(cur) != *level)
2071 			WARN_ON(1);
2072 
2073 		if (path->slots[*level] >=
2074 		    btrfs_header_nritems(cur))
2075 			break;
2076 
2077 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2078 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2079 		blocksize = btrfs_level_size(root, *level - 1);
2080 
2081 		parent = path->nodes[*level];
2082 		root_owner = btrfs_header_owner(parent);
2083 
2084 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2085 		if (!next)
2086 			return -ENOMEM;
2087 
2088 		if (*level == 1) {
2089 			ret = wc->process_func(root, next, wc, ptr_gen);
2090 			if (ret) {
2091 				free_extent_buffer(next);
2092 				return ret;
2093 			}
2094 
2095 			path->slots[*level]++;
2096 			if (wc->free) {
2097 				ret = btrfs_read_buffer(next, ptr_gen);
2098 				if (ret) {
2099 					free_extent_buffer(next);
2100 					return ret;
2101 				}
2102 
2103 				btrfs_tree_lock(next);
2104 				btrfs_set_lock_blocking(next);
2105 				clean_tree_block(trans, root, next);
2106 				btrfs_wait_tree_block_writeback(next);
2107 				btrfs_tree_unlock(next);
2108 
2109 				WARN_ON(root_owner !=
2110 					BTRFS_TREE_LOG_OBJECTID);
2111 				ret = btrfs_free_and_pin_reserved_extent(root,
2112 							 bytenr, blocksize);
2113 				if (ret) {
2114 					free_extent_buffer(next);
2115 					return ret;
2116 				}
2117 			}
2118 			free_extent_buffer(next);
2119 			continue;
2120 		}
2121 		ret = btrfs_read_buffer(next, ptr_gen);
2122 		if (ret) {
2123 			free_extent_buffer(next);
2124 			return ret;
2125 		}
2126 
2127 		WARN_ON(*level <= 0);
2128 		if (path->nodes[*level-1])
2129 			free_extent_buffer(path->nodes[*level-1]);
2130 		path->nodes[*level-1] = next;
2131 		*level = btrfs_header_level(next);
2132 		path->slots[*level] = 0;
2133 		cond_resched();
2134 	}
2135 	WARN_ON(*level < 0);
2136 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2137 
2138 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2139 
2140 	cond_resched();
2141 	return 0;
2142 }
2143 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2144 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2145 				 struct btrfs_root *root,
2146 				 struct btrfs_path *path, int *level,
2147 				 struct walk_control *wc)
2148 {
2149 	u64 root_owner;
2150 	int i;
2151 	int slot;
2152 	int ret;
2153 
2154 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2155 		slot = path->slots[i];
2156 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2157 			path->slots[i]++;
2158 			*level = i;
2159 			WARN_ON(*level == 0);
2160 			return 0;
2161 		} else {
2162 			struct extent_buffer *parent;
2163 			if (path->nodes[*level] == root->node)
2164 				parent = path->nodes[*level];
2165 			else
2166 				parent = path->nodes[*level + 1];
2167 
2168 			root_owner = btrfs_header_owner(parent);
2169 			ret = wc->process_func(root, path->nodes[*level], wc,
2170 				 btrfs_header_generation(path->nodes[*level]));
2171 			if (ret)
2172 				return ret;
2173 
2174 			if (wc->free) {
2175 				struct extent_buffer *next;
2176 
2177 				next = path->nodes[*level];
2178 
2179 				btrfs_tree_lock(next);
2180 				btrfs_set_lock_blocking(next);
2181 				clean_tree_block(trans, root, next);
2182 				btrfs_wait_tree_block_writeback(next);
2183 				btrfs_tree_unlock(next);
2184 
2185 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2186 				ret = btrfs_free_and_pin_reserved_extent(root,
2187 						path->nodes[*level]->start,
2188 						path->nodes[*level]->len);
2189 				if (ret)
2190 					return ret;
2191 			}
2192 			free_extent_buffer(path->nodes[*level]);
2193 			path->nodes[*level] = NULL;
2194 			*level = i + 1;
2195 		}
2196 	}
2197 	return 1;
2198 }
2199 
2200 /*
2201  * drop the reference count on the tree rooted at 'snap'.  This traverses
2202  * the tree freeing any blocks that have a ref count of zero after being
2203  * decremented.
2204  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2205 static int walk_log_tree(struct btrfs_trans_handle *trans,
2206 			 struct btrfs_root *log, struct walk_control *wc)
2207 {
2208 	int ret = 0;
2209 	int wret;
2210 	int level;
2211 	struct btrfs_path *path;
2212 	int orig_level;
2213 
2214 	path = btrfs_alloc_path();
2215 	if (!path)
2216 		return -ENOMEM;
2217 
2218 	level = btrfs_header_level(log->node);
2219 	orig_level = level;
2220 	path->nodes[level] = log->node;
2221 	extent_buffer_get(log->node);
2222 	path->slots[level] = 0;
2223 
2224 	while (1) {
2225 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2226 		if (wret > 0)
2227 			break;
2228 		if (wret < 0) {
2229 			ret = wret;
2230 			goto out;
2231 		}
2232 
2233 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2234 		if (wret > 0)
2235 			break;
2236 		if (wret < 0) {
2237 			ret = wret;
2238 			goto out;
2239 		}
2240 	}
2241 
2242 	/* was the root node processed? if not, catch it here */
2243 	if (path->nodes[orig_level]) {
2244 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2245 			 btrfs_header_generation(path->nodes[orig_level]));
2246 		if (ret)
2247 			goto out;
2248 		if (wc->free) {
2249 			struct extent_buffer *next;
2250 
2251 			next = path->nodes[orig_level];
2252 
2253 			btrfs_tree_lock(next);
2254 			btrfs_set_lock_blocking(next);
2255 			clean_tree_block(trans, log, next);
2256 			btrfs_wait_tree_block_writeback(next);
2257 			btrfs_tree_unlock(next);
2258 
2259 			WARN_ON(log->root_key.objectid !=
2260 				BTRFS_TREE_LOG_OBJECTID);
2261 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2262 							 next->len);
2263 			if (ret)
2264 				goto out;
2265 		}
2266 	}
2267 
2268 out:
2269 	btrfs_free_path(path);
2270 	return ret;
2271 }
2272 
2273 /*
2274  * helper function to update the item for a given subvolumes log root
2275  * in the tree of log roots
2276  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log)2277 static int update_log_root(struct btrfs_trans_handle *trans,
2278 			   struct btrfs_root *log)
2279 {
2280 	int ret;
2281 
2282 	if (log->log_transid == 1) {
2283 		/* insert root item on the first sync */
2284 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2285 				&log->root_key, &log->root_item);
2286 	} else {
2287 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2288 				&log->root_key, &log->root_item);
2289 	}
2290 	return ret;
2291 }
2292 
wait_log_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long transid)2293 static int wait_log_commit(struct btrfs_trans_handle *trans,
2294 			   struct btrfs_root *root, unsigned long transid)
2295 {
2296 	DEFINE_WAIT(wait);
2297 	int index = transid % 2;
2298 
2299 	/*
2300 	 * we only allow two pending log transactions at a time,
2301 	 * so we know that if ours is more than 2 older than the
2302 	 * current transaction, we're done
2303 	 */
2304 	do {
2305 		prepare_to_wait(&root->log_commit_wait[index],
2306 				&wait, TASK_UNINTERRUPTIBLE);
2307 		mutex_unlock(&root->log_mutex);
2308 
2309 		if (root->fs_info->last_trans_log_full_commit !=
2310 		    trans->transid && root->log_transid < transid + 2 &&
2311 		    atomic_read(&root->log_commit[index]))
2312 			schedule();
2313 
2314 		finish_wait(&root->log_commit_wait[index], &wait);
2315 		mutex_lock(&root->log_mutex);
2316 	} while (root->fs_info->last_trans_log_full_commit !=
2317 		 trans->transid && root->log_transid < transid + 2 &&
2318 		 atomic_read(&root->log_commit[index]));
2319 	return 0;
2320 }
2321 
wait_for_writer(struct btrfs_trans_handle * trans,struct btrfs_root * root)2322 static void wait_for_writer(struct btrfs_trans_handle *trans,
2323 			    struct btrfs_root *root)
2324 {
2325 	DEFINE_WAIT(wait);
2326 	while (root->fs_info->last_trans_log_full_commit !=
2327 	       trans->transid && atomic_read(&root->log_writers)) {
2328 		prepare_to_wait(&root->log_writer_wait,
2329 				&wait, TASK_UNINTERRUPTIBLE);
2330 		mutex_unlock(&root->log_mutex);
2331 		if (root->fs_info->last_trans_log_full_commit !=
2332 		    trans->transid && atomic_read(&root->log_writers))
2333 			schedule();
2334 		mutex_lock(&root->log_mutex);
2335 		finish_wait(&root->log_writer_wait, &wait);
2336 	}
2337 }
2338 
2339 /*
2340  * btrfs_sync_log does sends a given tree log down to the disk and
2341  * updates the super blocks to record it.  When this call is done,
2342  * you know that any inodes previously logged are safely on disk only
2343  * if it returns 0.
2344  *
2345  * Any other return value means you need to call btrfs_commit_transaction.
2346  * Some of the edge cases for fsyncing directories that have had unlinks
2347  * or renames done in the past mean that sometimes the only safe
2348  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2349  * that has happened.
2350  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)2351 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2352 		   struct btrfs_root *root)
2353 {
2354 	int index1;
2355 	int index2;
2356 	int mark;
2357 	int ret;
2358 	struct btrfs_root *log = root->log_root;
2359 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2360 	unsigned long log_transid = 0;
2361 
2362 	mutex_lock(&root->log_mutex);
2363 	log_transid = root->log_transid;
2364 	index1 = root->log_transid % 2;
2365 	if (atomic_read(&root->log_commit[index1])) {
2366 		wait_log_commit(trans, root, root->log_transid);
2367 		mutex_unlock(&root->log_mutex);
2368 		return 0;
2369 	}
2370 	atomic_set(&root->log_commit[index1], 1);
2371 
2372 	/* wait for previous tree log sync to complete */
2373 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2374 		wait_log_commit(trans, root, root->log_transid - 1);
2375 	while (1) {
2376 		int batch = atomic_read(&root->log_batch);
2377 		/* when we're on an ssd, just kick the log commit out */
2378 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2379 			mutex_unlock(&root->log_mutex);
2380 			schedule_timeout_uninterruptible(1);
2381 			mutex_lock(&root->log_mutex);
2382 		}
2383 		wait_for_writer(trans, root);
2384 		if (batch == atomic_read(&root->log_batch))
2385 			break;
2386 	}
2387 
2388 	/* bail out if we need to do a full commit */
2389 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2390 		ret = -EAGAIN;
2391 		btrfs_free_logged_extents(log, log_transid);
2392 		mutex_unlock(&root->log_mutex);
2393 		goto out;
2394 	}
2395 
2396 	if (log_transid % 2 == 0)
2397 		mark = EXTENT_DIRTY;
2398 	else
2399 		mark = EXTENT_NEW;
2400 
2401 	/* we start IO on  all the marked extents here, but we don't actually
2402 	 * wait for them until later.
2403 	 */
2404 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2405 	if (ret) {
2406 		btrfs_abort_transaction(trans, root, ret);
2407 		btrfs_free_logged_extents(log, log_transid);
2408 		mutex_unlock(&root->log_mutex);
2409 		goto out;
2410 	}
2411 
2412 	btrfs_set_root_node(&log->root_item, log->node);
2413 
2414 	root->log_transid++;
2415 	log->log_transid = root->log_transid;
2416 	root->log_start_pid = 0;
2417 	smp_mb();
2418 	/*
2419 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2420 	 * in their headers. new modifications of the log will be written to
2421 	 * new positions. so it's safe to allow log writers to go in.
2422 	 */
2423 	mutex_unlock(&root->log_mutex);
2424 
2425 	mutex_lock(&log_root_tree->log_mutex);
2426 	atomic_inc(&log_root_tree->log_batch);
2427 	atomic_inc(&log_root_tree->log_writers);
2428 	mutex_unlock(&log_root_tree->log_mutex);
2429 
2430 	ret = update_log_root(trans, log);
2431 
2432 	mutex_lock(&log_root_tree->log_mutex);
2433 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2434 		smp_mb();
2435 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2436 			wake_up(&log_root_tree->log_writer_wait);
2437 	}
2438 
2439 	if (ret) {
2440 		if (ret != -ENOSPC) {
2441 			btrfs_abort_transaction(trans, root, ret);
2442 			mutex_unlock(&log_root_tree->log_mutex);
2443 			goto out;
2444 		}
2445 		root->fs_info->last_trans_log_full_commit = trans->transid;
2446 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2447 		btrfs_free_logged_extents(log, log_transid);
2448 		mutex_unlock(&log_root_tree->log_mutex);
2449 		ret = -EAGAIN;
2450 		goto out;
2451 	}
2452 
2453 	index2 = log_root_tree->log_transid % 2;
2454 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2455 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2456 		wait_log_commit(trans, log_root_tree,
2457 				log_root_tree->log_transid);
2458 		btrfs_free_logged_extents(log, log_transid);
2459 		mutex_unlock(&log_root_tree->log_mutex);
2460 		ret = 0;
2461 		goto out;
2462 	}
2463 	atomic_set(&log_root_tree->log_commit[index2], 1);
2464 
2465 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2466 		wait_log_commit(trans, log_root_tree,
2467 				log_root_tree->log_transid - 1);
2468 	}
2469 
2470 	wait_for_writer(trans, log_root_tree);
2471 
2472 	/*
2473 	 * now that we've moved on to the tree of log tree roots,
2474 	 * check the full commit flag again
2475 	 */
2476 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2477 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2478 		btrfs_free_logged_extents(log, log_transid);
2479 		mutex_unlock(&log_root_tree->log_mutex);
2480 		ret = -EAGAIN;
2481 		goto out_wake_log_root;
2482 	}
2483 
2484 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2485 				&log_root_tree->dirty_log_pages,
2486 				EXTENT_DIRTY | EXTENT_NEW);
2487 	if (ret) {
2488 		btrfs_abort_transaction(trans, root, ret);
2489 		btrfs_free_logged_extents(log, log_transid);
2490 		mutex_unlock(&log_root_tree->log_mutex);
2491 		goto out_wake_log_root;
2492 	}
2493 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2494 	btrfs_wait_logged_extents(log, log_transid);
2495 
2496 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2497 				log_root_tree->node->start);
2498 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2499 				btrfs_header_level(log_root_tree->node));
2500 
2501 	log_root_tree->log_transid++;
2502 	smp_mb();
2503 
2504 	mutex_unlock(&log_root_tree->log_mutex);
2505 
2506 	/*
2507 	 * nobody else is going to jump in and write the the ctree
2508 	 * super here because the log_commit atomic below is protecting
2509 	 * us.  We must be called with a transaction handle pinning
2510 	 * the running transaction open, so a full commit can't hop
2511 	 * in and cause problems either.
2512 	 */
2513 	btrfs_scrub_pause_super(root);
2514 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2515 	btrfs_scrub_continue_super(root);
2516 	if (ret) {
2517 		btrfs_abort_transaction(trans, root, ret);
2518 		goto out_wake_log_root;
2519 	}
2520 
2521 	mutex_lock(&root->log_mutex);
2522 	if (root->last_log_commit < log_transid)
2523 		root->last_log_commit = log_transid;
2524 	mutex_unlock(&root->log_mutex);
2525 
2526 out_wake_log_root:
2527 	atomic_set(&log_root_tree->log_commit[index2], 0);
2528 	smp_mb();
2529 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2530 		wake_up(&log_root_tree->log_commit_wait[index2]);
2531 out:
2532 	atomic_set(&root->log_commit[index1], 0);
2533 	smp_mb();
2534 	if (waitqueue_active(&root->log_commit_wait[index1]))
2535 		wake_up(&root->log_commit_wait[index1]);
2536 	return ret;
2537 }
2538 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)2539 static void free_log_tree(struct btrfs_trans_handle *trans,
2540 			  struct btrfs_root *log)
2541 {
2542 	int ret;
2543 	u64 start;
2544 	u64 end;
2545 	struct walk_control wc = {
2546 		.free = 1,
2547 		.process_func = process_one_buffer
2548 	};
2549 
2550 	if (trans) {
2551 		ret = walk_log_tree(trans, log, &wc);
2552 
2553 		/* I don't think this can happen but just in case */
2554 		if (ret)
2555 			btrfs_abort_transaction(trans, log, ret);
2556 	}
2557 
2558 	while (1) {
2559 		ret = find_first_extent_bit(&log->dirty_log_pages,
2560 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2561 				NULL);
2562 		if (ret)
2563 			break;
2564 
2565 		clear_extent_bits(&log->dirty_log_pages, start, end,
2566 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2567 	}
2568 
2569 	/*
2570 	 * We may have short-circuited the log tree with the full commit logic
2571 	 * and left ordered extents on our list, so clear these out to keep us
2572 	 * from leaking inodes and memory.
2573 	 */
2574 	btrfs_free_logged_extents(log, 0);
2575 	btrfs_free_logged_extents(log, 1);
2576 
2577 	free_extent_buffer(log->node);
2578 	kfree(log);
2579 }
2580 
2581 /*
2582  * free all the extents used by the tree log.  This should be called
2583  * at commit time of the full transaction
2584  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)2585 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2586 {
2587 	if (root->log_root) {
2588 		free_log_tree(trans, root->log_root);
2589 		root->log_root = NULL;
2590 	}
2591 	return 0;
2592 }
2593 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2594 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2595 			     struct btrfs_fs_info *fs_info)
2596 {
2597 	if (fs_info->log_root_tree) {
2598 		free_log_tree(trans, fs_info->log_root_tree);
2599 		fs_info->log_root_tree = NULL;
2600 	}
2601 	return 0;
2602 }
2603 
2604 /*
2605  * If both a file and directory are logged, and unlinks or renames are
2606  * mixed in, we have a few interesting corners:
2607  *
2608  * create file X in dir Y
2609  * link file X to X.link in dir Y
2610  * fsync file X
2611  * unlink file X but leave X.link
2612  * fsync dir Y
2613  *
2614  * After a crash we would expect only X.link to exist.  But file X
2615  * didn't get fsync'd again so the log has back refs for X and X.link.
2616  *
2617  * We solve this by removing directory entries and inode backrefs from the
2618  * log when a file that was logged in the current transaction is
2619  * unlinked.  Any later fsync will include the updated log entries, and
2620  * we'll be able to reconstruct the proper directory items from backrefs.
2621  *
2622  * This optimizations allows us to avoid relogging the entire inode
2623  * or the entire directory.
2624  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * dir,u64 index)2625 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2626 				 struct btrfs_root *root,
2627 				 const char *name, int name_len,
2628 				 struct inode *dir, u64 index)
2629 {
2630 	struct btrfs_root *log;
2631 	struct btrfs_dir_item *di;
2632 	struct btrfs_path *path;
2633 	int ret;
2634 	int err = 0;
2635 	int bytes_del = 0;
2636 	u64 dir_ino = btrfs_ino(dir);
2637 
2638 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2639 		return 0;
2640 
2641 	ret = join_running_log_trans(root);
2642 	if (ret)
2643 		return 0;
2644 
2645 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2646 
2647 	log = root->log_root;
2648 	path = btrfs_alloc_path();
2649 	if (!path) {
2650 		err = -ENOMEM;
2651 		goto out_unlock;
2652 	}
2653 
2654 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2655 				   name, name_len, -1);
2656 	if (IS_ERR(di)) {
2657 		err = PTR_ERR(di);
2658 		goto fail;
2659 	}
2660 	if (di) {
2661 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2662 		bytes_del += name_len;
2663 		if (ret) {
2664 			err = ret;
2665 			goto fail;
2666 		}
2667 	}
2668 	btrfs_release_path(path);
2669 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2670 					 index, name, name_len, -1);
2671 	if (IS_ERR(di)) {
2672 		err = PTR_ERR(di);
2673 		goto fail;
2674 	}
2675 	if (di) {
2676 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2677 		bytes_del += name_len;
2678 		if (ret) {
2679 			err = ret;
2680 			goto fail;
2681 		}
2682 	}
2683 
2684 	/* update the directory size in the log to reflect the names
2685 	 * we have removed
2686 	 */
2687 	if (bytes_del) {
2688 		struct btrfs_key key;
2689 
2690 		key.objectid = dir_ino;
2691 		key.offset = 0;
2692 		key.type = BTRFS_INODE_ITEM_KEY;
2693 		btrfs_release_path(path);
2694 
2695 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2696 		if (ret < 0) {
2697 			err = ret;
2698 			goto fail;
2699 		}
2700 		if (ret == 0) {
2701 			struct btrfs_inode_item *item;
2702 			u64 i_size;
2703 
2704 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2705 					      struct btrfs_inode_item);
2706 			i_size = btrfs_inode_size(path->nodes[0], item);
2707 			if (i_size > bytes_del)
2708 				i_size -= bytes_del;
2709 			else
2710 				i_size = 0;
2711 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2712 			btrfs_mark_buffer_dirty(path->nodes[0]);
2713 		} else
2714 			ret = 0;
2715 		btrfs_release_path(path);
2716 	}
2717 fail:
2718 	btrfs_free_path(path);
2719 out_unlock:
2720 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2721 	if (ret == -ENOSPC) {
2722 		root->fs_info->last_trans_log_full_commit = trans->transid;
2723 		ret = 0;
2724 	} else if (ret < 0)
2725 		btrfs_abort_transaction(trans, root, ret);
2726 
2727 	btrfs_end_log_trans(root);
2728 
2729 	return err;
2730 }
2731 
2732 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * inode,u64 dirid)2733 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2734 			       struct btrfs_root *root,
2735 			       const char *name, int name_len,
2736 			       struct inode *inode, u64 dirid)
2737 {
2738 	struct btrfs_root *log;
2739 	u64 index;
2740 	int ret;
2741 
2742 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2743 		return 0;
2744 
2745 	ret = join_running_log_trans(root);
2746 	if (ret)
2747 		return 0;
2748 	log = root->log_root;
2749 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2750 
2751 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2752 				  dirid, &index);
2753 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2754 	if (ret == -ENOSPC) {
2755 		root->fs_info->last_trans_log_full_commit = trans->transid;
2756 		ret = 0;
2757 	} else if (ret < 0 && ret != -ENOENT)
2758 		btrfs_abort_transaction(trans, root, ret);
2759 	btrfs_end_log_trans(root);
2760 
2761 	return ret;
2762 }
2763 
2764 /*
2765  * creates a range item in the log for 'dirid'.  first_offset and
2766  * last_offset tell us which parts of the key space the log should
2767  * be considered authoritative for.
2768  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)2769 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2770 				       struct btrfs_root *log,
2771 				       struct btrfs_path *path,
2772 				       int key_type, u64 dirid,
2773 				       u64 first_offset, u64 last_offset)
2774 {
2775 	int ret;
2776 	struct btrfs_key key;
2777 	struct btrfs_dir_log_item *item;
2778 
2779 	key.objectid = dirid;
2780 	key.offset = first_offset;
2781 	if (key_type == BTRFS_DIR_ITEM_KEY)
2782 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2783 	else
2784 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2785 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2786 	if (ret)
2787 		return ret;
2788 
2789 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2790 			      struct btrfs_dir_log_item);
2791 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2792 	btrfs_mark_buffer_dirty(path->nodes[0]);
2793 	btrfs_release_path(path);
2794 	return 0;
2795 }
2796 
2797 /*
2798  * log all the items included in the current transaction for a given
2799  * directory.  This also creates the range items in the log tree required
2800  * to replay anything deleted before the fsync
2801  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,u64 min_offset,u64 * last_offset_ret)2802 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2803 			  struct btrfs_root *root, struct inode *inode,
2804 			  struct btrfs_path *path,
2805 			  struct btrfs_path *dst_path, int key_type,
2806 			  u64 min_offset, u64 *last_offset_ret)
2807 {
2808 	struct btrfs_key min_key;
2809 	struct btrfs_key max_key;
2810 	struct btrfs_root *log = root->log_root;
2811 	struct extent_buffer *src;
2812 	int err = 0;
2813 	int ret;
2814 	int i;
2815 	int nritems;
2816 	u64 first_offset = min_offset;
2817 	u64 last_offset = (u64)-1;
2818 	u64 ino = btrfs_ino(inode);
2819 
2820 	log = root->log_root;
2821 	max_key.objectid = ino;
2822 	max_key.offset = (u64)-1;
2823 	max_key.type = key_type;
2824 
2825 	min_key.objectid = ino;
2826 	min_key.type = key_type;
2827 	min_key.offset = min_offset;
2828 
2829 	path->keep_locks = 1;
2830 
2831 	ret = btrfs_search_forward(root, &min_key, &max_key,
2832 				   path, trans->transid);
2833 
2834 	/*
2835 	 * we didn't find anything from this transaction, see if there
2836 	 * is anything at all
2837 	 */
2838 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2839 		min_key.objectid = ino;
2840 		min_key.type = key_type;
2841 		min_key.offset = (u64)-1;
2842 		btrfs_release_path(path);
2843 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2844 		if (ret < 0) {
2845 			btrfs_release_path(path);
2846 			return ret;
2847 		}
2848 		ret = btrfs_previous_item(root, path, ino, key_type);
2849 
2850 		/* if ret == 0 there are items for this type,
2851 		 * create a range to tell us the last key of this type.
2852 		 * otherwise, there are no items in this directory after
2853 		 * *min_offset, and we create a range to indicate that.
2854 		 */
2855 		if (ret == 0) {
2856 			struct btrfs_key tmp;
2857 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2858 					      path->slots[0]);
2859 			if (key_type == tmp.type)
2860 				first_offset = max(min_offset, tmp.offset) + 1;
2861 		}
2862 		goto done;
2863 	}
2864 
2865 	/* go backward to find any previous key */
2866 	ret = btrfs_previous_item(root, path, ino, key_type);
2867 	if (ret == 0) {
2868 		struct btrfs_key tmp;
2869 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2870 		if (key_type == tmp.type) {
2871 			first_offset = tmp.offset;
2872 			ret = overwrite_item(trans, log, dst_path,
2873 					     path->nodes[0], path->slots[0],
2874 					     &tmp);
2875 			if (ret) {
2876 				err = ret;
2877 				goto done;
2878 			}
2879 		}
2880 	}
2881 	btrfs_release_path(path);
2882 
2883 	/* find the first key from this transaction again */
2884 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2885 	if (ret != 0) {
2886 		WARN_ON(1);
2887 		goto done;
2888 	}
2889 
2890 	/*
2891 	 * we have a block from this transaction, log every item in it
2892 	 * from our directory
2893 	 */
2894 	while (1) {
2895 		struct btrfs_key tmp;
2896 		src = path->nodes[0];
2897 		nritems = btrfs_header_nritems(src);
2898 		for (i = path->slots[0]; i < nritems; i++) {
2899 			btrfs_item_key_to_cpu(src, &min_key, i);
2900 
2901 			if (min_key.objectid != ino || min_key.type != key_type)
2902 				goto done;
2903 			ret = overwrite_item(trans, log, dst_path, src, i,
2904 					     &min_key);
2905 			if (ret) {
2906 				err = ret;
2907 				goto done;
2908 			}
2909 		}
2910 		path->slots[0] = nritems;
2911 
2912 		/*
2913 		 * look ahead to the next item and see if it is also
2914 		 * from this directory and from this transaction
2915 		 */
2916 		ret = btrfs_next_leaf(root, path);
2917 		if (ret == 1) {
2918 			last_offset = (u64)-1;
2919 			goto done;
2920 		}
2921 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2922 		if (tmp.objectid != ino || tmp.type != key_type) {
2923 			last_offset = (u64)-1;
2924 			goto done;
2925 		}
2926 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2927 			ret = overwrite_item(trans, log, dst_path,
2928 					     path->nodes[0], path->slots[0],
2929 					     &tmp);
2930 			if (ret)
2931 				err = ret;
2932 			else
2933 				last_offset = tmp.offset;
2934 			goto done;
2935 		}
2936 	}
2937 done:
2938 	btrfs_release_path(path);
2939 	btrfs_release_path(dst_path);
2940 
2941 	if (err == 0) {
2942 		*last_offset_ret = last_offset;
2943 		/*
2944 		 * insert the log range keys to indicate where the log
2945 		 * is valid
2946 		 */
2947 		ret = insert_dir_log_key(trans, log, path, key_type,
2948 					 ino, first_offset, last_offset);
2949 		if (ret)
2950 			err = ret;
2951 	}
2952 	return err;
2953 }
2954 
2955 /*
2956  * logging directories is very similar to logging inodes, We find all the items
2957  * from the current transaction and write them to the log.
2958  *
2959  * The recovery code scans the directory in the subvolume, and if it finds a
2960  * key in the range logged that is not present in the log tree, then it means
2961  * that dir entry was unlinked during the transaction.
2962  *
2963  * In order for that scan to work, we must include one key smaller than
2964  * the smallest logged by this transaction and one key larger than the largest
2965  * key logged by this transaction.
2966  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)2967 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2968 			  struct btrfs_root *root, struct inode *inode,
2969 			  struct btrfs_path *path,
2970 			  struct btrfs_path *dst_path)
2971 {
2972 	u64 min_key;
2973 	u64 max_key;
2974 	int ret;
2975 	int key_type = BTRFS_DIR_ITEM_KEY;
2976 
2977 again:
2978 	min_key = 0;
2979 	max_key = 0;
2980 	while (1) {
2981 		ret = log_dir_items(trans, root, inode, path,
2982 				    dst_path, key_type, min_key,
2983 				    &max_key);
2984 		if (ret)
2985 			return ret;
2986 		if (max_key == (u64)-1)
2987 			break;
2988 		min_key = max_key + 1;
2989 	}
2990 
2991 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2992 		key_type = BTRFS_DIR_INDEX_KEY;
2993 		goto again;
2994 	}
2995 	return 0;
2996 }
2997 
2998 /*
2999  * a helper function to drop items from the log before we relog an
3000  * inode.  max_key_type indicates the highest item type to remove.
3001  * This cannot be run for file data extents because it does not
3002  * free the extents they point to.
3003  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3004 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3005 				  struct btrfs_root *log,
3006 				  struct btrfs_path *path,
3007 				  u64 objectid, int max_key_type)
3008 {
3009 	int ret;
3010 	struct btrfs_key key;
3011 	struct btrfs_key found_key;
3012 	int start_slot;
3013 
3014 	key.objectid = objectid;
3015 	key.type = max_key_type;
3016 	key.offset = (u64)-1;
3017 
3018 	while (1) {
3019 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3020 		BUG_ON(ret == 0); /* Logic error */
3021 		if (ret < 0)
3022 			break;
3023 
3024 		if (path->slots[0] == 0)
3025 			break;
3026 
3027 		path->slots[0]--;
3028 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3029 				      path->slots[0]);
3030 
3031 		if (found_key.objectid != objectid)
3032 			break;
3033 
3034 		found_key.offset = 0;
3035 		found_key.type = 0;
3036 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3037 				       &start_slot);
3038 
3039 		ret = btrfs_del_items(trans, log, path, start_slot,
3040 				      path->slots[0] - start_slot + 1);
3041 		/*
3042 		 * If start slot isn't 0 then we don't need to re-search, we've
3043 		 * found the last guy with the objectid in this tree.
3044 		 */
3045 		if (ret || start_slot != 0)
3046 			break;
3047 		btrfs_release_path(path);
3048 	}
3049 	btrfs_release_path(path);
3050 	if (ret > 0)
3051 		ret = 0;
3052 	return ret;
3053 }
3054 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only)3055 static void fill_inode_item(struct btrfs_trans_handle *trans,
3056 			    struct extent_buffer *leaf,
3057 			    struct btrfs_inode_item *item,
3058 			    struct inode *inode, int log_inode_only)
3059 {
3060 	struct btrfs_map_token token;
3061 
3062 	btrfs_init_map_token(&token);
3063 
3064 	if (log_inode_only) {
3065 		/* set the generation to zero so the recover code
3066 		 * can tell the difference between an logging
3067 		 * just to say 'this inode exists' and a logging
3068 		 * to say 'update this inode with these values'
3069 		 */
3070 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3071 		btrfs_set_token_inode_size(leaf, item, 0, &token);
3072 	} else {
3073 		btrfs_set_token_inode_generation(leaf, item,
3074 						 BTRFS_I(inode)->generation,
3075 						 &token);
3076 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3077 	}
3078 
3079 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3080 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3081 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3082 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3083 
3084 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3085 				     inode->i_atime.tv_sec, &token);
3086 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3087 				      inode->i_atime.tv_nsec, &token);
3088 
3089 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3090 				     inode->i_mtime.tv_sec, &token);
3091 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3092 				      inode->i_mtime.tv_nsec, &token);
3093 
3094 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3095 				     inode->i_ctime.tv_sec, &token);
3096 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3097 				      inode->i_ctime.tv_nsec, &token);
3098 
3099 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3100 				     &token);
3101 
3102 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3103 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3104 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3105 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3106 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3107 }
3108 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct inode * inode)3109 static int log_inode_item(struct btrfs_trans_handle *trans,
3110 			  struct btrfs_root *log, struct btrfs_path *path,
3111 			  struct inode *inode)
3112 {
3113 	struct btrfs_inode_item *inode_item;
3114 	struct btrfs_key key;
3115 	int ret;
3116 
3117 	memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3118 	ret = btrfs_insert_empty_item(trans, log, path, &key,
3119 				      sizeof(*inode_item));
3120 	if (ret && ret != -EEXIST)
3121 		return ret;
3122 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3123 				    struct btrfs_inode_item);
3124 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3125 	btrfs_release_path(path);
3126 	return 0;
3127 }
3128 
copy_items(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_path * dst_path,struct extent_buffer * src,int start_slot,int nr,int inode_only)3129 static noinline int copy_items(struct btrfs_trans_handle *trans,
3130 			       struct inode *inode,
3131 			       struct btrfs_path *dst_path,
3132 			       struct extent_buffer *src,
3133 			       int start_slot, int nr, int inode_only)
3134 {
3135 	unsigned long src_offset;
3136 	unsigned long dst_offset;
3137 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3138 	struct btrfs_file_extent_item *extent;
3139 	struct btrfs_inode_item *inode_item;
3140 	int ret;
3141 	struct btrfs_key *ins_keys;
3142 	u32 *ins_sizes;
3143 	char *ins_data;
3144 	int i;
3145 	struct list_head ordered_sums;
3146 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3147 
3148 	INIT_LIST_HEAD(&ordered_sums);
3149 
3150 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3151 			   nr * sizeof(u32), GFP_NOFS);
3152 	if (!ins_data)
3153 		return -ENOMEM;
3154 
3155 	ins_sizes = (u32 *)ins_data;
3156 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3157 
3158 	for (i = 0; i < nr; i++) {
3159 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3160 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3161 	}
3162 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3163 				       ins_keys, ins_sizes, nr);
3164 	if (ret) {
3165 		kfree(ins_data);
3166 		return ret;
3167 	}
3168 
3169 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3170 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3171 						   dst_path->slots[0]);
3172 
3173 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3174 
3175 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3176 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3177 						    dst_path->slots[0],
3178 						    struct btrfs_inode_item);
3179 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3180 					inode, inode_only == LOG_INODE_EXISTS);
3181 		} else {
3182 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3183 					   src_offset, ins_sizes[i]);
3184 		}
3185 
3186 		/* take a reference on file data extents so that truncates
3187 		 * or deletes of this inode don't have to relog the inode
3188 		 * again
3189 		 */
3190 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3191 		    !skip_csum) {
3192 			int found_type;
3193 			extent = btrfs_item_ptr(src, start_slot + i,
3194 						struct btrfs_file_extent_item);
3195 
3196 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3197 				continue;
3198 
3199 			found_type = btrfs_file_extent_type(src, extent);
3200 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3201 				u64 ds, dl, cs, cl;
3202 				ds = btrfs_file_extent_disk_bytenr(src,
3203 								extent);
3204 				/* ds == 0 is a hole */
3205 				if (ds == 0)
3206 					continue;
3207 
3208 				dl = btrfs_file_extent_disk_num_bytes(src,
3209 								extent);
3210 				cs = btrfs_file_extent_offset(src, extent);
3211 				cl = btrfs_file_extent_num_bytes(src,
3212 								extent);
3213 				if (btrfs_file_extent_compression(src,
3214 								  extent)) {
3215 					cs = 0;
3216 					cl = dl;
3217 				}
3218 
3219 				ret = btrfs_lookup_csums_range(
3220 						log->fs_info->csum_root,
3221 						ds + cs, ds + cs + cl - 1,
3222 						&ordered_sums, 0);
3223 				if (ret) {
3224 					btrfs_release_path(dst_path);
3225 					kfree(ins_data);
3226 					return ret;
3227 				}
3228 			}
3229 		}
3230 	}
3231 
3232 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3233 	btrfs_release_path(dst_path);
3234 	kfree(ins_data);
3235 
3236 	/*
3237 	 * we have to do this after the loop above to avoid changing the
3238 	 * log tree while trying to change the log tree.
3239 	 */
3240 	ret = 0;
3241 	while (!list_empty(&ordered_sums)) {
3242 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3243 						   struct btrfs_ordered_sum,
3244 						   list);
3245 		if (!ret)
3246 			ret = btrfs_csum_file_blocks(trans, log, sums);
3247 		list_del(&sums->list);
3248 		kfree(sums);
3249 	}
3250 	return ret;
3251 }
3252 
extent_cmp(void * priv,struct list_head * a,struct list_head * b)3253 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3254 {
3255 	struct extent_map *em1, *em2;
3256 
3257 	em1 = list_entry(a, struct extent_map, list);
3258 	em2 = list_entry(b, struct extent_map, list);
3259 
3260 	if (em1->start < em2->start)
3261 		return -1;
3262 	else if (em1->start > em2->start)
3263 		return 1;
3264 	return 0;
3265 }
3266 
log_one_extent(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_root * root,struct extent_map * em,struct btrfs_path * path)3267 static int log_one_extent(struct btrfs_trans_handle *trans,
3268 			  struct inode *inode, struct btrfs_root *root,
3269 			  struct extent_map *em, struct btrfs_path *path)
3270 {
3271 	struct btrfs_root *log = root->log_root;
3272 	struct btrfs_file_extent_item *fi;
3273 	struct extent_buffer *leaf;
3274 	struct btrfs_ordered_extent *ordered;
3275 	struct list_head ordered_sums;
3276 	struct btrfs_map_token token;
3277 	struct btrfs_key key;
3278 	u64 mod_start = em->mod_start;
3279 	u64 mod_len = em->mod_len;
3280 	u64 csum_offset;
3281 	u64 csum_len;
3282 	u64 extent_offset = em->start - em->orig_start;
3283 	u64 block_len;
3284 	int ret;
3285 	int index = log->log_transid % 2;
3286 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3287 
3288 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3289 				   em->start + em->len, NULL, 0);
3290 	if (ret)
3291 		return ret;
3292 
3293 	INIT_LIST_HEAD(&ordered_sums);
3294 	btrfs_init_map_token(&token);
3295 	key.objectid = btrfs_ino(inode);
3296 	key.type = BTRFS_EXTENT_DATA_KEY;
3297 	key.offset = em->start;
3298 
3299 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3300 	if (ret)
3301 		return ret;
3302 	leaf = path->nodes[0];
3303 	fi = btrfs_item_ptr(leaf, path->slots[0],
3304 			    struct btrfs_file_extent_item);
3305 
3306 	btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3307 					       &token);
3308 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3309 		skip_csum = true;
3310 		btrfs_set_token_file_extent_type(leaf, fi,
3311 						 BTRFS_FILE_EXTENT_PREALLOC,
3312 						 &token);
3313 	} else {
3314 		btrfs_set_token_file_extent_type(leaf, fi,
3315 						 BTRFS_FILE_EXTENT_REG,
3316 						 &token);
3317 		if (em->block_start == 0)
3318 			skip_csum = true;
3319 	}
3320 
3321 	block_len = max(em->block_len, em->orig_block_len);
3322 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3323 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3324 							em->block_start,
3325 							&token);
3326 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3327 							   &token);
3328 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3329 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3330 							em->block_start -
3331 							extent_offset, &token);
3332 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3333 							   &token);
3334 	} else {
3335 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3336 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3337 							   &token);
3338 	}
3339 
3340 	btrfs_set_token_file_extent_offset(leaf, fi,
3341 					   em->start - em->orig_start,
3342 					   &token);
3343 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3344 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3345 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3346 						&token);
3347 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3348 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3349 	btrfs_mark_buffer_dirty(leaf);
3350 
3351 	btrfs_release_path(path);
3352 	if (ret) {
3353 		return ret;
3354 	}
3355 
3356 	if (skip_csum)
3357 		return 0;
3358 
3359 	if (em->compress_type) {
3360 		csum_offset = 0;
3361 		csum_len = block_len;
3362 	}
3363 
3364 	/*
3365 	 * First check and see if our csums are on our outstanding ordered
3366 	 * extents.
3367 	 */
3368 again:
3369 	spin_lock_irq(&log->log_extents_lock[index]);
3370 	list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3371 		struct btrfs_ordered_sum *sum;
3372 
3373 		if (!mod_len)
3374 			break;
3375 
3376 		if (ordered->inode != inode)
3377 			continue;
3378 
3379 		if (ordered->file_offset + ordered->len <= mod_start ||
3380 		    mod_start + mod_len <= ordered->file_offset)
3381 			continue;
3382 
3383 		/*
3384 		 * We are going to copy all the csums on this ordered extent, so
3385 		 * go ahead and adjust mod_start and mod_len in case this
3386 		 * ordered extent has already been logged.
3387 		 */
3388 		if (ordered->file_offset > mod_start) {
3389 			if (ordered->file_offset + ordered->len >=
3390 			    mod_start + mod_len)
3391 				mod_len = ordered->file_offset - mod_start;
3392 			/*
3393 			 * If we have this case
3394 			 *
3395 			 * |--------- logged extent ---------|
3396 			 *       |----- ordered extent ----|
3397 			 *
3398 			 * Just don't mess with mod_start and mod_len, we'll
3399 			 * just end up logging more csums than we need and it
3400 			 * will be ok.
3401 			 */
3402 		} else {
3403 			if (ordered->file_offset + ordered->len <
3404 			    mod_start + mod_len) {
3405 				mod_len = (mod_start + mod_len) -
3406 					(ordered->file_offset + ordered->len);
3407 				mod_start = ordered->file_offset +
3408 					ordered->len;
3409 			} else {
3410 				mod_len = 0;
3411 			}
3412 		}
3413 
3414 		/*
3415 		 * To keep us from looping for the above case of an ordered
3416 		 * extent that falls inside of the logged extent.
3417 		 */
3418 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3419 				     &ordered->flags))
3420 			continue;
3421 		atomic_inc(&ordered->refs);
3422 		spin_unlock_irq(&log->log_extents_lock[index]);
3423 		/*
3424 		 * we've dropped the lock, we must either break or
3425 		 * start over after this.
3426 		 */
3427 
3428 		wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3429 
3430 		list_for_each_entry(sum, &ordered->list, list) {
3431 			ret = btrfs_csum_file_blocks(trans, log, sum);
3432 			if (ret) {
3433 				btrfs_put_ordered_extent(ordered);
3434 				goto unlocked;
3435 			}
3436 		}
3437 		btrfs_put_ordered_extent(ordered);
3438 		goto again;
3439 
3440 	}
3441 	spin_unlock_irq(&log->log_extents_lock[index]);
3442 unlocked:
3443 
3444 	if (!mod_len || ret)
3445 		return ret;
3446 
3447 	csum_offset = mod_start - em->start;
3448 	csum_len = mod_len;
3449 
3450 	/* block start is already adjusted for the file extent offset. */
3451 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3452 				       em->block_start + csum_offset,
3453 				       em->block_start + csum_offset +
3454 				       csum_len - 1, &ordered_sums, 0);
3455 	if (ret)
3456 		return ret;
3457 
3458 	while (!list_empty(&ordered_sums)) {
3459 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3460 						   struct btrfs_ordered_sum,
3461 						   list);
3462 		if (!ret)
3463 			ret = btrfs_csum_file_blocks(trans, log, sums);
3464 		list_del(&sums->list);
3465 		kfree(sums);
3466 	}
3467 
3468 	return ret;
3469 }
3470 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path)3471 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3472 				     struct btrfs_root *root,
3473 				     struct inode *inode,
3474 				     struct btrfs_path *path)
3475 {
3476 	struct extent_map *em, *n;
3477 	struct list_head extents;
3478 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3479 	u64 test_gen;
3480 	int ret = 0;
3481 	int num = 0;
3482 
3483 	INIT_LIST_HEAD(&extents);
3484 
3485 	write_lock(&tree->lock);
3486 	test_gen = root->fs_info->last_trans_committed;
3487 
3488 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3489 		list_del_init(&em->list);
3490 
3491 		/*
3492 		 * Just an arbitrary number, this can be really CPU intensive
3493 		 * once we start getting a lot of extents, and really once we
3494 		 * have a bunch of extents we just want to commit since it will
3495 		 * be faster.
3496 		 */
3497 		if (++num > 32768) {
3498 			list_del_init(&tree->modified_extents);
3499 			ret = -EFBIG;
3500 			goto process;
3501 		}
3502 
3503 		if (em->generation <= test_gen)
3504 			continue;
3505 		/* Need a ref to keep it from getting evicted from cache */
3506 		atomic_inc(&em->refs);
3507 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3508 		list_add_tail(&em->list, &extents);
3509 		num++;
3510 	}
3511 
3512 	list_sort(NULL, &extents, extent_cmp);
3513 
3514 process:
3515 	while (!list_empty(&extents)) {
3516 		em = list_entry(extents.next, struct extent_map, list);
3517 
3518 		list_del_init(&em->list);
3519 
3520 		/*
3521 		 * If we had an error we just need to delete everybody from our
3522 		 * private list.
3523 		 */
3524 		if (ret) {
3525 			clear_em_logging(tree, em);
3526 			free_extent_map(em);
3527 			continue;
3528 		}
3529 
3530 		write_unlock(&tree->lock);
3531 
3532 		ret = log_one_extent(trans, inode, root, em, path);
3533 		write_lock(&tree->lock);
3534 		clear_em_logging(tree, em);
3535 		free_extent_map(em);
3536 	}
3537 	WARN_ON(!list_empty(&extents));
3538 	write_unlock(&tree->lock);
3539 
3540 	btrfs_release_path(path);
3541 	return ret;
3542 }
3543 
3544 /* log a single inode in the tree log.
3545  * At least one parent directory for this inode must exist in the tree
3546  * or be logged already.
3547  *
3548  * Any items from this inode changed by the current transaction are copied
3549  * to the log tree.  An extra reference is taken on any extents in this
3550  * file, allowing us to avoid a whole pile of corner cases around logging
3551  * blocks that have been removed from the tree.
3552  *
3553  * See LOG_INODE_ALL and related defines for a description of what inode_only
3554  * does.
3555  *
3556  * This handles both files and directories.
3557  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,int inode_only)3558 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3559 			     struct btrfs_root *root, struct inode *inode,
3560 			     int inode_only)
3561 {
3562 	struct btrfs_path *path;
3563 	struct btrfs_path *dst_path;
3564 	struct btrfs_key min_key;
3565 	struct btrfs_key max_key;
3566 	struct btrfs_root *log = root->log_root;
3567 	struct extent_buffer *src = NULL;
3568 	int err = 0;
3569 	int ret;
3570 	int nritems;
3571 	int ins_start_slot = 0;
3572 	int ins_nr;
3573 	bool fast_search = false;
3574 	u64 ino = btrfs_ino(inode);
3575 
3576 	path = btrfs_alloc_path();
3577 	if (!path)
3578 		return -ENOMEM;
3579 	dst_path = btrfs_alloc_path();
3580 	if (!dst_path) {
3581 		btrfs_free_path(path);
3582 		return -ENOMEM;
3583 	}
3584 
3585 	min_key.objectid = ino;
3586 	min_key.type = BTRFS_INODE_ITEM_KEY;
3587 	min_key.offset = 0;
3588 
3589 	max_key.objectid = ino;
3590 
3591 
3592 	/* today the code can only do partial logging of directories */
3593 	if (S_ISDIR(inode->i_mode) ||
3594 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3595 		       &BTRFS_I(inode)->runtime_flags) &&
3596 	     inode_only == LOG_INODE_EXISTS))
3597 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3598 	else
3599 		max_key.type = (u8)-1;
3600 	max_key.offset = (u64)-1;
3601 
3602 	/* Only run delayed items if we are a dir or a new file */
3603 	if (S_ISDIR(inode->i_mode) ||
3604 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3605 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3606 		if (ret) {
3607 			btrfs_free_path(path);
3608 			btrfs_free_path(dst_path);
3609 			return ret;
3610 		}
3611 	}
3612 
3613 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3614 
3615 	btrfs_get_logged_extents(log, inode);
3616 
3617 	/*
3618 	 * a brute force approach to making sure we get the most uptodate
3619 	 * copies of everything.
3620 	 */
3621 	if (S_ISDIR(inode->i_mode)) {
3622 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3623 
3624 		if (inode_only == LOG_INODE_EXISTS)
3625 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3626 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3627 	} else {
3628 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3629 				       &BTRFS_I(inode)->runtime_flags)) {
3630 			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3631 				  &BTRFS_I(inode)->runtime_flags);
3632 			ret = btrfs_truncate_inode_items(trans, log,
3633 							 inode, 0, 0);
3634 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3635 					      &BTRFS_I(inode)->runtime_flags)) {
3636 			if (inode_only == LOG_INODE_ALL)
3637 				fast_search = true;
3638 			max_key.type = BTRFS_XATTR_ITEM_KEY;
3639 			ret = drop_objectid_items(trans, log, path, ino,
3640 						  max_key.type);
3641 		} else {
3642 			if (inode_only == LOG_INODE_ALL)
3643 				fast_search = true;
3644 			ret = log_inode_item(trans, log, dst_path, inode);
3645 			if (ret) {
3646 				err = ret;
3647 				goto out_unlock;
3648 			}
3649 			goto log_extents;
3650 		}
3651 
3652 	}
3653 	if (ret) {
3654 		err = ret;
3655 		goto out_unlock;
3656 	}
3657 	path->keep_locks = 1;
3658 
3659 	while (1) {
3660 		ins_nr = 0;
3661 		ret = btrfs_search_forward(root, &min_key, &max_key,
3662 					   path, trans->transid);
3663 		if (ret != 0)
3664 			break;
3665 again:
3666 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3667 		if (min_key.objectid != ino)
3668 			break;
3669 		if (min_key.type > max_key.type)
3670 			break;
3671 
3672 		src = path->nodes[0];
3673 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3674 			ins_nr++;
3675 			goto next_slot;
3676 		} else if (!ins_nr) {
3677 			ins_start_slot = path->slots[0];
3678 			ins_nr = 1;
3679 			goto next_slot;
3680 		}
3681 
3682 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3683 				 ins_nr, inode_only);
3684 		if (ret) {
3685 			err = ret;
3686 			goto out_unlock;
3687 		}
3688 		ins_nr = 1;
3689 		ins_start_slot = path->slots[0];
3690 next_slot:
3691 
3692 		nritems = btrfs_header_nritems(path->nodes[0]);
3693 		path->slots[0]++;
3694 		if (path->slots[0] < nritems) {
3695 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3696 					      path->slots[0]);
3697 			goto again;
3698 		}
3699 		if (ins_nr) {
3700 			ret = copy_items(trans, inode, dst_path, src,
3701 					 ins_start_slot,
3702 					 ins_nr, inode_only);
3703 			if (ret) {
3704 				err = ret;
3705 				goto out_unlock;
3706 			}
3707 			ins_nr = 0;
3708 		}
3709 		btrfs_release_path(path);
3710 
3711 		if (min_key.offset < (u64)-1)
3712 			min_key.offset++;
3713 		else if (min_key.type < (u8)-1)
3714 			min_key.type++;
3715 		else if (min_key.objectid < (u64)-1)
3716 			min_key.objectid++;
3717 		else
3718 			break;
3719 	}
3720 	if (ins_nr) {
3721 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3722 				 ins_nr, inode_only);
3723 		if (ret) {
3724 			err = ret;
3725 			goto out_unlock;
3726 		}
3727 		ins_nr = 0;
3728 	}
3729 
3730 log_extents:
3731 	if (fast_search) {
3732 		btrfs_release_path(dst_path);
3733 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3734 		if (ret) {
3735 			err = ret;
3736 			goto out_unlock;
3737 		}
3738 	} else {
3739 		struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3740 		struct extent_map *em, *n;
3741 
3742 		write_lock(&tree->lock);
3743 		list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3744 			list_del_init(&em->list);
3745 		write_unlock(&tree->lock);
3746 	}
3747 
3748 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3749 		btrfs_release_path(path);
3750 		btrfs_release_path(dst_path);
3751 		ret = log_directory_changes(trans, root, inode, path, dst_path);
3752 		if (ret) {
3753 			err = ret;
3754 			goto out_unlock;
3755 		}
3756 	}
3757 	BTRFS_I(inode)->logged_trans = trans->transid;
3758 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3759 out_unlock:
3760 	if (err)
3761 		btrfs_free_logged_extents(log, log->log_transid);
3762 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3763 
3764 	btrfs_free_path(path);
3765 	btrfs_free_path(dst_path);
3766 	return err;
3767 }
3768 
3769 /*
3770  * follow the dentry parent pointers up the chain and see if any
3771  * of the directories in it require a full commit before they can
3772  * be logged.  Returns zero if nothing special needs to be done or 1 if
3773  * a full commit is required.
3774  */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)3775 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3776 					       struct inode *inode,
3777 					       struct dentry *parent,
3778 					       struct super_block *sb,
3779 					       u64 last_committed)
3780 {
3781 	int ret = 0;
3782 	struct btrfs_root *root;
3783 	struct dentry *old_parent = NULL;
3784 
3785 	/*
3786 	 * for regular files, if its inode is already on disk, we don't
3787 	 * have to worry about the parents at all.  This is because
3788 	 * we can use the last_unlink_trans field to record renames
3789 	 * and other fun in this file.
3790 	 */
3791 	if (S_ISREG(inode->i_mode) &&
3792 	    BTRFS_I(inode)->generation <= last_committed &&
3793 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3794 			goto out;
3795 
3796 	if (!S_ISDIR(inode->i_mode)) {
3797 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3798 			goto out;
3799 		inode = parent->d_inode;
3800 	}
3801 
3802 	while (1) {
3803 		BTRFS_I(inode)->logged_trans = trans->transid;
3804 		smp_mb();
3805 
3806 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3807 			root = BTRFS_I(inode)->root;
3808 
3809 			/*
3810 			 * make sure any commits to the log are forced
3811 			 * to be full commits
3812 			 */
3813 			root->fs_info->last_trans_log_full_commit =
3814 				trans->transid;
3815 			ret = 1;
3816 			break;
3817 		}
3818 
3819 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3820 			break;
3821 
3822 		if (IS_ROOT(parent))
3823 			break;
3824 
3825 		parent = dget_parent(parent);
3826 		dput(old_parent);
3827 		old_parent = parent;
3828 		inode = parent->d_inode;
3829 
3830 	}
3831 	dput(old_parent);
3832 out:
3833 	return ret;
3834 }
3835 
3836 /*
3837  * helper function around btrfs_log_inode to make sure newly created
3838  * parent directories also end up in the log.  A minimal inode and backref
3839  * only logging is done of any parent directories that are older than
3840  * the last committed transaction
3841  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct dentry * parent,int exists_only)3842 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3843 			    	  struct btrfs_root *root, struct inode *inode,
3844 			    	  struct dentry *parent, int exists_only)
3845 {
3846 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3847 	struct super_block *sb;
3848 	struct dentry *old_parent = NULL;
3849 	int ret = 0;
3850 	u64 last_committed = root->fs_info->last_trans_committed;
3851 
3852 	sb = inode->i_sb;
3853 
3854 	if (btrfs_test_opt(root, NOTREELOG)) {
3855 		ret = 1;
3856 		goto end_no_trans;
3857 	}
3858 
3859 	if (root->fs_info->last_trans_log_full_commit >
3860 	    root->fs_info->last_trans_committed) {
3861 		ret = 1;
3862 		goto end_no_trans;
3863 	}
3864 
3865 	if (root != BTRFS_I(inode)->root ||
3866 	    btrfs_root_refs(&root->root_item) == 0) {
3867 		ret = 1;
3868 		goto end_no_trans;
3869 	}
3870 
3871 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3872 					 sb, last_committed);
3873 	if (ret)
3874 		goto end_no_trans;
3875 
3876 	if (btrfs_inode_in_log(inode, trans->transid)) {
3877 		ret = BTRFS_NO_LOG_SYNC;
3878 		goto end_no_trans;
3879 	}
3880 
3881 	ret = start_log_trans(trans, root);
3882 	if (ret)
3883 		goto end_trans;
3884 
3885 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3886 	if (ret)
3887 		goto end_trans;
3888 
3889 	/*
3890 	 * for regular files, if its inode is already on disk, we don't
3891 	 * have to worry about the parents at all.  This is because
3892 	 * we can use the last_unlink_trans field to record renames
3893 	 * and other fun in this file.
3894 	 */
3895 	if (S_ISREG(inode->i_mode) &&
3896 	    BTRFS_I(inode)->generation <= last_committed &&
3897 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3898 		ret = 0;
3899 		goto end_trans;
3900 	}
3901 
3902 	inode_only = LOG_INODE_EXISTS;
3903 	while (1) {
3904 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3905 			break;
3906 
3907 		inode = parent->d_inode;
3908 		if (root != BTRFS_I(inode)->root)
3909 			break;
3910 
3911 		if (BTRFS_I(inode)->generation >
3912 		    root->fs_info->last_trans_committed) {
3913 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3914 			if (ret)
3915 				goto end_trans;
3916 		}
3917 		if (IS_ROOT(parent))
3918 			break;
3919 
3920 		parent = dget_parent(parent);
3921 		dput(old_parent);
3922 		old_parent = parent;
3923 	}
3924 	ret = 0;
3925 end_trans:
3926 	dput(old_parent);
3927 	if (ret < 0) {
3928 		root->fs_info->last_trans_log_full_commit = trans->transid;
3929 		ret = 1;
3930 	}
3931 	btrfs_end_log_trans(root);
3932 end_no_trans:
3933 	return ret;
3934 }
3935 
3936 /*
3937  * it is not safe to log dentry if the chunk root has added new
3938  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3939  * If this returns 1, you must commit the transaction to safely get your
3940  * data on disk.
3941  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct dentry * dentry)3942 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3943 			  struct btrfs_root *root, struct dentry *dentry)
3944 {
3945 	struct dentry *parent = dget_parent(dentry);
3946 	int ret;
3947 
3948 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3949 	dput(parent);
3950 
3951 	return ret;
3952 }
3953 
3954 /*
3955  * should be called during mount to recover any replay any log trees
3956  * from the FS
3957  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)3958 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3959 {
3960 	int ret;
3961 	struct btrfs_path *path;
3962 	struct btrfs_trans_handle *trans;
3963 	struct btrfs_key key;
3964 	struct btrfs_key found_key;
3965 	struct btrfs_key tmp_key;
3966 	struct btrfs_root *log;
3967 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3968 	struct walk_control wc = {
3969 		.process_func = process_one_buffer,
3970 		.stage = 0,
3971 	};
3972 
3973 	path = btrfs_alloc_path();
3974 	if (!path)
3975 		return -ENOMEM;
3976 
3977 	fs_info->log_root_recovering = 1;
3978 
3979 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3980 	if (IS_ERR(trans)) {
3981 		ret = PTR_ERR(trans);
3982 		goto error;
3983 	}
3984 
3985 	wc.trans = trans;
3986 	wc.pin = 1;
3987 
3988 	ret = walk_log_tree(trans, log_root_tree, &wc);
3989 	if (ret) {
3990 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
3991 			    "recovering log root tree.");
3992 		goto error;
3993 	}
3994 
3995 again:
3996 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3997 	key.offset = (u64)-1;
3998 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3999 
4000 	while (1) {
4001 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4002 
4003 		if (ret < 0) {
4004 			btrfs_error(fs_info, ret,
4005 				    "Couldn't find tree log root.");
4006 			goto error;
4007 		}
4008 		if (ret > 0) {
4009 			if (path->slots[0] == 0)
4010 				break;
4011 			path->slots[0]--;
4012 		}
4013 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4014 				      path->slots[0]);
4015 		btrfs_release_path(path);
4016 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4017 			break;
4018 
4019 		log = btrfs_read_fs_root_no_radix(log_root_tree,
4020 						  &found_key);
4021 		if (IS_ERR(log)) {
4022 			ret = PTR_ERR(log);
4023 			btrfs_error(fs_info, ret,
4024 				    "Couldn't read tree log root.");
4025 			goto error;
4026 		}
4027 
4028 		tmp_key.objectid = found_key.offset;
4029 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4030 		tmp_key.offset = (u64)-1;
4031 
4032 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4033 		if (IS_ERR(wc.replay_dest)) {
4034 			ret = PTR_ERR(wc.replay_dest);
4035 			free_extent_buffer(log->node);
4036 			free_extent_buffer(log->commit_root);
4037 			kfree(log);
4038 			btrfs_error(fs_info, ret, "Couldn't read target root "
4039 				    "for tree log recovery.");
4040 			goto error;
4041 		}
4042 
4043 		wc.replay_dest->log_root = log;
4044 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4045 		ret = walk_log_tree(trans, log, &wc);
4046 
4047 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4048 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4049 						      path);
4050 		}
4051 
4052 		key.offset = found_key.offset - 1;
4053 		wc.replay_dest->log_root = NULL;
4054 		free_extent_buffer(log->node);
4055 		free_extent_buffer(log->commit_root);
4056 		kfree(log);
4057 
4058 		if (ret)
4059 			goto error;
4060 
4061 		if (found_key.offset == 0)
4062 			break;
4063 	}
4064 	btrfs_release_path(path);
4065 
4066 	/* step one is to pin it all, step two is to replay just inodes */
4067 	if (wc.pin) {
4068 		wc.pin = 0;
4069 		wc.process_func = replay_one_buffer;
4070 		wc.stage = LOG_WALK_REPLAY_INODES;
4071 		goto again;
4072 	}
4073 	/* step three is to replay everything */
4074 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4075 		wc.stage++;
4076 		goto again;
4077 	}
4078 
4079 	btrfs_free_path(path);
4080 
4081 	/* step 4: commit the transaction, which also unpins the blocks */
4082 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4083 	if (ret)
4084 		return ret;
4085 
4086 	free_extent_buffer(log_root_tree->node);
4087 	log_root_tree->log_root = NULL;
4088 	fs_info->log_root_recovering = 0;
4089 	kfree(log_root_tree);
4090 
4091 	return 0;
4092 error:
4093 	if (wc.trans)
4094 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4095 	btrfs_free_path(path);
4096 	return ret;
4097 }
4098 
4099 /*
4100  * there are some corner cases where we want to force a full
4101  * commit instead of allowing a directory to be logged.
4102  *
4103  * They revolve around files there were unlinked from the directory, and
4104  * this function updates the parent directory so that a full commit is
4105  * properly done if it is fsync'd later after the unlinks are done.
4106  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct inode * dir,struct inode * inode,int for_rename)4107 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4108 			     struct inode *dir, struct inode *inode,
4109 			     int for_rename)
4110 {
4111 	/*
4112 	 * when we're logging a file, if it hasn't been renamed
4113 	 * or unlinked, and its inode is fully committed on disk,
4114 	 * we don't have to worry about walking up the directory chain
4115 	 * to log its parents.
4116 	 *
4117 	 * So, we use the last_unlink_trans field to put this transid
4118 	 * into the file.  When the file is logged we check it and
4119 	 * don't log the parents if the file is fully on disk.
4120 	 */
4121 	if (S_ISREG(inode->i_mode))
4122 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4123 
4124 	/*
4125 	 * if this directory was already logged any new
4126 	 * names for this file/dir will get recorded
4127 	 */
4128 	smp_mb();
4129 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4130 		return;
4131 
4132 	/*
4133 	 * if the inode we're about to unlink was logged,
4134 	 * the log will be properly updated for any new names
4135 	 */
4136 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4137 		return;
4138 
4139 	/*
4140 	 * when renaming files across directories, if the directory
4141 	 * there we're unlinking from gets fsync'd later on, there's
4142 	 * no way to find the destination directory later and fsync it
4143 	 * properly.  So, we have to be conservative and force commits
4144 	 * so the new name gets discovered.
4145 	 */
4146 	if (for_rename)
4147 		goto record;
4148 
4149 	/* we can safely do the unlink without any special recording */
4150 	return;
4151 
4152 record:
4153 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4154 }
4155 
4156 /*
4157  * Call this after adding a new name for a file and it will properly
4158  * update the log to reflect the new name.
4159  *
4160  * It will return zero if all goes well, and it will return 1 if a
4161  * full transaction commit is required.
4162  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * old_dir,struct dentry * parent)4163 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4164 			struct inode *inode, struct inode *old_dir,
4165 			struct dentry *parent)
4166 {
4167 	struct btrfs_root * root = BTRFS_I(inode)->root;
4168 
4169 	/*
4170 	 * this will force the logging code to walk the dentry chain
4171 	 * up for the file
4172 	 */
4173 	if (S_ISREG(inode->i_mode))
4174 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4175 
4176 	/*
4177 	 * if this inode hasn't been logged and directory we're renaming it
4178 	 * from hasn't been logged, we don't need to log it
4179 	 */
4180 	if (BTRFS_I(inode)->logged_trans <=
4181 	    root->fs_info->last_trans_committed &&
4182 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4183 		    root->fs_info->last_trans_committed))
4184 		return 0;
4185 
4186 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4187 }
4188 
4189